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Abstract. Bit-parallelism permits executing several operations simul-
taneously over a set of bits or numbers stored in a single computer word.
This technique permits searching for the approximate occurrences of a
pattern of length m in a text of length n in time O(⌈m/w⌉n), where w is
the number of bits in the computer word. Although this is asymptotically
the optimal speedup over the basic O(mn) time algorithm, it wastes bit-
parallelism’s power in the common case where m is much smaller than
w, since w −m bits in the computer words get unused.
In this paper we explore different ways to increase the bit-parallelism
when the search pattern is short. First, we show how multiple patterns
can be packed in a single computer word so as to search for multiple
patterns simultaneously. Instead of paying O(rn) time to search for r
patterns of length m < w, we obtain O(⌈r/⌊w/m⌋⌉n) time. Second, we
show how the mechanism permits boosting the search for a single pattern
of length m < w, which can be searched for in time O(n/⌊w/m⌋) instead
of O(n). Finally, we show how to extend these algorithms so that the time
bounds essentially depend on k instead of m, where k is the maximum
number of differences permitted.
Our experimental results show that that the algorithms work well in
practice, and are the fastest alternatives for a wide range of search pa-
rameters.

1 Introduction

Approximate string matching is an old problem, with applications for example in
spelling correction, bioinformatics and signal processing [7]. It refers in general
to searching for substrings of a text that are within a predefined edit distance
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threshold from a given pattern. Let T = T1...n be a text of length n and P =
P1...m a pattern of length m. Here Aa...b denotes the substring of A that begins
at its ath character and ends at its bth character, for a ≤ b. Let ed(A, B) denote
the edit distance between the strings A and B, and k be the maximum allowed
distance. Then the task of approximate string matching is to find all text indices
j for which ed(P, Th...j) ≤ k for some h ≤ j.

The most common form of edit distance is Levenshtein distance [5]. It is
defined as the minimum number of single-character insertions, deletions and
substitutions needed in order to make A and B equal. In this paper ed(A, B)
will denote Levenshtein distance. We also use w to denote the computer word
size in bits, σ to denote the size of the alphabet Σ and |A| to denote the length
of the string A.

Bit-parallelism is the technique of packing several values in a single com-
puter word and updating them all in a single operation. This technique has
yielded the fastest approximate string matching algorithms if we exclude filtra-
tion algorithms (which need anyway to be coupled with a non-filtration one). In
particular, the O(⌈m/w⌉kn) algorithm of Wu and Manber [13], the O(⌈km/w⌉n)
algorithm of Baeza-Yates and Navarro [1], and the O(⌈m/w⌉n) algorithm of My-
ers [6] dominate for almost every value of m, k and σ.

In complexity terms, Myers’ algorithm is superior to the others. In practice,
however, Wu & Manber’s algorithm is faster for k = 1 and Baeza-Yates and
Navarro’s is faster when (k + 2)(m− k) ≤ w or k/m is low. The reason is that,
despite that Myers’ algorithm packs better the state of the search (needing to
update less computer words), it needs slightly more operations than its competi-
tors. Except when m and k are small, the need to update less computer words
makes Myers’ algorithm faster than the others. However, when m is much smaller
than w, Myers’ advantage disappears because all the three algorithms need to
update just one (or very few) computer words. In this case, Myers’ representa-
tion wastes many bits of the computer word and is unable to take advantage of
its more compact representation.

The case where m is much smaller than w is very common in several ap-
plications. Typically w is 32 or 64 in a modern computer, and for example the
Pentium 4 processor allows one to use even words of size 128. Myers’ representa-
tion uses m bits out of those w. In spelling, for example, it is usual to search for
words, whose average length is 6. In computational biology one can search for
short DNA or amino acid sequences, of length as small as 4. In signal processing
applications one can search for sequences composed of a few audio, MIDI or
video samples.

In this paper we concentrate on reducing the number of wasted bits in Myers’
algorithm, so as to take advantage of its better packing of the search state even
when m ≤ w. This has been attempted previously [2], where O(m⌈n/w⌉) time
was obtained. Our technique is different. We first show how to search for several
patterns simultaneously by packing them all in the same computer word. We can
search for r patterns of length m ≤ w in O(⌈r/⌊m/w⌋⌉n+occ) rather than O(rn)
time, where occ ≤ rn is the total number of occurrences of all the patterns. We



then show how this idea can be pushed further to boost the search for a single
pattern, so as to obtain O(n/⌊w/m⌋) time instead of O(n) for m ≤ w.

