
1

Inverted Treaps

ROBERTO KONOW, Universidad Diego Portales and University of Chile
GONZALO NAVARRO, University of Chile
CHARLES L.A CLARKE, University of Waterloo
ALEJANDRO LÓPEZ-ORTÍZ, University of Waterloo

We introduce a new representation of the inverted index that performs faster ranked unions and inter-
sections while using similar space. Our index is based on the treap data structure, which allows us to
intersect/merge the document identifiers while simultaneously thresholding by frequency, instead of the
costlier two-step classical processing methods. To achieve compression we represent the treap topology us-
ing different alternative compact data structures. Further, the treap invariants allow us to elegantly encode
differentially both document identifiers and frequencies. We also show how to extend this representation to
support incremental updates over the index. Results show that, under the tf-idf scoring scheme, our index
uses about the same space as state-of-the-art compact representations, while performing up to 2–20 times
faster on ranked single-word, union, or intersection queries. Under the BM25 scoring scheme, our index
may use up to 40% more space than the others and outperforms them less frequently, but still reaches im-
provement factors of 2–20 in the best cases. The index supporting incremental updates poses an overhead
of 50%–100% over the static variants in terms of space, construction and query time.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Compact Data Structure, Top-k document retrieval

1. INTRODUCTION
The central goal of modern Web search engines, as well as most other information
retrieval systems, is to provide very precise results in response to user queries, by
identifying a few relevant documents from usually huge text collections. They then
face the two competing challenges of quality and efficiency: to provide a few documents
best matching the users’ needs and to find them within tenths of seconds.

In the most sophisticated information retrieval systems, these requirements are
handled via a two-stage ranking process [Wang et al. 2011; Büttcher et al. 2010]. In the
first stage, a fast and simple filtration procedure extracts a subset of a few hundreds or
thousands of candidates from the possibly billions of documents forming the collection.
In the second stage, more complex learned ranking algorithms are applied to the re-
duced candidate set in order to obtain a handful of high-quality results. These complex
algorithms are too slow to be applied on the whole collection, and they obtain better
quality as they have more time to run. Current systems are actually multi-stage, but
the first is still the one that uses indexing to perform the most massive filtration.

In this article, we focus on improving the efficiency of the first stage, thus freeing
more resources for the second stage to increase the quality of results. In contexts where

Funded with Fondecyt Grant 1-140796, Chile, with a Conicyt PhD Scholarship, Chile, and by the Emerging
Leaders in the Americas Program, Government of Canada. Author’s addresses: Roberto Konow and Gon-
zalo Navarro, Department of Computer Science, University of Chile, Santiago, Chile, rkonow@dcc.uchile.cl,
gnavarro@dcc.uchile.cl; Charles L. A. Clarke and Alejandro López-Ortı́z, David R. Cheriton School of Com-
puter Science, University of Waterloo, Canada, claclark@gmail.com, alopez-o@uwaterloo.ca.
A preliminary partial version of this work appeared in Proc. SIGIR 2013 [Konow et al. 2013].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). 1046-8188/2015/01-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:2 Konow et al.

simple ranking methods are sufficient, the goal of the first stage is to directly convey a
few top-quality results to the final user.

The first stage aims to return a set of the highest ranked documents containing
either all the query terms (a ranked intersection) or some of the most important query
terms (a ranked union). In most cases, ranked intersections are solved via a Boolean
intersection followed by the computation of scores for the resulting documents. Ranked
unions are generally solved only in approximate form, avoiding a costly Boolean union.
However, Ding and Suel [2011] showed that ranked intersections can be processed
faster than Boolean intersections. They also obtained the best known performance
for ranked unions, giving exact results and thus showing that ranked unions can be
efficiently solved without resorting to approximations.

The inverted index is the central data structure in information retrieval systems.
It stores a list per vocabulary word (or term) storing the documents where the term
appears, plus a weight associated with the term in each document. This index can be
stored on disk or in main memory, and in both cases reducing its size is crucial. On disk,
it reduces transfer time when reading the lists of the query terms. In main memory, it
increases the size of the collections that can be managed within a given RAM budget,
or alternatively reduces the number of servers that must be allocated in a cluster to
hold the index, the energy they consume, and the amount of communication.

Inverted indexes are possibly the oldest successfully compressed data structures
(e.g., see Witten et al. [1999]). The main idea to achieve compression is to differentially
encode either the document identifiers (docids) or the weights stored in the inverted
lists, depending on how the lists are sorted, whereas the other value (weight or docid,
respectively) becomes harder to compress. The problem of this duality in the sorting,
and how it affects compression and query algorithms, has been discussed in past work
[Witten et al. 1999; Baeza-Yates et al. 2002; Konow and Navarro 2012].

In this article we introduce a new compressed representation for the lists of the in-
verted index, which performs ranked intersections and (exact) ranked unions directly.
Our representation is based on the treap data structure [Seidel and Aragon 1996], a
binary tree that simultaneously represents a left-to-right and a top-to-bottom order-
ing. We use the left-to-right ordering for document identifiers (which supports fast
Boolean operations) and the top-to-bottom ordering for term weights (which supports
the thresholding of results simultaneously with the intersection process). Using this
data structure, we can obtain the top-k results for a ranked intersection/union without
having to produce the full Boolean result first.

We explore different alternatives to engineer the new list representation using state-
of-the-art compact data structures to represent the treap topology. The classical differ-
ential representation of docids becomes less efficient on the treap, but in exchange the
treap representation allows us to differentially encode both docids and weights, which
compensates the loss. We also present novel algorithms for processing the queries on
the treap structure, and compare their performance against well-known approaches
such as WAND [Broder et al. 2003], Block-Max [Ding and Suel 2011], and Dual-Sorted
[Konow and Navarro 2012]. Our experiments under the classical tf-idf scoring scheme
show that the space usage of our treap-based inverted index representation is competi-
tive with the state-of-the-art compressed representations: our faster variant is around
25% larger than WAND, as large as Block-Max, and 15% smaller than Dual-Sorted. In
terms of time, the fastest inverted treap variant outperforms previous techniques in
many cases: on ranked one-word queries it is 20 times faster than Dual-Sorted and 25–
200 times faster than Block-Max; WAND is even slower. On ranked unions it is from
10 times (for k = 10) to 3 times (for k = 1000) faster than Block-Max, and similarly
from 45–50 times to 6–7 times faster than WAND and Dual-Sorted. It is always the
fastest index for one- and two-word queries, which are the most popular. On ranked

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:3

intersections, our fastest treap alternative is twice as fast as Block-Max for k = 10,
converging to similar times for k = 1000. In the same range of k, it goes from twice as
fast to 40% faster than WAND, and from 80% faster to 10% slower than Dual-Sorted.
Our inverted treap is always the fastest index up to k = 100. We also experimented
under a quantized BM25 scoring scheme, where the fastest inverted treap uses 35%–
40% more space than Block-Max or Dual-Sorted. It is still slightly better than all the
alternatives on ranked unions. For ranked intersections, it is from twice as fast (for
k = 10) to 15% slower (for k = 1000) on ranked intersections, still being the fastest for
k = 100. On one-word queries, the inverted treap is 20 times faster than Dual-Sorted
and 40–300 times faster than Block-Max.

Those ranges of k values make this result very relevant both for a first stage retriev-
ing a few hundreds or thousands of documents, or for directly conveying a handful of
final results to the user. The technique can also be used in large-scale distributed sys-
tems where each node contributes a small set of documents to the global result. We also
show how to support incremental updates on the treap, making this representation a
useful alternative for scenarios where new documents must be available immediately.
The overhead of allowing for incremental updates compared to our static alternatives,
in terms of space, construction and query times, ranges from 50% to 100%.

This article is structured as follows. Section 2 presents basic concepts. Section 3
provides a discussion on the related work and Section 4 describes the new represen-
tation of lists using treaps. Section 5 describes in detail the top-k query processing
algorithms. Section 6 shows how extend the treap representation to support insertions
of documents (incremental updates). Section 7 evaluates the performance of our struc-
ture and compares it with the state of the art. We discuss the results in Section 8.

2. BASIC CONCEPTS
2.1. Inverted Index
The inverted index is an old and simple, yet efficient, data structure that is at the
heart of every modern information retrieval system, and plays a central role in any
book on the topic [Witten et al. 1999; Büttcher et al. 2010; Baeza-Yates and Ribeiro-
Neto 2011; Croft et al. 2009]. Let a text collection contain a set of D documents
D = {d1, d2, . . . , dD}. A document di can be regarded as a sequence of terms or words
and the number of words in the document is denoted by |di|. The total length of the col-
lection is then

∑D
i=1 |di| = n. Each document has a unique document identifier (docid)

∈ [1, D]. The set of distinct terms in the collection is called the vocabulary, which is
comparatively small in most cases [Heaps 1978], more precisely of size O(nβ), for some
constant 0 < β < 1 that depends on the text type. The inverted index can be seen as
an array of lists or postings, where each entry of the array corresponds to a different
term or word in the vocabulary of the collection, and the lists contain one element per
distinct document where the term appears. For each term, the index stores in the list
the document identifier (docid), the weight of the term in the document and, if needed,
the positions where the term occurs in the document. The weight of the term in the
document is a utility function that represents the importance of that word inside the
document. The main components of the inverted index are then defined as the vocab-
ulary and the inverted lists:

— The Vocabulary. The vocabulary stores all distinct terms contained in the collection
of documents D. This is commonly implemented with a dictionary data structure
such as a hash table or a digital tree (also called a trie). In practice, the vocabulary
stores two elements associated to each term: an integer value dft called the document
frequency, which is the number of documents that contain the term t, and a pointer
to the start of its corresponding inverted list.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:4 Konow et al.

a long time ago in a galaxy far far awayd1 =
try not do or do not there is no tryd2 =
that is not trued3 =

a
ago

do
far
galaxy
in
is
long
no
not
or
that
there
time
true
try

Term t

⟨1,2⟩
⟨1,1⟩

⟨2,2⟩
⟨1,2⟩
⟨1,1⟩
⟨1,1⟩
⟨2,1⟩,⟨3,1⟩
⟨1,1⟩

⟨2,1⟩, ⟨3,1⟩
⟨2,1⟩
⟨3,1⟩

⟨2,1⟩

Inverted Lists ⟨d,w(t,d)⟩

⟨2,1⟩
⟨1,1⟩
⟨3,1⟩
⟨2,2⟩

away ⟨1,1⟩

dft
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1
1

Vocabulary

Fig. 1. An example non-positional inverted index built over the collection of documents at the top. The
vocabulary and the postings lists built over the collection are shown on the bottom.

— Inverted Lists. A non-positional inverted list stores a list of elements containing
pairs 〈d,w(t, d)〉, where d is the document identifier (docid) and w(t, d) is a relevance
measure of the term t in document d. A positional inverted list contains a list of
triples 〈d,w(t, d), 〈p1, p2, · · · , pk〉〉, where the third component is a vector of the posi-
tions where the occurrences of term t are located in the document d.

Figure 1 shows an example of an inverted index for an example collection consisting
of three documents. The inverted index from the example shows a docid-sorted organi-
zation, where each posting list is in increasing docid order. The postings lists could also
follow a weight-sorted organization. Both docid-sorted and weight-sorted offers differ-
ent alternatives in terms of compression techniques and query processing strategies
that are discussed in Section 3.1.

2.2. Scoring
In the first stage of query processing, a simple metric is used to assign a score to a
document with respect to a query. In the classical bag-of-words model, the query Q is
seen as a set of q terms t ∈ Q, and the score of a document d is computed as

score(Q, d) =
∑
t∈Q

w(t, d), (1)

where w(t, d) is the weight of term t in document d. For example, in the well-known
tf-idf scoring scheme, this weight is computed as w(t, d) = tft,d · idft. Here, tft,d is the
term frequency of t in d, that is, the number of times t occurs in d. The second term
is idft = log D

dft
, where dft is the document frequency defined above. As explained, the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:5

terms dft are stored in the vocabulary, whereas tft,d must be stored in the posting list
of term t, together with the docid d. This is an efficient way to record w(t, d) in the tf-ifd
model. However, state-of-the-art information retrieval systems employ more complex
ranking formulas such as Okapi BM25, which does not require much more space than
a tf-idf scheme but requires more complex calculations.

Computing the ranking score can be a major bottleneck of the system’s query pro-
cessing routines. Pre-computing the scores and storing them as a float number would
require between 24 and 32 bits. This alternative is usually unfeasible, since it in-
creases the size of index significantly. To speed up the score calculation process and
also maintain a reasonable size of the index we can discretize the range of possible
scores into a predefined set of buckets. Anh et al. [2001] proposed an uniform quanti-
zation method which is a index-wide linear scaling of the term weights, in other words,
the idea is to precompute and store the impact score for the term weight I(d, t) using
the following formula:

I(t, d) =

⌊
w(t, d)−min(w(t, d))

max(w(t, d))−min(w(t, d))
× 2b

⌋
, (2)

where b is the number of bits that we are willing to reserve for each score contribution.
Crane et al. [2013] shows that by setting b = 8 this quantization method achieves an
effectiveness that is indistinguishable from using exact term weights.

2.3. Query Processing
In the bag-of-words model we are given Q and k, and asked to retrieve k documents
d with the highest score(Q, d) values. In the two-stage model, typical values of k for
the first stage are hundreds to thousands, as discussed earlier. In simpler one-stage
systems, typical values of k are below 20. In the ranked intersection model, all the
terms in Q must appear in returned documents. In the ranked union model, instead,
a missing term t simply implies that w(t, d) = 0. Ranked intersection was popularized
by Web search engines to favor precision over recall, and is nowadays more common
than ranked union.

