
111

The Ring: Worst-Case Optimal Joins in Graph Databases
using (Almost) No Extra Space

DIEGO ARROYUELO, DCC, Escuela de Ingeniería, Pontificia Universidad Católica & IMFD, Chile

ADRIÁN GÓMEZ-BRANDÓN, Universidade da Coruña & CITIC & IMFD, Spain

AIDAN HOGAN, DCC, University of Chile & IMFD, Chile

GONZALO NAVARRO, DCC, University of Chile & IMFD, Chile

JUAN REUTTER, DCC, Escuela de Ingeniería, Pontificia Universidad Católica & Instituto de Ingeniería

Matemática y Computacional, Pontificia Universidad Católica & IMFD, Chile

JAVIEL ROJAS-LEDESMA, DCC, Universidad de Chile & IMFD, Chile

ADRIÁN SOTO, FIC, Universidad Adolfo Ibáñez & IMFD, Chile

We present an indexing scheme for triple-based graphs that supports join queries in worst-case optimal (wco)

time within compact space. This scheme, called a ring, regards each triple as a cyclic string of length 3. Each

rotation of the triples is lexicographically sorted and the values of the last attribute are stored as a column,

so we obtain the order of the next column by stably re-sorting the triples by its attribute. We show that, by

representing the columns with a compact data structure called a wavelet tree, this ordering enables forward

and backward navigation between columns without needing pointers. These wavelet trees further support

wco join algorithms and cardinality estimations for query planning. While traditional data structures such as

B-Trees, tries, etc., require 6 index orders to support all possible wco joins over triples, we can use one ring to

index them all. This ring replaces the graph and uses only sublinear extra space, thus supporting wco joins in

almost no space beyond storing the graph itself. Experiments querying a large graph (Wikidata) in memory

show that the ring offers nearly the best overall query times while using only a small fraction of the space

required by several state-of-the-art approaches.

We then turn our attention to some theoretical results for indexing tables of arity 𝑑 higher than 3 in such

a way that supports wco joins. While a single ring of length 𝑑 no longer suffices to cover all 𝑑! orders, we

need much fewer rings to index them all: 𝑂 (2𝑑) rings with a small constant. For example, we need 5 rings

instead of 120 orders for 𝑑 = 5. We show that our rings become a particular case of what we dub order graphs,

whose nodes are attribute orders and where stably sorting by some attribute leads us from an order to another,

thereby inducing an edge labeled by the attribute. The index is then the set of columns associated with the

edges, and a set of rings is just one possible graph shape. We show that other shapes, like for example a single

ring instead of several ones of length 𝑑 , can lead us to even smaller indexes, and that other more general

shapes are also possible. For example, we handle 𝑑 = 5 attributes within space equivalent to 4 rings.

Authors’ addresses: Diego Arroyuelo, DCC, Escuela de Ingeniería, Pontificia Universidad Católica & IMFD, Santiago,

Chile, diego.arroyuelo@uc.cl; Adrián Gómez-Brandón, Universidade da Coruña & CITIC & IMFD, A Coruña, Spain,

adrian.gbrandon@udc.es; Aidan Hogan, DCC, University of Chile & IMFD, Santiago, Chile, ahogan@dcc.uchile.cl; Gonzalo

Navarro, DCC, University of Chile & IMFD, Santiago, Chile, gnavarro@dcc.uchile.cl; Juan Reutter, DCC, Escuela de Ingeniería,

Pontificia Universidad Católica & Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica &

IMFD, Santiago, Chile, jreutter@ing.puc.cl; Javiel Rojas-Ledesma, jrojas@dcc.uchile.cl, DCC, Universidad de Chile & IMFD,

Chile; Adrián Soto, adrian.soto@uai.cl, FIC, Universidad Adolfo Ibáñez & IMFD, Chile.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0362-5915/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456

111:2 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

CCS Concepts: • Theory of computation → Database query processing and optimization (theory);
Data structures and algorithms for data management.

Additional Key Words and Phrases: Worst-case optimal joins; graph patterns; graph databases; graph indexing;

column stores; wavelet trees

ACM Reference Format:
Diego Arroyuelo, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, Juan Reutter, Javiel Rojas-Ledesma,

and Adrián Soto. 2018. The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space.

ACM Trans. Datab. Syst. 37, 4, Article 111 (August 2018), 54 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction
Worst-case optimal (wco) join algorithms [53] are able to process join queries in time proportional

to the AGM bound [8]: the maximum possible output size produced by the join over a relational

database of a certain size. Such algorithms can be strictly better than traditional query plans using

pairwise joins [53, 64], and thus represent a key advance for query processing over databases.

Leapfrog-TrieJoin (LTJ) is a seminal wco join algorithm based on iteratively “eliminating”

attributes from a join query [64]. This algorithm will be defined in Section 2.2, where we illustrate

the main idea over Figure 1 for now. The example includes the relations R, S, T, along with the query

𝑄 = R Z S Z T computing their natural join. To evaluate this query, LTJ first chooses an ordering

of the attributes in𝑄 , say (x, y, z) (details of this ordering are discussed later). For the first attribute
x, LTJ finds all constants 𝑎 such that the query 𝜎x=𝑎 (R Z T) gives some solution, here joining

all relations that mention x in the join (R and T). In this case 𝜎x=1 (R Z T) and 𝜎x=2 (R Z T) give
solutions, while 𝜎x=3 (R Z T) does not. We thus say that 1 and 2 eliminate x. Next LTJ eliminates y:
for each constant 𝑎 found to eliminate x in the previous step, we find all constants 𝑏 that eliminate

y, that is, such that 𝜎x=𝑎∧y=𝑏 (R Z S) gives solutions. Given 𝑎 = 1, we find 𝑏 := 2 and 𝑏 := 3, while

given 𝑎 = 2 we find 𝑏 := 3. We thus say that (1, 2), (1, 3) and (2, 3) eliminate (x, y). Finally LTJ

eliminates z: for each elimination (𝑎, 𝑏) of (x, y) computed previously, we find all constants 𝑐 that

eliminate z. Given (𝑎, 𝑏) = (1, 2), we find 𝑐 := 4; given (𝑎, 𝑏) = (1, 3), we again find 𝑐 := 4; given

(𝑎, 𝑏) = (2, 3) we find no valid eliminations. Since the tuples (1, 2, 4) and (1, 3, 4) eliminate all

attributes (𝑥,𝑦, 𝑧), they are thus the final solutions of the query 𝑄 computed by LTJ.

In order for LTJ to satisfy wco guarantees, the constants that eliminate a given attribute must be

enumerated efficiently. If the sequence of tuples of the relations are indexed in data structures that

enable fast prefix lookups (tries, B-Trees, etc.) in the same order in which the variables are eliminated,

then we can efficiently intersect all the candidates for the next elimination across the different

tables. It is insufficient to index just one order per relation, however, because different attributes of

a relation can be bound at different stages of query processing, and if the bound attributes do not

form a prefix of the order, expensive post-filtering is required. Furthermore, even if all orderings

are wco, in practice “choosing a good variable ordering is crucial for performance” [64], so wco

implementations can ideally choose the order during query plan generation [33]. The number of

index orders required to efficiently support wco join algorithms is then 𝑑! for a relation of arity 𝑑 ,

which makes storage requirements quickly unaffordable for arities as low as 𝑑 = 4.

Several authors have proposed techniques to cope with this problem. Veldhuizen [64] proposes

to load indexes lazily as needed by the LTJ algorithm, which though a practical compromise, slows

down queries that require new indexes and puts a high bound on the required space. Freitag

et al. [24] propose an indexing scheme that can be efficiently built during query execution, and

demonstrate how to integrate these algorithms into a functioning relational database. Still, this

implementation maintains the discussed stress on time and space. Navarro et al. [49] use a compact

data structure for wco joins that imposes a particular order, which eliminates one bit of every

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:3

R

x y

1 2

1 3

2 3

S

y z

2 4

3 4

3 5

T

z x

2 3

3 2

4 1

R Z S Z T

x y z

1 2 4

1 3 4

Fig. 1. Example of three relations and their natural join

s p o

p o s

o s p

s o p

p s o

o p s

s

po

s

op

s

po

Flat Cycle Ring

Fig. 2. Illustration of triple indexing schemes

variable per round, and thus it does not need to index multiple orders. In exchange, its time

complexity includes a factor that is exponential on the arity of the output relation. A variety of

other wco algorithms have been proposed [1, 34, 36, 52, 54], yet they have focused mostly on

refinements to improve time rather than space requirements. As such, the tradeoff between space

and time in wco join algorithms remains, to the best of our knowledge, an open problem.

Graph databases can be modeled as relations of low fixed arity, and as such support wco join

algorithms as well. Various works have found that wco join algorithms are well-suited for graph

databases because, as a consequence of representing low arity relations, graph queries tend to

feature many joins [1, 33, 34, 54]. For example, RDF graphs are sets of subject–predicate–object

triples of the form (𝑠, 𝑝, 𝑜). Each triple can be interpreted as an edge 𝑠
𝑝
−→ 𝑜 in a labeled graph, or as

a tuple of a relation of arity 3. The SPARQL query language for RDF is then based on triple patterns

(equivalent to relational selections by equality) and basic graph patterns (equivalent to natural

joins on those selections). Various compact RDF stores [3, 7, 13, 14, 17, 20, 43, 56, 67] handle triple

patterns, and some can even handle basic graph patterns of some complexity [3, 7, 13, 14, 17, 43, 67].

None of those support wco join algorithms, however. This is not only a matter of implementing

a new algorithm on existing data representations: as per our preceding discussion, even in the

favorable case of arity 3, a complete index supporting wco joins will typically require 3! = 6 index

orders, leading to high levels of redundancy and high space requirements.

Henceforth, we refer to queries combining multiple equality selections and natural joins as join

queries. Join queries correspond to basic graph patterns in the case of graph databases.

Contribution. We propose an indexing scheme, called a ring, that greatly reduces space require-

ments for supporting wco joins. Our scheme indexes triples (𝑠, 𝑝, 𝑜) denoting a labeled graph, or

equivalently, a relation of arity 3 with attributes s, p, and o. From an abstract viewpoint, the ring

regards the attributes as bidirectional cyclic strings of length 3, so that any attribute reordering can

be read from somewhere in the cycle in some direction. This allows the ring to support wco joins

with only one index order, and thus within sublinear space beyond storing the graph itself.

Figure 2 illustrates three possible indexing schemes, circling the attribute from which the index

order starts. In the (traditional) “flat” indexing scheme, we require six orders for wco joins using

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

LTJ, specifying constants for attributes in sequence of the given order; we can then read the first

unbound attribute in sorted order. For example using the order p o s we can efficiently

return: predicates in order, then objects of a given predicate, and then subjects of a given predicate

and object; however, we cannot efficiently find the subjects of a given object. The “cycle” scheme

encapsulates the cyclic indexing scheme of Brisaboa et al. [13], in which we can start at any attribute

and proceed in the order shown, reading the first unbound attribute. Hence, for the case of triples,

two orders are needed to cover all the possible patterns. This idea is related to ours, but cannot

be easily extended to support LTJ. We thus propose the “ring scheme”, where we can traverse the

attributes in either direction, supporting wco graph joins with only one order.

We show how to implement the ring index using a compact data structure called a wavelet tree

[30, 47], and characterize the space it requires. We prove that this implementation enables the

evaluation of wco joins over graphs using an LTJ-style algorithm. Our experiments on a subgraph

of Wikidata [66] with a billion edges and a real query log shows that the ring uses 8% extra space on

top of the raw integer data (while compressing the data to 65% if we consider its string form) and

4–6 times less space than various prominent non-wco implementations (Jena, RDF-3X, Virtuoso,

Blazegraph), while being 2–6 times faster on average to solve basic graph patterns. Two prominent

wco systems, Jena LTJ [33] and EmptyHeaded [1], use 10 and 160 times more space than the ring,

respectively, and only Jena LTJ outperforms it, by 20% on average. Only Qdag [49], a recent wco

succinct index, is smaller than our basic ring index and faster than it in small cyclic queries, but

hundreds of times slower overall. A compressed ring variant we develop further reduces the space

of the ring to 60% and matches the space of Qdag. While 40% slower than the ring, the compressed

ring is still faster on average than all the non-wco systems and Qdag.

Finally, we return to the general problem of indexing several higher arity relations to support

wco join algorithms in the context of relational databases. Although we need more than one

ring to support every possible attribute order in dimension 𝑑 > 3, we show that bidirectionality

and cyclicality lead to using much fewer than 𝑑! orders, namely 𝑂 (2𝑑) with small multiplying

constants. For example, for arity 𝑑 = 5, we require just 5 rings instead of 5! = 120 traditional

indexes. We further reduce the space by introducing a more general indexing model akin to column

stores [60], where each column is stored separately in some convenient order. The ring, in this

model, corresponds to storing columns of attributes s, p and o, but sorted in a way that allows one

to quickly retrieve tuples or ranges of tuples from just these three columns (note that just storing s,

p and o in their original order does not allow this, as we cannot efficiently retrieve, for example, all

subjects connected to a given object). We extend this idea to higher dimensions, where using our

model we can check if a set of ring-like columns allows for efficient navigation and wco joins, by

looking at a completeness property of what we call the order graph. Using our framework we show

that, for example, using a large ring (that repeats some columns) we can reduce the space for arity

𝑑 = 5 to the equivalent of 4 indexes, and that even more general graph shapes can be used. Those

results enable the use of wco join algorithms supported by previously-indexed relations on arities

that are intractable with current techniques.

Our indexes are static, that is, they must be fully rebuilt in order to reflect updates to the database.

While this is acceptable in various scenarios and our construction algorithms are efficient, we show

in the end how our indexes can handle fine-grained sequences of queries and updates without full

reconstructions, at the cost of a logarithmic penalty factor in the query times.

Limitations. Our proposed indexing scheme, though efficient in space, is based on an in-memory

data structure that relies heavily on random accesses, which makes it difficult to migrate effectively

to disk, and could render it slower than in-memory indexes that feature more sequential access.

The implemented scheme is currently read-only; however, we discuss updates in the final section

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:5

Table 1. Glossary of the main notation used throughout the paper.

Symbol Meaning Symbol Meaning

U A totally ordered, countably infinite set of constants,

called the universe, Sec. 2.1.1

𝐺 , 𝑛 := |𝐺 | A labeled graph and its number of triples, Sec. 2.1.1

dom(𝐺) ,𝑈 The domain of graph 𝐺 , i.e., the subset of U used as

constants in𝐺 , and number of constants in𝐺 , Sec. 2.1.1

V An infinite set of variables, disjoint from U, Sec. 2.1.2

𝑄 ,𝑚 := |𝑄 | A graph pattern {𝑡1, . . . , 𝑡𝑚 }, such that 𝑡𝑖 ∈ (U ∪
V)3 are triple patterns, and its size, Sec. 2.1.2

vars(𝑄) , 𝑣 The set of variables of query𝑄 and its size, Sec. 2.1.2

𝑄 (𝐺) The evaluation of query𝑄 over the graph𝐺 , Sec. 2.1.2

` (𝑄) The image of𝑄 under `, Sec. 2.1.2

𝐷 A relational database instance, Sec. 2.2.1

𝑄∗ The AGM bound of query𝑄 , Sec. 2.2.1

leap(𝑡, 𝑥, 𝑐) For a variable 𝑥 ∈ V and a constant 𝑐 ∈ U, yields the

smallest constant 𝑐𝑥 ≥ 𝑐 from U such that the triple

pattern 𝑡 (which contains variable 𝑥) has solutions in
𝐺 after replacing 𝑥 by 𝑐𝑥 , Def. 2.1

seek(`, 𝑗, 𝑐) For a constant 𝑐 ∈ U and a variable 𝑥 𝑗 ∈ 𝑄 , yields

the smallest 𝑐
min
≥ 𝑐 from U that eliminates 𝑥 𝑗 in

` (𝑄{𝑥𝑗 }) , Alg. 1

𝑄𝑆 For a query𝑄 and a set 𝑆 ⊆ vars(𝑄) , the set of triple
patterns of𝑄 containing some variable in 𝑆 , Sec. 2.2.3

rank𝑐 (𝑆, 𝑖) For a string 𝑆 over alphabet [1, 𝜏], the number of sym-

bols equal to 𝑐 ∈ [1, 𝜏] in 𝑆 [1 . . 𝑖], Sec. 2.3.1
select𝑐 (𝑆, 𝑗) For a string 𝑆 over alphabet [1, 𝜏], the position of the

𝑗 th occurrence of symbol 𝑐 ∈ [1, 𝜏] in 𝑆 , Sec. 2.3.1
range-next-value For a string𝑆 over alphabet [1, 𝜏], a range [𝑠 . . 𝑒], and

a threshold 𝑐𝑥 ∈ [1, 𝜏], the smallest symbol 𝑐 ≥ 𝑐𝑥
that occurs in 𝑆 [𝑠 . . 𝑒], Sec. 2.3.2

R, A A relation R on a set of attributes A, Sec. 3.1

𝑑 := |A | The number of attributes of a relation, Sec. 3.1

Π, Π (𝑗) An order and its 𝑗 th attribute, Def. 3.1

𝐶𝑇
𝑗
,𝐶 𝑗 The 𝑗 th column of a table𝑇 [1 . . 𝑛] [1 . . 𝑑] represent-

ing a relation R of 𝑛 tuples and 𝑑 attributes, Def. 3.3

𝐴𝑗 [1 . .𝑈 + 1] For a column 𝐶 𝑗 [1 . . 𝑛], 𝐴𝑗 [𝑐] is the number of oc-

currences of symbols smaller than 𝑐 in𝐶 𝑗 , Def. 3.7

𝐹 𝑗 For 𝑖 ∈ [1 . . 𝑛] and 𝑐 := 𝐶 𝑗 [𝑖], 𝐹 𝑗 (𝑖) is the row

corresponding to 𝑐 in the column obtained by stably

sorting the table by column 𝑗 , Def. 3.7

G(V, E) An order graph, Def. 7.1

of the paper, and how they could be addressed in future work. We currently focus on evaluating

basic graph patterns; though support for other features of graph query languages could be simply

layered on top, it may be possible in the future to optimize such features by pushing them to lower-

level operations over the index. The indexing schemes for relations of arity 𝑑 > 3 are discussed

theoretically, but not yet implemented herein. Aside from the limitations stemming from frequent

random accesses, which appear fundamental to our proposal, all other issues mentioned here can

be addressed as part of future work.

Conference version. This article is an extended version of a conference publication [6] that

introduced the ring, showed how one ring is sufficient to index graphs for wco joins, and presented

experiments over the Wikidata graph. This article includes the following additional contributions:

• The conference version presented the ring in terms of the Burrows–Wheeler transform [15].

We present a new formulation of the ring in terms of stable sorting on column databases,

which we hope will be more accessible to a broader audience not familiar with text indexing,

and which naturally leads us to a more general approach for indexing higher-arity relations.

• We have performed additional optimizations to the ring implementation, which considerably

improved its performance.

• We have expanded our implementation and experiments to include a specific ring variant for

the case of triple patterns where the predicate component is always constant.

• We present new results on the number of rings required to index relations of arity 𝑑 . We

further present a novel indexing scheme, which we call order graphs, that generalizes the

techniques of the ring and allows us to save further space.

• We describe in detail how our index can be modified to support updates on the fly.

• We include more detailed discussion and proofs for all results throughout the paper.

2 Related works and concepts
We introduce key concepts relating to graph joins, wco join algorithms, and compact data structures.

Table 1 gives a glossary of the terms used throughout the paper.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

Strutt

Thomson

adv

Bohr advWheeler adv

Thorne

adv

Nobel

win

nom

win

nom

win nomnom

win

nom

Fig. 3. Graph of Nobel winners, nominees and advisors

x

z

win

y

nom

adv

x y z

Nobel Strutt Thomson

Nobel Thomson Bohr

Nobel Wheeler Thorne

Fig. 4. Basic graph pattern (left) and its evaluation over the graph of Figure 3 (right)

2.1 Graph joins and patterns
2.1.1 Graphs. We assume the domain of graphs to be drawn from a totally ordered, countably

infinite setU of constants called the universe. A triple (𝑠, 𝑝, 𝑜) ∈ U3
then encodes a directed edge

𝑠
𝑝
−→ 𝑜 , labeled 𝑝 , from node 𝑠 to node 𝑜 . A set of triples forms a labeled graph, as seen in Figure 3.

Given a graph𝐺 , we denote by |𝐺 | its amount of triples and by dom(𝐺) the domain of𝐺 , that is, the

subset ofU used as constants in 𝐺 . Given a constant 𝑢 ∈ U, we denote by 𝑢 + 1 the next element

in the total order after 𝑢 inU.

2.1.2 Graph patterns. A basic graph pattern is a graph in which some constants may be replaced

by variables that can be matched against another graph. To be more precise, letV be an infinite set

of variables, disjoint fromU. A triple pattern is then a tuple (𝑠, 𝑝, 𝑜) ∈ (U ∪V)3, and a basic graph
pattern is a finite set 𝑄 ⊆ (U ∪ V)3 of triple patterns. Each triple pattern represents an atomic

query over the graph (equivalent to equality-based selections on a single ternary relation), and thus

a basic graph pattern corresponds to a full conjunctive query (a.k.a. join query) over the relational

representation of the graph. Let vars(𝑄) denote the set of variables used in 𝑄 . The evaluation of 𝑄

over a graph𝐺 is then defined to be the set of mappings𝑄 (𝐺) := {` : vars(𝑄) → dom(𝐺) | ` (𝑄) ⊆
𝐺} called solutions, where ` (𝑄) denotes the image of 𝑄 under `; that is, the result of replacing

each variable 𝑥 ∈ vars(𝑄) in𝑄 by ` (𝑥). Figure 4 illustrates a basic graph pattern and its evaluation

over a graph, which yields three solutions. The central problem of interest to us in this article is to

compute the complete set of solutions for 𝑄 (𝐺) in worst-case optimal time and using little space.

2.2 Worst-case optimal joins
2.2.1 AGM bound. The AGM bound [8] defines a limit on the number of solutions for natural

join queries in a relational setting of the form 𝑄 := 𝑟1 Z . . . Z 𝑟𝑚 , where 𝑟1, . . . , 𝑟𝑚 are (pairwise

distinct) relation names. Given a natural join query 𝑄 and a relational instance 𝐷 , the AGM bound

of 𝑄 over 𝐷 is the maximum number of tuples generated by evaluating 𝑄 over any instance 𝐷 ′ of
size not greater than 𝐷 .