Our experimental results show that the presented schemes work well in prac-
tice.

2 Dynamic Programming

In the following ǫ denotes the empty string. To compute Levenshtein distance
ed(A, B), the dynamic programming algorithm fills an (|A|+1)×(|B|+1) table D,
in which each cell D[i, j] will eventually hold the value ed(A1..i, B1..j). Initially
the trivially known boundary values D[i, 0] = ed(A1..i, ǫ) = i and D[0, j] =
ed(ǫ, B1..j) = j are filled. Then the cells D[i, j] are computed for i = 1 . . . |A|
and j = 1 . . . |B| until the desired solution D[|A|, |B|] = ed(A1...|A|, B1...|B|) =
ed(A, B) is known. When the values D[i − 1, j − 1], D[i, j − 1] and D[i − 1, j]
are known, the value D[i, j] can be computed by using the following well-known
recurrence.

D[i, 0] = i, D[0, j] = j.

D[i, j] =

{

D[i− 1, j − 1], if Ai = Bj .
1 + min(D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]), otherwise.

This distance computation algorithm is easily modified to find approximate
occurrences of A somewhere inside B [9]. This is done simply by changing
the boundary condition D[0, j] = j into D[0, j] = 0. In this case D[i, j] =
min(ed(A1...i, Bh...j), h ≤ j), which corresponds to the earlier definition of ap-
proximate string matching if we replace A with P and B with T .

The values of D are usually computed by filling it in a column-wise manner
for increasing j. This corresponds to scanning the string B (or the text T ) one
character at a time from left to right. At each character the corresponding column
is completely filled in order of increasing i. This order makes it possible to save
space by storing only one column at a time, since then the values in column j
depend only on already computed values in it or values in column j − 1.

Some properties of matrix D are relevant to our paper [11]:

-The diagonal property: D[i, j]−D[i− 1, j − 1] = 0 or 1.
-The adjacency property: D[i, j]−D[i, j − 1] = −1, 0, or 1, and

D[i, j]−D[i− 1, j] = −1, 0, or 1.

3 Myers’ Bit-Parallel Algorithm

In what follows we will use the following notation in describing bit-operations:
’&’ denotes bitwise “and”, ’|’ denotes bitwise “or”, ’∧’ denotes bitwise “xor”,
’∼’ denotes bit complementation, and ’<<’ and ’>>’ denote shifting the bit-
vector left and right, respectively, using zero filling in both directions. The ith
bit of the bit vector V is referred to as V [i] and bit positions are assumed to
grow from right to left. In addition we use superscripts to denote repetition. As



an example let V = 1011010 be a bit vector. Then V [1] = V [3] = V [6] = 0,
V [2] = V [4] = V [5] = V [7] = 1, and we could also write V = 1012010 or
V = 101(10)2.

We describe here a version of the algorithm [3, 8] that is slightly simpler than
the original by Myers [6]. The algorithm is based on representing the dynamic
programming table D with vertical, horizontal and diagonal differences and pre-
computing the matching positions of the pattern into an array of size σ. This is
done by using the following length-m bit-vectors:

-Vertical positive delta: V P [i] = 1 at text position j if and only if D[i, j] −
D[i− 1, j] = 1.

-Vertical negative delta: V N [i] = 1 at text position j if and only if D[i, j] −
D[i− 1, j] = −1.

-Horizontal positive delta: HP [i] = 1 at text position j if and only if D[i, j]−
D[i, j − 1] = 1.

-Horizontal negative delta: HN [i] = 1 at text position j if and only if D[i, j]−
D[i, j − 1] = −1.

-Diagonal zero delta: D0[i] = 1 at text position j if and only if D[i, j] =
D[i− 1, j − 1].

-Pattern match vector PMλ for each λ ∈ Σ: PMλ[i] = 1 if and only if Pi = λ.