The Boolean intersection problem, without ranking, aims at retrieving all the docu-
ments d where all the terms of Q appear. A typical way to solve a ranked intersection
is to first compute a Boolean intersection, then compute the scores of all the resulting
documents, and finally keep the documents with the k highest scores. This approach
has triggered much research on the Boolean intersection problem [Demaine et al. 2000;
Baeza-Yates and Salinger 2005; Sanders and Transier 2007; Barbay et al. 2009; Konow
and Navarro 2012]. This approach is, of course, suboptimal, since in principle one could
use weight information to filter out documents that belong to the intersection but one
can ensure will not make it to the top-k list. Only recently some schemes specifically
aimed at solving ranked intersections have appeared [Ding and Suel 2011]. All these
schemes store the posting lists in increasing docid order, which is convenient for skip-
ping documents during intersections.

Ranked unions, instead, cannot be efficiently solved through a Boolean union, as this
returns too many results. In this case, most research has aimed at returning an ap-
proximate answer within good time bounds [Persin et al. 1996; Anh and Moffat 2006].
Most of these techniques order the posting lists by decreasing weight values, not by
docids. Recently, it has been shown that ranked unions can be solved in exact form
within reasonable time [Broder et al. 2003; Strohman and Croft 2007; Ding and Suel
2011] by using increasing docid order for the posting lists in the best solution [Ding
and Suel 2011].

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:6 Konow et al.

Traditionally, the posting lists were stored on disk. With the availability of large
amounts of main memory, this trend has changed to use the main memory of a cluster
of machines, and many intersection algorithms have been designed for random access
[Demaine et al. 2000; Scholer et al. 2002; Baeza-Yates and Salinger 2005; Sanders and
Transier 2007; Culpepper and Moffat 2007; Strohman and Croft 2007; Barbay et al.
2009; Konow and Navarro 2012]. In distributed main-memory systems, usually docu-
ments are distributed across independent inverted indexes, and each index contributes
with a few results to the final top-k list. In this case, it is most interesting that an indi-
vidual inverted index solves top-k queries efficiently for k values in the range 10–100
in the two-stage model [Büttcher et al. 2010].

2.4. Compact Data Structures
A compact data structure is a data structure that is represented within little space,
ideally close to the compressed data size, and still offers the desired functionality. We
describe the main compact data structures employed in our work.

2.4.1. Rank and Select on binary sequences. Binary sequences or bitvectors are a funda-
mental part of many compact data structures. A bitvector B[1, n] stores a sequence of
n bits and provides efficient solutions for three basic operations:

— ACCESS (B, k) returns the bit at position k of the sequence.
— RANKb (B, i) returns the number of bits equal to b up to position i in B.
— SELECTb (B, j) returns the position of the j-th occurrence of bit b in B.

All of these operations can be solved in constant time using n+o(n) bits [Munro 1996].
In this article we use an implementation spending, in practice, 5% extra space on top
of the original bitvector size and providing fast query processing [González et al. 2005].

2.4.2. Compact trees. There are Θ(4n/n3/2) general trees of n nodes, and thus one
needs log(4n/n3/2) = 2n − Θ(log n) bits to represent any such tree. There are various
compact tree representations using 2n+ o(n) bits that can in addition carry out many
tree operations efficiently, including retrieving the first child, next sibling, comput-
ing postorder of a node, lowest common ancestor, and so on. We describe two compact
tree representations: Balanced Parentheses (BP) and Level-Ordered Unary Degree Se-
quence (LOUDS)

BP. Balanced Parentheses were introduced by Jacobson [Jacobson 1989] and later
improved to achieve constant time operations [Munro and Raman 2002]. It represents
a tree by doing a depth-first traversal: an opening parenthesis is written when arriving
at a node for the first time and a closing parenthesis is written after traversing the sub-
tree of the node, therefore each node will generate two parentheses. The parentheses
sequence is represented using a bitvector by assigning a ‘1’ to the opening parenthesis
and a ‘0’ to the closing one. The representation then requires 2n bits. In practice [Ar-
royuelo et al. 2010], this representation requires 2.37n bits, since the bitvector requires
additional data structures to process RANK/SELECT and other queries.

LOUDS. The Level Ordered Unary Degree Sequence [Jacobson 1989] is a simpler,
yet efficient mechanism to represent ordinal trees. We start with an empty bitvector
T and traverse the tree in a level-order fashion starting from the root. As we visit
a node v with d ≥ 0 children we append 1d0 to T . We need to augment T only with
RANK and SELECT operations to support basic navigation operations such as PAR-
ENT and CHILD in O(1) time. However, the repertoire of LOUDS is more limited than
that of by BP, as it excludes more complex operations such as SUBTREE SIZE or LOW-

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:7

1

2

7

3 4

65 8

10

9
BP

LOUDS

= ((() ()) () ((()) () ()))

= 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0

1
2 43

5 6 7 8 9
10

1 2 54 6 7 8 9 103

Fig. 2. Example of compact representations of a tree using BP and LOUDS.

EST COMMON ANCESTOR. In practice, since we can give RANK/SELECT support using
5% of extra space, a LOUDS representation uses 2.10n bits.

Figure 2 shows an example of these schemes. The left part shows a tree with nodes
numbered levelwise. The right part shows the corresponding compact representations
of the topology and where each node is located.

2.5. Direct Access Codes (DACs)
Directly Addressable Codes (DACs) [Brisaboa et al. 2013] is a variable-length encod-
ing of integers. Given a chunk length b and a sequence of positive integers S[1, n] =
x1, x2, . . . , xn, DACs divide each integer xi into d|xi|/be chunks. Similar to vByte encod-
ing [Williams and J.Zobel 1999], DACs employ a ‘continuation’ bit to indicate whether
the code continues in further chunks. Instead of concatenating the encoding of xi+1 af-
ter that of xi, however, they build a multi-layer data structure. Let M be the maximum
element in the sequence; a DACs encoding will contain ` = dblog(M)c+1/be layers con-
sisting in two parts: (1) the lowest b bits of each chunk, which are stored contiguously
in an array Ak with 1 ≤ k ≤ `, and (2) the ‘continuation’ bits, which are concatenated
into a bitvector Bk. An integer xi will require exactly d|xi|/be layers. For example, say
we want to encode the integer x = 6 and we set the chunk length b = 2. The lowest
b bits of 6 are 10, so we append them to array A1. Since we still require more bits to
represent the number, we append the continuation bit 1 to B1. The next b lowest bits
for representing x, 01 are now appended to A2, and since we do not require more bits
to represent x, we append the continuation bit 0 to B2.

Any integer xi can be extracted from the successive arrays Ak and bitvectors Bk by
using RANK on the bitvectors to track the positions of the chunks in the arrays. Then
the extraction time is O(1 + |xi|/b), and the number of wasted bits used to represent
it is at most d|xi|/be + b − 1. A further improvement of DACs encoding is to choose
different chunk lengths for each layer. The authors present a dynamic programming
algorithm that computes the optimal chunk length and the optimal number of layers
to achieve the smallest representation of the sequence of numbers.

3. RELATED WORK
3.1. Query Processing Strategies
There are different query evaluation mechanisms that exhibit affinities with different
index organizations. They are classified in three different categories: Document-at-a-
time (DAAT), Term-at-a-time (TAAT) and Score-at-a-time (SAAT).

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:8 Konow et al.

Document-at-a-time. DAAT processing is more popular for Boolean intersections and
unions. Here the q lists are processed in parallel, looking for the same document in all
of them. Posting lists must be sorted by increasing docid, and we keep a pointer to
the current position in each of the q lists. Once a document is processed, the pointers
move forward. Much research has been carried out on Boolean intersections [Demaine
et al. 2000; Baeza-Yates and Salinger 2005; Sanders and Transier 2007; Culpepper and
Moffat 2007; Barbay et al. 2009]. While a DAAT processing is always used to intersect
two lists, experimental results suggest that the most efficient way to handle more lists
is to intersect the two shortest ones, then the result with the third, and so on. This can
be seen as a TAAT strategy.

Term-at-a-time. TAAT processes one posting list after the other. The lists are con-
sidered from shortest to longest, starting with the first one as a candidate answer set,
and refining it as we consider the next lists. The documents in each list are sorted by
decreasing weight. TAAT is especially popular for processing ranked unions, as the
successive lists have decreasing idft value and thus a decreasing impact on the re-
sult, not only for the tf-idf model, but also for BM25 and other models. Thus heuristic
thresholds can be used to obtain an approximate ranked union efficiently, by pruning
the processing of lists earlier, or avoiding lists completely, as we reach less relevant
documents and our candidate set becomes stronger [Persin et al. 1996; Anh and Moffat
2006]. A more sophisticated approach based on similar ideas can be used to guarantee
that the answer is exact [Strohman and Croft 2007]. TAAT approaches usually make
use of an accumulator data structure that holds the intermediate accumulated results
for each document.

Score-at-a-time. SAAT mechanism can be seen as a hybrid between document-at-
a-time and term-at-a-time in which multiple index lists are open. This is usually
employed with impact-sorted indexes [Anh and Moffat 2006]. In impact-ordered
indexes the actual score contributions of each term are precomputed and quantized
into what are known as impact scores [Lin and Trotman 2015]. The idea is that a
complete impact block is processed at each step, and the results are obtained using a
set of accumulator variables.

Many ranked intersection strategies employ a full Boolean intersection followed by
a post processing ranking step. However, recent work has shown that it is possible
to do better using DAAT strategies [Ding and Suel 2011]. The advantage of DAAT
processing is that, once we have processed a document, we have complete information
about its score, and thus we can maintain a current set of top-k candidates whose
final scores are known. This set can be used to establish a threshold on the scores
other documents need to surpass to become relevant for the current query. Thus the
emphasis on ranked DAAT is not on terminating early but on skipping documents.
This same idea has been successfully used to solve exact (not approximate) ranked
unions [Broder et al. 2003; Ding and Suel 2011]. The strategies we use for solving
ranked union and intersection queries in this article are best classified as DAAT: We
use sophisticated mechanisms to skip documents using the current threshold given by
the current top-k candidate set.

3.2. Compressed Posting List Representations
Compression of the inverted lists is essential for efficient retrieval, on disk and in main
memory [Witten et al. 1999; Büttcher and Clarke 2007]. The main idea to achieve
compression is to differentially encode the docids, whereas the weights are harder
to compress. A list of docids 〈d1, d2, d3, . . . dn〉 is represented as a sequence of d-gaps
〈d1, d2 − d1, d3 − d2, . . . , dn − dn−1〉, and variable-length encoding is used to encode the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:9

differences. Extracting a single list or merging lists is done optimally by traversing
lists from the beginning, but query processing schemes can be done much faster if
random access to the sequences is possible. This can be obtained by cutting the lists
into blocks that are differentially encoded, while storing in a separate sequence the
absolute values of the block headers and pointers to the encoded blocks [Culpepper
and Moffat 2007; Sanders and Transier 2007].

Bit-aligned codes can be inefficient to decode, since they require several bitwise op-
erations. Byte-aligned [Scholer et al. 2002] or word-aligned codes [Yan et al. 2009;
Culpepper and Moffat 2005] are preferred when speed is the main concern. Examples
of these techniques are Variable Byte (VByte) and Restricted-Prefix Byte Codes.

Another approach is to encode blocks of integers together, aiming to improve both
compression and decoding speed. One popular block-based encoding mechanism is
Simple9 or Simple16 [Anh and Moffat 2005], which encodes as many as possible of
the next values using fixed-width fields in a 32-bit word. Another is PforDelta, which
encodes the next, say, 128 numbers using fixed-width cells, while encoding separately
the largest 10% of the numbers as outliers. In practice, PforDelta is one of the fastest
for decoding and achieves excellent compression ratios.

A recent trend exploits the advantages of SIMD operations available on modern
CPUs. For example, Variant-G8IU [Stepanov et al. 2011], encodes as many integers
as possible into 8 consecutive bytes preceded by a one-byte descriptor, and uses SIMD
instructions to encode/decode. Another example is SIMD-BP128 [Lemire and Boystov
2015], which can be seen as an adaptation of Simple9 to use 128-bit SIMD words.

Recently, Trotman [2014] introduced a new mechanism to encode integers, called
QMX. This encoding scheme combines word-aligned, SIMD and run-length techniques,
resulting in a highly space-efficient and fast-decoding scheme.

Vigna [2013] explored an Elias-Fano representation of monotone sequences to en-
code the docids of the posting lists. The representation allows for direct random access
to any docid, and also for efficient skipping operations that are useful for perform-
ing intersections. His experiments showed that Elias-Fano achieves space and time
competitive with state-of-the-art methods, even including PforDelta. Ottaviano and
Venturini [2014] extended this idea by performing an (1 + ε)-optimal partitioning of
the list into chunks, for any ε > 0, and then encoding all the chunks and their end-
points with Elias-Fano. They show that this partitioned approach offers significantly
better compression and similar query time performance, compared to representing the
sequence as a whole.

When the lists are sorted by decreasing weight (for approximate ranked unions), the
differential compression of docids is not possible, in principle. Instead, term weights
can be stored differentially. When storing tf values, one can take advantage of the fact
that long runs of equal tf values (typically low values) are frequent, and thus not only
run-length encode them, but also sort the corresponding docids increasingly, so as to
encode them differentially [Baeza-Yates et al. 2002; Zobel and Moffat 2006].

3.3. State of the Art for Exact Ranked Queries
The following approaches display the best performance to date for exact ranked in-
tersections and unions. We also highlight the advantages of our work with respect to
them.

3.3.1. Weak-And (WAND) . WAND [Broder et al. 2003] is a query processing algorithm
that performs weighted unions following a DAAT strategy. Each term ti in the query
is assigned a weight wi, and a threshold θ is established. The method returns the
documents containing query terms ti whose sum of weights wi reaches θ.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:10 Konow et al.

The WAND algorithm traverses the lists of all the query terms in parallel, carrying
out three phases in each iteration: pivot selection, alignment check, and evaluation.
The procedure starts by selecting a pivoting term. This is done by sorting the lists by
their current docid and summing the corresponding weights wi until the sum reaches
θ. The term where this happens is selected as the pivot. The key observation is that
there is no docid smaller than the pivot’s current docid that could reach a sum reaching
θ, unless it was already considered. Next, WAND tries to align all the posting lists to
the pivot’s current docid, by moving forward the pointers in these lists. If the sum of
the weights wi of the entries where the pivot’s docid appears reaches θ, the docid is
reported. The process then continues by moving forward the pointer in the pivot list
and then starting a new iteration.