1
If we simply assume that the size of all relations is in 𝑂 (𝑛), we can speak

of the AGM bound of 𝑄 , denoted herein by 𝑄∗, as a function of 𝑛.

When applying the AGM bound over graph patterns [33], there are three details requiring

attention, since such patterns can be more complex than simple relational join queries. We can

1
The size of an instance 𝐷′ over schema 𝑟1, . . . , 𝑟𝑚 is said to be not greater than an instance 𝐷 if for each relation 𝑟𝑖 , the

number of tuples of 𝑟𝑖 in 𝐷′ is not greater than the number of tuples of 𝑟𝑖 in 𝐷 .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:7

deal with them using the same techniques used by Gottlob et al. [28] to extend the AGM bound

to conjunctive queries. First, graph patterns involve self-joins on a single ternary relation. But if

we rewrite the query to make each relation name distinct, the AGM bounds differ only by a factor

depending on the total number of self-joins. Second, graph patterns involve constants from the

setU; for example, the graph pattern 𝑄 of Figure 4 uses constants win, nom and adv. In this case

we can recover the bound by transforming 𝑄 into a query 𝑄 ′ in which each pattern 𝑡 ∈ 𝑄 using

𝑘 (0 ≤ 𝑘 ≤ 3) constants is transformed into a relation of arity 3 − 𝑘 in which we filter the base

relation by the appropriate constants. Third, the same variable can appear multiple times in a triple

pattern. Again, this case can be covered by creating a relation that uses one attribute to represent

the variable and that stores all tuples that have the same value in the corresponding positions.

Hence the same bound applies to graph patterns, within a factor that depends only on the query.

Our joins on general relations 𝑅 also feature selections by equality predicates. The AGM bound

can be similarly extended by replacing 𝑅 by a relation 𝑅′ where we have already performed the

selections and projected on the remaining columns, analogously to what we discussed for triples.

2.2.2 Worst-case optimality. A join algorithm accepts a join query 𝑄 and a database instance 𝐷

as input, and enumerates 𝑄 (𝐷) – the solutions for 𝑄 over 𝐷 – as its output. A join algorithm is

called worst-case optimal (wco) if it can run in time 𝑂 (𝑄∗) taking the number of terms in 𝑄 and

attributes in 𝐷 as constants (a.k.a. data complexity). The intuition is that in the worst case a join

algorithm has to enumerate 𝑄∗ results, thus taking Ω(𝑄∗) time. Though join algorithms do exist

that run within time 𝑂 (𝑄∗) [53, 64], a logarithmic factor 𝑂 (𝑄∗ log𝑛) is often permitted to allow

more flexibility (e.g., allowing binary search over sorted relations rather than hashing [64]).

Being wco is a non-trivial property of a join algorithm. Conventional algorithms convert join

queries into binary join trees, where joins are evaluated pairwise using nested-loop joins, hash

joins, merge joins, etc. Such approaches are not wco. Take, for example, the join query𝑄 of Figure 1.

If we join the pair 𝑄1 := R Z S in order to later evaluate 𝑄2 := 𝑄1 Z T, then 𝑄∗
1
is already in the

order of 𝑛2, while 𝑄∗ is in the order of 𝑛3/2, and hence this plan is not wco [8]. Joining any pair of

relations in𝑄1 will be in the order of 𝑛2 and thus no such plan can be wco. Ngo et al. [53] proposed

the first wco join algorithm confirmed to run in time 𝑂 (𝑄∗) (later named NPRR). This algorithm

was followed by Leapfrog TrieJoin (LTJ) [64], a simpler algorithm running in time 𝑂 (𝑄∗ log𝑛).

2.2.3 Leapfrog TrieJoin. As illustrated in the introduction, LTJ evaluates join queries one attribute-

at-a-time rather than one relation-at-a-time. For simplicity, we describe the LTJ algorithm in the

context of graphs [33], where the idea extends naturally to higher-arity relations [64].

LTJ runs over an abstract trie data structure that represents a graph𝐺 . Concretely, it builds upon

an abstraction for data access called a trie-iterator, which features one operation: leap.

Definition 2.1 (Trie-iterator). A trie-iterator for a graph 𝐺 is an implementation of leap : (U ∪
V)3 × V ×U → U ∪ {⊥}. Given a variable 𝑥 ∈ V , a triple pattern 𝑡 with the variable 𝑥 , and a

constant 𝑐 ∈ U, leap(𝑡, 𝑥, 𝑐) returns the smallest constant 𝑐𝑥 ≥ 𝑐 fromU such that 𝑡 has solutions

in 𝐺 after replacing 𝑥 by 𝑐𝑥 . If there is no such value 𝑐𝑥 , leap(𝑡, 𝑥, 𝑐) returns the special value ⊥.
Veldhuizen [64] shows that for LTJ to run in 𝑂 (𝑄∗ log𝑛) time, it suffices that the trie iterators

support leap in 𝑂 (log𝑛) time (data complexity). Consider a graph pattern 𝑄 := {𝑡1, . . . , 𝑡𝑚}, and
let 𝑣 := |vars(𝑄) |. For a subset 𝑆 ⊆ vars(𝑄) of variables, further let 𝑄𝑆 denote the set of triple

patterns in 𝑄 that contain some variable in 𝑆 . Algorithm 1 details how LTJ uses the leap operation

to evaluate a basic graph pattern 𝑄 over a graph 𝐺 . LTJ first defines an initial ordering (𝑥1, . . . , 𝑥𝑣)
of vars(𝑄); the specific ordering does not affect wco guarantees and will be discussed later.

Starting with 𝑥1, LTJ finds each elimination 𝑐 ∈ dom(𝐺) (also called a binding or instantiation)

for 𝑥1 such that, for every triple pattern 𝑡 ∈ 𝑄 {𝑥1 } , if 𝑥1 is replaced by 𝑐 in 𝑡 , then the evaluation of

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

Algorithm 1 LTJ for the evaluation of basic graph patterns

Input: A basic graph pattern 𝑄 , a trie-iterator T for a graph 𝐺 ,

and an ordering (𝑥1, . . . , 𝑥𝑣) of the variables in vars(𝑄)

leapfrog_join():
Output: Reports all the tuples in 𝑄 (𝐺)
1: call leapfrog_search({}, 1)

leapfrog_search(`, 𝑗):
Input: An index 1 ≤ 𝑗 ≤ 𝑣 + 1, and a mapping ` defined for the variables {𝑥𝑘 | 𝑘 < 𝑗}
Output: Reports the solutions in 𝑄 (𝐺) that extend mapping ` by eliminating 𝑥 𝑗 onwards

1: if 𝑗 = 𝑣 + 1 then report ` as an output solution

2: else
3: 𝑐 := seek(`, 𝑗,minU)
4: while 𝑐 ≠ ⊥ do
5: ` ′ := ` ∪ {(𝑥 𝑗 := 𝑐)}
6: call leapfrog_search(` ′, 𝑗 + 1)
7: 𝑐 := seek(`, 𝑗, 𝑐 + 1)

seek(`, 𝑗, 𝑐):
Input: An index 1 ≤ 𝑗 ≤ 𝑣 , a mapping ` defined for the variables {𝑥𝑘 | 𝑘 < 𝑗}, and a value 𝑐 ∈ U
Output: The smallest value 𝑐min ≥ 𝑐 that eliminates 𝑥 𝑗 in ` (𝑄 {𝑥 𝑗 })
1: Let 𝑡1, . . . , 𝑡𝑚 be the triple patterns in 𝑄 {𝑥 𝑗 }
2: For 1 ≤ 𝑖 ≤ 𝑚, let ` (𝑡𝑖) be the triple pattern 𝑡𝑖 with its variables 𝑥𝑘 , for 𝑘 < 𝑗 , replaced by ` (𝑥𝑘)
3: while true do
4: 𝑐min := 𝑐

5: for 𝑖 ∈ [1 . .𝑚] do
6: 𝑐 := T .leap(` (𝑡𝑖), 𝑥 𝑗 , 𝑐)
7: if 𝑐 = ⊥ then return ⊥
8: if 𝑐min = 𝑐 then return 𝑐min

the modified 𝑡 over 𝐺 is non-empty. This is equivalent to intersecting the eliminations of 𝑥1 over

all the individual triple patterns 𝑡 ∈ 𝑄 {𝑥1 } . LTJ uses seek to find each consecutive value 𝑐 in that

intersection. The seek procedure uses leap to iteratively find in each triple pattern 𝑡 ∈ 𝑄 {𝑥1 } the
next possible candidate for the intersection, which corresponds to the smallest elimination for 𝑥1 in

𝑡 that is over some threshold 𝑐 . When seek finally finds a value 𝑐 that appears in all triple patterns

𝑡 ∈ 𝑄 {𝑥1 } , LTJ eliminates 𝑥1 with 𝑐 , and keeps looking for the next eliminations for 𝑥1.

Upon finding the first elimination 𝑐 of 𝑥1, the algorithm creates a mapping ` := {(𝑥1 ≔ 𝑐)}. Next
LTJ finds values 𝑑 that eliminate 𝑥2 in ` (𝑄 {𝑥2 }) using the same form of intersection as before. When

the first elimination 𝑑 of 𝑥2 is found, the current mapping is extended to ` := {(𝑥1 ≔ 𝑐), (𝑥2 ≔ 𝑑)}.
The process then continues to the next variable until all variables are eliminated, in which case ` is

a solution. If no further elimination is found for a variable 𝑥 𝑗 and current mapping `, the process

backtracks to modify ` with the next elimination for 𝑥 𝑗−1, and so on. LTJ terminates when all

mappings for 𝑥1 have been exhausted.

We are then left to consider the implementation of leap. Per the name “trie-iterator”, the original

implementation in a relational setting was based on (virtual) tries built for each relation, with levels

of the trie corresponding to attributes of the relation, and each unique root-to-leaf path encoding a

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:9

tuple of the relation [64]. In a graph context, a trie would be defined with one level for subjects,

one for predicates, and one for objects, and with each root-to-leaf path encoding a triple of the

graph. However trie-iterators based on traditional indexes (e.g., on B-trees) can only meet the

𝑂 (log𝑛)-time requirement for leap(𝑡, 𝑥, 𝑐) if the positions of the constants in 𝑡 form a prefix of

the index order. In the case of graphs, supporting all possible triple patterns and query plans within

the necessary time constraints implies indexing 6 different orders for all permutations of levels for

subject, predicate and object (see “flat” in Figure 2). More generally, for an arity of 𝑑 , we need a total

of 𝑑! orders (which we improve to Θ(2𝑑𝑑1/2), see Section 6.2), that is, an exponential number of

indexes. This makes LTJ space-demanding on graphs and impractical on most relational databases.

In Section 3 we introduce a read-only indexing scheme for a graph 𝐺 that supports leap(𝑡, 𝑥, 𝑐)
in 𝑂 (log𝑛) time, with no restrictions on the order of the constants in 𝑡 , and using almost no extra

space beyond that required to represent 𝐺 .

2.2.4 Other wco algorithms. Recent years have seen various further proposals of wco algorithms [1,

2, 33, 34, 36, 37, 49, 52, 54, 62]. While many such algorithms are proposed in a relational context,

they can be applied over graphs represented as ternary relations. However, most such works focus

on improving time, or dealing with more complex queries, rather than reducing space requirements.

As an exception, Navarro et al. [49] use space close to that of the raw data for any 𝑑 , by using

a particular order that eliminates one bit of every variable in each round. In exchange, the time

complexity includes a factor that is exponential on the arity of the relation. Some recent papers

have looked at ways to combine pairwise joins with wco joins to reduce space requirements. Freitag

et al. [24] propose a hash-based indexing scheme that can be efficiently built on-the-fly at query

time, and demonstrate how to integrate these algorithms into a functioning relational database;

they also propose to use wco joins only when beneficial. Our proposal avoids on-the-fly indexing in

the context of graphs. Graphflow [42] integrates wco joins with pairwise joins in order to generate

hybrid plans for evaluating graph queries. While their work focuses on query planning, our focus

is on space-efficient indexing techniques – inspired by indexes for text – that support wco joins.

2.3 Compact data structures
A compact data structure [48] stores the data plus the extra structures needed to efficiently query

it, all within space close to that needed to store the raw data, in plain or in compressed form.

We describe the main compact data structures used in this work. As usual in this area, we assume

the RAM computation model, where the typical arithmetic and logical operations on machine

words of Θ(log𝑛) bits are carried out in constant time.

2.3.1 Bitvectors. A bitvector 𝐵 [1 . . 𝑛] is a sequence of bits that supports, apart from access to any

bit 𝐵 [𝑖], two key operations:

rank𝑏 (𝐵, 𝑖) is the number of bits equal to 𝑏 ∈ {0, 1} in 𝐵 [1 . . 𝑖].
select𝑏 (𝐵, 𝑗) is the position of the 𝑗th occurrence of bit 𝑏 ∈ {0, 1} in 𝐵.

A bitvector 𝐵 [1 . . 𝑛] can be stored in 𝑛 bits, and with another 𝑜 (𝑛) bits it can support access,

rank, and select operations in 𝑂 (1) time [44]. A sparse bitvector, with𝑚 1s, can be represented

with𝑚 log
2
(𝑛/𝑚) +𝑂 (𝑚) + 𝑜 (𝑛) bits while again supporting these operations in 𝑂 (1) time [58].

2.3.2 Wavelet trees. A wavelet tree [30, 47] is a binary tree that represents a string 𝑆 [1 . . 𝑛] from
an alphabet [1, 𝜏] using 𝑛 log

2
𝜏 + 𝑜 (𝑛 log𝜏) bits of space (and can use compressed space).

Structure. Each node represents a range of alphabet symbols. The root represents [1, 𝜏] and the

𝑐 th left-to-right leaf represents [𝑐, 𝑐], that is, the interval containing only the 𝑐 th character, which

we denote as 𝑐 . If an internal node represents [𝑎, 𝑏], then its left child represents [𝑎, ⌊(𝑎 + 𝑏)/2⌋]

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

[a, s] b
0

a
0

n
1

a
0

n
1

a
0

s
1

[a, b] b
1

a
0

a
0

a
0

[n, s] n
0

n
0

s
1

[a, a] [b, b] [n, n] [s, s]

Fig. 5. Example wavelet tree for bananas

and its right child represents [⌊(𝑎 +𝑏)/2⌋ + 1, 𝑏]. Conceptually, a node representing [𝑎, 𝑏] stores the
subsequence 𝑆𝑎,𝑏 of 𝑆 formed by the symbols that belong to [𝑎, 𝑏]. Let 𝑛𝑎,𝑏 be the length of 𝑆𝑎,𝑏 . In

practice, this node only stores a bitvector 𝐵𝑎,𝑏 [1 . . 𝑛𝑎,𝑏] with a 0 at position 𝑖 if 𝑆𝑎,𝑏 [𝑖] ≤ (𝑎 + 𝑏)/2
and a 1 otherwise (marking whether 𝑆𝑎,𝑏 [𝑖] belongs to its left or right child). The leaves store

nothing. Figure 5 depicts the wavelet tree for bananas; only bitvectors and pointers are stored,

while other elements are illustrative.

Space. In a wavelet tree for a string 𝑆 [1 . . 𝑛], the total number of bits stored at the nodes of each

non-leaf level is also 𝑛. Since the tree has ⌈log
2
𝜏⌉ non-leaf levels, storing all the bitvectors requires

at most 𝑛⌈log
2
𝜏⌉ bits, just like a plain representation of 𝑆 . To support operations efficiently (e.g.,

accessing 𝑆 [𝑖]), all the bitvectors must support fast rank and select operations, which requires

𝑜 (𝑛 log𝜏) further bits of space overall. The pointers of the tree add𝑂 (𝜏 log𝑛) bits to its space usage,
but this space can be saved by using a pointerless variant called a wavelet matrix [16], which offers

the same functionality as wavelet trees. In what follows, we assume wavelet trees for simplicity.

Access, rank, and select. A wavelet tree on 𝑆 supports access to any 𝑆 [𝑖], as well as rank and

select operations on 𝑆 (which are defined just as for bitvectors). This is done by traversing one

root-to-leaf path in the wavelet tree, in 𝑂 (log𝜏) time.

Let us show how to access 𝑆 [𝑖]: we start with [𝑎, 𝑏] := [1, 𝜏] and 𝑖 ′ := 𝑖 at the root. If 𝐵𝑎,𝑏 [𝑖 ′] = 0,

we set 𝑏 := ⌊(𝑎 + 𝑏)/2⌋, 𝑖 ′ := rank0 (𝐵𝑎,𝑏, 𝑖 ′), and continue by the left child. Otherwise, we set

𝑎 := ⌊(𝑎 + 𝑏)/2⌋ + 1, 𝑖 ′ := rank1 (𝐵𝑎,𝑏, 𝑖 ′), and continue by the right child. When we arrive at a leaf,

it holds 𝑎 = 𝑏 = 𝑆 [𝑖], and moreover rank𝑆 [𝑖] (𝑆, 𝑖) = 𝑖 ′.

Example. We can compute 𝑆 [5] on the wavelet tree of Figure 5 by reading 𝐵a,s [𝑖 ′ = 5] = 1 in the

root bitvector 𝐵a,s = 0010101, thus going right with 𝑖 ′ := rank1 (𝐵a,s, 5) = 2. On the right child of

the root, we read 𝐵n,s [𝑖 ′ = 2] = 0, so we go left with 𝑖 ′ := rank0 (𝐵n,s, 2) = 2. We then arrive at the

leaf [n, n], so we know that 𝑆 [5] = n, and moreover rankn (𝑆, 5) = 𝑖 ′ = 2. □

Operation rank𝑐 (𝑆, 𝑖) is analogous. We do as for accessing 𝑆 [𝑖], except that we go left if 𝑐 ≤
(𝑎 + 𝑏)/2 and right if not. When we arrive at the leaf [𝑐, 𝑐], it holds that rank𝑐 (𝑆, 𝑖) = 𝑖 ′.
For select𝑐 (𝑆, 𝑖) we descend towards the leaf [𝑐, 𝑐], set 𝑖 ′ := 𝑖 , and return 𝑖 ′ from the recursion.

At an internal node [𝑎, 𝑏], if we receive 𝑖 ′ from the left child, we return select0 (𝐵𝑎,𝑏, 𝑖 ′) to the caller;
otherwise we return select1 (𝐵𝑎,𝑏, 𝑖 ′). When the root returns 𝑖 ′, it holds that 𝑖 ′ = select𝑐 (𝑆, 𝑖).

Advanced operations. The wavelet tree supports other operations [47]. Among these it can list all

distinct values 𝑐 in a range 𝑆 [𝑠 . . 𝑒], also computing [𝑠𝑐 . . 𝑒𝑐] := [rank𝑐 (𝑆, 𝑠 − 1) + 1 . . rank𝑐 (𝑆, 𝑒)]
for each, taking time 𝑂 (𝑘 log(𝜏/𝑘)) to report the 𝑘 distinct values in 𝑆 [𝑠 . . 𝑒] [26]. We will use this

operation to optimize for lonely variables appearing in only one triple pattern [33] in Section 4.2.

Wavelet trees also support the range-next-value operation in time 𝑂 (log𝜏) [26], which we will

use to support operation leap in Section 3.4.2. Specifically, given a range 𝑆 [𝑠 . . 𝑒] and a threshold

𝑐𝑥 ∈ [1, 𝜏], range-next-value finds the smallest symbol 𝑐 ≥ 𝑐𝑥 that occurs in 𝑆 [𝑠 . . 𝑒]. The algorithm

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:11

also finds the range [𝑠𝑐 . . 𝑒𝑐] so that 𝑆 [𝑠 . . 𝑒] contains from the 𝑠 th𝑐 to the 𝑒 th𝑐 occurrence of 𝑐 in 𝑆

(i.e., 𝑠𝑐 := rank𝑐 (𝑆, 𝑠 − 1) + 1 and 𝑠𝑒 := rank𝑐 (𝑆, 𝑒)).

3 One ring to index them all
We now present our ring index for a graph 𝐺 , and describe how to implement the trie-iterator

interface over it. This allows LTJ to evaluate basic graph patterns over 𝐺 in wco time using almost

no space beyond that of a raw, and even a compressed, representation of 𝐺 . The ring index is

inspired by text indexing techniques. Rather than store the tuples (rows) of a relation, we store

each attribute (column) separately as a list of values. Crucially, the elements of each such column

are stored in an order decided by all other columns; thus each column carries information about all

other columns that can be used to retrieve the tuples of the original relation. We start with a more

general description for relational tables that is later instantiated for the case of graphs.

3.1 Orders, tables, and columns
Wemap all the constants in the domainU to consecutive integers [1 . .𝑈]. A relationR on attributes

A is then seen as a set of 𝑛 tuples from 𝑈 𝑑
, where 𝑑 := |A|. Different relations may be associated

with different relation names; for simplicity, we focus on one relation. Our index builds on the

concepts of order, table, and column. The first is just an ordering of attributes.

Definition 3.1. An order is any bijection from [1 . . 𝑑] to A. For technical convenience, we will

assume that A := [1 . . 𝑑], and therefore an order is just a permutation Π of [1 . . 𝑑].

We now define a table, which lexicographically sorts the tuples of a relation R in a given order.

Definition 3.2. The table corresponding to a relation R and an order Π is a matrix𝑇 [1 . . 𝑛] [1 . . 𝑑]
of elements in [1 . .𝑈]. Each table row 𝑇 [𝑖] corresponds to a tuple in R, with the cell 𝑇 [𝑖] [𝑗]
containing the value of the attribute Π(𝑗) in the tuple. The rows of 𝑇 are sorted primarily by the

values in the first column, then, upon ties, by the values in the second column, and so on. We say

that 𝑇 is sorted by the attributes Π(1), . . . ,Π(𝑑), that is, sorted by the order Π.

Finally, we define columns, which are simply the sequence of values in a given column of a table.

Definition 3.3. The 𝑗th column of a table 𝑇 , 𝐶𝑇
𝑗 or just 𝐶 𝑗 , is the sequence of values 𝑇 [𝑖] [𝑗], for

increasing 𝑖 := 1, 2, . . . , 𝑛.