Initially V P = 1m and V N = 0m to enforce the boundary condition D[i, 0] = i.
At text position j the algorithm first computes vector D0 by using the old values
V P and V N and the pattern match vector PMTj

. Then the new HP and HN
are computed by using D0 and the old V P and V N . Finally, vectors V P and
V N are updated by using the new D0, HN and HP . Fig. 1 shows the complete
formula for updating the vectors, and Fig. 2 shows the preprocessing of table
PM and the higher-level search scheme. We refer the reader to [3, 6] for a more
detailed explanation of the formula in Fig. 1.

Step(j)
1. D0← (((PMTj

& V P ) + V P ) ∧ V P ) | PMTj
| V N

2. HP ← V N | ∼ (D0 | V P )
3. HN ← V P & D0
4. V P ← (HN << 1) | ∼ (D0 | (HP << 1))
5. V N ← (HP << 1) & D0

Fig. 1. Updating the delta vectors at column j.

The algorithm in Fig. 2 computes the value D[m, j] explicitly in the currDist
variable by using the horizontal delta vectors (the initial value of currDist is
D[m, 0] = m). A pattern occurrence with at most k errors is found at text
position j whenever D[m, j] ≤ k.

We point out that the boundary condition D[0, j] = 0 is enforced on lines
4 and 5 in Fig. 1. After the horizontal delta vectors HP and HN are shifted



ComputePM(P )
1. For λ ∈ Σ Do PMλ ← 0m

2. For i ∈ 1 . . . m Do PMPi
← PMPi

| 0m−i10i−1

Search(P, T, k)
1. ComputePM(P )
2. V N ← 0m, V P ← 1m, currDist← m
3. For j ∈ 1 . . . n Do
4. Step(j)
5. If HP & 10m−1 = 10m−1 Then
6. currDist← currDist + 1
7. Else If HN & 10m−1 = 10m−1 Then
8. currDist← currDist− 1
9. If currDist ≤ k Then
10. Report occurrence at j

Fig. 2. Preprocessing the PM -table and conducting the search.

left, their first bits correspond to the difference D[0, j]−D[0, j − 1]. This is the
only phase in the algorithm where the values from row 0 are relevant. And as
we assume zero filling, the left shifts correctly set HP [1] = HN [1] = 0 to encode
the difference D[0, j]−D[0, j − 1] = 0.

The running time of the algorithm is O(n) when m ≤ w, as there are only a
constant number of operations per text character. The general running time is
O(⌈m/w⌉n) as a vector of length m may be simulated in O(⌈m/w⌉) time using
O(⌈m/w⌉) bit-vectors of length w.

4 Searching for Several Patterns Simultaneously

We show how Myers’ algorithm can be used to search for r patterns of length
m simultaneously. For simplicity we will assume rm ≤ w; otherwise the search
patterns must be split into groups of at most ⌊w/m⌋ patterns each, and each
group searched for separately. Hence our search time will be O(⌈r/⌊w/m⌋⌉n +
occ), as opposed to the O(rn) time that would be achieved by searching for each
pattern separately. Here occ ≤ rn stands for the total number of occurrences of
all the patterns. When w/m ≥ 2, our complexity can be written as O(⌈rm/w⌉n+
occ).

Consider the situation where w/m ≥ 2 and Myers’ algorithm is used. Fig. 3a
shows how the algorithm fails to take full advantage of bit-parallelism in that
situation as at least one half of the bits in the bit vectors is not used. Fig. 3b
depicts our proposal: encode several patterns into the bit vectors and search
for them in parallel. There are several obstacles in achieving this goal correctly,
which will be discussed next.
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Fig. 3. For short patterns (m < w) Myers’ algorithm (a) wastes w − m bits. Our
proposal (b) packs several pattern into the same computer word, and wastes only
w − rm bits.

4.1 Updating the Delta Vectors

A natural starting point is the problem of encoding and updating several patterns
in the delta vectors. Let us denote a parallel version of a delta vector with
the superscript p. We encode the patterns repeatedly into the vectors without
leaving any space between them. For example D0p[i] corresponds to the bit
D0[((i− 1) mod m) + 1] in the D0-vector of the ⌈i/m⌉th pattern. The pattern
match vectors PM are computed in normal fashion for the concatenation of
the patterns. This correctly aligns the patterns with their positions in the bit
vectors.

When the parallel vectors are updated, we need to ensure that the values for
different patterns do not interfere with each other and that the boundary values
D[0, j] = 0 are used correctly. From the update formula in Fig. 1 it is obvious
that only the addition (“+”) on line 2 and the left shifts on lines 4 and 5 can
cause incorrect interference.