In this context, a Boolean union query with q terms can be obtained by setting all
the weights to wi = 1 and θ = 1, and a Boolean intersection by raising the bar to θ = q.

In the context of top-k ranked unions, we can maintain the k docids with maximum
score we have seen, and set θ dynamically as the kth largest score known. The weights
wi are also dynamic: they are the weight of the term in the current docid. To choose
the pivot, we have a precomputed upper bound on wi in the inverted index, associated
with the term. Therefore, if a pivot is chosen accordingly to upper bounds on weights,
we are not losing any relevant previous pivot. To obtain ranked intersections, we must
also enforce that all the terms appear in the docid; note that the result is not different
from performing a Boolean intersection, except that we may prune the consideration
of a docid if it is clear that it will not make it to the top-k list.

In this article we use WAND to perform ranked unions and intersections, as de-
scribed. For this purpose, WAND has been superseded by the more complex Block-Max,
described next.

3.3.2. Block-Max. Block-Max [Ding and Suel 2011] is a special-purpose structure for
ranked intersections and unions. It sorts the lists by increasing docid, cuts the lists
into blocks, and stores the maximum weight for each block. This enables them to skip
whole blocks whose maximum possible contribution is very low, by comparing its max-
imum weight with a threshold given by the current candidate set. Block-Max obtains
considerable performance gains over the previous techniques for exact ranked unions
[Broder et al. 2003; Strohman and Croft 2007], and also over the techniques that per-
form ranked intersections via a Boolean preprocessing.

The basic concept is as follows: Suppose the next document of interest, d, belongs to
blocks b1, . . . , bq in the q lists. Compute an upper bound to score(Q, d) using the block
maxima instead of the weights w(t, d). If even this upper bound does not surpass the
kth best score known up to now, then no document inside the current blocks can make
it to the top-k list. So we can safely skip the least advanced block.

Our technique can be seen as a generalization of the Block-Max idea, in which we
use the treap concept to naturally define a hierarchical blocking scheme. The general-
ization is algorithmically nontrivial, but it is practical and beats the flat Block-Max. In
addition, the treap structure allows us to differentially encode both docids and weights,
which translates into space savings.

3.3.3. Dual-Sorted inverted lists. Dual-Sorted inverted lists [Navarro and Puglisi 2010;
Konow and Navarro 2012] represent the posting lists sorted by decreasing frequency,
using a wavelet tree data structure [Grossi et al. 2003; Navarro 2012]. The wavelet
tree efficiently simulates ordering by increasing docids as well. TAAT processing is
used for approximate ranked unions and DAAT-like processing for (exact) ranked in-
tersections. The latter, although building on Boolean intersections, is implemented in
native form on wavelet trees, which makes it particularly fast, even faster than Block-

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:11

Max. Basically, the wavelet tree can recursively subdivide the universe of docids and
efficiently determine that some list has no documents in the current interval.

Our technique shares with Dual-Sorted the ability to maintain the lists sorted by
both docids and weights simultaneously, and is able to perform a similar kind of native
intersection, that is, determine that in an interval of documents there is a list with
no elements. In contrast, Dual-Sorted does not know the frequencies until reaching
the individual documents, whereas our treaps give an upper bound to the frequencies
in the current interval. This allows us to perform ranked intersections faster than
the Boolean intersections of Dual-Sorted. In addition, the treap uses less space, since
Dual-Sorted cannot use differential encoding on docids.

4. INVERTED TREAPS
We describe our data structure in this section. First, we survey the treap data structure
and show that it can be used to represent a posting list. Then we describe how we
represent the resulting data structure using little space. At the end, we describe some
practical improvements on the basic idea.

4.1. The Treap Data Structure
A treap [Seidel and Aragon 1996] is a binary tree where nodes have two attributes:
a key and a priority. The treap satisfies the invariants of a binary search tree with
respect to the keys: the key of a node is larger than those of its left subtree and smaller
than those of its right subtree. Furthermore, the treap satisfies the invariants of a
binary heap with respect to the priorities: the priority of the parent is equal to or
larger than those of its descendants.

Given its invariants, a treap can be searched for a key just as a binary search tree,
and it can be simultaneously used as a binary heap. While in the literature it has
mostly been used with randomly assigned priorities [Seidel and Aragon 1996; Martı́nez
and Roura 1997; Blelloch and Reid-Miller 1998] to ensure logarithmic expected height
independently of the order of insertions, a treap can also be seen as the Cartesian tree
[Vuillemin 1980] of the sequence of priorities once the values are sorted by keys.

Treaps are a particular case of priority search trees [McCreight 1985], which can
guarantee balancedness but are unlikely to be as compressible as Cartesian trees.
There has been some work on using priority search trees for returning top-k elements
from suffix trees and geometric range searches [Bialynicka-Birula and Grossi 2005;
Bialynicka-Birula 2008] but, as far as we know, our use of treaps for ranked queries
on inverted indexes, plus their differential compression, is novel.

4.2. Inverted Index Representation
We consider the posting list of each term as a sequence sorted by docids (which act as
keys), each with its own term frequency (which act as priorities). Term impacts, or any
other term weights, may also be used as priorities. We then use a treap to represent
this sequence. Therefore the treap will be binary searchable by docid, whereas it will
satisfy a heap ordering on the frequencies. This means, in particular, that if a given
treap node has a frequency below a desired threshold, then all the docids below it in
the treap can be discarded as well.

Figure 3 illustrates a treap representation of a posting list. This treap will be used
as a running example. Ignore for now the differential arrays on the bottom.

4.3. Construction
A treap on a list 〈(d1, w1), . . . , (dn, wn)〉 of documents and weights can be built in O(n)
time in a left-to-right traversal [Berkman and Vishkin 1993; Bender and Farach-
Colton 2000; Fischer and Heun 2011]. Initially, the treap is just a root node (d1, w1).

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:12 Konow et al.

30

12

39

35

9

4 44

37

22

2715

16

docids = 4 9 12 14 16 22 27 30 35 37 39 42

6 2 14 1 1 2 1 24 6 1 2 1freqs =

24

6

3

2

1

32

14
11

1

15

1

32

4

4

14

6

2

2

1

diff docids = 8 5 18 1 1 10 7 30 5 2 5 3

8 4 10 0 0 12 1 24 18 1 1 1diff freqs =
7

1

3

2

42
1

44

3

9

3

Fig. 3. An example posting list with docids and frequencies and the corresponding treap representation in
our scheme. Note that docids (inside the nodes) are sorted inorder and frequencies (outside the nodes) are
sorted top to bottom. The differentially encoded docids and frequencies are shown below the tree.

Now, assume we have processed (d1, w1), . . . , (di−1, wi−1) and the rightmost path of the
treap, root to leaf, is v′1, . . . , v′`, each v′j representing the posting (d′j , w

′
j). Then we tra-

verse the path from v′` to v′1, until finding the first node v′j with w′j ≥ wi (assume the
treap is the right child of a fake root with weight w′0 = +∞, to avoid special cases).
Then, (di, wi) is set as the right child of v′j and the former right child of v′j becomes the
left child of (di, wi), which becomes the lowest node in the rightmost path.

Since for every step in this traversal the rightmost path decreases in length, and
it cannot increase in length by more than 1 per posting, the total number of steps is
O(n). Under reasonable assumptions (i.e., the weight and the docid are statistically
independent) the height of a treap is O(log n) [Martı́nez and Roura 1997], and so is the
length of its rightmost path. Therefore, the maximum time per insertion is O(log n)
expected (but O(1) worst-case when amortized over all the insertions on the treap).

4.4. Compact Treap Representation
To represent this treap compactly we must encode the tree topology, the docids, and the
term frequencies. We discuss only the docids and frequencies in this subsection. Our
plan is not to access the posting lists in sequential form as in classical schemes, thus
a differential encoding for each docid with respect to the previous one is not directly
applicable. Instead, we make use of the invariants of the treap data structure.

Let id(v) be the docid of a treap node v, and f(v) its frequency. We represent id(v) and
f(v) for the root in plain form, and then represent those of its left and right children
recursively. For each node v that is the left child of its parent u, we represent id(u) −
id(v) instead of id(v). If, on the other hand, v is the right child of its parent u, we
represent id(v) − id(u) [Claude et al. 2012]. In both cases, we represent f(u) − f(v)
instead of f(v). Those numbers get smaller as we move downwards in the treap.

The sequence of differentially encoded id(v) and f(v) values is represented according
to an inorder traversal of the treap, as show on the bottom of Figure 3. As we move

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:13

down the treap, we can easily maintain the correct id(v) and f(v) values for any node
arrived at, and use it to compute the values of the children as we descend.

To do this we need to randomly access a differential value in the sequence, given a
node. We store those values in an array indexed by node inorders and use the Direct
Addressable Codes (DACs) described in Section 2.5 to directly access the values while
taking advantage of their small size.

4.5. Representing the Treap Topology
We have shown that if we use a treap to represent posting lists we can differentially
encode both docids and frequencies, however, we still need to represent the topology.
A pointer-based representation of a treap topology of n nodes requires O(n log n) bits,
which is impractical for large-scale data. Still, space is not the only concern: we need a
compact topology representation that supports fast navigation in order to implement
the complex algorithms deriving from ranked intersections and unions. In this subsec-
tion we introduce three representations designed to be space-efficient and to provide
fast navigation over the topology.

4.5.1. Compact Treap using BP. This representation uses the balanced parentheses (BP)
described in Section 2.4.2. However, this representation is designed for general ordinal
trees, not for binary trees. For example, if a node has only one child, general trees
cannot distinguish between it being the “left” or the “right” child.

A well-known isomorphism [Munro and Raman 2002] allows us represent a binary
tree of n nodes using a general tree of n + 1 nodes: First, a fake root node vroot for the
general tree is created. The children of vroot are the nodes in the rightmost path of the
treap, from the root to the leaf. Then each of those nodes is converted recursively. The
general tree is then represented as a BP sequence SBP[1, 2n+2]. With this transforma-
tion, the original treap root is the first child of vroot. The left child of a treap node v is
its first child in the general tree and the right child of v is its next sibling in the gen-
eral tree. Moreover, the inorder in the original treap, which we use to access docids and
frequencies, corresponds to the preorder in the general tree, which is easy to compute
with parentheses. Figure 4 shows the transformed treap for our running example.

Each treap node i is identified with its corresponding opening parenthesis. Thus the
root of the treap is node 2. The inorder of a node i is simply RANK1(SBP, i) − 1, the
number of opening parentheses up to i excluding the fake root. The left child of i in the
treap, or its first child in the general tree, is simply FIRST CHILD(i) = i+1. If, however,
SBP[i + 1] = 0, this means that i has no first child. For the right child of node i in the
treap, or its next sibling in the general tree, we use NEXT SIBLING(i) =CLOSE(i) + 1,
where CLOSE returns the closing parenthesis that matches a given opening parenthe-
sis. If SBP has a 0 in the resulting position, this means that i has no right child.

Therefore, in addition to RANK, we need to implement operation CLOSE in constant
time. This is achieved with a few additional data structures of size o(n), as described
in Section 2.4.2.

As an example, we demonstrate this procedure using the treap from Figure 4. We see
that v1 (the treap’s original root) starts at position i = 2 in SBP. If we want to retrieve
the index of its left child, which is node v2, we perform FIRST CHILD(2). The procedure
checks that SBP[3] is an opening parenthesis, so we can return 3 as the answer for the
starting position of the left node of v1. On the other hand, if want to obtain the position
where the right child of v1 begins, which is v3, we perform CLOSE(2) + 1 and obtain
position 20, which contains a 1 and thus corresponds to the starting position of v3.

4.5.2. Compact treap using LOUDS. The LOUDS representation (recall Section 2.4.2)
can be adapted to support binary trees efficiently: for every node in a level-order traver-
sal we append two bits to the bit sequence, setting the first bit to ‘1’ iff the node contains

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:14 Konow et al.

30

12

39

35

9

4 44

37

22

2715

16

24

6

3

2

1

32

14
11

1

4

14

6

2

2

1

SBP

37

(((() ()) ((()) ()) ()) (()) ((()) ()))
1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

v1

v1
v3

v2 v3

v2

vroot

=

Fig. 4. The original binary tree edges (dashed) are replaced by a general tree, whose topology is represented
with parentheses. The opening and closing parentheses of nodes v1, v2 and v3 in SBP are shown on the
bottom part.

a left child and setting the second to ‘1’ iff the node contains a right child. For exam-
ple, a leaf node will be represented as 00, while a binary tree node containing both
children is represented as 11. The concatenation of these bits builds a bit sequence
SLOUDS[1, 2n]. Since every node adds two bits to this sequence, we can use the level-
wise order i of a node as its identifier, knowing that its two bits are at SLOUDS[2i−1, 2i].

The LOUDS representation is simpler than BP, as it can be navigated downwards
using only RANK operations. In addition, it does not require the tree isomorphism.
Given the sequence SLOUDS representing the treap topology as a binary tree and a node
i, we navigate the tree as follows: if i has a left child (i.e., if SLOUDS[2i − 1] = 1) then
the child is the node (with levelwise order) RANK1 (SLOUDS, 2i− 1)+1. Analogously, the
right child exists if SLOUDS[2i] = 1, and it is RANK1 (SLOUDS, 2i) + 1.

Figure 5 shows an example of a binary tree using a LOUDS representation. We
demonstrate how to navigate the tree with an example: say that we are at node v4
(meaning its LOUDS identifier is 4), which is represented by the bits located at posi-
tions 7 and 8. We know that v4 has no left child because the first bit is 0, but it has a
right child since the second bit is a 1. The right child of v4 is the node with identifier
(or levelwise order) RANK1 (SLOUDS, 2 · 4) + 1 = 8, which we draw as v8. The two bits of
this node are at positions 15 and 16. Since both bits are set to 0, this node is a leaf.