Our ring index for a relation R is a set of columns, one per attribute in A (we will relax this

model in Section 7). Each column of the ring comes from a different table 𝑇 corresponding to R,
each sorted with a particular order. The basic operation to build our index is to re-sort all the rows

of a table by a column.

Definition 3.4. The re-sort of a table 𝑇 (with order Π) by column 𝑗 is a new table where column 𝑗

is moved to the front of the first column. More precisely, the order of the re-sorted table is Π′, with
Π′(1) := Π(𝑗), Π′(𝑘) := Π(𝑘 − 1) for 𝑘 ∈ [2 . . 𝑗], and Π′(𝑘) := Π(𝑘) for 𝑘 ∈ [𝑗 + 1 . . 𝑑].

By the definition of table, if we move column 𝑗 of a table 𝑇 to the front to get 𝑇 ′, we must sort

the rows of 𝑇 ′ by the order Π′. The next lemma better characterizes how to sort 𝑇 to get 𝑇 ′.

Lemma 3.5. The order of the rows in the re-sort of a table𝑇 by column 𝑗 is obtained by stably sorting

the rows of 𝑇 by column 𝑗 .

Proof. The table 𝑇 ′ is sorted by its order Π′, so a stable sorting of 𝑇 by column 𝑗 correctly sorts

the rows by the attribute Π′(1) = Π(𝑗). The rows of 𝑇 ′ with the same value in the first column

should be sorted by columns Π′(2), . . . ,Π′(𝑑) = Π(1), . . . ,Π(𝑗 −1),Π(𝑗 +1), . . .Π(𝑑). In this second

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

list, we can insert Π(𝑗) between Π(𝑗 − 1) and Π(𝑗 + 1) without affecting the order, since we are

focused on rows where Π(𝑗) has the same value. The order on those rows then does not change

with respect to sorting by the full list of attributes Π(1), . . . ,Π(𝑑) we have in 𝑇 . Thus a stable

sorting of 𝑇 by column 𝑗 yields the correct order of 𝑇 ′. □

In other words, re-sorting leads us from a table that represents R with some order Π to another

table that represents R with a new order Π′.

3.2 Navigation between a table and its re-sorting
Assume we re-sorted table𝑇 by column 𝑗 to obtain𝑇 ′. We are interested in tracking any row 𝑖 of𝑇

to its corresponding row 𝑖 ′ in 𝑇 ′.

Definition 3.6. If 𝑇 ′ is a re-sort of 𝑇 , we say that a row 𝑖 of 𝑇 and a row 𝑖 ′ of 𝑇 ′ correspond if they
are identical, that is, they represent the same tuple of R.

We now show that a simple formula maps any row 𝑖 of 𝑇 to its corresponding row 𝑖 ′ of 𝑇 ′.

Definition 3.7. Given a column 𝐶 𝑗 [1 . . 𝑛], let 𝐴 𝑗 [1 . .𝑈 + 1] store in 𝐴 𝑗 [𝑐] the number of occur-

rences of symbols smaller than 𝑐 in 𝐶 𝑗 , that is,

𝐴 𝑗 [𝑐] := |{𝑖 ∈ [1 . . 𝑛], 𝐶 𝑗 [𝑖] < 𝑐}|. (1)

Then, let us define the function 𝐹 𝑗 : [1 . . 𝑛] → [1 . . 𝑛], as follows:
𝐹 𝑗 (𝑖) := 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑖), (2)

where 𝑐 := 𝐶 𝑗 [𝑖]. Recall that rank𝑐 (𝐶 𝑗 , 𝑖) counts the number of times 𝑐 appears in 𝐶 𝑗 [1 . . 𝑖].

Here, 𝐹 𝑗 (𝑖) counts the occurrences of symbols less than 𝑐 (the 𝑖th value of column 𝑗) in all of

column 𝑗 and the occurrences of 𝑐 up to and including the 𝑖th position of column 𝑗 . We now show

that 𝐹 𝑗 (𝑖) gives us the new position of the 𝑖th value of column 𝑗 after a stable sort of that column,

and thus that we can use function 𝐹 𝑗 to navigate from a table 𝑇 to the re-sort of 𝑇 by column 𝑗 .

Lemma 3.8. If𝑇 ′ is the re-sort of𝑇 by column 𝑗 , and 𝑖 ′ := 𝐹 𝑗 (𝑖), then rows𝑇 [𝑖] and𝑇 ′[𝑖 ′] correspond.

Proof. By Lemma 3.5, 𝑇 ′ is obtained by stably sorting 𝑇 by column 𝑗 . Thus, every row 𝑘 where

𝑇 [𝑘] [𝑗] < 𝑇 [𝑖] [𝑗] (i.e., 𝐶 𝑗 [𝑘] < 𝐶 𝑗 [𝑖]) will appear before 𝑇 [𝑖] in 𝑇 ′. The number of those rows

𝑘 is 𝐴 𝑗 [𝑐] where 𝑐 := 𝑇 [𝑖] [𝑗] = 𝐶 𝑗 [𝑖], by Eq. (1). By the stable sort, the other rows 𝑇 [𝑘] that
precede 𝑇 [𝑖] in 𝑇 ′ are those where 𝑇 [𝑘] [𝑗] = 𝑇 [𝑖] [𝑗] = 𝑐 (i.e., 𝐶 𝑗 [𝑘] = 𝑐) and 𝑘 < 𝑖 . Their

number is then rank𝑐 (𝐶 𝑗 , 𝑖 − 1). Therefore, the row 𝑇 [𝑖] will appear in 𝑇 ′ precisely at position

𝑖 ′ := 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑖 − 1) + 1. Since 𝐶 𝑗 [𝑖] = 𝑐 , rank𝑐 (𝐶 𝑗 , 𝑖 − 1) + 1 = rank𝑐 (𝐶 𝑗 , 𝑖) and therefore

𝑖 ′ = 𝐹 𝑗 (𝑖), per Eq. (2). □

Therefore, if we represent 𝐶 𝑗 with wavelet trees (Section 2.3.2), we can map in time 𝑂 (log𝑈)
from rows of 𝑇 to rows of 𝑇 ′ by using only sublinear space on top of the plain storage of 𝐶 𝑗 . We

can similarly map from the row 𝑖 ′ in 𝑇 ′ to 𝑖 in 𝑇 by computing the inverse of function 𝐹 𝑗 :

𝐹−1𝑗 (𝑖 ′) := select𝑐 (𝐶 𝑗 , 𝑖
′ −𝐴 𝑗 [𝑐]), (3)

where 𝑐 is such that𝐴 𝑗 [𝑐] < 𝑖 ′ ≤ 𝐴 𝑗 [𝑐 + 1]. This is easily verified by noting that rank is the inverse
of select, that is, rank𝑐 (𝐶 𝑗 , select𝑐 (𝐶 𝑗 , 𝑝)) = 𝑝 .

Our function 𝐹 𝑗 is akin to the last-to-first mapping in the Burrows–Wheeler Transform [10, 15]

and the FM-index [21, 22] for compressed text indexing [6]. This mapping can be extended to

the restriction operation (called the backward step in the FM-index): Let 𝑇 ′ be the re-sort of 𝑇 by

column 𝑗 . Given a value 𝑐 and a range𝑇 [𝑠 . . 𝑒] of rows in𝑇 , the restriction maps the range𝑇 [𝑠 . . 𝑒]

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:13

to the range 𝑇 ′[𝑠 ′ . . 𝑒 ′] of all the rows in 𝑇 ′ containing 𝑐 in the first column and corresponding to

a row in 𝑇 [𝑠 . . 𝑒] (when there are no 𝑐s in 𝐶 𝑗 [𝑠 . . 𝑒], the result is an empty range, 𝑠 ′ > 𝑒 ′).

Lemma 3.9. Let 𝑇 ′ be the re-sort of 𝑇 by column 𝑗 . Then the set of rows from the range 𝑇 [𝑠 . . 𝑒]
that contain a value 𝑐 in column 𝑗 correspond in 𝑇 ′ to another range of rows, 𝑇 ′[𝑠 ′ . . 𝑒 ′], with

𝑠 ′ := 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑠 − 1) + 1,
𝑒 ′ := 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑒).

Proof. All the qualifying rows contain the same value 𝑐 in column 𝑗 , thus they will be contiguous

in𝑇 ′ by Lemma 3.5. Consider the first row𝑇 [𝑘] in𝑇 [𝑠 . . 𝑒] containing a 𝑐 in column 𝑗 . By Lemma 3.8,

row 𝑘 of 𝑇 corresponds to row 𝑠 ′ := 𝐹 𝑗 (𝑘) of 𝑇 ′. Since this is the first 𝑐 in 𝐶 𝑗 [𝑠 . . 𝑘], we have

𝐹 𝑗 (𝑘) = 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑘) = 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑠 − 1) + 1. Now consider the last row 𝑇 [𝑘 ′] in
𝑇 [𝑠 . . 𝑒] with a 𝑐 in column 𝑗 . Since this is the last 𝑐 in 𝐶 𝑗 [𝑘 ′ . . 𝑒], by Lemma 3.8 it corresponds in

𝑇 ′ to row 𝑒 ′ := 𝐹 𝑗 (𝑘 ′) = 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑘
′) = 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑒). The qualifying rows then

map to 𝑇 ′[𝑠 ′ . . 𝑒 ′]. □

3.3 The ring index for graphs
The relation we index is a set of 𝑛 integer triples (𝑠, 𝑝, 𝑜), that is, with attributes s, p, and o, each

taking values in [1 . .𝑈]. For legibility, we describe orders as permutations of the attribute names,

so order spo means the order that maps 1 to s, 2 to p, and 3 to o. We will also refer to those orders

to denote the corresponding tables, that is, table spo is the set of triples sorted by the order spo.

Definition 3.10. Given a set of 𝑛 integer triples (𝑠, 𝑝, 𝑜), the ring index is formed by three columns

(Definition 3.3) and their corresponding frequency arrays (Definition 3.7):

(1) The column 𝐶o of table spo and its corresponding array 𝐴o.

(2) The column 𝐶p of table osp and its corresponding array 𝐴p.

(3) The column 𝐶s of table pos and its corresponding array 𝐴s.

Note that, when we re-sort the table spo by column o, we obtain the table osp (since o is moved

to the front), when we re-sort osp by column p we obtain pos, and when we re-sort pos by s we

obtain the table spo again. From each re-sort, we only keep the last column. We now show that we

can track a tuple across the three tables, and thus extract the contents of any triple, within only

sublinear space on top of the space needed to store the 𝑛 triples in raw form.

Lemma 3.11. We can represent a ring on 𝑛 triples in 3𝑛 log
2
𝑈 + 𝑜 (𝑛 log𝑈) bits and retrieve the

content of any triple in time 𝑂 (log𝑈).
Proof. We store the columns 𝐶o, 𝐶p, and 𝐶s with wavelet trees. Assume we want to retrieve the

content of the 𝑖th triple in table spo. We first obtain 𝑜 := 𝐶o [𝑖]. By Lemma 3.8, we now map the row

𝑖 to row 𝑖 ′ in table osp with 𝑖 ′ := 𝐹o (𝑖), and obtain 𝑝 := 𝐶p [𝑖 ′]. Finally, again using Lemma 3.8, we

map the row 𝑖 ′ to row 𝑖 ′′ in table pos with 𝑖 ′′ := 𝐹p (𝑖 ′), and obtain 𝑠 := 𝐶s [𝑖 ′′]. In total we carried

out two rank operations and three accesses to sequences using wavelet trees, which takes time

𝑂 (log𝑈) as shown in Section 2.3.2.

Note that 𝑖 = 𝐹s (𝑖 ′′), and therefore we can cycle over the three columns (hence the name ring).

Thus, we can equally start from the orders osp or pos to extract a triple.

Each column requires 𝑛 log
2
𝑈 + 𝑜 (𝑛 log𝑈) bits of space, and the arrays 𝐴∗ take𝑈 log

2
𝑛 further

bits if represented in plain form. The latter term is also 𝑜 (𝑛 log𝑈) if 𝑈 ∈ 𝑜 (𝑛). Since there are at
most 3𝑛 different values of 𝑠 , 𝑝 , and 𝑜 , it holds that 𝑈 ≤ 3𝑛. If 𝑈 is not 𝑜 (𝑛), we can exploit the fact

that the arrays 𝐴∗ are nondecreasing to store them in 𝑂 (𝑛) bits: We represent each array 𝐴∗ as a
bitvector 𝐷∗ of size 𝑛 +𝑈 + 1 ∈ 𝑂 (𝑛) ⊂ 𝑜 (𝑛 log𝑈) where we set the bits at positions 𝐴∗ [𝑐] + 𝑐 , for
𝑐 := 1, . . . ,𝑈 + 1. Then we retrieve 𝐴∗ [𝑐] = select1 (𝐷∗, 𝑐) − 𝑐 in constant time. □

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

adv

nom

win9

8

7

Thorne

Wheeler

Nobel6

4

5

CO CP CS

AS AO AP

1 Bohr

Strutt

Thompson

Mapping Triples

to front +to front + to front +

stable sortstable sortstable sort

(1,7,3)

(3,7,2)

(5,7,1)

(4,7,5)

(6,8,1)

(6,9,1)

(6,8,3)

(6,9,3)

(6,8,2)

(6,9,2)

(6,8,4)

(6,9,4)

(6,8,5)

(1,7,3)

(3,7,2)

(4,7,5)

(5,7,1)

(6,8,1)

(6,8,2)

(6,8,3)

(6,8,4)

(6,8,5)

(6,9,1)

(6,9,2)

(6,9,3)

(6,9,4)

(1,5,7)

(1,6,8)

(1,6,9)

(2,3,7)

(2,6,8)

(2,6,9)

(3,1,7)

(3,6,8)

(3,6,9)

(4,6,8)

(4,6,9)

(5,4,7)

(5,6,8)

(7,1,5)

(7,2,3)

(7,3,1)

(7,5,4)

(8,1,6)

(8,2,6)

(8,3,6)

(8,4,6)

(8,5,6)

(9,1,6)

(9,2,6)

(9,3,6)

(9,4,6)

2

3

move O

by O

move P

by P

move S

by S

OSP orderSPO order POS order

1

2

3

4

5

7

8

9

6

5

4

2,3

1

7 6 10

Fig. 6. Our ring index for the graph of Figure 3. The ring is formed by the sequences 𝐶o, 𝐶p, and 𝐶s (the

shaded columns), plus the arrays 𝐴o, 𝐴p, and 𝐴s (the small diagonal arrows; 𝑐↗ pointers between rows mean

that 𝐴[𝑐] is the index of the upper row). The dashed curves show how we navigate the columns to retrieve

the triple (1, 7, 3). The dotted boxes and arrow illustrate a restriction from 𝐶o [5 . . 13] to 𝐶p [2 . . 3], by 𝑜 = 1.

Example. Figure 6 shows the ring index corresponding to the graph of Figure 3. On the left, we

map dom(𝐺) to the interval [1 . . 9]. The second column shows the resulting set of 𝑛 = 13 triples

(e.g., (Bohr,adv,Thompson) becomes (1, 7, 3)). The next columns show the tables listing the triples

sorted in spo, osp, and pos orders, highlighting the column we choose in each order to obtain the

next one via re-sorting. The ring is formed by the three highlighted columns and their arrays 𝐴∗.
The figure shows with dashed curves how we recover the first triple in the spo order, (1, 7, 3), by

starting from position 𝑖 := 1. We know that the object is 𝐶o [𝑖] = 3. We then map the position 𝑖 of

column 𝐶o to position 𝑖 ′ of column 𝐶p with the formula 𝑖 ′ := 𝐹o (𝑖) = 7. Let us see this application

of 𝐹o (𝑖 = 1) in detail. Since 𝐶o [1] is the first 3 in 𝐶o (i.e., rank3 (𝐶o, 1) = 1) and there are 𝐴o [3] = 6

values less than 3 in 𝐶o, the triple at position 𝑖 = 1 in table spo becomes the triple at position

𝑖 ′ = 𝐹o (1) = 𝐴o [3] + rank3 (𝐶o, 1) = 6 + 1 = 7 in table osp, where we have stably sorted spo by

attribute o. We then know that the predicate of the corresponding triple is 𝐶p [𝑖 ′] = 7.

We similarly map the position 𝑖 ′ of column 𝐶p to position 𝑖 ′′ of column 𝐶s with 𝑖
′′
:= 𝐹p (𝑖 ′) = 3,

to determine that the subject is𝐶s [𝑖 ′′] = 1. In order to map𝐶p [𝑖 ′ = 7] = 7 to𝐶s, we have 𝐴p [7] = 0

and rank7 (𝐶p, 7) = 3, so 𝑖 ′′ = 𝐹p (7) = 0 + 3 = 3.

Finally, if we compute 𝑖 ′′′ := 𝐹s (𝑖 ′′) analogously, we obtain again 𝑖 ′′′ = 𝑖 = 1. □

The ring index can be built from a raw representation of the triples (𝑠, 𝑝, 𝑜), with a constant

amount of stable sorting steps. Since 𝑈 ≤ 3𝑛, the sorting can be done in linear time and space. The

arrays 𝐴∗ (or bitvectors 𝐷∗) are easily built in linear time as well. Finally, the wavelet trees of the

columns 𝐶∗ can be built in time 𝑂 (𝑛 log𝑈 /
√
log𝑛) [46], which is in 𝑂 (𝑛

√
log𝑈).

Theorem 3.12. Let 𝐺 be a graph with 𝑛 triples and𝑈 different constants. Then the ring index of𝐺

uses 3𝑛 log
2
𝑈 + 𝑜 (𝑛 log𝑈) bits of space and can retrieve any desired triple in𝑂 (log𝑈) time. The ring

index is built in 𝑂 (𝑛
√
log𝑈) time within 𝑂 (𝑛 log𝑈) bits of working space.

This space is worst-case; Section 3.6 shows that we can make the ring index use space close to a

compressed representation of 𝐺 .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:15

3.4 Processing joins
We now describe how to support leap over the ring index of a graph in 𝑂 (log𝑈) time using the

algorithms of Section 3.2. This running time for leap implies the worst-case optimality of LTJ

(Algorithm 1) over our representation [64]. Thus, in this section we prove the following theorem;

working space refers to the space needed to solve 𝑄 apart from the space used by the index.

Theorem 3.13. On a graph 𝐺 , our ring index evaluates a basic graph pattern 𝑄 formed by𝑚 triple

patterns in 𝑂 (𝑄∗ ·𝑚 log |dom(𝐺) |) time, where 𝑄∗ is the maximum possible output (AGM bound) of

such a query on some graph of size |𝐺 |. The working space of the algorithm is 𝑂 (1 + |var(𝑄) |) words.

Let 𝑄 := {𝑡1, . . . , 𝑡𝑚} be a basic graph pattern. We assume the constants in each 𝑡𝑖 have already

been encoded as integers in [1 . .𝑈]. We further assume that no variable appears more than once

in a triple pattern 𝑡𝑖 ; the other case will be discussed later in Section 3.5. We use 𝑡 (𝐺) as shorthand
for the evaluation of the (singleton) basic graph pattern {𝑡}(𝐺) (see Section 2.1). We denote by

𝐺𝑡 := {` (𝑡) | ` ∈ 𝑡 (𝐺)} the occurrences of 𝑡 in 𝐺 , that is, the set of triples in 𝐺 matching 𝑡 .

3.4.1 Computing the occurrences of a triple pattern. Because the constants in a triple pattern 𝑡 are

always consecutive when 𝑡 is regarded as cyclic, there is some attribute order (spo, osp, or pos)

where the rows matching the constants of 𝑡 form a contiguous range [𝑠 . . 𝑒] because they appear

in a prefix of the attributes. The following lemma shows how to find [𝑠 . . 𝑒] in 𝑂 (log𝑈) time.

Lemma 3.14. Let 𝑡 := (𝛼, 𝛽,𝛾) be a triple pattern with 0 ≤ 𝑏 ≤ 3 constants. In 𝑂 (log𝑈) time, we

can find values 𝑠, 𝑒 such that:

• If |𝐺𝑡 | = 0, then 𝑠 = 𝑒 = ⊥; otherwise
• 𝑒 = 𝑠+ |𝐺𝑡 | −1, and𝐶x [𝑠 . . 𝑒] refers to the triples in𝐺𝑡 , x ∈ {s, p, o} being the variable (cyclically)
preceding a constant in 𝑡 if 0 < 𝑏 < 3; x is arbitrary otherwise.

Proof. The case for 𝑏 = 0 constants is trivial because the triple pattern matches every triple in

𝐺 and [𝑠 . . 𝑒] := [1 . . 𝑛] covers all the triples in any column.

If 𝑏 = 1, assume w.l.o.g. that the lone constant in 𝑡 is the bound value 𝑑 for attribute s; the

other two cases are analogous. Then, [𝑠 . . 𝑒] := [𝐴s [𝑑] + 1 . . 𝐴s [𝑑 + 1]] because this is the range
of all the triples with s = 𝑑 when they are sorted by attribute s; recall Eq. (1). Since attribute

o (cyclically) precedes s, according to Definition 3.10, 𝐶o lists the triples by order spo, and thus

𝐶o [𝑠 . . 𝑒] represents 𝐺𝑡 (i.e., x = o).

When 𝑏 = 2, let 𝑑 ′ and 𝑑 be the two (cyclically) consecutive constants in 𝑡 , and assume w.l.o.g.

that o and s are the corresponding attributes, that is, 𝑑 ′𝑑 = 𝛾𝛼 . In this case, x = p. Since𝐶o is sorted

by order spo and 𝐶p by order osp, 𝐹o (Eq. (2)) maps from the order spo of 𝐶o to the order osp of 𝐶p.

We first obtain the range [𝑠 . . 𝑒] for the binding of s to 𝑑 just as for 𝑏 = 1. Then 𝐶o [𝑠 . . 𝑒] refers
to the triples, sorted by s, where s has value 𝑑 . From those, we seek the triples where the value

of o is 𝑑 ′, or which is the same, where 𝑑 ′ (cyclically) precedes 𝑑 , that is, the triples with value

𝑑 ′ in 𝐶o [𝑠 . . 𝑒]. Lemma 3.9 shows that these values 𝑑 ′ form a range 𝐶p [𝑠 ′ . . 𝑒 ′], obtainable with a

restriction from 𝐶o [𝑠 . . 𝑒] in 𝑂 (log𝑈) time using the wavelet tree of 𝐶o.