The addition operation may be handled by temporarily setting off the bits in
V P p that correspond to the last characters of the patterns. When this is done
before the addition, there cannot be an incorrect overflow, and on the other hand
the correct behaviour of the algorithm is not affected: The value V P p[i] can affect
only the values D0p[i+h] for some h > 0. It turns out that a similar modification
works also with the left shifts. If the bits that correspond to the last characters
of the patterns are temporarily set off in HP p and HNp then, after shifting left,
the positions in HP p and HNp that correspond to the first characters of the
patterns will correctly have a zero bit. The first pattern gets the zero bits from
zero filling of the shift. Therefore, this second modification both removes possible
interference and enforces the boundary condition D[0, j]−D[0, j − 1] = 0.

Both modifications are implemented by anding the corresponding vectors
with the bit mask ZM = (01m−1)r . Figure 4 gives the code for a step.

4.2 Keeping the Scores

A second problem is computing the value D[m, j] explicitly for each of the r
patterns. We handle this by using bit-parallel counters in a somewhat similar



MStep(j)
1. XP ← V P & ZM
2. D0← (((PMTj

& XP ) + XP ) ∧ XP ) | PMTj
| V N

3. HP ← V N | ∼ (D0 | V P )
4. HN ← V P & D0
5. XP ← HP & ZM , XN ← HN & ZM
6. V P ← ((XN << 1) | ∼ (D0 | (XP << 1)))
7. V N ← (XP << 1) & D0

Fig. 4. Updating the delta vectors at column j, when searching for multiple patterns.

fashion to [4]. Let MC be a length-w bit-parallel counter vector. We set up into
MC an m-bit counter for each pattern. Let MC(i) be the value of the ith counter.
The counters are aligned with the patterns so that MC(1) occupies the first m
bits, MC(2) the next m bits, and so on. We will represent value zero in each
counter as b = 2m−1+k, and the value MC(i) will be translated to actually mean
b−MC(i). This gives each counter MC(i) the following properties: (1) b < 2m.
(2) b −m ≥ 0. (3) The mth bit of MC(i) is set if and only if b −MC(i) ≤ k.
(4) In terms of updating the translated value of MC(i), the roles of adding and
subtracting from it are reversed.

The significance of properties (1) and (2) is that they ensure that the values
of the counters will not overflow outside their regions. Their correctness depends
on the assumption k < m. This is not a true restriction as it excludes only the
case of trivial matching (k = m).

We use a length-w bit-mask EM = (10m−1)r to update MC. The bits set
in HP p & EM and HNp & EM correspond to the last bits of the counters
that need to be incremented and decremented, respectively. Thus, remembering
to reverse addition and subtraction, MC may be updated by setting MC ←
MC + ((HNp & EM) >> (m− 1))− ((HP p & EM) >> (m− 1)).

Property (3) means that the last bit of MC(i) signals whether the ith pattern
matches at the current position. Hence, whenever MC & EM 6= 0rm we have
an occurrence of some of the patterns in T . At this point we can examine the
bit positions of EM one by one to determine which patterns have matched and
report their occurrences. This, however, adds O(r min(n, occ)) time in the worst
case to report the occ occurrences of all the patterns. We show next how to
reduce this to O(occ).

Fig. 5 gives the code to search for the patterns P 1 . . . P r.

4.3 Reporting the Occurrences

Let us assume that we want to identify which bits in mask OM = MC & EM
are set, in time proportional to the number of bits set. If we achieve this, the
total time to report all the occ occurrences of all the patterns will be O(occ). One
choice is to precompute a table F that, for any value of OM , gives the position
of the first bit set in OM . That is, if F [OM ] = s, then we report an occurrence



MComputePM(P 1 . . . P r)
1. For λ ∈ Σ Do PMλ ← 0mr

2. For s ∈ 1 . . . r Do

3. For i ∈ 1 . . . m Do PMP s
i
← PMP s

i
| 0m(r−s+1)−i10m(s−1)+i−1

MSearch(P 1 . . . P r, T, k)
1. MComputePM(P )
2. ZM ← (01m−1)r, EM ← (10m−1)r

3. V N ← 0mr, V P ← 1mr

4. MC ← (2m−1 + k)× (0m−11)r

5. For j ∈ 1 . . . n Do
6. MStep(j)
7. MC ←MC + ((HN & EM) >> (m− 1))− ((HP & EM) >> (m− 1))
8. If MC & EM 6= 0rm Then MReport(j, MC & EM)

Fig. 5. Preprocessing the PM -table and conducting the search for multiple patterns.

of the (s/m)th pattern at the current text position j, clear the sth bit in OM
by doing OM ← OM & ∼ (1 << (s− 1)), and repeat until OM becomes zero.