Compared to the BP representation, the LOUDS-based solution requires less space
in practice (2.10 bits per node instead of 2.37) and simpler operations. On the other
hand, the BP representation has more locality of reference when traversing subtrees.

For this representation, we store the sequences of differentially encoded docids and
frequencies (sequences “diff docids” and “diff freqs” of Figure 3) following the level-
order traversal of the binary tree. This ordering is shown as “Node” at the bottom part
of Figure 5.

4.5.3. Compact treap using Heaps. Even if the topology representations using LOUDS or
BP support constant-time tree navigation, in practice they are 10 to 100 times slower

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:15

1 3 5 12 11 14 13 18 17 2019 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30

v1 v2

30

12

39

35

9

4 44

37

22

2715

16

24

6

3

2

1

32

14
11

1

4

14

6

2

2

1

LOUDS Topology (SLOUDS) =

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14

v3

39
v15

1

1111 1101
v4 v5 v6 v7 v9 v10 v12 v13

110010 11 001100
v14 v15v11

00 0000
42 16 15

v8
00

Node =

Fig. 5. The LOUDS representation of an example treap. SLOUDS denotes the bit sequence that describes
the topology.

than a direct access to a memory address (i.e., accessing any position in an array), as
shown in the preliminary version of this work [Konow et al. 2013]. In order to avoid
these costly operations, we designed a new compact binary tree representation that
is inspired on binary heaps. The main idea is to take advantage of the fact that a
complete binary tree of n nodes does not require any extra information to represent
its topology, since the values can be represented using just an array of size n. In order
to navigate the tree, we can use traditional binary heap operations: the left child of
node i is located at position 2i and the right child at position 2i + 1. However, a treap
posting list representation will rarely be a complete binary tree. Therefore, we take
the maximal top part of the tree that is complete and represent it as a heap. We then
recursively represent the subtrees that sprout from the bottom of the complete part.
The motivation is to avoid the use of RANK or more complex operations every time we
need to navigate down the tree.

We start at the root of the treap and traverse it in levelwise order, looking for the
first node that does not contain a left or a right child. Say that this happens at level `
of the tree, so we know that all the nodes up to level ` have both left and right children.
In other words, the subtree formed by all the nodes starting from the root up to level `
forms a complete tree T1 that contains 2`− 1 nodes. Figure 6 shows an example, where
the first node that does not have a left or right child (v4) is located at level ` = 3,
therefore |T1| = 23 − 1 = 7. We then append the differential values of the nodes (docid
and frequency) of the complete subtree to the sequences “diff docids” and “diff freqs”
(see Figure 3), in levelwise order.

For each of the 2`−1 leaves of T1 we write in a bit sequence SHEAP two bits, indicating
if the corresponding leaf contains a left or a right child, similarly to LOUDS.

We continue this procedure by considering each node located at level ` + 1 as a new
root, for further trees Tj . The trees yet to process are appended to a queue, so the trees
Tj are also deployed levelwise. Note that any of these new roots (including the original
root) could lack a left or a right node, in which case we will have a complete subtree of
only one node.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:16 Konow et al.

We also need a sequence P where P [j] is the starting point of Tj in the sequences of
docids and frequencies. This also serves to compute |Tj | = P [j + 1] − P [j]. Since there
may be a considerable number of small complete trees, P may require up to n log n bits.
To reduce its size, and considering that P [j + 1] − P [j] is of the form 2` − 1, we store
another array instead: P ′[0] = 0 and P ′[j + 1] = `− 1 = log2(|Tj |+ 1)− 1. This reduces
the space to at most n log log n bits, and the starting position of the sequences of Tj can
be obtained as P [j] =

∑j−1
i=0 (2P

′[i]+1 − 1). To compute this sum faster, we divide P ′ into
blocks of fixed size b and store in a separate sequence the sums up to the beginning
of each block. This way, we limit to b the number of elements that are summed up. A
similar trick, computing −1 +

∑j−1
i=0 2P

′[i]+1 = P [j] + j− 1, gives the starting position of
Tj in the bitvector SHEAP.

Figure 6 shows our representation. The grey triangles represent the complete trees
T1 to T5. On the bottom of the figure we show the extra structures discussed.

In order to navigate the tree we proceed as follows: we represent a node v as a pair
〈j, pos〉, so that v is the node at levelwise-order position pos inside the subtree Tj . To
move to the left child, we just set pos′ = 2 · pos, and to move to the right child we set
pos′ = 2 · pos + 1. If pos′ ≤ |Tj | we are within the same complete subtree Tj , so we are
done. On the other hand, if pos′ > |Tj |, we know two things: first, node v is a leaf within
its complete subtree Tj , and second, we need to move to another complete subtree.
Before moving to another subtree we first need to check if the leaf node has the desired
(left or right) child. Thus we map the position of the leaf within its subtree, pos, to the
sequence SHEAP. This can be done with pos map = P [j] + j−1 + 2 · (pos−1−b|Tj |/2c) =
P [j] + j − 2 + 2 · pos − |Tj |, adding 1 if we descend to the right child. Now, we check in
SHEAP[pos map] if the corresponding bit is set. In the case the leaf node in the subtree
Tj has the desired left or right child, we calculate the new node subtree index with
j′ = RANK1 (SHEAP, pos norm) + 1, and set pos′ = 1.

We demonstrate this process with an example based on Figure 6: Let us begin at
node v7, which is represented by the pair 〈1, 7〉 and let us say that we want to move to
the left. We set pos′ = 2 · pos = 14. Since |T1| = 7 < 14, we realize that we are located
at a leaf node. Thus we map pos to the sequence SHEAP with pos map = 1 + 1 − 2 +
2 · 7 − 7 = 7. Note that the 7-th bit in SHEAP tells if v7 has a left child or not. Since
SHEAP[7] = 1 we proceed to figure out which tree we must go to. This is computed with
RANK1 (SHEAP, 7) + 1 = 5. Our new node is then represented as the pair 〈5, 1〉.

For this representation, we maintain the sequences of docids and frequencies follow-
ing the level-order traversal of the nodes within each complete subtree. This traversal
is denoted “Node” in the bottom part of Figure 6).

The idea of separating the treap into complete trees is inspired by the level-
compressed tries of Andersson and Nilsson [1994]. Under reasonable models for tries
they show that the expected number of complete subtrees traversed in a root-to-leaf
traversal is O(log log n) and even O(log∗ n). While we are not aware of an analogous
result for random binary trees, it is reasonable to expect that similar results hold.
Note that this is the number of RANK operations needed in a traversal, instead of the
O(log n) that we can expect using BP or LOUDS.

4.6. Practical Improvements
The scheme detailed above would not be so successful without three important im-
provements. First, because many posting lists are very short, it turns out to be more
efficient to store two single DAC sequences, with all the differential docids and all the
differential frequencies for all the lists together, even if using individual DACs would
have allowed us to optimize their space for each sequence separately. The overhead

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:17

1 3 5 1211 1615 6 7 8 9 10 17 18 20 2142 14 13

30

12

9

4

24

6

3

2

1
14

11

1

4

14

6

2

2

1

HEAP Topology (SHEAP) =

d

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10
v11

v12 v13 v14 v15

1

v1 v2 v3
01
v4 v5 v6 v7 v9 v12 v10 v11

00 10 00 00
v14 v15v13
0000

v8
00

1 8 9 12 13

11 00

0 2 0 1 0

Pointers P =
Diff Pointers P’ =

Node =

T1

T2 T3 T4 T5

T1 T2 T3 T4 T5

Level 1

Level 2

Level 3

Level 4

35

3222 44

392715

Level 516 37 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 6. An example HEAP treap topology representation. At the top, we draw each complete tree with a
grey background. The levels of the tree are shown on the right. At the bottom, we show the resulting SHEAP

sequence (the holes are not represented) and mark the area of each complete treap Tj . The starting positions
of these areas correspond to the sequences of docids and frequencies, as they consider the holes and thus
account for the internal nodes as well (see array Node). Those starting positions are written below, in array
P . Note that the corresponding starting position in SHEAP is simply P [j] + j − 1. Instead of P , we store the
logarithms of the sizes, in P ′.

of storing the chunk lengths and other administrative data outweighs the benefits for
short sequences.

A second improvement is to break ties in frequencies so as to make the treap as
balanced as possible, by choosing the root as the maximum that is closest to the center
of each interval (in every subtree). This improves the binary searches for docids and
the tree traversal for the HEAP representation. While it is still possible to build the
treap in linear time with this restriction, a simple brute-force approach to find the
centered maximum performs better in most practical cases.

The third, and more important, improvement is to omit from the treap represen-
tation all the elements of the lists where the frequency is below some threshold f0.
According to Zipf ’s law [Zipf 1949; Croft et al. 2009; Büttcher et al. 2010; Baeza-Yates
and Ribeiro-Neto 2011], a large number of elements will have low frequencies, and
thus using a separate posting list for each frequency below f0 will save us from storing
those frequencies wherever those elements would have appeared in the treap. Further,
the docids of each list can be differentially encoded in classical sequential form, which
is more efficient than in treap order.

It turns out that many terms do not have to store a treap at all, as they never
occur more than f0 times in any document. We represent the gap-encoded lists using
PforDelta and take an absolute sample every 128 values (which form a block). Samples

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:18 Konow et al.

30

12

39

35

9

4 44

37

22

2715

16

24

6

3

2

1

32

14
11

1

4

14

6

2

2

1

 docids 1 =14 15 16 27 4237

42
1

docids 2 = 9 22 39

 diff docids 1 14 1 1 11 510=

= diff docids 1 9 13 17

Fig. 7. Separating frequencies below f0 = 2 in our example treap. The nodes that are removed from the
treap are on white background. For the documents with frequencies 1 and 2, we show the absolute docids on
the left and their differential version on the right.

are stored separately and explicitly in an array, with pointers to the block [Culpepper
and Moffat 2007]. Searches in these lists will ask for consecutively larger values, so we
remember the last element found and exponentially search for the next query starting
from there. Figure 7 illustrates the separation of low-frequency elements from our
example treap.

A neat feature of these lists is that often we will not need to access them at all during
queries, since ranked queries aim at the highest frequencies.

5. QUERY PROCESSING
In this section we describe the procedure to perform efficient top-k query processing
using the inverted treaps.

5.1. General procedure
Let Q be a query composed of q terms t ∈ Q. To obtain the top-k documents from the
intersection or union of q posting lists we proceed in DAAT fashion: We traverse the q
posting lists in synchronization, identifying the documents that appear in all or some
of them, and accumulating their weights w(t, d) into a final score(Q, d) =

∑
t w(t, d) =∑

t tft,d · idft. Those documents are inserted in a min-priority queue limited to k ele-
ments, where the priority is the score. Each time we insert a new element and the
queue size reaches k + 1, we remove the minimum. At the end of the process, the pri-
ority queue contains the top-k results. Furthermore, at any stage of the process, if the
queue has reached size k, then its minimum score L is a lower bound to the scores we
are interested in for the rest of the documents.

5.2. Intersections
Let d be the smallest docid not yet considered (initially d = 1). Every treap t involved in
the query Q maintains a stack of nodes (initially holding just a sentinel value element
ut with id(ut) = +∞ and f(ut) = +∞), and a cursor vt (initially the treap root). The
stack will contain the nodes in the path from the root to vt where we descend by the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:19

left child. We will always call ut the top of the stack, thus ut is an ancestor of vt and it
holds id(ut) > id(vt).

We advance in all the treaps simultaneously towards a node v with docid id(v) = d,
while skipping nodes using the current lower bound L. In all the treaps t we maintain
the invariant that, if v is in the treap, it must appear in the subtree rooted at vt. In
particular, this implies d < id(ut).

Because of the decreasing frequency property of treaps, if d is in a node v within
the subtree rooted at vt, then f(v) ≤ f(vt). Therefore, we can compute an upper bound
U to the score of document d by using values f(vt) instead of f(v), for example U =∑
t∈Q f(vt) · idft for a tf-idf scoring1. If this upper bound is U ≤ L, then there is a valid

top-k answer where d does not participate, so we can discard d. Further, no node that
is below all the current vt nodes can qualify. Therefore, we can safely compute a new
target d ← mint(id(ut)). Each time the value of d changes (it always increases), we
must update the stack of all the treaps t to restore the invariants: While id(ut) ≤ d, we
assign vt ← ut and remove ut from the stack. We then resume the global intersection
process with this new target d. The upper bound U is recomputed incrementally each
time any vt value changes (U may increase or decrease).

When U > L, it is still feasible to find d with sufficiently high score. In this case we
have to advance towards the node containing d in some treap. We obtained the best
results by choosing the treap t of the shortest list. We must choose a treap where we
have not yet reached d; if we have reached d in all the treaps then we can output d as
an element of the intersection, with a known score (the current U value is the actual
score of d), insert it in the priority queue of top-k results as explained (which may
increase the lower bound L), and resume the global intersection process with d← d+ 1
(we must update stacks, as d has changed).

In order to move towards d 6= id(vt) in a treap t, we proceed as follows. If d < id(vt),
we move to the left child of vt, lt, push vt in the stack, and make vt ← lt. Instead, if
d > id(vt), we move to the right child of vt, rt, and make vt ← rt. We then recompute U
with the new vt value.

If we have to move to the left and there is no left child of vt, then d does not belong
to the intersection. We stay at node vt and redefine a new target d ← id(vt). If we
have to move to the right and there is no right child of vt, then again d is not in the
intersection. We make vt ← ut, remove ut from the stack, and redefine d ← id(ut). In
both cases we adjust the stacks of the other treaps to the new value of d, as before, and
resume the intersection process.

Algorithm 1 gives pseudocode for the intersection.

5.2.1. Handling low-frequency lists. We have not yet considered the lists of documents
with frequencies up to f0, which are stored separately, one per frequency, outside the
treap. While a general solution is feasible (but complicated), we describe a simple strat-
egy for the case f0 = 1, which is the case we implemented.