For the last case 𝑏 = 3 we choose any two consecutive attributes, say os as for 𝑏 = 2. This yields

a range 𝐶p [𝑠 ′ . . 𝑒 ′] of triples, sorted by o and upon ties by s, where o has value 𝑑 ′ and s has value

𝑑 . An additional restriction on 𝐶p yields the range 𝐶s [𝑠 ′′ . . 𝑒 ′′] of the triples matching 𝑡 .

In all cases, we change to 𝑠, 𝑒 := ⊥ when 𝑠 > 𝑒 , as this means that 𝑡 has no occurrences in 𝐺 . □

Example. The triple pattern (Nobel,?,Bohr) finds out if Bohr won or was nominated for a Nobel

prize. This is mapped to (6, 𝑥, 1), with variable predicate p. Thus, 𝑑 ′, 𝑑 = 1, 6 in the proof of

Lemma 3.14. We start from the second component, s, with value 𝑑 = 6. The range [𝑠 . . 𝑒] :=

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

[𝐴s [6] + 1 . . 𝐴s [6 + 1]] = [5 . . 13] then contains the triples with subject value 6 in table spo,

corresponding to column𝐶o (see dotted lines in Figure 6). We now perform a restriction (Lemma 3.9)

from 𝐶o [5 . . 13] with value 𝑑 ′ = 1, which yields [𝑠 ′ . . 𝑒 ′] := [2 . . 3], now in table osp and column

𝐶p. That is, [2 . . 3] are the rows in table osp where o has value 1 and s has value 6.

We can now obtain the bindings for the predicates 𝑝 matching the triple. They are in𝐶p [2 . . 3] =
⟨8, 9⟩, corresponding to nom and win. That is, Bohr was nominated to, and won, a Nobel prize. □

3.4.2 Supporting leaps. We show how to support leap(𝑡𝑖 , 𝑥, 𝑐), where 𝑡𝑖 is either a triple pattern
from 𝑄 or one of its progressively bound versions ` (·) in Algorithm 1.

To evaluate leap(𝑡𝑖 , 𝑥, 𝑐), we first obtain the values 𝑠𝑖 , 𝑒𝑖 of Lemma 3.14 for 𝑡𝑖 . If 𝑠𝑖 , 𝑒𝑖 = ⊥ we

return ⊥. Otherwise, let 𝑡𝑖 := (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖). How we search for 𝑐𝑥 ≥ 𝑐 (see Definition 2.1) depends on

where 𝑥 and the constants in 𝑡𝑖 are. If only 𝛼𝑖 is a constant and 𝛽𝑖 = 𝑥 , or only 𝛽𝑖 is a constant and

𝛾𝑖 = 𝑥 , or only 𝛾𝑖 is a constant and 𝛼𝑖 = 𝑥 , then we will find 𝑐𝑥 by extending the constant forwards,

because 𝑥 (cyclically) follows the part of the triple pattern that is already bound. Otherwise, we

will find 𝑐𝑥 by extending backwards the bound attributes, that is, looking for 𝑥 preceding the range

of attributes that are already bound. We first describe the backward extension, which is simpler.

Backward extension. Let x be the attribute of variable 𝑥 . When we process a triple pattern

𝑡𝑖 := (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) backwards, we have the range 𝐶x [𝑠𝑖 . . 𝑒𝑖] of the triples matching the bound part

of 𝑡𝑖 , and want to find the smallest 𝑐𝑥 ≥ 𝑐 such that some of those bound parts are preceded by

𝑐𝑥 , that is, 𝐶x [𝑘] = 𝑐𝑥 for some 𝑘 ∈ [𝑠𝑖 . . 𝑒𝑖]. Equivalently, we want to find the smallest 𝑐𝑥 ≥ 𝑐 in

𝐶x [𝑠𝑖 . . 𝑒𝑖]. This corresponds to the range-next-value operation discussed at the end of Section 2.3.2,

which is supported in 𝑂 (log𝑈) time by the wavelet tree of 𝐶x.

Forward extension. When only one of 𝛼𝑖 , 𝛽𝑖 , or 𝛾𝑖 is bound, and the attribute x of the variable 𝑥

we seek is not reached in one step backwards, we rather process (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) forwards. Let w.l.o.g.
p be the bound attribute (say, to value 𝑝), which (cyclically) precedes x = o. By Lemma 3.14, the

triples in 𝐺𝑡𝑖 are in a range 𝐶s [𝑠𝑖 . . 𝑒𝑖] (𝐶s is sorted by pos = pxs). Since only attribute p is bound,

the range corresponds to the triples where p has value 𝑝 . We must thus find the smallest 𝑐𝑥 ≥ 𝑐

that follows a 𝑝 in one of the triples in the range 𝐶s [𝑠𝑖 . . 𝑒𝑖].
To do this, we begin by finding the first occurrence of 𝑝 in the range𝐶p [𝐴x [𝑐] + 1 . .] (𝐶p is sorted

by osp = xsp), corresponding to the triples where attribute x has a value of 𝑐 or more.
2
We perform

a restriction (Lemma 3.9) from this range by symbol 𝑝: letting 𝑞 := 𝐴p [𝑝] + rank𝑝 (𝐶p, (𝐴x [𝑐] +
1) − 1) + 1 = 𝐴p [𝑝] + rank𝑝 (𝐶p, 𝐴x [𝑐]) + 1, we obtain the range 𝐶s [𝑞 . . 𝑒𝑖] of the triples where p
has value 𝑝 and x has a value 𝑐𝑥 ≥ 𝑐 . We wish to find the first such triple, at 𝐶s [𝑞], which has the

smallest possible value for 𝑐𝑥 . We now map the triple back to column 𝐶p with 𝑟 := 𝐹−1
s
(𝑞) (Eq. (3)).

This is the position in 𝐶p of the first triple (in order osp = xsp) where attribute x has a value

𝑐𝑥 ≥ 𝑐 and is preceded by 𝑝 . To find the actual value of 𝑐𝑥 , we apply a binary search for 𝑟 in 𝐴x,

looking for𝐴x [𝑐𝑥] < 𝑟 ≤ 𝐴x [𝑐𝑥 +1]. As mentioned in Lemma 3.11,𝐴x might be stored as a bitvector

𝐷x to save space on large alphabets. In this case the binary search is replaced by the constant-time

formula 𝑐𝑥 := select0 (𝐷x, 𝑟) − 𝑟 . See Figure 7.

Examples. To exemplify the backward extension, consider the basic graph pattern formed by

the triple patterns (Bohr,adv,?𝑥) and (Nobel,win,?𝑥), to find Nobel prize winners advised by Bohr.

After mapping them to (1, 7, 𝑥) and (6, 9, 𝑥) and applying Lemma 3.14 to both, we obtain the ranges

𝐶o [1 . . 1] for the former and𝐶o [10 . . 13] for the latter. To bind the variable 𝑥 , we find the first value,
𝑐 := 3, in 𝐶o [1 . . 1], and now need to find the smallest value 𝑐𝑥 ≥ 𝑐 in 𝐶o [10 . . 13]. The wavelet

2
This is indeed easily done as 𝑟 := select𝑝 (𝐶p, rank𝑝 (𝐶p, 𝐴x [𝑐]) + 1) , which can be shown to be equivalent to the method

we describe. This shortcut, however, cannot be generalized to the dimensions over 3 we consider from Section 6 onwards.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:17

xA c[]

xA c[]x

xA c +[]x 1

oA p[]

(c ...x

(c ...x

(c ...x

(p...

(p...

(p...

x(p,c ...

(p...

(p...

..

..

..

..

..

..

e

si

i

SCCP

(c...

p

p

p

p

p

p

p

r q

Fig. 7. Illustration of the forward extension algorithm. The strings in gray represent the way triple contents

start in that area of the columns. The dashed arrows represent the computation of 𝑞 and 𝑟

tree yields the solution 𝑐𝑥 := 3, which then is a binding for 𝑥 (indeed, there are triples (1, 7, 3) and
(6, 9, 3) in the graph). This corresponds to the object Thompson.

To exemplify the forward extension, assume that we extend our previous basic graph pattern

with the triple pattern (𝑦, 8, 𝑥) in order to also find out all awards the advisee 𝑥 was nominated

to. This triple pattern is processed applying Lemma 3.14 to obtain the range 𝐶s [5 . . 9] of the
triples starting with 8 in table pos. The binding 𝑥 := 3 of the previous paragraph must also be

found in this range, so we must determine the smallest 𝑐𝑥 ≥ 3 that follows 8 in the rows [5 . . 9]
of table pos. To do this, we find the first occurrence of 8 in 𝐶p [𝐴o [3] + 1 . .] = 𝐶p [7 . .], with
𝑞 := 𝐴p [8] + rank8 (𝐶p, 7 − 1) + 1 = 4 + 2 + 1 = 7 (the restriction formula) and 𝑟 := 𝐹−1

p
(7) = 8.

Finally, we find that 𝑐𝑥 = 3 because 𝐴o [3] = 6 < 𝑟 ≤ 9 = 𝐴o [4]. Thus, we confirm the binding

𝑥 := 3 (Thompson). The algorithm will later find the bindings for 𝑦 using backward extension. □

Lemma 3.15. Let 𝐺 be a graph, 𝑡 be a triple pattern, 𝑥 be a variable that appears exactly once in 𝑡 ,

and 𝑐 ∈ 𝑈 be a constant. Then the ring index of 𝐺 supports leap(𝑡, 𝑥, 𝑐) in 𝑂 (log𝑈) time.

Finally note that, except for `, the working space used by seek in Algorithm 1 is constant; the

same holds for leap and leapfrog_search. We can further maintain ` in constant space per recursive

call by storing only the last assignment and pointing to the previous one in the stack. Thus, the

working space of Algorithm 1 is 𝑂 (𝑣 + 1), since the maximum stack height is 𝑣 = |vars(𝑄) |.
For simplicity, we have focused on the resolution of basic graph patterns only. Our ring supports

some additional enhancements, which we discuss in Appendix A.

3.5 Variables appearing more than once in a triple pattern
The case when a variable 𝑥 has more than one occurrence in a triple pattern must be dealt with

differently, as every binding of this variable implies working on two columns of the ring. Let us

first note that when a variable 𝑥 has more than one occurrence in a triple pattern 𝑡 , these are

(cyclically) consecutive. Thus, this means that we can support leap(𝑡, 𝑥, 𝑐) on our unmodified

index, by processing 𝑡 backwards. First, we consider only the second occurrence (which is just

behind the matched part of the triple pattern, if any). Every time we find a binding 𝑥 := 𝑐𝑥 , we

perform a second restriction on the triple, with 𝑐𝑥 . If the resulting range is nonempty, then the

binding is valid and we recurse; otherwise we just set 𝑐 := 𝑐𝑥 + 1 and restart the search. The case of

triple patterns formed by three occurrences of the same variable is analogous. The problem is that

this algorithm does not run in 𝑂 (log𝑈) time, and would affect the optimality of LTJ.

To support leap in 𝑂 (log𝑈) time, we can instead split 𝐺 into five graphs of 𝑛 triples in total:

𝐺𝑥𝑦𝑧 contains the triples (𝑠, 𝑝, 𝑜) where 𝑠 , 𝑝 , and 𝑜 are all different,𝐺𝑥𝑥𝑦 , 𝐺𝑥𝑦𝑥 , and 𝐺𝑦𝑥𝑥 contain

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

the triples where 𝑠 = 𝑝 , 𝑠 = 𝑜 , and 𝑝 = 𝑜 , respectively, and the other component is different, and

𝐺𝑥𝑥𝑥 contains the triples where 𝑠 = 𝑝 = 𝑜 . We then create five rings, one per graph.

At query time, the occurrences of each partially bound triple pattern 𝑡𝑖 span five intervals

𝐶∗ [𝑠𝑖 . . 𝑒𝑖], one per ring. However, triple patterns 𝑡𝑖 containing two copies of the same variable

have two intervals only: one in the ring of 𝐺𝑥𝑥𝑥 and the other in the ring of 𝐺𝑥𝑥𝑦 , 𝐺𝑥𝑦𝑥 , or 𝐺𝑦𝑥𝑥 ,

depending on where the variable appears. Finally, a triple pattern 𝑡𝑖 with three copies of the same

variable has an interval in the ring of𝐺𝑥𝑥𝑥 only. This ensures that for the aforementioned algorithm

handling multiple occurrences of a variable, every match 𝑥 := 𝑐𝑥 we find is valid.

Triples that span several intervals𝐶∗ [𝑠𝑖 . . 𝑒𝑖] implement leap by searching in all of the intervals

and taking the minimum 𝑐𝑥 ≥ 𝑐 found. This introduces a constant-time overhead factor but retains

worst-case optimality. Furthermore, the space of the data structure is the same. On graphs where

the edge labels are disjoint from the node labels, we need only consider 𝐺𝑥𝑦𝑧 and 𝐺𝑥𝑦𝑥 , and if they

have no self-loops then no triple pattern with a variable appearing twice can match.

3.6 Rings in compressed space
We have shown that the ring index represents 𝐺 using just 𝑜 (|𝐺 |) space on top of the space |𝐺 |
needed by its raw representation as an array of triples, that is, 3𝑛 log

2
𝑈 + 𝑜 (𝑛 log𝑈) bits. We now

show that the space can indeed be made close to the size of a compressed representation of 𝐺 .

Precisely, if the sets of different subjects, predicates, and objects are 𝑆 , 𝑃 , and 𝑂 , respectively, then

the wavelet matrices for the columns𝐶s,𝐶p, and𝐶o, will use 𝑛(log2 |𝑆 | + log2 |𝑃 | + log2 |𝑂 |) (1+𝑜 (1))
bits, and we will use 3𝑛 + 𝑜 (𝑛) further bits if we use bitvectors 𝐷∗ instead of the arrays 𝐴∗. We

obtain compression by representing the bitvectors of the wavelet matrices in compressed form.

Concretely, we will use a compressed bitvector representation [58] that, given a parameter 𝑏,

cuts the bitvector into chunks of 𝑏 bits and represents each chunk as a pair (𝑐, 𝑜), where 𝑐 is the
number of 1s in the chunk and 𝑜 is an identifier of that chunk among those having 𝑐 1s. The chunk

is then represented using ⌈log
2
(𝑏 + 1)⌉ + ⌈log

2

(
𝑏
𝑐

)
⌉ bits. This is advantageous when 𝑐 is near zero

or near 𝑏 (i.e., the chunk has many 0s or many 1s).

Consider our column 𝐶o; the others are analogous. Since it contains the objects in spo order, the

objects 𝑜 associated with the same subject-predicate pair 𝑠𝑝 will appear in increasing order. Those

increasing ranges in 𝐶o [𝑠 . . 𝑒] induce runs of 0s and 1s in the bitvectors of the wavelet matrices;

recall Section 2.3.2. In particular, in the first level, all the elements smaller than |𝑂 |/2 precede the
elements larger than |𝑂 |/2, and therefore the root bitvector 𝐵 has a run of 0s preceding a run of 1s

in 𝐵 [𝑠 . . 𝑒]. Those runs are compressed well as pairs (𝑐, 𝑜), as explained. When the range 𝐵 [𝑠 . . 𝑒]
is split in the left and right children, both new ranges also have a run of 0s preceding a run of 1s.

In Figure 6, for example, we can see an increasing range 𝐶o [5 . . 9], corresponding to objects

associated with 𝑠 = 6 and 𝑝 = 8, and another range 𝐶o [10 . . 13] associated with 𝑠 = 6 and 𝑝 = 9.

A second effect we can see in the figure is the run of values 6 in 𝐶s [5 . . 13], which owes to the

predictability of the triples, associated with the regularity of the graph: if the predicate is 8 or 9

–nom or won– then the subject is 6 –Nobel–. Long ranges with the same symbol also induce runs of

0s and 1s in the wavelet tree bitvectors, which are in addition not split in subsequent levels.

In fact, our ring index can be regarded as a kind of column store [60]. Column stores encode each

column of a table separately. Each column may reorder the rows to improve compression, but then

must include an extra pointer per row in order to link the corresponding rows across columns. Our

particular column order based on stable sorting, instead, boosts compression via grouping by the

other two components, but it does not require storing any pointer; the rows can be tracked using

the 𝐹 formula of Eq. (2) (we also need the bitvectors 𝐷∗, but those use just 𝑂 (1) bits per entry).

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:19

In this regard, our ring index is related to the proposal of Vo and Vo [65], who choose a column

order 𝐶1, . . . ,𝐶𝑑 and, for each new column 𝐶 𝑗 , choose an ordered subset of previous columns,

𝐶𝑖1 , . . . ,𝐶𝑖𝑘 ∈ {𝐶1, . . . ,𝐶 𝑗−1}, sort the rows lexicographically by 𝐶𝑖1 · · ·𝐶𝑖𝑘 , and write 𝐶 𝑗 in that

order. Our ring index sorts each column according to the sequence of the other 𝑑 − 1 columns

(cyclically) preceding it. An important difference is that the scheme of Vo and Vo works only for

compression; the whole table must be decompressed, column by column, completely reordering the

rows to decode each new column, before the table can be put to use. Our ring, instead, can retrieve

any desired triple, and even support wco joins, without ever having to decompress the data.

4 Engineering and implementation
We describe in this section the most relevant engineering and implementation aspects of our ring

index. Our implementation is publicly available at http://68.183.136.91/.

4.1 Indexing
We implemented the ring index in C++11 over the succinct data structures library, sdsl (available at

https://github.com/simongog/sdsl-lite) [27]. Because the alphabets are generally large, we represent

the sequences 𝐶∗ with wavelet matrices [16].

We provide two flavors of indexes, with the bitvectors of the wavelet matrices stored either in

plain or in compressed form. Plain bitvectors are faster in practice. The compressed bitvectors use a

parameter 𝑏 in sdsl; larger values for 𝑏 offer better compression but slower operations. Compressed

bitvectors store no select data structures; they handle this operation via binary searches on rank.
In order to reduce the size of the universe, the sequence 𝐶p of predicates uses its own alphabet,

typically much smaller than [1 . .𝑈]. The sequences𝐶s and𝐶o of subjects and objects, instead, share

a common alphabet. Reducing the alphabet size in this way improves both space and operation

time for the wavelet matrices at the cost of not directly supporting joins across the alphabets, that

is, between predicates and subject/objects. If such joins were needed (they do not appear in our

benchmark), a simple solution would be to have a common alphabet for all columns. To retain

good time and space one could still use local alphabets and add three small mapping bitvectors of

length 𝑈 ,𝑀s,𝑀p and𝑀o, each marking with 1s the symbols that do appear in their column. With

rank/select on the bitvectors we would map between global and local alphabets.

In addition, only for 𝐶p, which has a smaller alphabet, we store the select data structures for
handling forward extensions as described in Section 3.4.2. On the other two sequences, we find

𝑐𝑥 in a different way. Instead of computing 𝑞 := 𝐹−1
a
(𝑝) and then 𝑐𝑥 := select0 (𝐷x, 𝑞) − 𝑞, which

requires supporting select on 𝐶s and 𝐶o (Eq. (3)), we use the circularity of the triples to reach the

same point with only rank and access operations, which is faster in practice on 𝐶s and 𝐶o: we

compute 𝑟 := 𝐹o (𝑝), which maps 𝐶o [𝑝] to 𝐶x [𝑟], and then 𝑐𝑥 := 𝐶x [𝑟] (note it holds 𝑞 = 𝐹x (𝑟)).
The mapping from dom(𝐺) to consecutive integers is done by sorting the triples by predicate,

and then hashing subjects and objects to ensure uniqueness (the sorting aims to create longer runs

of 0s and 1s in the bitvectors for the compressed version of the ring; recall Section 3.6). Finally,

we use plain bitvectors 𝐷∗ instead of arrays 𝐴∗ to store cumulative symbol frequencies in 𝐶∗. We

use stl::sort and stl:stable_sort standard C++ sorting algorithms to produce columns 𝐶∗.
According to our experiments, the sorting steps represent only a small fraction (about 10%) of the

whole construction process. The most expensive task is that of building the wavelet matrices, for

which we use the standard sdsl::construct_im construction process.

4.2 Join algorithm
We implement Algorithm 1 with some improvements on the description of Section 3.4.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://68.183.136.91/
https://github.com/simongog/sdsl-lite

111:20 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

First, for each triple pattern 𝑡𝑖 (in its original form or with further variables bound by a mapping),

we maintain the values 𝑠𝑖 , 𝑒𝑖 instead of computing them from scratch during each leap. More

precisely, we find 𝑠𝑖 , 𝑒𝑖 at the beginning of leapfrog_search as described in Lemma 3.14, and then

update them after each further binding of 𝑡𝑖 . The working space then rises to 𝑂 (𝑚𝑣), which is

still very low. We update the range as follows. When extending backwards, the range-next-value

operation not only yields 𝑐𝑥 , but also the values 𝑠 := rank𝑐𝑥 (𝐶x, 𝑠𝑖 − 1) + 1 and 𝑒 := rank𝑐𝑥 (𝐶x, 𝑒𝑖);
recall Section 2.3.2. With those values, we immediately have the new range 𝐶y [𝑠 ′𝑖 . . 𝑒 ′𝑖] (where y is
the attribute that cyclically precedes x), with 𝑠 ′𝑖 := 𝐴x [𝑐𝑥] + 𝑠 and 𝑒 ′𝑖 := 𝐴x [𝑐𝑥] + 𝑒 , which completes

the restriction according to Lemma 3.9. When extending forwards from attribute, say, p bound to 𝑑

(so the current range is𝐶s [𝑠𝑖 . . 𝑒𝑖]), once we obtain the value 𝑐𝑥 , we perform a restriction by symbol

𝑑 from 𝐶p [𝐴x [𝑐𝑥] + 1 . . 𝐴x [𝑐𝑥 + 1]] so as to obtain the final range 𝐶s [𝑠 ′𝑖 . . 𝑒 ′𝑖], using Lemma 3.14.