The only problem of this approach is that table F has 2rm entries, which is
too much. Fortunately, we can compute the s values efficiently without resorting
to look-up tables. The key observation is that the position of the highest bit set
in OM is effectively the function ⌊log2(OM)⌋+1 (we number the bits from 1 to
w), i.e. it holds that

2⌊log2
(x)⌋ ≤ x < 2⌊log2

(x)⌋+1,

1 << ⌊log2(x)⌋ ≤ x < 1 << (⌊log2(x)⌋+ 1).

The function ⌊log2(x)⌋ for an integer x can be computed in O(1) time in mod-
ern computer architectures by converting x into a floating point number, and
extracting the exponent, which requires only two additions and a shift. This
assumes that the floating point number is represented in a certain way, in par-
ticular that the radix is 2, and that the number is normalized. The “industry
standard” IEEE floating point representation meets these requirements. For the
details and other solutions for the integer logarithm of base 2, refer e.g. to [12].
ISO C99 standard conforming C compilers also provide a function to extract the
exponent directly, and many CPUs even have a dedicated machine instruction
for ⌊log2(x)⌋ function. Fig. 6 gives the code.

For architectures where ⌊log2(x)⌋ is hard to compute, we can still manage
to obtain O(min(n, occ) log r) time as follows. To detect the bits set in OM , we
check its two halves. If some half is zero, we can finish there. Otherwise, we
recursively check its two halves. We continue the process until we have isolated
each individual bit set in OM . In the worst case, each such bit has cost us
O(log r) halving steps.



MReport(j, OM)
1. While OM 6= 0r Do
2. s← ⌊log2(OM)⌋

3. Report occurrence of P (s+1)/m at text position j
4. OM ← OM & ∼ (1 << s)

Fig. 6. Reporting occurrences at current text position.

4.4 Handling Different Lengths and Thresholds

For simplicity we have assumed that all the patterns are of the same length and
are all searched with the same k. The method, however, can be adapted with
little problems to different m and k for each pattern.

If the lengths are m1 . . . mr and the thresholds are k1 . . . kr, we have to and

the vertical and horizontal vectors with ZM = 01mr−1 01mr−1−1 . . . 01m1−1, and
this fixes the problem of updating the delta vectors. With respect to the counters,
the ith counter must be represented as bi −MC(i), where bi = 2mi−1 + ki.

One delicacy is the update of MC, since the formula we gave to align all
the HP p bits at the beginning of the counters involved “>> (m− 1)”, and this
works only when all the patterns are of the same length. If they are not, we could
align the counters so that they start at the end of their areas, hence removing
the need for the shift at all. To avoid overflows, we should sort the patterns in
increasing length order prior to packing them in the computer word. The price
is that we will need mr extra bits at the end of the bit mask to hold the largest
counter. An alternative solution would be to handle the last counter separately.
This would avoid the shifts, and effectively adds only a few operations.

Finally, reporting the occurrences works just as before, except that the pat-
tern number we report is no longer (s + 1)/m (Fig. 6). The correct pattern
number can be computed efficiently e.g. using a look-up table indexed with s.
The size of the table is only O(w), as s ≤ w − 1.

5 Boosting the Search for One Pattern

Up to now we have shown how to take advantage of wasted bits by searching
for several patterns simultaneously. Yet, if we only want to search for a single
pattern, we still waste the bits. In this section we show how the technique de-
veloped for multiple patterns can be adapted to boost the search for a single
pattern.

The main idea is to search for multiple copies of the same pattern P and
parallelize the access to the text. Say that r = ⌊w/m⌋. Then we search for r
copies of P using a single computer word, with the same technique developed
for multiple patterns.