Recall that we store the posting lists in gap-encoded blocks. Together with the treap
cursor, we will maintain a list cursor, which points inside some block that has been
previously decompressed. Each time there is no left or right child in the treap, we must
search the list for potential elements omitted in the treap. More precisely, we look for
elements in the range [d, id(vt)− 1] if we cannot go left, or in the range [d, id(ut)− 1] if
we cannot go right. Those elements must be processed as if they belonged to the treap

1Replacing f(v) by f(vt) will yield an upper bound whenever the scoring function is monotonic with the
frequencies. This is a reasonable assumption and holds for most weighting formulas, including tf-idf and
BM25.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:20 Konow et al.

ALGORITHM 1: Top-k of intersection using treaps.
INTERSECT(Q, k)

results← ∅ // priority queue of pairs (key, priority)
for t ∈ Q do

stackt ← 〈⊥〉 // stack of treap t, id(⊥) = f(⊥) = +∞
vt ← root of treap t

end for
compute score U using f(vt) values, e.g.

∑
t∈Q f(vt) · idft

d← 1, L← −∞
while d < +∞ do

while U ≤ L do
CHANGED(mint∈Q id(TOP(stackt)))

end while
if ∀t ∈ Q, d = id(vt) then

REPORT(d, U)
CHANGED(d+ 1)

else
t← treap of shortest list such that d 6= id(vt)
if d < id(vt) then

lt ← left child of vt
if lt is not null then

PUSH(stackt,vt), CHANGEV(t, lt)
else

CHANGED(id(vt))
end if

else
rt ← right child of vt
if rt is not null then

CHANGEV(t, rt)
else

CHANGEV(t,POP(stackt))
CHANGED(id(vt))

end if
end if

end if
end while
return results

REPORT(d, s)

results← results ∪ (d, s)
if |results| > k then

remove minimum from results, L← minimum priority in results
end if

CHANGED(newd)

d← newd
for t ∈ Q do
v ← vt
while d ≥ id(TOP(stackt)) do
v ←TOP(stackt)
POP(stackt)

end while
CHANGEV(t, v)

end for
CHANGEV(t, v)

remove contribution of f(vt) from U , e.g. U − f(vt) · idft
vt ← v
add contribution of f(vt) to U , e.g. U + f(vt) · idft

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:21

before proceeding in the actual treap. Finding this new range [l, r] in the list may imply
seeking and decompressing a new block.

The cleanest way to process range [l, r] is to search as if it formed a subtree fully
skewed to the right, descending from vt. If we descended to the left of vt towards the
range, we push vt into the stack. Since all the elements in the list have the same
frequency, when we are required to advance towards (a new) d we simply scan the
interval until reaching or exceeding d, and the docid found acts as our new id(vt) value.
When the interval [l, r] is exhausted, we return to the treap. Note that the interval [l, r]
may span several physical list blocks, which may be subsequently decompressed.

5.3. Unions
The algorithm for ranked unions requires a few changes on the algorithm for intersec-
tions. First, in the two lines that call CHANGED(id(vt)), we do not change the d for all
the treaps when the current treap does not find it. Rather, we keep values nextdt where
each treap stores the minimum d′ ≥ d it contains, thus those lines are changed by
nextdt ← id(vt). Second, we will choose the treap t to advance only among those where
id(vt) 6= d and nextdt = d, as if nextdt > d we cannot find d in treap t. Third, when
all the treaps t where id(vt) 6= d satisfy nextdt > d, we have found exactly the treaps
where d appears. We add up score(Q, d) over those treaps where id(vt) = d, report d,
and advance to d + 1. If, however, this happens but no treap t satisfies id(vt) = d, we
know that d is not in the union and we can advance d with CHANGED(mint∈Q nextdt).
Finally, CHANGED(newd) should not only update d but also update, for all the treaps t,
nextdt to max(nextdt, newd).

Algorithm 2 gives the detailed pseudocode.

5.4. Supporting Different Score Schemes
Arguably the simplest scoring scheme is to use the sum of term frequencies tft,d of
the words involved in a bag-of-words union or intersection query. This case is easy to
implement using inverted treaps, since the topology is constructed employing the term
frequency as the priority and the term frequencies are represented differentially. A
trivial extension is tf-idf scoring: every time we need to calculate U , we multiply the
term frequency by the corresponding idft, as shown in Algorithms 1 and 2. However, in
order to support more complex scoring schemes, such as BM25, additional information
is required (i.e., document length) and the resulting relative order of documents inside
a list may be different from tf. In these cases, creating the treap topology based on the
the term frequency tft,d is not useful. Moreover, if we actually use the exact score, we
would require float or double precision numbers, thus increasing the size of the index.

An alternative to cope with BM25 is to compute each score at construction time, and
build the topology according to the computed score, but still store the term frequency
at each node. The query processing algorithm is still valid since we are able to compute
the complete score at query time. However, the treap cannot encode term frequencies
differentially anymore, since it is possible that a term frequency stored in a node’s child
is greater than the one of the node itself. If we represent the absolute frequencies, the
resulting inverted treap approach is not competitive in terms of space.

In this work we use another approach to this problem. We employ impact-scoring
(Section 2.2) instead of term frequencies. This enables the inverted treaps to support
any type of scoring scheme. The procedure is to construct the treap topology using the
pre-calculated impacts, and store them as if they were the term frequencies in the
nodes. This allows for differential encoding of impacts, and we can use the same query
algorithms without any change.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:22 Konow et al.

ALGORITHM 2: Top-k of union using treaps.
UNION(Q, k)

results← ∅ // priority queue of pairs (key, priority)
for t ∈ Q do

stackt ← 〈⊥〉 // stack of treap t, id(⊥) = f(⊥) = +∞
nextdt ← 1 // next possible value in treap t
vt ← root of treap t

end for
compute U as a score using all f(vt) values
d← 1, L← −∞
while d < +∞ do

while U ≤ L do
CHANGED(mint∈Q id(TOP(stackt)))

end while
if ∀t ∈ Q, d = id(vt) ∨ nextdt > d then

if ∃t ∈ Q, d = id(vt) then
REPORT(d,

∑
t∈Q,d=id(vt)

w(t, d))

CHANGED(d+ 1)
else

CHANGED(mint∈Q nextdt)
end if

else
t← choose where to advance, d = nextdt 6= id(vt)
if d < id(vt) then

lt ← left child of vt
if lt is not null then

PUSH(stackt,vt)
CHANGEV(t, lt)

else
nextdt ← id(vt))

end if
else

rt ← right child of vt
if rt is not null then

CHANGEV(t, rt)
else

CHANGEV(t,POP(stackt))
nextdt ← id(vt))

end if
end if

end if
end while
return results

CHANGED(newd)

d← newd
for t ∈ Q do
nextdt ← max(nextdt, newd)
v ← vt
while d ≥ id(TOP(stackt)) do
v ←TOP(stackt)
POP(stackt)

end while
CHANGEV(t, v)

end for

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:23

6. INCREMENTAL TREAPS
So far, we described a static representation of posting list using treaps. In this section
we show how to extend the inverted treap representation to support incremental up-
dates, that is, to allow the addition of new documents to the collection while the index
is loaded in memory.

Incremental in-memory inverted indexes have been developed to cope with the ef-
ficiency challenges in Tweeter [Busch et al. 2012] and for indexing microblogs [Wu
et al. 2013]. In these two cases, the more recent posts are generally more relevant,
thus appending them at the end of the inverted lists, just as in the indexes designed
for Boolean intersections, allows for efficient query processing. In main memory, the
problem of maintaining such an inverted index up to date is simpler, because the price
for non-contiguous storage of the inverted lists is not so high. In a thorough recent
study, Asadi and Lin [2013] show that the difference in query performance between
lists cut into many short isolated blocks versus fully contiguous lists is only 10%–20%
for Boolean intersections and 3%–6% for ranked intersections.

However, there are cases where we require immediate updating of the index but
have no preference for the most recent posts. Obvious examples are online stores like
Ebay or Amazon, where new products must be immediately available but they are
not necessarily better than previous ones. In those cases, we are interested in ranked
retrieval using traditional relevance measures, which are mostly independent of the
insertion time.

While this form of dynamization is simple for the WAND and Block-Max formats
[Asadi and Lin 2013], it is much more challenging for the treaps, because postings are
not physically stored in increasing document identifier order, and therefore one cannot
simply append the inserted postings at the end of the inverted lists.

6.1. Supporting Insertions
Our solution is inspired by the linear-time algorithms for building treaps offline (recall
Section 4.3). We maintain the rightmost path of the tree in uncompressed form, and
their left subtrees are organized into progressively larger compressed structures. This
allows for smooth insertion times without large sudden reconstructions, reasonable
compression performance and search times.

The main idea is to maintain a treap for each inverted list, as in the static case.
However, this treap is only gradually converted into a compressed static structure, and
never completely. Some nodes are represented with classical pointers (we call those free
nodes), whereas some subtrees are represented in the form of static treaps.

The rightmost path is always composed of free nodes. Some nodes descending from
the left children of those nodes may also be free, but not many. Each free node v stores
the number F(v) of free nodes in its subtree; these always form a connected subtree
rooted at the node. We use a blocking parameter b, so that when a left child v of a
rightmost path node has b free nodes or more, all those free nodes are converted into a
static treap.

Precisely, when a rightmost node v′j is converted into the left child of a new incoming
node vi, we check if F(v′j) ≥ b (since v′j belonged to the rightmost path, the limit to
free nodes did not apply to it, so if v′j has ` rightmost descendants, it could have up to
f(v′j) = b` free nodes descending from it). If F(v′j) ≥ b, all those F(v′j) free nodes are
converted into a static treap and we set F(vi)← 1 for the new node. Otherwise, we set
F(vi)← F(v′j) + 1.

Hence, the maximum time per insertion is O(b`), which is O(b log n) in expectation.
This, however, does not add up to more than O(n), since static treaps are built in linear
time and each node becomes part of a static tree only once.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:24 Konow et al.

The static treaps we create are not completely identical to the static ones of Sec-
tion 4. In this case, some free nodes may be parents of static treaps. Therefore, the
process results in a tree of static treaps (with some free nodes in the top part). To
accommodate this extension, the static structure is expanded with a bitvector B that
has one bit per leaf of the static treap, indicating whether the leaf is actually a leaf
or it contains a pointer to another static treap. Those pointers are packed in an array
inside the structure, so that the ith 1 in B corresponds to the ith pointer in the array.
Its position is computed with RANK1 (B, i).

6.2. Gradual Growth
Note that there will be O(b log n) free nodes per inverted list in expectation. Therefore,
b must be reasonably small to avoid their pointers blow up the space (in practice, b
should not exceed a few thousands). On the other hand, a small b implies that the
static treaps may contain as little as b nodes. Thus b should be large enough for the
static structures to use little space (otherwise, the constant number of integers and
pointers they use may be significant). It may be impossible to satisfy both requirements
simultaneously.

To cope with this problem, we enforce a gradual increase of the treap sizes. Static
treaps will be classified in generations. A static treap T is of generation g(T) = 1
when it is first created. No treap can have descendants of lower generations. Each
static treap T stores its generation number g(T) and the number d(T) of descen-
dant treaps of its same generation, including itself. It is easy to compute d(T) =
1 +

∑
T ′,g(T ′)=g(T) d(T ′) for a newly created static treap T that points to several other

existing treaps T ′. Given a parameter c, we establish that, when a new static treap
T is created and d(T) ≥ c, that is, its subtree has c or more treaps of its generation,
then all those are collected and recompressed into a larger static treap S, which now
belongs to generation g(S) = g(T)+1. The same formula above is used to compute d(S)
for the new treap.

This technique creates larger and larger static treaps towards the bottom and left
part of the tree. Now a node can be reprocessed logc(n/b) times along its life, to make
it part of larger and larger static treaps; therefore the total construction time becomes
O(n log n) (albeit with a very low constant). Parameter c should be a small constant.

Figure 8 shows a normal left-to-right construction process (as described in Sec-
tion 4.3), but it also illustrates how the incremental version is built. We have enclosed
in gray sets the nodes that are grouped into static treaps, for b = c = 2. In particular,
observe the situation in the rightmost cell of the second row. A static treap of gen-
eration 1 is created for the nodes with docid 13, 22, and 27. But now this node is of
generation 1 and its subtree has d = 3 ≥ c treaps of its same generation. Thus, a new
static treap, of generation 2, is created with all those generation-1 descendants. This
is shown in the leftmost cell of the third row.

7. EXPERIMENTAL SETUP AND RESULTS
In this section we describe the experimental setup, in terms of the collections used and
the environment employed for the experiments. We also explain the engineering de-
tails required to implement the indexes and the baselines, and discuss the space/time
results obtained.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:25

4 9 13 14 15 22 27 30 35 37 39 44

freqs 6 2 14 1 1 2 1 24 6 1 2 3

docids

13

14

4

6

22

2

9

2

14

1

15

1

13

14

4

6

22

2

9

2

14

1

15

1

27

1

24
30

13

14

4

6

22

2

9

2

14

1

15

1

27

1

24
30

13

14
35

6

4

6

22

2

9

2

14

1

15

1

27

1

1
37

24
30

13

14
35

6

4

6

22

2

9

2

14

1

15

1

27

1

13

14

4

6

9

2

1
14

13

14

4

6

9

2

1
14

15

1

13

14

4

6

9

2

4

6

9

2

4

6

24
30

13

14
35

6

4

6

22

2

9

2

14

1

15

1

27

1

2
39

1
37

24
30

13

14
35

6

4

6

22

2
44

3

9

2

14

1

39

2

15

1
37

1

27

1

Fig. 8. The left-to-right construction of an example treap. We show in bold the rightmost path and shade
the node that is added in each iteration. Sets of nodes with gray borders indicate static treaps that are built.

7.1. Collections
We use the TREC GOV2 collection, parsed using the Indri search engine2, and Porter’s
stemming algorithm. The collection contains about 25.2 million documents and about
39.8 million terms in the vocabulary. The inverted lists contain about 4.9 billion post-
ings in total. After pre-processing and filtering, a plain representation of the GOV2
collection requires about 72GB. The average posting list length is 76 and the average
document contains 932 words.