Example. Continuing our example of Section 3.4.2, in the backward extension we had obtained

𝑐𝑥 := 3 for both𝐶o [1 . . 1] and𝐶o [10 . . 13]. We can find the ranges in𝐶p for both, though in this case

the ranges will have only one tuple. For example, for 𝐶o [10 . . 13], the range-next-value algorithm
returns 𝑐𝑥 := 3 and also 𝑠 := rank3 (𝐶o, 9) + 1 = 3 and 𝑒 := rank3 (𝐶o, 13) = 3. Thus the range is

𝐶p [𝐴o [3] + 𝑠 . . 𝐴o [3] + 𝑒] = 𝐶p [9 . . 9].
In the forward extension, once we know that 𝑐𝑥 = 3, we have the range𝐶p [𝐴o [3] + 1 . . 𝐴o [4]] =

𝐶p [7 . . 9]. With a restriction from this range by 𝑑 = 8 we obtain 𝐶s [7 . . 7], the restriction of the

original range 𝐶s [5 . . 8] that contains the rows of table pos that start with 𝑝 = 8 and 𝑜 = 3. □

The second optimization is to handle the lonely variables [33], that is, variables that appear in

only one triple pattern 𝑡𝑖 , in a different way: once the other variables of 𝑡𝑖 have been bound, we

report all the possible bindings of our ranges. From the current values 𝑠𝑖 , 𝑒𝑖 , we bind the remaining

variables backwards, one by one. For each variable 𝑥 , this corresponds to finding all the distinct

values in 𝐶x [𝑠𝑖 . . 𝑒𝑖], which is done as described at the end of Section 2.3.2. Every returned value 𝑐

is a valid binding 𝑥 := 𝑐 . The updated range is 𝑠 ′𝑖 := 𝐴x [𝑐] + 𝑠𝑐 , 𝑒 ′𝑖 := 𝐴x [𝑐] + 𝑒𝑐 , 𝑠𝑐 and 𝑒𝑐 being the

values returned by the algorithm.

Example. Finishing our example, the variable 𝑦 in the triple pattern (𝑦, 8, 𝑥) is a lonely variable.

Once we have bound 𝑥 := 3, we want to report all the values found in𝐶s [7 . . 7]. In this case we only

find the value 6 (Nobel), indicating that Thompson “only” won the Nobel prize (in our database). □

Lonely variables actually permit to store a more compact representation of the output, by storing

the entire ring interval instead of individually bounding the lonely variable for each element

in this interval, as in a limited form of a factorized database [55]. For fairness with the other

implementations, this feature is not included in the experimental section.

4.3 Variable elimination order
The running time of LTJ can often sharply depend on selecting a good order in which variables are

eliminated [33]. It turns out that our ring index can also be used to provide relevant statistics on

the fly, computed in logarithmic time, and without additional profiling.

Recall that given a triple pattern 𝑡𝑖 , our index quickly computes the initial ranges 𝐶∗ [𝑠𝑖 . . 𝑒𝑖],
so that the number of triples matching the pattern is exactly 𝑒𝑖 − 𝑠𝑖 + 1. We use this information

to construct the following elimination order for variables that appear in more than one triple

pattern. First we compute the selectivity of each triple pattern 𝑡𝑖 as 𝑠 (𝑡𝑖) := 𝑒𝑖 − 𝑠𝑖 . We then estimate

the selectivity of each variable 𝑥 as 𝑠min (𝑥) := min𝑡 ∈𝑄{𝑥 } 𝑠 (𝑡). The variables 𝑥 are then bound by

increasing order of 𝑠min (𝑥), that is, from most to least selective. We however modify this order to

ensure that, if possible, each new variable shares a triple pattern with some previous one. That is,

the next variable to bind is the least selective one among those sharing a triple pattern with an

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:21

(7,1,5)

(7,2,3)

(7,3,1)

(7,5,4)

5 3 1 4

3

2

5

1

(1,7,3)

(3,7,2)

(4,7,5)

(5,7,1)

1

2,3

5

4

1 2 3 4,5
C CS

(3,1,7)

(5,4,7)

(1,5,7)

(2,3,7)

C
O P

SPO order OSP order POS order

CO

CS

S

AO

A

Fig. 8. The binary relation resulting from restricting the ring index of Figure 6 to 𝑝 = 7.

already bound variable; if none exist, we just take the least selective variable. This rule is consistent

with leaving the lonely variables to the end.

This scheme is similar to the one used in Jena LTJ [33], which also leaves lonely variables until

the end, but both schemes feature some key differences. In the case of Jena LTJ, the standard Jena

TDB optimizer is first used to induce an order among triple patterns. This optimizer uses relatively

coarse-grained statistics precomputed from the dataset; more specifically, the statistics indicate

how many triples each unique predicate is associated with. We rather use the size of the range,

which is efficient to compute with the ring, which avoids the need to precompute statistics, and

which provides much more fine-grained cardinality information.

4.4 Fixed predicates
A particular practical case where we can considerably improve our ring index is where there is

a relatively small set P of predicates, and the triple patterns always have a constant predicate.

Formally, the triples range over a set U × P × U, where |P | := 𝑃 ≪ 𝑈 = |U|, and the triple

patterns range over (V ∪U) × P × (V ∪U). Such triple patterns are very common in practice,

forming the basis of more complex graph patterns used in real-world queries [12]. Furthermore,

the fixed-predicate case is also a natural way to model property graph databases (see e.g. [4, 23]),

another important graph database model that is widely used in industry.

In this case we can considerably reduce the space of the ring, while retaining its full functionality

and wco guarantees. The key idea is to store a different sub-ring per predicate 𝑝 ∈ P, containing
all the triples where the predicate is 𝑝 .

Figure 8 shows the sub-ring corresponding to 𝑝 = 7 obtained from our example of Figure 6. It is

immediately obvious that we do not need to store𝐶p because it is a sequence of 𝑛 copies of 𝑝 . What

is less obvious is that the remaining columns, 𝐶s and 𝐶o, form a sub-ring of length 2, and as such

they are essentially the inverse permutation of each other, according to function 𝐹 𝑗 . Therefore, we

need to store only one column, and can simulate the work of the other via the wavelet tree.

More precisely, note that 𝑖 ′ := 𝐹o (𝑖) maps the position 𝑖 of 𝐶o to position 𝑖 ′ of 𝐶p. Now, the

re-sorting by p is immaterial, so 𝐶s has the same ordering of 𝐶p, meaning that 𝑖 ′ := 𝐹o (𝑖) maps

from 𝐶o to 𝐶s. On the other hand, 𝑖 := 𝐹s (𝑖 ′) maps back from 𝐶s to 𝐶o, thus 𝐹o and 𝐹s are inverse

permutations. This relation can be laid on an 𝑛 × 𝑛 grid, where the rows represent 𝐶o and the

columns represent 𝐶s. The grid, illustrated on the right of Figure 8, has exactly one point per row

and per column: the points in format (row,column) are (𝑖, 𝐹o (𝑖)) for 1 ≤ 𝑖 ≤ 𝑛, or equivalently,

(𝐹s (𝑖 ′), 𝑖 ′) for 1 ≤ 𝑖 ′ ≤ 𝑛. Such a grid can be represented with a wavelet tree (Section 2.3.2) in either

direction; let us choose to represent the sequence of values 𝐹s (1) · · · 𝐹s (𝑛) for concreteness.
Since the predicate is always fixed on the triple patterns, each one will be mapped to the

appropriate sub-ring. During the process, the partially bound triple patterns will correspond to a

range in 𝐶o or in 𝐶s, that is, a range of rows or columns in the grid. The operations we need to

carry out Algorithm 1 on this grid can be interpreted in geometric terms. Fortunately enough, the

wavelet tree supports a number of geometric primitives in 𝑂 (log𝑛) time [47]. The following ones

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

suffice to cover the required operations [9], where by [𝛼, 𝛽] × [𝑥,𝑦] we denote all (row,column)

index pairs of the form (𝛾, 𝑧) such that 𝛼 ≤ 𝛾 ≤ 𝛽 , and 𝑥 ≤ 𝑧 ≤ 𝑦, that is, the sub-grid formed by

intersecting rows 𝛼 to 𝛽 and columns 𝑥 to 𝑦:

• rel_num(𝛼, 𝛽, 𝑥,𝑦) counts the number of points in [𝛼, 𝛽] × [𝑥,𝑦].
• rel_min_obj_maj(𝛼, 𝛽, 𝑥) returns the leftmost point in [𝛼, 𝛽] × [𝑥, 𝑛].
• rel_min_lab_maj(𝛼, 𝑥,𝑦) returns the highest point in [𝛼, 𝑛] × [𝑥,𝑦].

With those primitives, we can carry out the operations required, as follows:

• For restrictions (Lemma 3.14) we need operations rank. We reduce rank𝑐 (𝐶s, 𝑖) to the opera-

tion rel_num(𝐴s [𝑐] + 1, 𝐴s [𝑐 + 1], 1, 𝑖), and rank𝑐 (𝐶o, 𝑖) to rel_num(1, 𝑖, 𝐴o [𝑐] + 1, 𝐴o [𝑐 + 1]).
• For backward extensions (Section 3.4.2), we need the range-next-value operation. Finding the

smallest 𝑐𝑥 ≥ 𝑐 in 𝐶o [𝑠 . . 𝑒] reduces to computing 𝑡 := rel_min_obj_maj(𝑠, 𝑒, 𝐴o [𝑐] + 1) and
then retrieving 𝑐𝑥 such that 𝐴s [𝑐𝑥] < 𝑡 ≤ 𝐴s [𝑐𝑥 + 1]. Similarly, finding the smallest 𝑐𝑥 ≥ 𝑐 in

𝐶s [𝑠 . . 𝑒] reduces to computing 𝑡 := rel_min_lab_maj(𝐴s [𝑐] + 1, 𝑠, 𝑒) and then retrieving 𝑐𝑥
such that 𝐴o [𝑐𝑥] < 𝑡 ≤ 𝐴o [𝑐𝑥 + 1].
• We do not use forward extensions; we can always proceed backwards in our sub-rings.

• For lonely variables, we need to list all the distinct values in 𝐶o [𝑠 . . 𝑒] or 𝐶s [𝑠 . . 𝑒]. This can
be done with consecutive range-next-value operations, thus retrieving the bindings in order.

Our data structure then solves queries 𝑄 with fixed predicates in time 𝑂 (𝑄∗ · 𝑚 log𝑛). Its
space is

∑
𝑝∈P

(
𝑛𝑝 log2 𝑛𝑝 + 𝑜 (𝑛𝑝 log𝑛𝑝) +𝑂 (𝑈 log𝑛𝑝)

)
bits, where 𝑛𝑝 is the number of triples in

the sub-ring of 𝑝 (the first two terms are for the wavelet trees and the third for the 𝐴∗ arrays).
This is at most 𝑛 log

2
𝑛 + 𝑜 (𝑛 log𝑛) + 𝑂 (𝑃𝑈 log(𝑛/𝑃)) bits. By using bitvectors 𝐷∗ instead of

arrays 𝐴∗, the third term becomes 𝑂 (𝑃𝑈), and by using compressed bitvectors for 𝐷∗, it becomes

𝑂 (𝑛 log(𝑃𝑈 /𝑛)) ⊆ 𝑂 (𝑛 log 𝑃).

5 Experimental results
We now compare our system – running a modified version of LTJ over a ring index – versus

state-of-the-art alternatives in terms of the space used for indexing and the time for evaluating

basic graph patterns. We expect that our system will use less space than non-compact alternatives,

and that it will use less time for evaluating queries than non-wco alternatives, while remaining

competitive with wco alternatives. We further compare compressed and uncompressed variants of

the ring, where we expect the compressed variant to use less space but to have slower query times.

We run two benchmarks over the Wikidata graph [66], which we choose for its scale, diversity,

prominence, datamodel (it has labeled edges) and real-world query logs [11, 40]. The first benchmark

is the Wikidata Graph Pattern Benchmark (WGPB) proposed by Hogan et al. [33] for a sub-graph

of Wikidata, with diverse abstract graph patterns. The goal of this benchmark is to study how

the indexes handle queries with different topologies. The second benchmark evaluates real-world

graph patterns extracted from Wikidata query logs at full scale, and should be a good predictor of

how they systems will perform in real applications.

Further details for reproducing our experiments are given in Appendix B.

5.1 Experimental setup
Our experiments compare various in-memory databases using wco algorithms, as follows.

Ring and C-Ring: LTJ running over our ring index using plain and compressed bitvectors, re-

spectively. The latter uses parameter 𝑏 := 15. The system operates in main memory.

EmptyHeaded: An implementation [1] of a more general algorithm than LTJ, which processes

queries according to a generalized hypertree decomposition (GHD) [29], which produces a tree

where each node is a cyclic subquery, then uses the wco algorithm NPRR [53] to process

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:23

each of these subqueries, and finally joins these intermediate results using Yannakakis’

algorithm [68]. Triples are stored as 6 different tries (all orders) in main memory.

Graphflow: A graph query engine that indexes property graphs using in-memory sorted adjacency

lists and supports hybrid plans blending wco and pairwise joins [42].

Qdag: The only previous succinct wco index [49], based on a quadtree representation of the graph

that runs in main memory.

We disregard other compressed graph indexes [3, 13] that support only single triple patterns or

pairwise joins. For reference we further include results for prominent graph database systems, one

of which (Jena LTJ) implements a wco join algorithm:

Blazegraph: The graph database system [61] hosting the official Wikidata Query Service [40]. We

run the system in triples mode wherein B+-trees index three orders: spo, pos, and osp. The

system supports nested-loop joins and hash joins.

Jena: A reference implementation of the SPARQL standard. We use the TDB version, with B+-trees

indexes in three orders: spo, pos, and osp. The system supports nested-loop joins.

Jena LTJ: An implementation [33] of LTJ on top of Jena TDB. All six different orders on triples

are indexed in B+-trees.

RDF-3X: The reference scheme [51] that indexes a single table of triples in a compressed clustered

B+-tree. The triples are sorted so that those in each B+-tree leaf can be differentially encoded.

RDF3X also manages aggregated indexes sp, ps, so, os, po, and op, which store the number

of occurrences of each pair in the dataset. RDF-3X handles triple patterns by scanning ranges

of triples and uses a query optimizer based on pairwise joins.

Virtuoso: A widely used graph database hosting the public DBpedia endpoint, among others [19].

It provides a column-wise index of quads with an additional graph (g) attribute, with two

full orders (psog, posg) and three partial indexes (so, op, gs) optimized for patterns with

constant predicates. The system supports nested loop joins and hash joins.

We also include two non-wco relational database systems (alongside EmptyHeaded, which is

relational, but is included above as an in-memory wco system):

DuckDB: An in-memory relational database [57] focusing on OLAP workloads using vectorized

execution. We load the graph into a single ternary relation using default indexes (experiments

with further indexes did not improve performance) and multi-threaded execution.

Postgres: A popular relational database. We used version 13 and loaded the integer-encoded graph

into a single ternary relation, adding a primary key B-tree index on spo, and two auxiliary

B-tree indexes on po and os.

We run our experiments on an Intel(R) Xeon(R) CPU E5-2630 at 2.30GHz, with 6 cores, 15 MB

of cache, and 96 GB of RAM. Our code was compiled using g++ with flags -std=c++11, -O3, and
-msse4.2. Systems are configured per vendor recommendations. All queries are run with a timeout

of 10 minutes and a limit of 1000 results (as originally proposed for WGPB [33]).

5.2 Graph patterns benchmark
We first run the Wikidata Graph Pattern Benchmark (WGPB) [33], which uses a Wikidata sub-

graph with 𝑛 = 81,426,573 triples, 19,227,372 subjects, 2,101 predicates, and 37,641,486 objects. The

benchmark provides 17 query patterns of different widths and shapes, including cyclic and acyclic

queries, as shown in Figure 9. Each pattern is instantiated with 50 queries built using random

walks such that the results are nonempty. All predicates are constant, all subjects and objects are

variables, and each variable appears at most once in the same triple pattern. This benchmark is

intended to understand the performance of the indexes on different abstract patterns, more than

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

(a) P2 (b) P3 (c) P4 (d) T2 (e) Ti2 (f) T3 (g) Ti3 (h) J3

(i) T4 (j) Ti4 (k) J4 (l) Tr1 (m) Tr2 (n) S1 (o) S2 (p) S3 (q) S4

Fig. 9. Query patterns for the Wikidata benchmark

extracting general conclusions about their performance on a real-life scenario. Section 5.3 aims to

answer this second question using a larger dataset and more general queries from a real query log.

5.2.1 Indexing and space. There are 4,869,562 identifiers that are both subjects and objects in the

graph, so we use a common alphabet for both of size 𝑆𝑂 := 51,999,296. Our ring index, in either

variant, was built in 6.7 minutes, that is, at a rate of 12.1 million triples per minute. The working

space used for building the index was 2.2 GB, 2–3 times the size of the plain representation of the

triples (which uses 932 MB) and of the largest variant of the resulting ring, 867 MB.

Let us contextualize the space used by the ring index. A simple representation of the dataset

using 32-bit integers for all the values requires 12 bytes per triple. A packed representation requires

⌈log
2
𝑆𝑂⌉ + ⌈log

2
𝑃⌉ + ⌈log

2
𝑆𝑂⌉ = 26 + 12 + 26 = 64 bits, or 8 bytes, per triple. Our ring index with

plain bitvectors privileges time performance, and thus its rank and select structures pose a 30%
space overhead, which adding the bitvectors 𝐷∗ sums up to 11.16 bytes per triple, still less than

the size of the simple representation. Instead, our ring index using compressed bitvectors with

𝑏 := 15 requires 6.68 bytes per triple, less than the packed representation. The reason is related,

but not precisely the same, as those discussed in Section 3.6: the average number of triples per

single combination of 𝑠𝑝 , 𝑝𝑜 , or 𝑜𝑠 is just 1.20 and the average run length is just 1.34. Instead, the

identifier assignment technique mentioned in Section 4.1 leads to having nondecreasing runs of

average length 4.23 in the sequences 𝐶∗.
As explained, our index replaces the representation of the triples, because one can obtain any

desired triple from the index. The time to retrieve any arbitrary triple is 5 microseconds with plain

bitvectors and 20 microseconds with compressed bitvectors.

Table 2 compares the space of the indexes, showing that the uncompressed Ring uses 6.5–162

times less space than non-compact indexes, and 13–162 if we consider only the wco non-compact

indexes. The only index using less space than Ring is Qdag, which is also succinct and wco. C-Ring,

our compressed Ring variant, however, uses 60% of the space of Ring and 75% of the space of Qdag.

Graphflow failed to index the graph both on the experimental machine (with 96 GB of RAM), and

another machine on which it was assigned 680 GiB (∼730 GB) of Java heap space. Reviewing the

source code, Graphflow loads in-memory adjacency lists with 𝑃 · 𝑆𝑂 arrays of 32-bit integers, thus

requiring Ω(𝑃 ·𝑆𝑂) space. Hence it was not feasible to load the Wikidata graph for which 𝑃 = 2,101

and 𝑆𝑂 = 51,999,296. The system rather targets property graphs with few edge labels (unique

predicates) and does not support queries with node identifiers (constant subjects and objects, as

needed for our second set of experiments, described presently).
3
We conclude that Ring and C-Ring

occupy much less space than Graphflow, but comparison of query runtimes was not possible for

the selected experiments due to insufficient RAM.

3
From personal communication with the first author of the Graphflow paper [42].

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:25

Table 2. Index space, counting data plus indexes in bytes per triple, on the Wikidata sub-graph, and average

query time on WGPB data and queries, in milliseconds. Note the logscales in the plot. The asterisk for

EmptyHeaded indicates it cannot limit the output to 1,000 results.

System Space Time

Ring 11.16 14

C-Ring 6.68 52

 10

 100

 1000

 10000

 10 100 1000

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

m
ill

is
e
co

n
d

s)

Index size (bytes/triple)

 EH

 Qdag

 Jena

 Jena-LTJ

 RDF-3X

 Virtuoso
 Blazegraph

 Postgres

 DuckDB

 Ring

 C-Ring

System Space Time

DuckDB 77.89 6,886

EmptyHeaded 1,809.84 118
∗

Graphflow >8,966.90 —

Qdag 8.86 3,141

Blazegraph 99.86 1,709

Jena 72.32 127

Jena LTJ 144.64 59

Postgres 114.93 318

RDF-3X 107.65 182

Virtuoso 104.49 1,135

Given the reduced space obtained by C-Ring, one may regard it as a compressed representation

of the graph, which additionally supports random access to the triples and even wco joins. A server

may use it for, upon a client request, selecting a subgraph of𝐺 and send it in this format for further

querying on the client’s side, without any need of the client decompressing it before querying. We

explored further compressing it by setting 𝑏 := 63, where the space decreases to 5.35 bytes per

triple but the time to extract a tuple raises to 73 microseconds.

5.2.2 Query times. Table 2 gives the average time taken by each index to sequentially evaluate

all the queries. These global results are meant to serve as a rough guide only because the queries

are synthetic and their frequency in real query logs are not uniform (we will consider real query

logs in Section 5.3). With these warnings, we still see that Ring features an excellent performance,

both compared to other algorithms and to prominent database systems.
4
C-Ring is almost 4 times

slower than Ring, but it is the smallest index, using 60% of the Ring space while still running faster

than most other indexes. In particular, it is 60 times faster than Qdag, the next smallest index.
5

This query log is intended for an analysis of query time distributions by query shape, as shown

in Figure 10. For visibility, the plots omit Jena, which was always slower than Jena LTJ, showing

the benefits of wco joins (per Table 2, Jena LTJ is about twice as fast overall as Jena). Postgres and

DuckDB are also omitted as they fall out of the plots in the current scale (despite the average of

Postgres being comparable to the remaining systems).

Ring is the best, or near the best, in all the acyclic queries. Qdag is the best, or near the best,

in all the queries with just three variables and some cyclic ones of four (S1 and S2). Yet, it has
serious problems with the queries of five variables and some acyclic ones of four (J3 and Ti3).
EmptyHeaded is the best, or near the best, in all the cyclic queries and in one acyclic query (Ti2),

4
EmptyHeaded does not support limiting the number of results to 1,000, so it is not fair to compare its 118 milliseconds per

query in Table 2 with the others, which report only up to 1,000 results (and still EmptyHeaded outperforms most of them).

When running Ring without limiting the number of results, we obtain 26 milliseconds per query, still 4.5 times faster than

EmptyHeaded. The absence of limits for EmptyHeaded is not noticeable in Figure 10, because it shows only quantiles and

very few queries produce more than 1,000 results.

5
Qdag does not handle constants in the triple patterns. Since these queries have constant predicates, we use a Qdag to index

one binary relation per predicate. This is done in order to obtain query times; the space we report refers to indexing the

triples. In Section 5.2.3, instead, we report the space they use when indexing each predicate separately.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:26 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

but it has very bad cases for long paths (P4) and some tree-like queries (T3, T4, and J4). While Ring

is clearly slower than the best performers on the cyclic queries, it offers much more stable times

than the bad cases of Qdag and EmptyHeaded, never exceeding 0.05 seconds.