Of course this is of little interest in principle, as all the copies of the pattern
will report the same occurrences. However, the key idea here will be to search a



different text segment for each pattern copy. We divide the text T into r equal-
sized subtexts T = T 1T 2 . . . T r. Text T s, of length ℓ = ⌈n/r⌉, will be searched
for the sth copy of P , and therefore all the occurrences of P in T will be found.

Our search will perform ⌈n/r⌉ steps, where step j will access r text characters
Tj , Tj+ℓ, Tj+2ℓ, . . . , Tj+(r−1)ℓ. With those r characters c1 . . . cr we should build
the corresponding PM mask to execute a single step. This is easily done by
using

PM ← PMc1
| (PMc2

<< m) | (PMc3
<< 2m) | . . . | (PMcr

<< (r − 1)m)

We must exercise some care at the boundaries between consecutive text seg-
ments. On the one hand, processing of text segment Ts (1 ≤ s < r) should
continue up to m + k − 1 characters in Ts+1 in order to provide the adequate
context for the possible occurrences in the beginning of Ts+1. On the other hand,
the processing of Ts+1 must avoid reporting occurrences at the first m + k − 1
positions to avoid reporting them twice. Finally, occurrences may be reported
out of order if printed immediately, so it is necessary to store them in r buffer
arrays in order to report them ordered at the end.

Adding up the ⌈n/r⌉ = ⌈n/⌊w/m⌋⌉ bit-parallel steps required plus the n
character accesses to compute PM , we obtain O(⌈n/⌊w/m⌋⌉) complexity for
m ≤ w.

6 Long Patterns and k-differences Problem

We have shown how to utilize the bits in computer word economically, but our
methods assume that m ≤ w. We now sketch a method that can handle longer
patterns, and can pack more patterns in the same computer word. The basic
assumption here is that we are only interested in pattern occurrences that have
at most k differences. This is the situation that is most interesting in practice,
and usually we can assume that k is much smaller than m. Our goal is to obtain
similar time bounds as above, but replace m with k in the complexities. The
difference will be that these become average case complexities now.

The method is similar to our basic algorithms, but now we use an adaptation
of Ukkonen’s well-known “cut-off” algorithm [10]. That algorithm fills the table
D in column-wise order, and computes the values D[i, j] in column j for only
i ≤ ℓj , where

ℓj = 1 + max{i | D[i, j − 1] ≤ k}.
The cut-off heuristic is based on the fact that the search result does not depend
on cells whose value is larger than k. From the diagonal property it follows that
once D[i, j] > k, then D[i +h, j + h] > k for all h ≥ 0 (within the bounds of D).
And a consequence of this is that D[i, j] > k for i > ℓj .

After evaluating the current column of the matrix up to the row ℓj, the value
ℓj+1 is computed, and the algorithm continues with the next column j + 1. The
evaluation of ℓj takes O(1) amortized time, and its expected value L(k) is O(k),
and hence the whole algorithm takes only O(nk) time.



Myers adapted his O(n⌈m/w⌉) algorithm to use the cut-off heuristic as well.
In principle the idea is very simple; since on average the search ends at row L(k),
it is enough to use only L(k) bits of the computer word on average (actually he
used w⌈L(k)/w⌉ bits), and only in some text positions (e.g. when the pattern
matches) one has to use more bits. Only two modifications to the basic method
are needed. We must be able to decide which is the last active row in order to
compute the number of bits required for each text position, and we must be
able to handle the communication between the boundaries of the consecutive
computer words. Both problems are easy to solve, for details refer to [6]. With
these modifications Myers was able to obtain his O(n⌈L(k)/w⌉) average time
algorithm.

We can do exactly the same here. We use only b = max{L(k), ⌈log(m+k)⌉+1}
bits for each pattern and pack them into the same computer word just like in our
basic method. We need L(k) bits as L(k) is the row number where the search
is expected to end, and at least ⌈log(m + k)⌉ + 1 bits to avoid overflowing the
counters. Therefore we are going to search for ⌊w/b⌋ patterns in parallel.

If for some text positions b bits are not enough, we use as many computer
words as needed, each having b bits allocated for each pattern. Therefore, the
b-bit blocks in the first computer word correspond to the first b characters of
the corresponding patterns, and the b-bit blocks in the second word correspond
to the next b characters of the patterns, and so on. In total we need ⌈m/b⌉
computer words, but on average use only one for each text position.