We also performed experiments using other collections, such as the English
Wikipedia dump, containing about 5 million documents and 6 million terms. An av-
erage Wikipedia article contains 352 words and the average number of elements in a
posting list is 132. We also performed experiments on the Weblogs collection3, contain-
ing about 50 million documents and requiring 120GB of space. For queries, we used
the 50,000 TREC2005 and TREC2006 Efficiency Queries dataset with distinct num-
bers of terms, from q = 2 to 5. We omitted those not appearing in our collection, thus
we actually have 48,583 queries.

2http://www.lemurproject.org/indri/
3http://www.icwsm.org/data/

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:26 Konow et al.

In this article we only show the results obtained using the TREC GOV2 collection,
since the results over the others do not change significantly.

7.2. Baselines and Setup
We compare our results with five baselines: (1) Elias Fano WAND implementation
[Ottaviano and Venturini 2014], (2) Block-compressed WAND Implementation [Broder
et al. 2003], (3) Block-Max [Ding and Suel 2011], (4) Dual-Sorted [Konow and Navarro
2013] and (5) ATIRE [Trotman et al. 2012].

For Elias Fano WAND, we use the implementation4 provided by Ottaviano and Ven-
turini [2014]; we denote this implementation EF in the charts. For block-compressed
WAND, we use the implementation obtained from the SURF framework5; we denote this
implementation WAND in the charts. For Block-Max, we adapted the implementation
of Petri et al. [2013] by extending it to support ranked intersections, and included it
into the SURF framework; we call it BMAX in the charts. For both WAND and BMAX
we use the optimal PForDelta encoding for the docids and Simple9 encoding for the
frequencies, as these gave the smallest indexes. In both cases the posting lists were
encoded using blocks of 128 values. In the case of BMAX, we also store the maximum
value for every block. The implementations of those encodings were obtained from the
FastPFor library6.

We use ATIRE7 as our baseline for impact-sorted indexes. ATIRE is an open-source
search engine that supports different early termination algorithms based on impact or
frequency sorted posting lists. We constructed both, frequency-sorted and quantized
BM25 (q = 8) impact-sorted indexes for our experiments.

In the case of Dual-Sorted, we use the original implementation of Konow and
Navarro [2012], using compressed bit sequences representation.

All baselines were modified, when needed, to support both quantized impact BM25
scores (Section 2.2) and tf-idf scoring. Our experiments were run on a dedicated server
with 16 processors Intel Xeon E5-2609 at 2.4GHz, with 256 GB of RAM and 10 MB of
cache. The operating system is Linux with kernel 3.11.0-15 64 bits. We used GNU g++
compiler version 4.8.1 with full optimizations (-O3) flags.

7.3. Inverted Treaps Implementation
We implemented our indexes based on the sdsl-lite library [Gog et al. 2014]. The
document ids are stored in a dac vector<6> of fixed width 6, which gave the best re-
sults at parameter tuning time. The weights are stored in a dac vector<2> of fixed
width 2. The f0 list are represented using PForDelta using a similar implementation
to the ones used in WAND and BMAX. We do not use inverted treaps to represent
every posting list, but only those containing at least 1024 elements. The other posting
lists are represented using WAND. At query time, if necessary, they are fully decom-
pressed and handled by maintaining a pointer to the current docid being evaluated.
The BP topology is implemented using the bp tree<> class, while the LOUDS topology
is implemented using the bit vector<> class enhanced with rank operations, for which
we use the alternative dubbed rank support v5<>, which requires 5% extra space. The
HEAP implementation uses an integer vector int vector requiring dlog(X + 1)e bits,
where X is the maximum element in the array P ′. The implementation of the bit se-
quence for the topology is the same one as the one employed in LOUDS. We perform all

4http://github.com/ot/partitioned˙elias˙fano
5http://github.com/simongog/surf
6https://github.com/lemire/FastPFor
7http://atire.org/index.php?title=Main˙Page

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:27

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

AT
IR

E

S
pa

ce
 [f

ra
ct

io
n

of
 th

e
in

pu
t]

0.00

0.05

0.10

0.15

0.20

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

AT
IR

E

Index Size TFIDF

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

AT
IR

E

S
pa

ce
 [f

ra
ct

io
n

of
 th

e
in

pu
t]

0.00

0.05

0.10

0.15

0.20

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

AT
IR

E

Index Size BM25

Fig. 9. Total sizes of the indexes depending on the scoring scheme.

the experiments for tf-idf score and for quantized BM25 impact scoring, as described
in Section 5.4, using 8 bits for each impact.

7.4. Index Size
We start by showing the size required of each index in Figure 9, separated by the scor-
ing scheme used. The left part of the figure shows the case of tf-idf scoring, whereas the
right part shows BM25 scoring. In both cases, EF is clearly the smallest alternative.
The second alternative, WAND, is about 10% larger.

In the tf-idf indexes, BMAX requires more space than any of the treap alternatives,
LOUDS being about 10% smaller than BMAX and HEAP almost equal. Dual-Sorted,
on the other hand, is the most space-consuming alternative. With BM25 scoring, all
the inverted treap alternatives require more space than the baselines, climbing from
about 13% of the text space under tf-idf scoring to up to 18%. This is mainly because,
when using the quantized BM25 score, the number of posting lists elements having
score 1, which is efficiently represented using the f0 lists, is considerably reduced: for
the tf-idf score scheme there are about 3 billion posting list elements with frequency
1, but this decreases to 800 million under BM25. The space of ATIRE also increases
when moving from tf-idf, where it is the third smallest index, to BM25, where it is only
smaller than our treap alternatives.

Figure 10 shows the space breakdown of the inverted treap components, using tf-idf
scoring on the left and BM25 on the right. This figure is based on our smallest case,
which is the LOUDS alternative. The component Small Lists represents all the posting
lists that have less than 1024 elements and are represented using WAND. For the tf-
idf case, we see that the topology requires 7% of the total index size, and the biggest
component is the f0 lists. However, in the BM25 case, the f0 lists use a negligible
amount of space, and the document ids is the heaviest component.

The only component that changes between our three alternatives is how we repre-
sent the treap topology. Figure 11 shows the difference in space requirements, depend-
ing on the scoring scheme. We see that LOUDS is always the smallest alternative, and
HEAP is the biggest, requiring about twice the size of LOUDS.

7.5. Construction Time
Figure 12 shows the time required to build each index. We see that the construction
times of the inverted treap alternatives are not so distant from those of the baseline
inverted index representations. This holds except for the HEAP alternative, which is
up to twice as slow to build than the fastest baseline. It is interesting to note that
the Elias-Fano WAND index builds 1.4 to 1.8 times slower than the block-compressed

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:28 Konow et al.

Topology 7%

Documents 28%

Weights 12%

F0 31% Small Lists 23%

Space Decomposition TFIDF

Topology 12%

Documents 50%

Weights 19% F0 1%

Small Lists 19%

Space Decomposition BM25

Fig. 10. Total sizes of the indexes depending on the scoring scheme.
B

P
 T

F
ID

F

LO
U

D
S

 T
F

ID
F

H
E

A
P

 T
F

ID
F

B
P

 B
M

25

LO
U

D
S

 B
M

25

H
E

A
P

 B
M

25

B
P

 T
F

ID
F

LO
U

D
S

 T
F

ID
F

H
E

A
P

 T
F

ID
F

B
P

 B
M

25

LO
U

D
S

 B
M

25

H
E

A
P

 B
M

25

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

S
pa

ce
 [f

ra
ct

io
n

of
 in

de
x

si
ze

]

Topology Comparison

Fig. 11. Sizes of the topology components depending on the scoring scheme.

WAND implementation. ATIRE was the slowest alternative to build in both cases. We
do not include the time required to build the Dual-Sorted index, since the construction
is not optimized and was above 200 minutes.

7.6. Ranked Union Query Processing
We describe the time results for the processing of ranked union queries. We first dis-
cuss the results globally and then consider how they evolve as a function of k or the
number of words in the query.

Global analysis. Figure 13 (left) shows the average time per query, for distinct values
of k, using the tf-idf scoring scheme. These times average all the queries of all the
lengths (2 to 5 terms) together.

The results show that EF, WAND and Dual-Sorted are not competitive for these
queries, as they are sharply outperformed by BMAX. In turn, all our inverted treap
alternatives outperform BMAX by a wide margin. The differences become less drastic
as we increase k, but still for k = 1000 the HEAP alternative is more than 3 times
faster than BMAX. Our LOUDS alternative is always slower than HEAPS, and BP is

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:29

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

AT
IR

E

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

AT
IR

E

0

10

20

30

40

50

60

70

M
in

ut
es

Construction Times TFIDF

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

AT
IR

E

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

AT
IR

E

0

10

20

30

40

50

60

70

M
in

ut
es

Construction Times BM25

Fig. 12. Construction time of the indexes depending on the scoring scheme, in minutes.

slower than LOUDS. Still, BP is almost twice as fast as BMAX even for k = 1000. We
discarded results from ATIRE in most of the following figures because it required more
than 500 milliseconds on average.

Figure 13 (right) shows the distribution of the results using the BM25 quantized
score scheme. The differences are much smaller in this case, and in particular our
LOUDS and BP variant are the slowest. Our HEAP alternative, instead, is still the
fastest or on par with the fastest.

The worse performance of our variants under BM25 owes to the fact that most of
the lists are stored as treaps, whereas under tf-idf many of them are stored as f0 lists.
The union algorithm performs a significant amount of sequential traversal, and the
simple f0 lists are faster at this than the treaps. Instead, the considerable improve-
ment obtained by EF and WAND owes to the narrower universe of impacts, which
increases the chances that the lower bound θ is not reached along the process and en-
ables more frequent skipping (recall Section 3.3.1). Up to a lesser, extent, BMAX also
improves thanks to more frequent skipping, as on a narrower universe it is also less
likely to outperform the current kth highest score. Finally, the significant improve-
ment of Dual-Sorted owes to the fact that it implements the method of [Persin et al.
1996] (which does not give exact results, so the comparison is not totally fair) and
this method is also favored by the BM25 quantized scores: it reaches sooner a stable
situation where the upcoming scores are no better than those already obtained. The
optimal-partitioned Elias-Fano implementation was consistently slightly slower than
the block-compressed WAND implementation, so we will only consider the latter alter-
native for the rest of the comparisons.

We show more detailed results grouped by percentiles in Table I. In the case of tf-idf,
the best alternative by far is the LOUDS treap for all percentiles. For the quantized
BM25 case, HEAP is the best alternative. In general terms, the table shows that our
improved time results are consistently better, and are not blurred by a high variance.

Analysis as a function of k and separated by query length. Figure 14 separates the
times according to the number of words in the query, and shows how times evolve with
k, using tf-idf scoring. Note that the times are independent of k for some techniques,
or grow very slowly with k in the others.

For 2 query terms, all the inverted treap alternatives are an order of magnitude
faster than WAND and Dual-Sorted. For small k values, BMAX is about twice as slow
as the fastest treap alternative, HEAP. For large k values, instead, HEAP is about
5 times faster than BMAX. The LOUDS and BP alternatives are also faster or on
par with BMAX. As the number of query terms increases, however, BMAX starts to

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:30 Konow et al.

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
25
50
75

100
125
150
175
200
225
250
275

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 10 Union TFIDF

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

25

50

75

100

125

150

175

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 10 Union BM25

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
25
50
75

100
125
150
175
200
225
250
275

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 100 Union TFIDF

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

25

50

75

100

125

150

175

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 100 Union BM25

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
25
50
75

100
125
150
175
200
225
250
275

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 1000 Union TFIDF

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

25

50

75

100

125

150

175

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 1000 Union BM25

Fig. 13. Ranked union times for distinct k values, in milliseconds. We show the case of tf-idf scoring on the
left and quantized BM25 on the right.

Table I. Ranked union results grouped by percentiles for k = 10. The numbers indicate the maximum time
reached by X% of the fastest queries.

Union TFIDF Union BM25
Index/Percentile 50% 80% 90% 95% 99% 50% 80% 90% 95% 99%
EF 170 342 724 781 976 35 102 144 181 230
WAND 177 462 701 787 918 30 77 116 141 168
BMAX 28 139 195 246 332 20 74 122 169 222
BP 10 27 47 73 94 60 80 156 229 294
LOUDS 7 21 39 61 80 40 62 103 123 231
HEAP 40 177 289 457 617 20 49 76 96 156
DualSorted 151 416 736 866 1101 25 70 121 155 202

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:31

outperform the slower inverted treap alternatives. Still, HEAP is always faster than
BMAX and 3–4 times faster than WAND and Dual-Sorted.

Figure 15 shows the same experiment on the quantized BM25 scoring scheme. In
this case, the treap alternatives are competitive only on queries of 2 and 3 words. In
particular, our fastest approach, HEAP, is twice as fast as BMAX for 2 words, but up
to 50% slower on the longest queries. Still, we note that most real queries are short.
For example, the average query length has been measured in 2.4 words [Spink et al.
2001], and in our dataset of real queries, 44% of the multi-word queries have indeed 2
words.

Analysis as a function of query length and separated by k value. Figure 16 shows
the ranked union times as a function of the query length, for distinct k values. As
mentioned before, in the case of tf-idf (left side of the figure), our fastest approach
HEAP is consistently faster than all the other alternatives, for all query lengths and
up to k = 1000. In the case of BM25 (right side of the figure), our HEAP alternative is
competitive when 2 or 3 query terms are involved. In general, the costs grow linearly
with the number of query terms, but the growth rate of WAND and Dual-Sorted is
higher on tf-idf and lower on BM25.

7.7. Ranked Intersection Query Processing
We proceed to describe the time results for processing ranked intersection queries.
As before, we first discuss the results globally and then consider how they evolve as
a function of k or the number of words in the query. We do not include the results
from ATIRE since it does not support a native mechanism to perform top-k ranked
intersection.

Global analysis. Figure 17 (left) shows the average time per query, for distinct values
of k, using the tf-idf scoring scheme. These times average all the queries of all the
lengths (2 to 5 terms) together.