Comparing Ring with Qdag, the latter uses an encoding of the output that grows exponentially

with the number of nodes in the patterns [49], so its decreasing performance on larger queries

is expected. Comparing Ring with EmptyHeaded, we speculate that the advantage of Ring in

acyclic queries is mostly due to the lonely variables optimization. To be more precise, consider

queries in T4, Ti4, and J4. In the case of Ring, once the central variable connecting the other

four variables is eliminated, the remaining variables are subsequently eliminated using the lonely

variables optimization that enumerates their values faster using the wavelet tree functionality

(see Section 4.2). EmptyHeaded rather processes acyclic queries using a version of the traditional

Yannakakis’ algorithm [68], which we speculate is not so well optimized for simple tree-like queries

or long paths that may give rise to multiple lonely variables at the end.
6

DuckDB featured two errors and six additional timeouts of more than 600 seconds; in the results

of Table 2, we exclude the errors and count the timeouts as 600 seconds, giving a lower bound

for its times. When unable to fit intermediate results in main memory; the system spills data to

disk. In two cases, the spill exceeded the free space available on the disk (approx. 600GB). Revising

these queries in more detail, we found that the query planner sometimes chose a join order that

immediately led to massive intermediate results by choosing to first compute object–object joins on

high-degree nodes, such as countries, languages, etc., when much better join orders were available.

C-Ring uses the least space among all the indexes and, like Ring, offers quite consistent times,

being roughly a constant factor slower than Ring for each pattern. Compared with Qdag, the closest

index in terms of space, C-Ring is faster in 8 patterns and slower in 9. As Table 2 shows, however,

C-Ring is much more stable than Qdag in terms of query times across all patterns.

5.2.3 Performance with fixed predicates Since all queries in this benchmark have fixed predicates,

we test the simplified ring of Section 4.4 on the same data and queries. This is intended to show

how the Ring can be optimized for this case; other indexes are not included because we do not

know how they can be similarly simplified. The exception is the Qdag; recall footnote 5.

Table 3 shows the space and average query time of these variants, for the compact indexes. The

Ring for fixed predicates uses about half the space of the general Ring, but it is also about twice as

slow. In fact, it uses about the same space as the C-Ring, though the latter is four times slower than

the Ring. The C-Ring for fixed predicates is even smaller, reaching just 4.90 bytes per triple, which

coincides with the space Qdags obtain when they are built as sets of two-dimensional grids (one

per predicate) instead of a single three-dimensional grid. Qdags, however, are 50 times slower on

average. Figure 15, in Appendix C, shows the detailed times.

5.3 Real-world benchmark at full scale
In order to test these systems for a realistic workload at scale, we perform experiments evaluating

basic graph patterns taken from real-world queries over the full Wikidata graph of 𝑛 = 958,844,164

triples, which occupies 10.7 GB in plain form and 7.9 GB in packed form. In search of challenging

examples, we downloaded queries that gave timeouts from theWikidata query logs [40], and selected

queries with a single basic graph pattern, obtaining 1,300 unique queries. The minimum, mean

and maximum number of triple patterns and variables per query were (1, 2.4, 22) and (1, 2.6, 16),
respectively. Unlike the queries used previously, this set contains constant subjects and objects,

variable predicates, etc. We provide more statistics in Appendix B.3.

6
Just leaving lonely variables to the end, which helps LTJ, would probably harm Yanakakis’ algorithm, as they would not be

used to filter tuples in the parent GHD node.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:27

0

0.02

0.04

0.06

0.08

T
im

e
(s
ec
s)

P2 P3 P4 T2 Ti2

Ring

C-Ring

Qdag

EmptyHeaded

Jena LTJ

RDF3X

Virtuoso

Blazegraph

0

0.02

0.04

0.06

0.08

0.1

T
im

e
(s
ec
s)

T3 Ti3 J3 T4 Ti4 J4

0

0.04

0.08

0.12

0.16

0.2

T
im

e
(s
ec
s)

Tr1 Tr2 S1 S2 S3 S4

Fig. 10. Comparison of query times (in seconds). The boxes span from the 25% to the 75% percentile, with the

median marked inside. The lines extend from minima to maxima, removing outliers

Table 3. Space and average time of the compact indexes, including variants that only support fixed predicates.

System Space Time

Ring 11.16 14

C-Ring 6.68 52

Ring (fixed P) 6.47 27

C-Ring (fixed P) 4.90 60

Qdag (fixed P) 4.90 3,141

 10

 100

 1000

 10

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

m
ill

is
e
co

n
d

s)

Index size (bytes/triple)

 Qdag (fixed P)

 Ring

 C-Ring

 Ring (fixed P)

 C-Ring (fixed P)

We exclude DuckDB because the larger graph does not fit in memory
7
, EmptyHeaded because its

index requires 900 GB and cannot be loaded into our main memory, and Graphflow as we estimate

that it would require terabytes of main memory and does not support constants in arbitrary

positions. We also exclude Qdag because the index does not handle triple patterns with constants

in arbitrary positions as occur in this benchmark.

The graph database systems – Blazegraph, Jena, Jena LTJ, RDF-3X and Virtuoso – may use

secondary storage and work with strings as constants in the queries, graphs, and results (though

7
We also tried DuckDB on a machine with 350GB of RAM, where it succeeded in loading the larger graph, but exhibited

highly variable and unstable behaviour, being killed by the Operating System on the tenth query of the benchmark. We

believe this to be due to choosing join orders that generate massive intermediate results.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:28 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

Table 4. Index space (in bytes per triple) and some statistics on the query times (average and median, in

seconds) on the full Wikidata graph. The last column (TimeOuts) counts the queries taking over 10 minutes.

System Space Avg Med TO

Ring 12.15 2.44 0.011 4

RingS 15.83 2.29 0.018 4

C-Ring 7.29 3.43 0.038 5

C-RingS 11.00 3.25 0.052 5

Blazegraph 90.79 14.93 0.070 24

Jena 95.83 11.16 0.035 18

Jena LTJ 168.84 1.90 0.162 1

Postgres 110.12 6.30 0.139 4

RDF-3X 85.73 8.30 0.126 13

Virtuoso 60.07 4.37 0.050 7

 1

 10

 10 100

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

se
co

n
d
s)

Index size (bytes/triple)

 Jena

 Jena-LTJ

 RDF-3X

 Virtuoso

 Postgres

 Blazegraph

 Ring

 C-Ring
 C-RingS

 RingS

internally they may use dictionary-encoded numeric constants). The other systems – Ring, C-Ring,

DuckDB, EmptyHeaded, Graphflow, and Qdag – work in memory with dictionary-encoded numeric

constants in the queries, graphs, and results. The Postgres system may use secondary storage but

uses dictionary-encoded constants in the queries, data and results.

This difference can be unfair with the systems managing strings, as it may induce additional time

and space overhead. To ensure a fair comparison in all cases, we introduce two new variants of our

structure, RingS and C-RingS, which include a succinct dictionary [41] and thus receives strings

in the queries and returns strings in the results. We use the variant HTFC-rp with sampling 64 [41],

building separate dictionaries for SO and for P. Since this is a 32-bit structure, we cut the dictionary

into lexicographic slices of a fixed number of strings and binary search the right dictionary to

encode a query string into an integer; for decoding we find the dictionary directly with a division.

Note that in these versions the mapping from strings to integers follows the lexicographic order.

The Ring index is built over this graph in 1.43 hours (11.2 million triples per minute) using 23.6

GB of RAM. It occupies 11.6 GB (12.15 bytes per triple) with plain bitvectors, just 8.4% more than

the plain integer data. The dictionary of strings indexes nearly 296 million strings of total size 12.4

GB (more than the triples in plain integer form), in 13.4 minutes using 23.8 GB of working space.

The string space is compressed to 27%, so as to use 3.68 additional bytes per triple, using 144 slices

for SO. Considering the integer triples plus the strings, RingS compresses the raw data to 65%.

Table 4 shows statistics on the index space and query times obtained for our benchmark; using

strings maintains essentially the same times on the Ring and C-Ring (with a somewhat lower

average and larger median than the integer versions).

The systems supporting wco joins (Jena LTJ and the Ring variants) clearly outperform the others,

showing that worst-case optimality makes a noticeable difference on real-life queries.

RingS is smaller than all classical indexes by a factor of 3.8–10.7, has the lowest median by a

factor over 2, and outperforms the non-wco systems, on average, by a factor of 1.9–6.5. Only Jena

LTJ, with the largest index, is 20% faster than RingS on average and has more stable times.

The comparison with Jena LTJ is interesting since it shares with RingS a similar algorithm (LTJ)

and a similar heuristic to choose the variable ordering and treatment of lonely variables. The results

show then that we can reduce the space usage of the structures that support LTJ by a factor over 10,

at the price of a modest increase of 20% in the average query time. In turn, Jena LTJ outperforms

Jena, its non-wco version that shares the same data representation, by an average factor of almost

6, at the price of increasing the space by a factor of 1.8 in order to store the six tries. RingS, then, is

wco, using 6 times less space than Jena, and outperforms it by an average factor of almost 5.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:29

C-RingS, while using 70% of the space of RingS (60% if we disregard the string dictionaries) and

5.5–15.5 times less space than the other indexes, is 40% slower than Ring and 70% slower than Jena

LTJ (which is more than 15 times larger), but still faster than all the other non-wco systems.

6 Quads and higher dimensions
We now look at how our ring index could be extended in the future to handle relations of higher

arity. We first focus on quads, or relations of dimension four, which are commonly used to store

graph databases [18, 31, 32]. As it turns out, we can build rings for quads, but we pay a cost in terms

of space, as now we need to work with two different rings for wco joins (classical schemes would

need 4! = 24 orders). We then describe how our machinery can be extended to deal with arbitrary

dimensions, at the cost of requiring more rings as the dimension grows. We show, however, that

the space cost incurred by ring indexes is orders of magnitude lower than with classical indexes.

6.1 Indexing quads
Just as for triples, let us regard quads (𝑠, 𝑝, 𝑜, 𝑔) as cyclic, and index them using four columns 𝐶s,

𝐶p,𝐶o, and𝐶g, each represented with wavelet trees. More precisely, we start with column𝐶g of the

table spog, then column 𝐶o of table gspo, then column 𝐶p of table ogsp, and finally column 𝐶s of

table pogs. As with triples, we can use functions 𝐹𝑖 to track a tuple across all 4 tables, which allows

us to retrieve the content of any tuple in the original graph.

A problem with this ring is that it is possible that a cyclic quad-pattern has, at a certain moment,

two non-contiguous areas with constants. Precisely, this happens when (only) s and o, or p and g,

are bound. This configuration defeats our strategy to implement the LTJ algorithm in wco time: we

cannot apply Lemma 3.14 directly, which means that the leap operation takes more time because

we need to iterate over elements that may not contribute to the overall answer.

This problem can be circumvented by adding a second ring (thus doubling the space) that indexes

another order, like sopg, where s and o, as well as p and g, are contiguous. This ring then starts

with order sopg and builds new columns 𝐶 ′
g
, 𝐶 ′

p
, 𝐶 ′

o
, and 𝐶 ′

s
. Given the order in which the variables

will be bound, one can determine which of the two rings must be used for each quad-pattern so

that it never has non-contiguous areas of constants. Note that our technique allows that different

quad-patterns of the query use different rings.
8

A second point is that, while our backward extension algorithm (Section 3.4.2) is general and

can be used as-is on quads, our forward extension was described for the case where exactly one

attribute is bound. Over quads, however, we may need to process forwards a quad-pattern where

the bound part has two consecutive elements, for example when binding 𝑥 in (𝑠, 𝑝, ?𝑥, ?𝑦). Consider
that case; all the others are analogous because the quad is cyclic. Say that we want the smallest

𝑐𝑥 ≥ 𝑐 such that (𝑠, 𝑝, 𝑐𝑥 , ?𝑦) occurs in 𝐺 . The solution must then be extended to performing two

restrictions (by 𝑝 and 𝑠) from the interval 𝐶o [𝑐 . .𝑈], and then returning to 𝐶o using 𝐹−1∗ twice.

Concretely, we start from the interval [𝑠𝑜 . .] := [𝐴o [𝑐] + 1 . .], so that 𝐶p [𝑠𝑜 . .] represents the
quads with an object in [𝑐 . .𝑈]. Since p precedes o in our ring with order spog, we restrict for 𝑝 on

𝐶p [𝑠𝑜 . .] using Lemma 3.9 to obtain𝐶s [𝑠𝑝 . .], which represents the quads with predicate 𝑝 followed

by an object in [𝑐 . .𝑈]. Since s precedes p, we now perform a second restriction, for 𝑠 on 𝐶s [𝑠𝑝 . .],
to obtain𝐶g [𝑠𝑠 . .], which represents the quads with subject 𝑠 and predicate 𝑝 followed by an object

in [𝑐 . .𝑈]. Since𝐶g is ordered by spog, the quad represented by𝐶g [𝑠𝑠] contains the smallest object

in [𝑐 . .𝑈] associated with subject 𝑠 and predicate 𝑝 . We find it with 𝑞 := 𝐹−1
p
(𝐹−1

s
(𝑠𝑠)) (Eq. (3)),

which leads us to the position of 𝑐𝑥 in table ogsp, thereafter binary searching for 𝑐𝑥 such that

8
As seen later, we can even choose the variable binding order on the fly, and switch from one ring to the other if necessary.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:30 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

𝐴o [𝑐𝑥] < 𝑞 ≤ 𝐴o [𝑐𝑥 + 1].9 If we want to obtain the range𝐶g [𝑠 ′𝑖 . . 𝑒 ′𝑖] for 𝑠𝑝𝑐𝑥 , we must again apply

two restrictions from the range [𝐴o [𝑐𝑥] + 1 . . 𝐴o [𝑐𝑥 + 1]], just as in Lemma 3.14.

6.2 Indexing higher dimensions
The discussion on quads can be generalized to relations with 𝑑 attributes: provided we can always

choose a ring where the bound variables are contiguous in its order, we can solve joins in wco time.

We can also use any of the rings to extract a tuple in 𝑂 (𝑑 log𝑈) time exactly as in Lemma 3.11,

now iterating over the 𝑑 attributes using 𝐹 𝑗 . Since we can start at any position of the ring, and

moreover we can choose any interpretation of A as [1 . . 𝑑] in Definition 3.1, our algorithm lists

the elements of the 𝑖th tuple of a table sorted by any desired attribute order.

To answer basic graph patterns using Lemma 3.14, at each stage of the computation we maintain

the range of the (cyclically) leftmost bound attribute. We can extend the range backwards to include

the preceding column in𝑂 (log𝑈) time per intersection step, but extending the range forwards takes

us𝑂 (𝑑 log𝑈) time, because we have to navigate from the rightmost to the leftmost bound attribute

for each intersection step, as described for the quads. As there can be 𝑑𝑚 variable positions to

instantiate in the tuple patterns, the time that multiplies𝑄∗ (the AGM bound) is now𝑂 (𝑑2𝑚 log𝑈).
This works for queries that do not repeat variables in the same tuples (i.e., have no equality

selections on attributes of the same relation). If we extend the idea of Section 3.5 to handle variables

appearing multiple times in a tuple, we incur a super-exponential penalty factor on 𝑑 in the query

time (more precisely, a Θ(𝐵𝑑) penalty factor, where 𝐵𝑑 is the 𝑑th Bell number). Such queries are not

typically considered by wco join algorithms in a relational setting. This super-exponential penalty

may be mitigated in practice by covering only those equalities that occur in some data tuple with

repeated elements, and/or more generally accepting non-wco joins in such cases.

We then obtain the following result; the number of rings needed is bounded next.

Theorem 6.1. On a set of 𝑛 tuples in [1 . .𝑈]𝑑 , the ring index solves a basic graph pattern query of

𝑚 tuple patterns with no variables repeated in the same tuple in time 𝑂 (𝑄∗ · 𝑑2𝑚 log𝑈), where 𝑄∗ is
the maximum possible output of such a query on some set of 𝑛 tuples in [1 . .𝑈]𝑑 (the AGM bound).

The working space of the query algorithm is𝑂 (𝑣 + 1) words, where 𝑣 is the number of distinct variables

in the query. The size of the ring index is 𝑑𝑛 log
2
𝑈 +𝑜 (𝑑𝑛 log𝑈) bits times the number of orders it has

to index, which is 𝑂 (2𝑑), and it can retrieve the 𝑖th tuple under any desired order in time 𝑂 (𝑑 log𝑈).

For simplicity, we are focusing on indexing a single relation of dimension 𝑑 . A database contains

in general various relations with different numbers 𝑑 of attributes. Our scheme extends naturally

to indexing each relation separately, with the number of rings needed for each, and to combine

them freely in join queries. At query time, instead of maintaining a column range per triple in the

basic graph pattern as in Section 3.3, we maintain a column range per relation involved in the join

(one per mention if the relation is mentioned several times).

6.2.1 On the number of rings needed. The remaining question is how many orders, or rings, must

we build so that, independently of the variable elimination order, all attributes that have already

been bound in the tuple patterns are contiguous in some order. We have shown that one order

suffices for 𝑑 = 3, but we need two for 𝑑 = 4. How many indexes are needed to support LTJ in

general dimension 𝑑? We answer this question in three parts. First, we discuss the number needed

when using traditional indexes supporting prefix-lookups, which we denote as flat indexes. We

define the important concept of trie switching, which reduces the number of traditional indexes

from 𝑑! to 𝑂 (2𝑑𝑑1/2) (and to 𝑂 (2𝑑) in Section 7.2.1), and is thus of independent interest. We then

9
As discussed in Section 4.1, we can also find 𝑞 in backward direction using Eq. (2), 𝑞 := 𝐹o (𝐹g (𝑠𝑠)) . This can be faster

because 𝐹−1∗ uses operation select, which is slower than rank in practice. In general, one can choose the cheapest path.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:31

turn to cyclic indexes, starting with the unidirectional version and then continuing with our ring

index. We show that the number of cyclic indexes needed to support LTJ are between Ω(2𝑑𝑑−1/2)
and 𝑂 (2𝑑), and that the actual numbers are much lower than the number of flat indexes needed.

Flat indexes and trie switching, variants W and TW. A classical index (called flat in Figure 2) on

𝑑 columns needs to store, in principle, all the𝑤 (𝑑) := 𝑑! possible orders to support LTJ-like wco

algorithms. In our discussion, we refer to these indexes as class W (for Worst-case-optimal).

However, for 𝑑 ≥ 4, we can reduce the number of classic indexes by reordering the variables we

have already bound. For example, when indexing quads (𝑠, 𝑝, 𝑜, 𝑔), this avoids storing a trie
10
with

the order gspo if we have tries for gsop and sgpo: to process a tuple in the order gspo, we descend

by some 𝑔 in the trie of gsop to retrieve 𝑠 , and then by permuting 𝑔𝑠 to 𝑠𝑔 we can now switch to

the trie of sgpo in order to retrieve 𝑝 , and then continue onto 𝑜 , thus emulating gspo order.

We call TW the class of indexes using trie switching. TW indexes need to store at least (𝑑 − 𝑙)
(
𝑑
𝑙

)
orders for any 0 ≤ 𝑙 < 𝑑 , because we may have any subset of 𝑙 variables already bound to constants

and need to intersect using any of the (𝑑 − 𝑙) remaining variables. Each such arrangement requires

storing a different order. This formula is maximized for 𝑙 = ⌊𝑑/2⌋, yielding a lower bound of

𝑡𝑤 (𝑑) :=

⌈
𝑑

2

⌉ (
𝑑

⌊𝑑/2⌋

)
orders. We now prove that 𝑡𝑤 (𝑑) is also an upper bound by building a sufficient set of 𝑡𝑤 (𝑑) orders.
The key idea is that the strings that suffice to handle all the cases in level 𝑙 can be built in a such a

way that their prefixes also handle the lower levels. This motivates the next definition and lemma.

Definition 6.2. A set of strings 𝑆 [1 . . 𝑙 +1] is (𝑙, 𝑑)-complete if, for every 0 ≤ 𝑚 ≤ 𝑙 , every possible

subset of𝑚 values in [1 . . 𝑑], in some order, followed by any other final number in [1 . . 𝑑], is a
prefix 𝑆 [1 . .𝑚 + 1] of some string 𝑆 in the set. A (𝑑 − 1, 𝑑)-complete set is called simply 𝑑-complete.

Lemma 6.3. There exists a 𝑑-complete set of 𝑡𝑤 (𝑑) strings.

Proof. We proceed by induction on 𝑙 , building for every 0 ≤ 𝑙 < 𝑑 an (𝑙, 𝑑)-complete set. For

𝑙 ≤ 𝑑/2, this set will have (𝑑 − 𝑙)
(
𝑑
𝑙

)
≤ 𝑡𝑤 (𝑑) strings, and 𝑡𝑤 (𝑑) strings will suffice for larger 𝑙 .

For 𝑙 = 0, we have the 𝑑 distinct strings of length 1, one per final number. Now, assume we have

an (𝑙, 𝑑)-complete set of size (𝑑 − 𝑙)
(
𝑑
𝑙

)
. Those strings list all the possible

(
𝑑
𝑙+1

)
subsets of 𝑙 + 1 values,

each appearing by symmetry (𝑑 − 𝑙)
(
𝑑
𝑙

)
/
(
𝑑
𝑙+1

)
= 𝑙 + 1 times. To produce an (𝑙 + 1, 𝑑)-complete set,

we extend each of the

(
𝑑
𝑙+1

)
different subsets by each of the 𝑑 − 𝑙 − 1 possible final numbers. Since

we already have 𝑙 + 1 strings for each such subset, we can extend those with 𝑙 + 1 of the 𝑑 − 𝑙 − 1
possible final numbers. If 𝑑 − 𝑙 − 1 > 𝑙 + 1, however, we will have to create new copies of some of

those 𝑙 + 1 strings to extend them with the remaining possible final numbers. At the end, we have

a set of (𝑑 − 𝑙 − 1)
(
𝑑
𝑙+1

)
strings 𝑆 [1 . . 𝑙 + 2]. This set is (𝑙 + 1, 𝑑)-complete because it satisfies the

definition for𝑚 = 𝑙 − 1 and was built by extending a set of prefixes that was already (𝑙, 𝑑)-complete.