The counters for each pattern have only b bits now, which means that the
maximum pattern length is limited to 2b−1 − k. The previous counters limited
the pattern length to 2m−1 − k, but at the same time assumed that the pattern
length was ≤ w/2. Using the cut-off method, we have less bits for the counters,
but in effect we can use longer patterns, the upper bound being m = 2w/2−1−k.

The tools we have developed for the basic method can be applied to modify
Myers’ cut-off algorithm to search for ⌊w/b⌋ patterns simultaneously. The only
additional modification we need is that we must add a new computer word
whenever any of the pattern counters has accumulated k differences, and this is
trivial to detect with our counters model. On the other hand, this modification
means that L(k) must grow as the function of r. It has been shown in [7] that
L(k) = k/(1−e/

√
σ)+O(1) for r = 1. For reasonably small r this bound should

not be affected much, as the probability of a match is exponentially decreasing
for m > L(k).

The result is that we can search for r patterns with at most k differences in
O(n⌈r/⌊w/b⌋⌉) expected time. Finally, it is possible to apply the same scheme
for single pattern search as well, resulting in O(⌈n/⌊w/b⌋⌉) expected time. The
method is useful even for short patterns (where we could apply our basic method
also), because we can use tighter packing when b < m.



7 Experimental Results

We have implemented all the algorithms in C and compiled them using GCC
3.3.1 with full optimizations. The experiments were run on a Sparc Ultra 2 with
128 mb ram that was dedicated solely for our tests. The word size of the machine
is 64 bits.

In the experiments we used DNA from baker’s yeast and natural language
English text from the TREC collection. Each text was cut into 4 million charac-
ters for testing. The patterns were selected randomly from the texts. We com-
pared the performance of our algorithms against previous work. The algorithms
included in the experiments were:

Parallel BPM: Our parallelized single-pattern search algorithm (Section 5).
We used r = 3 for m = 8 and m = 16, r = 2 for m = 32, and r = 2 and
cut-off (Section 6) for m = 64.

Our multi-pattern algorithm: The basic multipattern algorithm (Section 4)
or its cut-off version (Section 6). We determined which version to use by
using experimentally computed estimates for L(k).

BPM: Myers’ original algorithm [6], whose complexity is O(⌈m/w⌉n). We used
our implementation, which was roughly 20 % faster than the original code
of Myers on the test computer.

BPD: Non-deterministic finite state automaton bit-parallelized by diagonals
[1]. The complexity is O(⌈km/w⌉n). Implemented by its original authors.

BPR: Non-deterministic finite state automaton bit-parallelized by rows [13].
The complexity is O(⌈m/w⌉kn). We used our implementation, with hand
optimized special code for k = 1 . . . 7.

For each tested combination of m and k, we measured the average time per
pattern when searching for 50 patterns. The set of patterns was the same for
each algorithm. The results are shown in Fig. 7. Our algorithms are clear winners
in most of the cases.

Our single-pattern parallel search algorithm is beaten only when k = 1, as
BPR needs to do very little work in that case, or when the probability of finding
occurrences becomes so high that our more complicated scheme for occurrence
checking becomes very costly. At this point we would like to note, that the
occurrence checking part of our single-pattern algorithm has not yet been fully
optimized in practice.

Our multi-pattern algorithm is also shown to be very fast: in these tests it is
worse than a single-pattern algorithm only when w/2 < m and k is moderately
high with relation to the alphabet size.

8 Conclusions

Bit-parallel algorithms are currently the fastest approximate string matching
algorithms when Levenshtein distance is used. In particular, the algorithm of
Myers [6] dominates the field when the pattern is long enough, thanks to its
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Fig. 7. The plots show the average time for searching a single pattern.



better packing of the search state in the bits of the computer word. In this
paper we showed how this algorithm can be modified to take advantage of the
wasted bits when the pattern is short. We have shown two ways to do this.
The first one permits searching for several patterns simultaneously. The second
one boosts the search for a single pattern by processing several text positions
simultaneously.

We have shown, both analytically and experimentally, that our algorithms
are significantly faster than all the other bit-parallel algorithms when the pattern
is short or if k is moderate with respect to the alphabet size.
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