As expected, BMAX always outperforms WAND by a significant margin. Among our
alternatives, as before, HEAP is always faster than LOUDS and this is faster than BP.
Our results are better for small k, where HEAP outperforms all the other indexes by a
factor of 2 or more. The difference narrows down for larger k, but still for k = 1000 we
have that HEAP is faster than BMAX. Dual-Sorted performs a Boolean intersection
and then computes the score of all the qualifying documents. The experiment shows
that, for k = 1000, this becomes (slightly) better than the more sophisticated alterna-
tives that try to filter the documents on the fly. As for unions, the optimal-partitioned
Elias-Fano implementation was consistently slightly slower than the block-compressed
WAND implementation, and so we did not include it in further experiments on time
performance.

Figure 17 (right) shows the distribution of the results using the BM25 quantized
score scheme. Unlike in the case of unions, the powerful filtration enabled by the treaps
outweighs its slowness compared to traversing an f0 list. As a result, the inverted
treaps are faster on BM25 than on tf-idf scores. The methods WAND and BMAX also
improve thanks to the quantized scores. Dual-Sorted also improves: even if it always
performs the same Boolean intersection and then computes the scores of the surviv-
ing candidates, this computation is faster because it uses the stored quantized scores,
whereas for tf-idf it must multiply each stored tf by the idf associated with the query
term. The comparisons between all the alternatives stay, overall, similar as in the case
of tf-idf scoring.

We show detailed results grouped by percentiles in Table II for all the alternatives
considered. In both cases, tf-idf and BM25, the best alternative is the treap using the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:32 Konow et al.

● WAND BMAX BP LOUDS HEAP DUALSORTED

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
20
40
60
80

100
120
140
160

10 20 30 40 50 60 70 80 90

●
● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

2 Query Terms Union TFIDF

k

●
● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
40
80

120
160
200
240
280
320

10 20 30 40 50 60 70 80 90

●
● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

3 Query Terms Union TFIDF

k

●
● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
60

120
180
240
300
360
420
480

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

4 Query Terms Union TFIDF

k

●
● ●

● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
80

160
240
320
400
480
560
640
720

10 20 30 40 50 60 70 80 90

●
● ● ● ● ● ●

●
●

●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

5 Query Terms Union TFIDF

k

Fig. 14. Ranked union times as a function of k, grouped by number of terms per query, using tf-idf.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:33

● WAND BMAX BP LOUDS HEAP DUALSORTED

●
● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

10

20

30

40

50

60
10 20 30 40 50 60 70 80 90

●
●

●
● ●

● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

2 Query Terms Union BM25

k

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

30

60

90

120

150

10 20 30 40 50 60 70 80 90

●
● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

3 Query Terms Union BM25

k

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
40
80

120
160
200
240

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

4 Query Terms Union BM25

k

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

60

120

180

240

300

360

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

5 Query Terms Union BM25

k

Fig. 15. Ranked union times as a function of k, grouped by number of terms per query, using BM25.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:34 Konow et al.

● WAND BMAX BP LOUDS HEAP DUALSORTED

●

●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

100

200

300

400

500

600

700

2 3 4 5

Top 10 Union TFIDF

● ● ●
●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

100

200

300

2 3 4 5

Top 10 Union BM25

●

●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

100

200

300

400

500

600

700

2 3 4 5

Top 100 Union TFIDF

●
●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

100

200

300

2 3 4 5

Top 100 Union BM25

●

●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

100

200

300

400

500

600

700

2 3 4 5

Top 1000 Union TFIDF

●
●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

100

200

300

2 3 4 5

Top 1000 Union BM25

Fig. 16. Ranked union times for distinct k values as a function of the query query length. We show the case
of tf-idf scoring on the left and quantized BM25 on the right.

HEAP topology. Again, the table shows that our improved time results are consistently
better, and are not blurred by a high variance.

Analysis as a function of k and separated by query length. Figure 18 shows how
times evolve with k, using tf-idf scoring. As in the ranked unions, some techniques are
independent of k and others (in this case, the inverted treaps with 2 or 3 words) grow
slowly with k.

For 2 query terms, the HEAP alternative is the fastest up to k = 300, from where
BMAX takes over. For 3 and 4 words, HEAP is either the fastest choice or very close to

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:35

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

35

40

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 10 Intersection TFIDF

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 10 Intersection BM25

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

35

40

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 100 Intersection TFIDF

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 100 Intersection BM25

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

35

40

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 1000 Intersection TFIDF

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

E
F

W
A

N
D

B
M

A
X

B
P

LO
U

D
S

H
E

A
P

D
U

A
LS

O
R

T
E

D

Top 1000 Intersection BM25

Fig. 17. Ranked intersection times for distinct k values, in milliseconds. We show the case of tf-idf scoring
on the left and quantized BM25 on the right.

Table II. Ranked intersection results grouped by percentiles for k = 10. The numbers indicate the maxi-
mum time reached by X% of the fastest queries.

Intersection TFIDF Intersection BM25
Index/Percentile 50% 80% 90% 95% 99% 50% 80% 90% 95% 99%
EF 4 35 85 195 526 9 49 91 146 304
WAND 4 43 93 178 451 9 35 89 128 223
BMAX 29 146 209 260 321 3 29 62 93 156
BP 17 42 58 68 77 18 43 67 85 101
LOUDS 13 22 34 47 60 12 29 44 56 67
HEAP 3 12 18 23 34 9 21 32 42 51
DualSorted 24 132 230 287 386 9 33 84 122 212

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:36 Konow et al.

it, and for 5-word queries it takes over again. As mentioned by Ding and Suel [2011],
the performance of BMAX is considerably affected by the number of terms participat-
ing in the query. For 4 query terms, it is one of the slowest alternatives, together with
the BP inverted treap variant. For 5 query terms, it is definitely the slowest. This ex-
plains the poor performance of BMAX compared to WAND when considering all the
queries together.

Figure 19 shows the results for ranked intersections on the quantized BM25 scoring
scheme. While the general picture is similar to the case of tf-idf, HEAP is overcomed
more frequently. For few-word queries it is outperformed sooner by BMAX, for k =
200 on 2 words and for k = 80 on 3 words. On 4-word queries, it is almost always
outperformed by a small margin. It is again the fastest alternative on 5 words, but by
a smaller margin than for tf-idf. BMAX is also heavily affected as the number of words
increases.

Analysis as a function of query length and separated by k value. Figure 20 shows
the ranked intersection times as a function of the query length, for distinct k values.
On the left side of the figure we show the results of the tf-idf scoring scheme. We can
see more clearly how BMAX is heavily affected by the query length. The others stay
unaltered or fluctuate as a function of the number of words. This is because, as this
number increases, more lists have to be handled, but it is also more likely to filter
out portions of the lists. The interaction of the two effects produces increments and
decrements in the query times. Recall that WAND and Dual-Sorted perform a Boolean
intersection followed by the evaluation of all the resulting scores, so their behavior is
very similar. Note that our HEAP alternative is generally the best on tf-idf, whereas
on BM25 it is the best for k = 10 and in some cases for larger k.

7.8. One-word Queries
We have not yet considered the simplest one-word queries, which account for a signifi-
cant percentage of typical queries (almost 24% in our query set). For these queries, we
must obtain the k highest-ranked documents from a single inverted list. In the case
of WAND, this requires traversing the whole list and retaining the k highest scores.
BMAX speeds this up by skipping blocks where the maximum score is not higher than
the kth score we already know. Dual-Sorted, instead, simply requires to extract the
first k elements from the list of the query term, as its lists are sorted by decreasing fre-
quency. Therefore the Dual-Sorted time is bounded by O(k logD), as it is implemented
on a wavelet tree. This is the best scenario for ATIRE, since the posting lists are sorted
by either frequencies or quantized scores, so returning the k best documents is done
simply by traversing the first k postings.

For our inverted treaps, we use a simplification of the procedures for ranked unions
and intersections. We insert the root of the treap in a heap that sorts by decreasing
score. We then iteratively extract the top of the heap, report its document, and insert
its two children. Therefore we require O(k) operations on the treap and the heap,
leading to total time O(k log k).

Figure 21 shows the time performance. The time differences are so significant that
we have used logarithmic scale. Our fastest variant, HEAP, requires from 5–10 mi-
croseconds per query with k = 10 to 100–200 with k = 1000, whereas our slower
variant, BP, requires 10–20 to 200–500 microseconds. Dual-Sorted, instead, goes from
100–200 to 2000–5000 microseconds, that is, around 20 times slower than HEAP. The
slowest technique in the plots is BMAX, which requires 1–5 milliseconds per query,
that is, 25–200 times slower than HEAPS. This is because its time is not bounded in
terms of k. Still, the time of BMAX increases with k because its ability to filter blocks
decreases as k grows. On the other hand, the times of the other indexes grows more or

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:37

● WAND BMAX BP LOUDS HEAP DUALSORTED

● ●
● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

10

20

30

40
10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

2 Query Terms Intersection TFIDF

k

● ●
● ●

● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

10

20

30

40

10 20 30 40 50 60 70 80 90
● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

3 Query Terms Intersection TFIDF

k

● ●

● ●

● ●
● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

10

20

30

40

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

4 Query Terms Intersection TFIDF

k

● ●
● ● ● ●

● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
10
20
30
40
50
60
70

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

5 Query Terms Intersection TFIDF

k

Fig. 18. Ranked intersection times as a function of k, grouped by number of terms per query, using tf-idf.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:38 Konow et al.

● WAND BMAX BP LOUDS HEAP DUALSORTED

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

2 Query Terms Intersection BM25

k

● ● ● ● ● ●
● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90
● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

3 Query Terms Intersection BM25

k

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

● ● ● ● ● ● ● ● ● ●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

4 Query Terms Intersection BM25

k

● ● ● ● ● ● ● ● ●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

● ● ●
● ● ● ●

●
●

●

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

5 Query Terms Intersection BM25

k

Fig. 19. Ranked intersection times as a function of k, grouped by number of terms per query, using BM25.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:39

● WAND BMAX BP LOUDS HEAP DUALSORTED

●

● ●
●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

10

20

30

40

50

60

70

2 3 4 5

Top 10 Intersection TFIDF

●

●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

10

20

30

40

2 3 4 5

Top 10 Intersection BM25

●

●
●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

10

20

30

40

50

60

70

2 3 4 5

Top 100 Intersection TFIDF

●
●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

10

20

30

40

2 3 4 5

Top 100 Intersection BM25

●

●
●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

10

20

30

40

50

60

70

2 3 4 5

Top 1000 Intersection TFIDF

●
●

●

●

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

Query length

0

10

20

30

40

2 3 4 5

Top 1000 Intersection BM25

Fig. 20. Ranked intersection times for distinct k values as a function of the query query length. We show
the case of tf-idf scoring on the left and quantized BM25 on the right.

less linearly with k after a query initialization time: A rough fitting gives, for HEAP,
0.15k + 6.5 microseconds on tf-idf and 0.10k + 5 on BM25; for BP it gives 0.5k + 10 on
tf-idf and 0.3k + 5 on BM25; and for DualSorted it climbs to 4k + 100 on tf-idf and
2k + 80 on BM25. ATIRE is clearly the fastest alternative for single-term queries, tak-
ing 0.05k + 1 microseconds in both cases. We have not included the times of WAND
as they are much higher, 15,000 microseconds almost independently of k (note that
WAND needs to decompress the whole list, independently of k, and then find the k
largest scores).

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:40 Konow et al.

A
vg

. t
im

e
pe

r
qu

er
y

[µs
]

1

5
10
20
50

100
200
500

1000
2000
5000

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Single Query Term TFIDF

k

A
vg

. t
im

e
pe

r
qu

er
y

[µs
]

1

5
10
20
50

100
200
500

1000
2000
5000

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Single Query Term BM25

k

Fig. 21. One-word query times as a function of k, using tf-idf (top) and BM25 (bottom) scoring schemes.
Note the logscale.

7.9. Incremental Treaps
Figure 22 shows the time required to insert increasing prefixes of the GOV2 collection
on our incremental inverted treaps. For these experiments, we use the block parame-
ter b = 1024 and recompress any subtree that has generation c = 16 into a new larger
static treap (recall Section 6.1). These values were chosen by parameter tuning exper-
iments. As a baseline, we consider the static inverted treap construction, for LOUDS
and HEAP, on the same prefixes. The figure shows that the time for incremental treap
construction grows slightly superlinearly, as expected from its O(n log n) time complex-
ity. The static construction, instead, displays linear-time performance. Still, after in-
serting 24 million documents, the incremental construction is only twice as slow as the
fastest static construction (LOUDS) and 40%–60% slower than the static construction
giving the best query times (HEAPS).

In terms of memory usage the incremental treap requires an additional bitvector,
causing an increase in the overall size of about 7%. However, the size occupied by the
free nodes is considerably larger, using about 40% more space. This is because the free
nodes are not compressed in any way, that is, we are using 64-bit pointers, and 32-bit
integers for the the docid and the weight. In addition, we need to keep track of counters
for the block parameter b and the generations for parameter c. For these variables we
use integers of 16 and 8 bits, respectively. In total, the incremental variant is about
50% larger than the static LOUDS variant.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:41

LOUDS HEAP INCREMENTAL

2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

60

70

80

90
M

in
ut

es

Documents Inserted (Million)

Construction Time TFIDF

2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

60

70

80

90

M
in

ut
es

Documents Inserted (Million)

Construction Time BM25

Fig. 22. Incremental versus static construction of the inverted treaps, for tf-idf (left) and BM25 (right)
scoring schemes.

The incremental treap is also about 45% slower than the LOUDS implementation in
all cases of ranked unions and intersections, and more than twice as slow as HEAPS.
We included the times of BP, which show that the incremental treap is still slightly
slower than it. There are two main reasons for such a degradation in the performance:
First, the free nodes are not located in contiguous memory, leading to cache misses.
Cache misses are also caused because each static tree has its own dac vector and
topology bitmap, isolated from those of other static treaps. Second, the incremental
treap requires an additional RANK1 operation each time we move from a free node to a
static tree, or from a static tree to another static tree.