Once 𝑑 − 𝑙 − 1 ≤ 𝑙 + 1, that is, 𝑙 + 1 ≥ 𝑑/2, we create no new strings since there will be enough of

length 𝑙 + 1 to extend them to length 𝑙 + 2 in all the possible ways. The maximum size then occurs

when 𝑙 = ⌈𝑑/2⌉ − 1 and our set has (𝑑 − ⌈𝑑/2⌉ + 1)
(

𝑑
⌈𝑑/2⌉−1

)
= 𝑡𝑤 (𝑑) strings. □

Trie switching can also be used with the ring without needing extra space: if we find a range

for some contiguously bound variables in one ring, we search another ring with the same variable

values contiguously bound in another desired order using Lemma 3.14. Since we have to bind the

(up to 𝑑) variables again in the new index, each such change of index costs 𝑂 (𝑑 log𝑈) time, which

10
We speak of concrete tries for simplicity, though the actual (classic) implementation may use other structures, like B-trees.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:32 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

is within the time complexity given in Theorem 6.1. (In fact, our description in Section 3.4 assumes

that we search again for the column range of the bound part of the triple patterns upon each new

binding; only in the engineering done in Section 4.2 we remember the column range resulting

from the current bindings in order to reduce the time in practice.) In the following discussion we

analyze both versions of each new index scheme: with and without trie switching.

Cyclic indexes, variants CW and CTW. On indexes supporting cyclic tuples but not trie switching

(which we call CW indexes), exactly 𝑐𝑤 (𝑑) := (𝑑 − 1)! orders are needed. This is because the 𝑑!
permutations can be divided into (𝑑 − 1)! equivalence classes of size 𝑑 , where two permutations Π
andΠ′ are equivalent if one is a cyclic rotation of the other, that is,Π[1 . . 𝑑] = Π′[𝑖 . . 𝑑] ·Π′[1 . . 𝑖−1]
for some 𝑖 . Exactly one index per equivalence class is then needed.

As explained, we can enable trie switching on cyclic indexes, leading to what we call CTW

indexes. We call 𝑐𝑡𝑤 (𝑑) the number of CTW indexes needed to implement LTJ. Seen as a lower

bound for trie switching, 𝑡𝑤 (𝑑) is the number of prefixes of length ⌈𝑑/2⌉ that cover every possible

subset of ⌈𝑑/2⌉ − 1 positions followed by any other position. Since each position in the cycle is

the starting point of a sequence of ⌈𝑑/2⌉ elements, we need at least ⌈𝑡𝑤 (𝑑)/𝑑⌉ ≤ 𝑐𝑡𝑤 (𝑑) cycles to
cover all the needed prefixes. For example, with spog we obtain {𝑠, 𝑝} with variable 𝑜 , {𝑝, 𝑜} with
variable 𝑔, {𝑜, 𝑔} with variable 𝑠 , and {𝑔, 𝑠} with variable 𝑝 .

We now prove two upper bounds for 𝑐𝑡𝑤 (𝑑). The first one, useful for small 𝑑 values, shows that

CTW cuts the number of orders required for TW at least by half, because 𝑡𝑤 (𝑑 − 1) ≤ 𝑡𝑤 (𝑑)/2.

Lemma 6.4. It holds that 𝑐𝑡𝑤 (𝑑) ≤ 𝑡𝑤 (𝑑 − 1) = ⌊𝑑
2
⌋
(
𝑑−1
⌊𝑑/2⌋

)
.

Proof. Consider a (𝑑 − 1)-complete set of strings 𝑇𝑊 (Lemma 6.3) forming a TW index for the

symbols [1 . . 𝑑 − 1]. Let dom(𝑆) be the set of symbols in string 𝑆 , and let 𝑇𝑊𝑆 ⊆ 𝑇𝑊 be the set of

strings in 𝑇𝑊 that are prefixed with any 𝑆 ′ such that dom(𝑆 ′) = dom(𝑆).
We build a (possibly suboptimal) CTW index for the values [1 . . 𝑑] by simply appending 𝑑 to each

of the strings in 𝑇𝑊 ; this immediately implies the lemma. To see that this index is valid, consider a

variable instantiation order𝑋 ·𝑑 ·𝑌 (i.e., a permutation of the dimensions), with 𝑥 = |𝑋 | and 𝑦 = |𝑌 |.
Processing the partial queries 𝑋 (resp., 𝑌) on the set 𝑇𝑊 yields some string 𝑆𝑋 ∈ 𝑇𝑊𝑋 (resp.,

𝑆𝑌 ∈ 𝑇𝑊𝑌) such that dom(𝑆𝑋 [1 . . 𝑥]) = dom(𝑋) (resp., dom(𝑆𝑌 [1 . . 𝑦]) = dom(𝑌)). Thus, we can
process 𝑋 in the CWT index in the same way, ending on (𝑆𝑋 · 𝑑) [1 . . 𝑥]. Since dom(𝑆𝑌 [1 . . 𝑦]) =
dom(𝑌), it follows that dom(𝑆𝑌 [𝑦 + 1, 𝑑 − 1]) = dom(𝑋). In the CWT index, we can then, after

processing 𝑋 , switch from (𝑆𝑋 · 𝑑) [1 . . 𝑥] to (𝑆𝑌 · 𝑑) [𝑦 + 1 . . 𝑑 − 1]. We can now extend that match

with variable 𝑑 = (𝑆𝑌 · 𝑑) [𝑑] and finally, by circularity, process 𝑌 at (𝑆𝑌 · 𝑑) [1 . . 𝑦]. □

We now derive an upper bound for 𝑐𝑡𝑤 (𝑑) that, though weaker than the preceding one for

𝑑 ≤ 13, is asymptotically stronger.

Definition 6.5. Let a set of strings 𝑆 [1 . . 𝑙] be (𝑙, 𝑑)-sufficient if, for every 0 ≤ 𝑚 ≤ 𝑙 , every

possible subset of𝑚 values in [1 . . 𝑑], in some order, is a suffix 𝑆 [𝑙 −𝑚 + 1 . . 𝑙] of some string 𝑆 in

the set. A (𝑑,𝑑)-sufficient set is simply called 𝑑-sufficient.

Lemma 6.6. There exists a 𝑑-sufficient set of 𝑠𝑤 (𝑑) strings, where

𝑠𝑤 (𝑑) :=
(

𝑑

⌊𝑑/2⌋

)
.

Proof. We proceed by induction on 𝑙 , building for every 0 ≤ 𝑙 ≤ 𝑑 an (𝑙, 𝑑)-sufficient set. For

𝑙 ≤ 𝑑/2, this set will have
(
𝑑
𝑙

)
≤ 𝑠𝑤 (𝑑) strings, and 𝑠𝑤 (𝑑) strings will suffice for larger 𝑙 .

For 𝑙 = 0, we just have the empty string. Now, assume we have an (𝑙, 𝑑)-sufficient set of size

(
𝑑
𝑙

)
.

To produce an (𝑙 + 1, 𝑑)-sufficient set, we need to create

(
𝑑
𝑙+1

)
strings, which is more than those

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:33

we have as long as 𝑑 − 𝑙 > 𝑙 + 1. Each string of our (𝑙, 𝑑)-sufficient set is extended by prepending

some element it does not contain, and the remaining

(
𝑑
𝑙+1

)
−
(
𝑑
𝑙

)
subsets are obtained by duplicating

some string of the (𝑙, 𝑑)-sufficient set and prepending a new element to it. When 𝑙 = ⌊𝑑/2⌋, our set
stops growing because we always have enough strings in our (𝑙, 𝑑)-sufficient set to prepend all the

distinct elements needed to form an (𝑙 + 1, 𝑑)-sufficient set. □

Lemma 6.7. It holds that 𝑐𝑡𝑤 (𝑑) ≤ 𝑠𝑤 (⌊𝑑/2⌋) · 𝑡𝑤 (⌈𝑑/2⌉) + 𝑠𝑤 (⌈𝑑/2⌉) · 𝑡𝑤 (⌊𝑑/2⌋).

Proof. Let 𝑐 := ⌊𝑑/2⌋, 𝑆𝑊s (resp.,𝑇𝑊s) be a 𝑐-sufficient (resp., 𝑐-complete) set of strings, and 𝑆𝑊l

(resp., 𝑇𝑊l) be a (𝑑 − 𝑐)-sufficient (resp., (𝑑 − 𝑐)-complete) set of strings where we have summed 𝑐

to every symbol (the subscripts s and l stand for small and large symbols). We then build a CTW

index by concatenating every string in 𝑆𝑊l with every string in 𝑇𝑊s, and every string in 𝑆𝑊s with

every string in 𝑇𝑊l. The size of the CTW index is then as stated.

To see this is a valid index, consider any instantiation order𝑋 [1 . . 𝑑] (i.e., a permutation in [1 . . 𝑑])
we process left to right. Let 𝑋s (𝑝) (resp., 𝑋l (𝑝)) be the subsequence of 𝑋 [1 . . 𝑝] formed by symbols

in [1 . . 𝑐] (resp., [𝑐 + 1 . . 𝑑]). Let dom(𝑆) be the set of symbols in 𝑆 . A consequence of 𝑆𝑊s being 𝑐-

sufficient and 𝑆𝑊l being analogously obtained from a (𝑑−𝑐)-sufficient set is that, if we have processed

𝑋 [1 . . 𝑝], we always have some string 𝑆s ∈ 𝑆𝑊s such that dom(𝑆s [𝑐−|𝑋s (𝑝) |+1 . . 𝑐]) = dom(𝑋s (𝑝)),
and some string 𝑆l ∈ 𝑆𝑊l such that dom(𝑆l [𝑑 − 𝑐 − |𝑋l (𝑝) | + 1 . . 𝑑 − 𝑐]) = dom(𝑋l (𝑝)).
We start, for 𝑝 = 0, with any 𝑆s ∈ 𝑆𝑊s and 𝑆l ∈ 𝑆𝑊l. After processing 𝑋 [1 . . 𝑝], we consider

𝑋 [𝑝 + 1]. If 𝑋 [𝑝 + 1] ∈ [1 . . 𝑐], then, because𝑇𝑊s is 𝑐-complete, there is a string 𝑆 ∈ 𝑇𝑊s such that

dom(𝑆 [1 . . |𝑋s (𝑝) |]) = dom(𝑋s (𝑝)) and 𝑆 [𝑝 + 1] = 𝑋 [𝑝 + 1]. Also, by construction, 𝑆l · 𝑆 is in our

CWT index. If, instead, 𝑋 [𝑝 + 1] ∈ [𝑐 + 1 . . 𝑑], then, because 𝑇𝑊l is built from a (𝑑 − 𝑐)-complete

set, there is a string 𝑆 ∈ 𝑇𝑊l such that dom(𝑆 [1 . . |𝑋l (𝑝) |]) = dom(𝑋l (𝑝)) and 𝑆 [𝑝 + 1] = 𝑋 [𝑝 + 1],
and by construction 𝑆s · 𝑆 is in the CWT index. Thus, we can always maintain a contiguous range

for 𝑋 [1 . . 𝑝 + 1] in some of the CWT strings by using trie switching and circularity. □

By Stirling’s approximation, 𝑠𝑤 (𝑑) = 2
𝑑+1/2/

√
𝜋𝑑 (1 +𝑂 (𝑑−1/2)) and 𝑡𝑤 (𝑑) = 2

𝑑−1/2√𝑑/𝜋 (1 +
𝑂 (𝑑−1/2)); thus 𝑡𝑤 (𝑑) ∈ Θ(2𝑑𝑑1/2) and 𝑐𝑤𝑡 (𝑑) ≤ 2

𝑑/𝜋 (1 + 𝑂 (𝑑−1/2)) ∈ 𝑂 (2𝑑). This shows that
circular indexes are asymptotically smaller than flat indexes, even when trie switching is used.

On the other hand, the lower bound 𝑐𝑡𝑤 (𝑑) ≥ ⌈𝑡𝑤 (𝑑)/𝑑⌉ ∈ Ω(2𝑑𝑑−1/2), yields a Θ(𝑑1/2) factor of
uncertainty about the size of circular indexes with trie switching.

Bidirectional indexes, variants CBW and CBTW. Consider a cyclic index with no trie switching,

which we call CBW; let 𝑐𝑏𝑤 (𝑑) be the number of cycles of this kind we need. In the unidirectional

case (CW), recall that 𝑐𝑤 (𝑑) = (𝑑−1)!. In the bidirectional case, we can remove CW indexes that are

the reverse of others (e.g., spog and gops). If 𝑑 > 2, this yields the upper bound 𝑐𝑏𝑤 (𝑑) ≤ 𝑐𝑤 (𝑑)/2,
because every cycle in the CW index appears in reverse order as well, and that is different from

the original order and from any other cycle. Thus, bidirectionality cuts the number of indexes by

at least half (for 𝑑 > 2) if trie switching is not enabled. In fact, we may be able to cut the number

of indexes further. From the starting point in the cycle, under CBW we can extend the range of

bound values left or right, in any of the 2
𝑑−2

sequences of choices, until a single position is left.

The sequence of values included in the range, for each combination, covers a new permutation.

For example, if from spog we start at position 1, we obtain sgop with left-left, sgpo with left-right,

spgo with right-left, and spog with right-right. Thus, each index can, at best, cover 𝑑2𝑑−2 different
permutations, and thus a lower bound is 𝑐𝑏𝑤 (𝑑) ≥ ⌈(𝑑 − 1)!/2𝑑−2⌉ orders.

Adding bidirectionality to a cyclic index with trie switching (which we call CBTW), an immediate

lower bound is 𝑐𝑏𝑡𝑤 (𝑑) ≥ ⌈𝑐𝑡𝑤 (𝑑)/2⌉, because any CBTW index storing 𝑟 orders can be converted

into a CTW index storing 2𝑟 orders, by storing each order and its reverse. We can always switch to

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:34 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

the reverse order whenever the CBTW index extends the range backwards, so that the CTW index

always extends it forwards. We can, however, derive a slightly better lower bound due to rounding.

Lemma 6.8. A CBTW index must index at least the following number of orders:

𝑐𝑏𝑡𝑤 (𝑑) ≥ max

{⌈(
𝑑

𝑙

)
⌈(𝑑 − 𝑙)/2⌉

𝑑

⌉
, 1 ≤ 𝑙 < 𝑑

}
.

Proof. Every position of every cycle is the starting point of a segment of length 𝑙 . The segment

can be extended in both directions by a new variable, thus each subset of 𝑙 variables needs to

appear ⌈(𝑑 − 𝑙)/2⌉ times. Since there are

(
𝑑
𝑙

)
distinct subsets, the index needs to cover

(
𝑑
𝑙

)
⌈(𝑑 − 𝑙)/2⌉

starting points. Since each cycle provides 𝑑 starting points, the lower bound for each value of 𝑙

follows. For example, with spog we cover {𝑠, 𝑝} with variables 𝑜 or 𝑔, {𝑝, 𝑜} with variables 𝑔 or 𝑠 ,

{𝑜, 𝑔} with variables 𝑠 or 𝑝 , and {𝑔, 𝑠} with variables 𝑜 or 𝑝 ; so we cover 8 of the

(
4

2

)
· 2 = 12 needed

combinations and thus we need at least two cycles. (Due to rounding effects, the formula is not

always maximized when 𝑙 = ⌊𝑑/2⌋.) □

Since ⌈𝑐𝑡𝑤 (𝑑)/2⌉ ≤ 𝑐𝑏𝑡𝑤 (𝑑) ≤ 𝑐𝑡𝑤 (𝑑), 𝑐𝑏𝑡𝑤 (𝑑) is asymptotically equal to 𝑐𝑡𝑤 (𝑑). This con-
cludes the proof of the following theorem.

Theorem 6.9. The following bounds hold on the number of orders that must be indexed by various

classes of indexes.

• 𝑤 (𝑑) = 𝑑! and 𝑐𝑤 (𝑑) = (𝑑 − 1)!.
• ⌈𝑐𝑤 (𝑑)/2𝑑−2⌉ ≤ 𝑐𝑏𝑤 (𝑑) ≤ 𝑐𝑤 (𝑑)/2 for 𝑑 > 2.

• 𝑡𝑤 (𝑑) = ⌈𝑑
2
⌉ · 𝑠𝑤 (𝑑) ∈ Θ(2𝑑𝑑1/2).

• ⌈𝑡𝑤 (𝑑)/𝑑⌉ ≤ 𝑐𝑡𝑤 (𝑑) ≤ 𝑡𝑤 (𝑑 − 1), so 𝑐𝑡𝑤 (𝑑) ∈ Ω(2𝑑𝑑−1/2).
• 𝑐𝑡𝑤 (𝑑) ≤ 𝑠𝑤 (⌊𝑑/2⌋) · 𝑡𝑤 (⌈𝑑/2⌉) + 𝑠𝑤 (⌈𝑑/2⌉) · 𝑡𝑤 (⌊𝑑/2⌋) ∈ 𝑂 (2𝑑).
• 𝑐𝑏𝑡𝑤 (𝑑) ≥ max{⌈

(
𝑑
𝑙

) ⌈(𝑑−𝑙)/2⌉
𝑑

, 1 ≤ 𝑙 < 𝑑⌉}.
• ⌈𝑐𝑡𝑤 (𝑑)/2⌉ ≤ 𝑐𝑏𝑡𝑤 (𝑑) ≤ 𝑐𝑡𝑤 (𝑑), so 𝑐𝑏𝑡𝑤 (𝑑) ∈ Θ(𝑐𝑡𝑤 (𝑑)).

Thus, the ring index with trie switching must store between Ω(2𝑑𝑑−1/2) and𝑂 (2𝑑) orders. A traditional

(i.e., non-cyclic) index, even with trie switching, must store Θ(2𝑑𝑑1/2) orders.

The only structure supporting wco joins while using fewer orders are Qdags [49], which need

to index only one order. In exchange, their query time is 𝑂 (𝑄∗ · 2𝑑𝑚 log𝑈) instead of the 𝑂 (𝑄∗ ·
𝑑2𝑚 log𝑈) time we obtain with rings.

The actual numbers. Although we have constructive proofs to build indexes of every kind within

guaranteed upper bounds, we ran exhaustive searches to find the exact number of orders that

suffice for running wco algorithms in each case, for 𝑑 ≤ 8. When the search space was too large, we

resorted to approximation algorithms for set cover and gradient descent. Table 5 shows the number

of orders that must be stored to implement wco algorithms (W), if we support cyclic tuples (C),

bidirectionality (B), and trie switching (T). Our ring index then corresponds to CBW, and to CBTW

if we use trie switching. A cyclic unidirectional index corresponds to CW and CTW. A classical flat

index corresponds to W, or to TW with trie switching. The numbers verified our exact formulas for

W, TW, and CW. Instead, there is a gap between our lower bounds for CTW, CBW, and CBTW, and

the approximations we obtained for the larger values of 𝑑 . The approximations are always much

smaller than our upper bounds, and closer to the lower bounds.

Per Table 5, trie switching slashes the number of required orders in flat indexes by orders of

magnitude, but the actual number of indexes is still unfeasible for, say, 𝑑 > 4. Adding circularity

and bidirectionality further reduces the number of trie-switching indexes by another order of

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:35

Table 5. Number of orders that must be indexed to support wco algorithms depending on the index capabilities

𝑑
Flat Cyclic Ring

W TW CW CTW CBW CBTW

2 2 2 1 1 1 1

3 6 6 2 2 1 1

4 24 12 6 4 2 2

5 120 30 24 8 5 5

6 720 60 120 [10,12] 10 7

7 5040 140 720 [20,24] [23,37] [10,12]

8 40320 280 5040 [35,50] [79,168] [21,25]

magnitude. This enables the use of wco algorithms on dimensions that would be unfeasible with

classical approaches, even with trie switching. We provide the rings for these cases in Appendix D.

6.2.2 Finding the right index. With an exponential number of orders indexed, how to find the

proper ring to instantiate the next variable is an issue. We can do this in constant time by building a

table of 2
𝑑 · 𝑑 cells which, given a subset of tuple positions already instantiated and a new position

to instantiate, gives the indexed order that must be used next. To build this table for CBTW, for

example, we take every indexed order 𝑆 and, for every 𝑆 [𝑖 . . 𝑗] with 𝑖 ≠ 𝑗 (regarded as cyclic, i.e., 𝑖

can be larger than 𝑗), makes the table point to 𝑆 [𝑖 . . 𝑗] at the cells with subset dom(𝑆 [𝑖 . . 𝑗]) and
next positions to instantiate 𝑆 [𝑖 − 1] or 𝑆 [𝑗 + 1]. The space of this structure is at most 𝑂 (𝑑3/2) per
order indexed (because 𝑐𝑏𝑡𝑤 (𝑑) ∈ Ω(2𝑑𝑑−1/2)) and is built in time𝑂 (𝑑2) per order indexed, that is,
at most𝑂 (2𝑑𝑑2). This space and construction time are negligible compared to the rings themselves.

7 From rings to order graphs
Our rings for 𝑑 dimensions are obtained in Section 3 by choosing an attribute order Π and re-sorting

it repeatedly by the 𝑑th attribute until returning to Π. The set of last columns of all the re-sorted

tables forms the ring index. In Section 6, when one ring was not sufficient (i.e., for 𝑑 > 3), we

used various orders, creating one ring per order. The re-sorting concept, however, is not limited to

choosing the last attribute. In the general case, we can define the concept of an order graph.

Definition 7.1. An order graph of dimension 𝑑 is a labeled directed graph G(V, E) whereV is a

subset of all the 𝑑! possible orders, and an edge from node Π to node Π′, labeled 𝑗 ∈ [1 . . 𝑑], can
exist only if Π′ is obtained from Π by moving value 𝑗 to the front.

As an example for 𝑑 = 4, if Π = 2143, Π′ = 1243, then an order graph may have a labeled edge

2143

1−→ 1243. In this view, a ring corresponds to an order graph with 𝑑 edges forming a directed

cycle, where the label of the edge leaving from each node Π is labeled Π(𝑑). An index with several

rings corresponds to several disjoint cycles of length 𝑑 . We are interested in complete order graphs,

which are those that suffice to run LTJ in wco time.