Overall, compared with LOUDS, dynamism costs us about 50% overhead in both
space and query time performance, and building from scratch by successive insertions
requires twice the time of a static construction. Compared with HEAPS, dynamism
poses a 50% overhead in both space and construction time, and it requires twice the
time at queries. Of course, reconstruction from scratch is not an alternative when in-
sertions are mixed with queries.

8. CONCLUSIONS AND FUTURE WORK
We have introduced a new inverted index representation based on the treap data struc-
ture. Treaps turn out to be an elegant and flexible tool to represent simultaneously the
docid and the weight ordering of a posting list. We use them to design efficient ranked
union and intersection algorithms that simultaneously filter out documents by docid
and frequency. The treap also allows us to represent both docids and frequencies in dif-
ferential form, to improve the compression of the posting lists. Our experiments under
the tf-idf scoring scheme show that inverted treaps use about the same space as com-
peting alternatives like Block-Max and Dual-Sorted, but they are significantly faster:
from 20 times faster on one-word queries to 3–10 times faster on ranked unions and
1–2 times faster on ranked intersections. On a quantized BM25 score, inverted treaps
use about 40% more space than the best alternatives, but they are still 20 times faster
on one-word queries, slightly faster on unions, and up to 2 times faster on intersec-
tions. Inverted treaps are generally the fastest alternative for k ≤ 100, and on one-
and two-word queries, which are the most popular ones. In addition, we have shown
that treaps can handle insertions of new documents, with a 50%–100% degradation in
space, construction and query time performance.

A future research line is to study the effect of reassigning docids. Some results [Ding
and Suel 2011] show that reassignment can significantly improve both space and pro-
cessing time. How much would treaps improve with such schemes? Can we optimize
the reassignment for a treap layout?

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:42 Konow et al.

BP LOUDS HEAP INCREMENTAL

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
10
20
30
40
50
60
70
80
90

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Union TFIDF

k

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
20
40
60
80

100
120
140
160

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Union BM25

k

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
5

10
15
20
25
30
35
40

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Intersection TFIDF

k

A
vg

. t
im

e
pe

r
qu

er
y

[m
s]

0
5

10
15
20
25
30
35
40

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Intersection BM25

k

Fig. 23. Ranked union and intersection times as a function of k, using tf-idf and BM25, for our static and
incremental variants.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:43

An important part of our gain owed to separating lists with frequency f0 = 1 (this
is the main explanation why our scheme performs better on tf-idf than on quantized
BM25). How to efficiently separate lists with higher frequencies or impacts is a chal-
lenge, and it can lead to important gains. It is also interesting to explore how this idea
could impact on schemes like Block-Max and Dual-Sorted.

Third, we have used DAAT processing on our inverted treaps. Such an approach
penalizes long queries, as already noted before in Block-Max [Ding and Suel 2011]. We
believe the time would become almost nonincreasing with the query length if we used
treaps under a TAAT scheme, where the longer lists were processed after determining
good lower bounds with the shorter lists. This constitutes another interesting line of
future work.

Finally, we plan to evaluate our inverted treaps in a multithreaded environment
with queries arriving in batch and seeking to maximize throughput. The fact that, for
example, Elias-Fano uses less space than our structures may give it a further advan-
tage that could compensate its higher average time per query.

Acknowledgements
We thank the reviewers for their comments, which helped us improve the presentation
significantly.

REFERENCES
A. Andersson and S. Nilsson. 1994. Faster searching in tries and quadtrees - an analysis of level compression.

In Proc. 2nd Annual European Symposium on Algorithms (ESA) (LNCS 855). 82–93.
V. Anh, O. Kretser, and A. Moffat. 2001. Vector-space ranking with effective early termination. In Proc. 24th

Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR).
35–42.

V. Anh and A. Moffat. 2005. Inverted index compression using word-aligned binary codes. Information Re-
trieval 8, 1 (2005), 151–166.

V. Anh and A. Moffat. 2006. Pruned query evaluation using pre-computed impacts. In Proc. 29th Annual
International ACM Conference on Research and Development in Information Retrieval (SIGIR). 372–
379.

D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. 2010. Succinct trees in practice. In Proc. 11th
Workshop on Algorithm Engineering and Experiments (ALENEX). 84–97.

N. Asadi and J. Lin. 2013. Fast, incremental inverted indexing in main memory for Web-scale collections.
CoRR abs/1305.0699 (2013). http://arxiv.org/abs/1305.0699.

R. Baeza-Yates, A. Moffat, and G. Navarro. 2002. Searching large text collections. In Handbook of Massive
Data Sets. Kluwer, 195–244.

R. Baeza-Yates and B. Ribeiro-Neto. 2011. Modern Information Retrieval (2nd ed.). Addison-Wesley.
R. Baeza-Yates and A. Salinger. 2005. Experimental analysis of a fast intersection algorithm for sorted

sequences. In Proc. 12th International Symposium on String Processing and Information Retrieval
(SPIRE). 13–24.

J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. 2009. An experimental investigation of set intersection
algorithms for text searching. ACM Journal of Experimental Algorithmics 14 (2009), 128–140.

M. Bender and M. Farach-Colton. 2000. The LCA problem revisited. In Proc. 9th Latin American Theoretical
Informatics (LATIN) (LNCS 1776). 88–94.

O. Berkman and U. Vishkin. 1993. Recursive star-tree parallel data structure. SIAM Journal on Computing
22, 2 (1993), 221–242.

I. Bialynicka-Birula. 2008. Ranked Queries in Index Data Structures. Ph.D. Dissertation. University of Pisa.
I. Bialynicka-Birula and R. Grossi. 2005. Rank-sensitive data structures. In Proc. 12th International Sym-

posium on String Processing and Information Retrieval (SPIRE) (LNCS 3772). 79–90.
G. Blelloch and M. Reid-Miller. 1998. Fast set operations using treaps. In Proc. 10th ACM Symposium on

Parallel Algorithms and Architectures (SPAA). 16–26.
N. Brisaboa, S. Ladra, and G. Navarro. 2013. DACs: Bringing direct access to variable-length codes. Infor-

mation Processing and Management 49, 1 (2013), 392–404.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

1:44 Konow et al.

A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. 2003. Efficient query evaluation using a two-level
retrieval process. In Proc. 12th ACM International Conference on Information and Knowledge Manage-
ment (CIKM). 426–434.

M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. 2012. Earlybird: Real-time search at Twitter.
In Proc. 28th International Conference on Data Engineering (ICDE). 1360–1369.

S. Büttcher and C. L. A. Clarke. 2007. Index compression is good, especially for random access. In Proc. 16th
ACM International Conference on Information and Knowledge Management (CIKM). 761–770.

S. Büttcher, C. L. A. Clarke, and G. Cormack. 2010. Information Retrieval: Implementing and Evaluating
Search Engines. MIT Press.

F. Claude, P. K. Nicholson, and D. Seco. 2012. Differentially encoded search trees. In Proc. 22nd Data Com-
pression Conference (DCC). 357–366.

M. Crane, A. Trotman, and R. O’Keefe. 2013. Maintaining discriminatory power in quantized indexes. In
Proc. 22nd ACM International Conference on Information and Knowledge management (CIKM). 1221–
1224.

B. Croft, D. Metzler, and T. Strohman. 2009. Search Engines: Information Retrieval in Practice. Pearson
Education.

J. Culpepper and A. Moffat. 2007. Compact set representation for information retrieval. In Proc. 14th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE). 137–148.

S. Culpepper and A. Moffat. 2005. Enhanced byte codes with restricted prefix properties. In Proc 12th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE) (LNCS 3772). 1–12.

E. Demaine, A. López-Ortiz, and J. I. Munro. 2000. Adaptive set intersections, unions, and differences. In
Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 743–752.

S. Ding and T. Suel. 2011. Faster top-k document retrieval using block-max indexes. In Proc. 34th Interna-
tional ACM Conference on Research and Development in Information Retrieval (SIGIR). 993–1002.

J. Fischer and V. Heun. 2011. Space-efficient preprocessing schemes for range minimum queries on static
arrays. SIAM Journal on Computing 40, 2 (2011), 465–492.

S. Gog, T. Beller, A. Moffat, and M. Petri. 2014. From theory to practice: Plug and play with succinct data
structures. In Proc. 13th International Symposium on Experimental Algorithms (SEA). 326–337.

R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. 2005. Practical implementation of rank and select
queries. In Poster Proc. Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA). 27–38.

R. Grossi, A. Gupta, and J. Vitter. 2003. High-order entropy-compressed text indexes. In Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

H. Heaps. 1978. Information Retrieval - Computational and Theoretical Aspects. Academic Press.
G. Jacobson. 1989. Space-efficient static trees and graphs. In Proc. 30th Annual Symposium on Foundations

of Computer Science (FOCS). 549–554.
R. Konow and G. Navarro. 2012. Dual-sorted inverted lists in practice. In Proc. 19th International Sympo-

sium on String Processing and Information Retrieval (SPIRE) (LNCS 7608). 295–306.
R. Konow and G. Navarro. 2013. Faster compact top-k document retrieval. In Proc. 23rd Data Compression

Conference (DCC). 351–360.
R. Konow, G. Navarro, C. L. A. Clarke, and A. López-Ortı́z. 2013. Faster and smaller inverted indices with

treaps. In Proc. 36th Annual International ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR). 193–202.

D. Lemire and L. Boystov. 2015. Decoding billions of integers per second through vectorization. Software:
Practice and Experience 45, 1 (2015), 1–29.

J. Lin and A. Trotman. 2015. Anytime ranking for impact-ordered indexes. In Proc. ACM International
Conference on the Theory of Information Retrieval (ICTIR). 198–210.

C. Martı́nez and S. Roura. 1997. Randomized binary search trees. Journal of the ACM 45, 2 (1997), 288–323.
E. M. McCreight. 1985. Priority search trees. SIAM Journal on Computing 14, 2 (1985), 257–276.
J. I. Munro. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS). 37–42.
J. I. Munro and V. Raman. 2002. Succinct representation of balanced parentheses and static trees. SIAM

Journal on Computing 31, 3 (2002), 762–776.
G. Navarro. 2012. Wavelet trees for all. In Proc. 23rd Annual Symposium on Combinatorial Pattern Matching

(CPM) (LNCS 7354). 2–26.
G. Navarro and S. Puglisi. 2010. Dual-sorted inverted lists. In Proc. 17th International Conference on String

Processing and Information Retrieval (SPIRE) (LNCS 6393). 309–321.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

Inverted Treaps 1:45

G. Ottaviano and R. Venturini. 2014. Partitioned Elias-Fano indexes. In Proc. 37th International ACM Con-
ference on Research and Development in Information Retrieval (SIGIR). 273–282.

M. Persin, J. Zobel, and R. Sacks-Davis. 1996. Filtered document retrieval with frequency-sorted indexes.
Journal of the American Society for Information Science 47, 10 (1996), 749–764.

M. Petri, S. Culpepper, and A. Moffat. 2013. Exploring the magic of WAND. In Proc. Australasian Document
Computing Symposium (ADCS). 58–65.

P. Sanders and F. Transier. 2007. Intersection in integer inverted indices. In Proc. 9th Workshop on Algo-
rithm Engineering and Experiments (ALENEX).

F. Scholer, H. Williams, J. Yiannis, and J. Zobel. 2002. Compression of inverted indexes for fast query evalu-
ation. In Proc. 25th Annual International ACM Conference on Research and Development in Information
Retrieval (SIGIR). 222–229.

R. Seidel and C. R. Aragon. 1996. Randomized search trees. Algorithmica 16, 4/5 (1996), 464–497.
A. Spink, D. Wolfram, , M.Jansen, and T. Saracevic. 2001. Searching the Web: The public and their queries.

Journal of American Society of Information Science and Technology 52, 3 (2001), 226–234.
A. Stepanov, A. Gangolli, D. Rose, R. Ernst, and P. Oberoi. 2011. SIMD-based decoding of posting lists. In

Proc. 20th ACM International Conference on Information and Knowledge Management (CIKM). 317–
326.

T. Strohman and B. Croft. 2007. Efficient document retrieval in main memory. In Proc. 30th Annual Inter-
national ACM Conference on Research and Development in Information Retrieval (SIGIR). 175–182.

A. Trotman. 2014. Compression, SIMD, and postings lists. In Proc. Australasian Document Computing Sym-
posium (ADCS). Article 50.

A. Trotman, X. Jia, and M. Crane. 2012. Towards an efficient and effective search engine. In SIGIR 2012
Workshop on Open Source Information Retrieval. 40–47.

S. Vigna. 2013. Quasi-succinct indices. In Proc. 6th ACM International Conference on Web Search and Data
Mining (WSDM). 83–92.

J. Vuillemin. 1980. A unifying look at data structures. Communications of the ACM 23, 4 (1980), 229–239.
L. Wang, J. Lin, and D. Metzler. 2011. A cascade ranking model for efficient ranked retrieval. In Proc. 34th

International ACM Conference on Research and Development in Information Retrieval (SIGIR). 105–
114.

H. Williams and J.Zobel. 1999. Compressing integers for fast file access. SIAM Journal on Computing 42, 3
(1999), 193–201.

I. Witten, A. Moffat, and T. Bell. 1999. Managing Gigabytes (2nd ed.). Morgan Kaufmann.
L. Wu, W. Lin, X. Xiao, and Y. Xu. 2013. LSII: An indexing structure for exact real-time search on microblogs.

In Proc. 29th International Conference on Data Engineering (ICDE). 482–493.
H. Yan, S. Ding, and T. Suel. 2009. Inverted index compression and query processing with optimized docu-

ment ordering. In Proc. 18th International Conference on World Wide Web (WWW). 401–410.
G. Zipf. 1949. Human Behaviour and the Principle of Least Effort. Addison-Wesley.
J. Zobel and A. Moffat. 2006. Inverted files for text search engines. ACM Computing Surveys 38, 2 (2006),

Article 6.

Received XXX; revised XXXXX; accepted XXXXX

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.