Definition 7.2. An order graph G of dimension 𝑑 is complete if, for any subset 𝑆 ⊊ {1, . . . , 𝑑} and
any 𝑥 ∈ [1 . . 𝑑] \ 𝑆 , there exists a directed path of length |𝑆 | + 1 in G whose labels contain exactly

the elements of 𝑆 ∪ {𝑥} (in some order), with the one labeled 𝑥 starting or ending the path.

From the discussion of the previous section, it follows that trie switching makes it possible to

run LTJ in wco time on the columns corresponding to complete order graphs.

Definition 7.3. Consider a complete order graph G(V, E) of dimension 𝑑 . Then, the order index

of G is formed by |E | columns, with a column 𝐶Π
𝑗 for each edge Π

𝑗
−→ Π′ in G. This corresponds to

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:36 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

the column of the attribute 𝑗 in Π, that is, the Π−1 (𝑗)th column of the table with order Π (where Π−1

is the inverse of the permutation Π). The order index also includes the global cumulative frequency

arrays 𝐴 𝑗 for each attribute 𝑗 ∈ [1 . . 𝑑] (the arrays 𝐴 𝑗 depend only on 𝑗 and not on Π). We remark

that, given Π, 𝑗 determines Π′ and vice versa.

We can extract tuples from order indexes in time𝑂 (𝑑 log𝑈), like with the ring. By definition, any

complete order graph must have a path of 𝑑 edges labeled with a permutation of [1 . . 𝑑] since any
subset 𝑆 ⊊ {1, . . . , 𝑑} of size 𝑑−1must extend to the remaining variable, forwards or backwards. Let

this path go from nodes Π to Π′ in G. We can then retrieve the values of the 𝑖th tuple in the order

of Π as follows. We start from node Π, and use 𝐹 𝑗 (·) to track the position 𝑖 across the successive

columns towards Π′, while retrieving the values from the corresponding column positions.

We can also use order indexes to answer pattern queries, thereby generalizing Theorem 6.1.

Theorem 7.4. An order index built on the order graph G(V, E) of a table R with 𝑛 tuples and 𝑑

attributes in [1 . .𝑈] can use |E |𝑛 log
2
𝑈 + 𝑜 (|E |𝑛 log𝑈) bits of space and solve queries 𝑄 of𝑚 tuple

patterns in time 𝑂 (𝑄∗ · 𝑑2𝑚 log𝑈), where 𝑄∗ is the AGM bound of query 𝑄 on R.

Proof. We will mimic Algorithm 1. Each time we have a partially bound tuple pattern 𝑡𝑖 and

want to further bind another variable 𝑥 to the smallest value 𝑐𝑥 ≥ 𝑐 , we will take a path from

Π to Π′ in the order graph G of our index, whose labels ℓ1, . . . , ℓ𝑘 correspond to the 𝑘 bound

attributes in 𝑡𝑖 in some order, and that is preceded or followed by 𝑥 . Let 𝐶1, . . . ,𝐶𝑘 be the index

columns corresponding to the path from Π to Π′. We use the natural generalization of the backward

and forward extensions given in Sections 3.4.2 and 6. If the edge labeled 𝑥 follows the path, we

start from the full range 𝐶1 [1 . . 𝑛], perform 𝑘 restrictions on columns 𝐶1, . . . ,𝐶𝑘 , and end with a

range-next-value with value 𝑐 on the resulting range of column 𝐶Π′
𝑥 , as in the backward extension.

We then obtain the smallest value 𝑐𝑥 ≥ 𝑐 with which 𝑡𝑖 can bind 𝑥 . Instead, if the edge labeled 𝑥

precedes the path, we use the forward extension. We start from𝐶1 [𝐴𝑥 [𝑐] +1 . .] (note the order of Π
starts with 𝑥), perform the restrictions on𝐶2, . . . ,𝐶𝑘 , choose the first value in the resulting range of

𝐶𝑘 , and trace it back to 𝐶𝑘−1, . . . ,𝐶1 using 𝐹
−1
∗ (Eq. (3)), to finally obtain the desired value 𝑐𝑥 ≥ 𝑐 by

computing the range𝐴𝑥 [𝑐𝑥 +1 . . 𝑐𝑥 +1] that contains the retrieved value in𝐶1. This takes𝑂 (𝑑 log𝑈)
time per occurrence of each bound variable in the query, which adds up to 𝑂 (𝑑2𝑚 log𝑈) over all
the triple patterns, and to 𝑂 (𝑄∗ · 𝑑2𝑚 log𝑈) overall, counting all the possible instantiations. □

We have assumed we know the path from Π to Π′ corresponding to each subset 𝑆 and new

variable 𝑥 . Analogously to Section 6.2.2, this can be precomputed in a table of size 𝑂 (2𝑑𝑑) that, for
each 𝑆 and 𝑥 , stores one suitable path, for a total space of 𝑂 (2𝑑𝑑2). This table is precomputed by

traversing all the paths of G of length up to 𝑑 and filling the corresponding cells.

We are also assuming, for simplicity, that every attribute of the relation is queryable, that is, it

can be bound to constants in queries. In practice, there may only be 𝑑 ′ < 𝑑 queryable attributes. In

this case we build the order index for just those attributes, which has exponential size on 𝑑 ′ only. In
order to recover the complete tuples, we choose a path 𝑣0, . . . , 𝑣𝑑′ of the order graph labeled by the

𝑑 ′ queryable attributes, and create an additional path from 𝑣𝑑′ with the remaining 𝑑 − 𝑑 ′ attributes,
so that their values can be retrieved from the columns associated with the 𝑑 − 𝑑 ′ path edges.

7.1 Types and sizes of order indexes
An order index from graph G(V, E) requires |E |𝑛 log

2
𝑈 + 𝑜 (|E |𝑛 log𝑈) bits, that is, proportional

to the number of edges in the graph because it stores one column per edge
11
. Such an order index is

11
We must add𝑂 (𝑑𝑈 log𝑛) for the arrays 𝐴∗ or𝑂 (𝑑 (𝑈 + 𝑛)) for the bitvectors 𝐷∗, of which we store one per attribute.

Since𝑈 ≤ 𝑑𝑛, however, this is𝑂 (𝑑2𝑛) , and since we will soon see that |E | ∈ Ω (2𝑑𝑑1/2) , this term is in 𝑜 (|E |𝑛 log𝑈) .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:37

1432

2143

3214

4321

2

3

1

4

1324

2
2431

1

3142

3

1

1243

2
1

2

1342

2134

4

4213
3

3421

4

4132

3
3214

1

1423

2341

1

1324
4

4132

2

2413
3

3241

1

1432
2

2143

3

3214
4

13422

2134

3

3214

4

4321

1 1432 2

2143

4

4213

3

3421

1

2
1

2

1

1

1342

2134

4

4213
3

3421 2341

1234

1423
3

3142

2

2134

4

4213

1

3
3421

1342

1

3

4321

1342
2

2134

4

4213

3421

13422

2134

3

3214

4

4321

4

3

1

2 2431 1

1243

4123

3412

3

1

1

1234
4

4123

3412

2341

2

1342

2
2413

3241

1

3

1324

Fig. 11. The eight non-isomorphic complete order graphs of minimum size 8 for quads (i.e., 𝑑 = 4)

essentially |E |/𝑑 times larger than the size of the raw data (and can recover any tuple). But what is

the number of edges needed in complete order graphs? To analyze this question, let us simplify and

say that an order index for G(V, E) is of size |E |. Our ring indexes of Section 6.2 requiring 𝑘 rings

are then of size 𝑘𝑑 . A natural question is whether the smallest possible order index for dimension 𝑑

consists of 𝑘 rings, that is, 𝑘 disjoint cycles, or if there are smaller order indexes of other shapes.

Indeed, for 𝑑 = 2 and 𝑑 = 3, the smallest order indexes, of size 2 and 3 respectively, are simple

cycles when seen as order graphs. For 𝑑 = 4, the use of two rings yields an order index of optimal

size 8, yet there are other 7 non-isomorphic order indexes of the same size, as shown in Figure 11

(our notion of isomorphism on order graphs permits consistent renaming of the edge labels). Most

other solutions consist of a “hairy” ring, that is, a single ring of length 4 with paths sprouting from

some nodes. Two solutions, instead, are formed by a unique larger cycle, of length 8.

We can use an analogue to the idea of order graphs for unidirectional indexes, where we only

extend backwards. More precisely, the edge labeled by the new variable 𝑥 must always follow the

path of 𝑆 in Definition 7.2. In this case, already for 𝑑 = 3 there are various optimal order indexes

apart from two cyclic triangles; we show them in Appendix D.

The solutions using a single cycle are interesting because of their simplicity. Note that they

depart from the concept that a ring must be of size 𝑑 and represent a reordering of the attributes of

a relation. When using a single cycle that contains all the needed paths, the result is a kind of ring

containing several columns associated with the same attributes (though sorted in different ways),

and where we do not always choose the last column of an order to obtain the next one.

We do not know if it is always optimal to use a single cycle, though we have found no counterex-

amples where an optimally-sized single cycle can be replaced by a (strictly) smaller order index.

Instead, we next show that minimum-size order indexes must consist of a set of (possibly hairy)

cycles, ruling out what we define next as confluential graphs.

Definition 7.5. An order index is confluential if its graph has nodes with in-degree larger than 1.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:38 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

When proving next that confluential order indexes are non-optimal, we will focus on all the

distinct label sequences of paths of length up to 𝑑 . If we reduce the size of the graph without modi-

fying this set of label sequences, then the smaller graph is still complete, both in the bidirectional

and the unidirectional case. This assumes, as we have done up to now, that we are only interested

in paths of G with no repeating labels. Paths with such repetitions can still be used: if we find a

repeated label along a path we can find again the range of the already bound variable in the new

column. This brings obvious inefficiencies in time, though it could lead to smaller order indexes

in principle. We have not found, in our exhaustive searches, any solution of this kind that is not

matched by another solution without repetitions, however. Our next lemma is general enough to

consider paths with repeated labels as well.

Lemma 7.6. No confluential order index can be of minimum size.

Proof. Consider the graph of a confluential index of dimension 𝑑 , and a node𝑤 with two edges

𝑢 → 𝑤 ← 𝑣 leading to it. Our aim is to show that any path with 𝑙 ≤ 𝑑 distinct labels that uses one

of those edges can be replaced by a similar path that uses the other.

Let us first assume that we are only interested in paths with no repeated labels. We then fix some

1 ≤ 𝑘 ≤ 𝑙 and consider two paths, 𝑢−𝑘 → · · · → 𝑢−1 := 𝑢 → 𝑤 := 𝑤0 → 𝑤1 → · · · → 𝑤𝑙−𝑘 and

𝑣−𝑘 → · · · → 𝑣−1 := 𝑣 → 𝑤 → 𝑤1 → · · · → 𝑤𝑙−𝑘 .
Note that the label of both edges 𝑢 → 𝑤 and 𝑣 → 𝑤 must be Π𝑤 (1), Π𝑤 being the order of node

𝑤 . (Indeed, the orders Π𝑢 and Π𝑣 must be identical if we remove Π𝑤 (1) from them, because they

both become Π𝑤 when we add Π𝑤 (1) at their beginning.) Because of our assumption, Π𝑤 (1) is
different from both Π𝑢 (1) and Π𝑣 (1), since otherwise the labels of 𝑢−2 → 𝑢−1 or 𝑣−2 → 𝑣−1 would
be Π𝑤 (1) and the subpaths we are considering would repeat the label Π𝑤 (1). Therefore, it must

be that Π𝑢 (1) = Π𝑣 (1) = Π𝑤 (2), and thus Π𝑤 (2) is the label of both 𝑢−2 → 𝑢−1 and 𝑣−2 → 𝑣−1.
The reasoning can be repeated to show that, in general, the label of both edges 𝑢−𝑡 → 𝑢−𝑡+1 and
𝑣−𝑡 → 𝑣−𝑡+1 must be Π𝑤 (𝑡), for all 1 ≤ 𝑡 ≤ 𝑘 . Therefore, the sequences of labels of both paths

𝑢−𝑘 → · · ·𝑤𝑙−𝑘 and 𝑣−𝑘 → · · ·𝑤𝑙−𝑘 are identical.

As this holds for any path of any length 1 ≤ 𝑙 ≤ 𝑑 starting at any distance 1 ≤ 𝑘 ≤ 𝑙 from 𝑤 ,

we can safely remove either 𝑢 → 𝑤 or 𝑣 → 𝑤 , and hence obtain a smaller graph, without altering

the set of paths of lengths in [1 . . 𝑑] existing in the graph. Indeed, all the paths of length up to 𝑑

ending at𝑤 must be labeled with a reversed prefix of Π𝑤 . If there are several edges leading to𝑤 ,

we can safely leave only the one ending a longest path to𝑤 ; all the others are redundant.

Now assume we accept paths containing repeated labels. In this case, the paths are not necessarily

of length 𝑙 , but as long as necessary to contain 𝑙 distinct labels. In this case, we reason identically

while ignoring the repeated labels that appear in the paths. It can be equally shown that both paths

leading to𝑤 end with Π𝑤 (1), that their preceding label different from Π𝑤 (1) must be Π𝑤 (2), that
the preceding label not in {Π𝑤 (1),Π𝑤 (2)} must be Π𝑤 (3), and so on. The result is still that both

paths arriving at𝑤 by 𝑢 or 𝑣 are similar and thus we can safely remove 𝑢 → 𝑤 or 𝑣 → 𝑤 . □

Lemma 7.7. For every 𝑑 , there is an optimal order index where all the nodes have indegree exactly 1.

Proof. By Lemma 7.6, optimal order graphs are either trees or (possibly hairy) cycles. Yet, every

tree in an order graph can be converted into a hairy cycle of the same size by identifying any node

𝑢 of outdegree zero with the only node of indegree zero (i.e., make one arbitrary leaf be the same

node as the tree root). This works because only the first 𝑘 attributes of Π𝑣 are relevant if 𝑣 is at

distance 𝑘 from the tree root, so we redefine those orders Π𝑣 as the corresponding re-orders from

𝑢. The sets of hairy cycles are precisely the graphs where all nodes have indegree 1. □

We next show some techniques for proving lower and upper bounds on order indexes.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:39

Table 6. Minimum size of order indexes to support wco algorithms depending on the index capabilities. Upper

bounds with asterisks were not obtained with exhaustive searches, so there could be smaller ones.

𝑑
Unidirectional Bidirectional

TW CTW CTWO L. Bound CBTW CBTWO L. Bound

2 4 2 2 2 2 2 2

3 12 6 6 6 3 3 3

4 32 16 15 12 8 8 8

5 80 40 33 30 25 20 20

6 192 78
∗

68
∗

60 42 42 42

7 448 168
∗

162
∗

140 84
∗

84
∗

70

8 1024 400
∗

360
∗

280 200
∗

209
∗

168

s p o

s o p

p o s

p s o

o s p

o p s

s p o

s o

p o s

p s

o s p

o p

s p o

o

p o s

s

o s p

p

Classic flat Trie switch. Meta-trie

S

O

S

O

P

Trie switching

S

O

P

S

O

P

Classic flat

S

OP

Meta−trie

O

Fig. 12. On the left, the different trie schemes. On the right, the corresponding tries spo and so(p); each
rectangle leads to storing up to 𝑛 trie nodes. Note the meta-trie describes the structure of the actual tries.

Table 6 shows the upper and lower bounds we could obtain. The lower bounds are formal results

that hold for every possible order index. The upper bounds are obtained allowing only sets of

size-𝑑 rings (CTW and CBTW, as in Section 6.2.1), improved trie switching (TW, see Section 7.2.1),

and a single cycle (CTWO and CBTWO). Those are produced by combining formal bounds with

exhaustive and gradient search. The bounds obtained with exhaustive search can still be larger than

the lower bounds, because the lower bounds might not be tight, or because the upper bounds explore

only a specific kind of order index. The best order indexes we found are listed in Appendix D.

As can be seen, the use of a single cycle yields a unidirectional order index of size 15 for 𝑑 = 4,

where the smallest unidirectional index in Table 5 is of size 16 (i.e., 4 cycles). The difference is more

clear on 𝑑 = 5, where single-cycle order indexes of sizes 20 and 33 exist for the bidirectional and

the unidirectional case, respectively; this is significantly smaller than the best possible solutions

using multiple rings, which are of sizes 25 and 40, respectively. The gain is not monotonic on 𝑑 ,

however: the smallest bidirectional indexes of both kinds for 𝑑 = 6 are of size 42, and there is no

smaller order index. The situation for the unidirectional case and for larger 𝑑 is unclear, although

in most cases we have found better solutions for single-cycle indexes than for multiple rings. This

shows that in many cases we can do better by using order indexes other than sets of rings.

7.2 Lower and upper bounds on index sizes
We now generalize the lower and upper bounds of Section 6.2.1 to order indexes.

7.2.1 Trie switching strikes back. Since we are now considering indexes that are not just a set of

rings, we can also consider tries that are not complete, and that share their first levels with others.

This noticeably reduces the size of the TW representation, both in practice and asymptotically.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:40 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

Consider the case of 𝑑 = 3, where 6 tries are necessary for TW. Since each level of each trie

stores up to one node per edge of 𝐺 , its size can be computed as the total number of levels so as

to meaningfully compare it to the size of order indexes (actually, this can be pessimistic for TW).

Since we require 6 tries, the total size of TW is 18 (6 tries of 3 levels each). In fact, trie switching

did not apply for 𝑑 = 3. However, consider the following set of tries: spo, ps, osp, so, pos, op, with

total size 15. For example, we do not need to store the full trie pso because, once we reach a leaf in

the trie ps, we can switch to the corresponding internal node in spo. Further, the tries spo and so

can share their first level, that is, each node in the first level, corresponding to a subject, is the root

of two subtries, that of po and that of o. To distinguish them we can, for example, put in s all the

children by p followed by all the children by o. With such level sharing, the size of TW drops to 12,

that is, equivalent to 4 tries instead of 6. A good way to see this is to consider the meta-trie T of

the sequences {spo, ps, osp, so, pos, op} and count its number of (meta-)nodes, since now we may

store up to one trie node per edge of 𝐺 for each meta-node of T .Figure 12 illustrates this scheme.

In order to generalize the computation to any dimension 𝑑 , we rename the attributes to {1, . . . , 𝑑}
and define that the only meta-trie paths we will store are those where the attributes are decreasing

from the root to every internal path node. Thus, for any particular subset of attributes and any

additional attribute, there is a trie in our collectionwhere the subset of attributes is read in decreasing

order, and the additional attribute is the leaf. This makes the index complete to implement LTJ in

wco time. With this notation, our TW set of meta-trie paths for 𝑑 = 1 is {1}, for 𝑑 = 2 is {21, 12},
and for 𝑑 = 3 is {321, 312, 23, 213, 13, 12}. The size of the TW scheme is then the number of non-root

meta-nodes in the meta-trie T𝑑 storing all those paths, 1 for 𝑑 = 1, 4 for 𝑑 = 2, and 12 for 𝑑 = 3.

To obtain the general formula for the size of TW, assume by induction we have the meta-trie

T𝑑−1 and want to compute T𝑑 . Then, (1) for every path of T𝑑−1 we create a new path prepending 𝑑

to it; (2) we add a leaf child 𝑑 to every internal meta-node of T𝑑−1; and (3) we add a leaf child 𝑑 to

the only full decreasing path (𝑑 − 1) (𝑑 − 2) · · · 1 of T𝑑−1. For example, from the only path {1} of T1,
rule (1) creates 21, rule (2) does not apply because T1 has no internal nodes, and rule (3) creates 12.

Now, from the paths {21, 12} of T2 we create T3: rule (1) creates 321 and 312, rule (2) creates 23 and

13, and rule (3) creates 213; we also maintain the path 12 from T2, which was not extended by rule

(3). This model paves the way to the exact calculation of the TW index size; note that the resulting

size corresponds to using just 2
𝑑−1

classic tries (since each of those is of size 𝑑).

Lemma 7.8. The size of the TW index in dimension 𝑑 using meta-tries is 2
𝑑−1𝑑 ∈ Θ(2𝑑𝑑).

Proof. Let 𝑖 (𝑑) and ℎ(𝑑) be the number of internal and leaf nodes in T𝑑 , respectively. To build

T𝑑 , we start with the 𝑖 (𝑑 − 1) internal nodes and the ℎ(𝑑 − 1) leaves of T𝑑−1. Then, rule (1) adds
1 + 𝑖 (𝑑 − 1) new internal nodes and ℎ(𝑑 − 1) new leaves (i.e., a copy of T𝑑−1 hanging from node

𝑑), rule (2) adds 𝑖 (𝑑 − 1) new leaves, and rule (3) extends one path of T𝑑−1, thus incrementing 𝑖 (𝑑).
Overall, 𝑖 (𝑑) = 2+2𝑖 (𝑑−1) and ℎ(𝑑) = 2ℎ(𝑑−1) +𝑖 (𝑑−1), which given 𝑖 (1) = 0 and ℎ(1) = 1 solves

for 𝑖 (𝑑) = 2
𝑑 − 2 and ℎ(𝑑) = (𝑑 − 2)2𝑑−1 + 2. The size of T𝑑 is then the sum 𝑖 (𝑑) +ℎ(𝑑) = 2

𝑑−1𝑑 . □

As we see next, the size of our order indexes lies between Ω(2𝑑𝑑1/2) and 𝑂 (2𝑑𝑑), although the

precise values in Table 6 show that order index sizes are closer to our lower bounds.

7.2.2 Lower bounds. A lower bound on the number of nodes in a single-cycle order index follows

from the observation in Lemma 6.8 that the cycle must contain at least

(
𝑑
𝑙

)
⌈(𝑑 − 𝑙)/2⌉ positions for

any 𝑙 . We now show that this lower bound holds indeed for any order index, thereby leveraging

our asymptotic lower bound for those more general indexes as well.

Note that reinterpreting “paths of length 𝑙” as “paths with 𝑙 distinct elements” does not change

these lower bounds, which count the amount of starting positions of those paths.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:41

Theorem 7.9. Any order index on dimension 𝑑 must be of size at least

max

{
𝑑 ·

⌈(
𝑑

𝑙

)
⌈(𝑑 − 𝑙)/2⌉

𝑑

⌉
, 1 ≤ 𝑙 < 𝑑

}
,

which when choosing 𝑙 = ⌊𝑑/2⌋ is Ω(2𝑑𝑑1/2).

Proof. We first consider single-cycle order indexes. Let 𝑃𝑙 be the set of distinct subsets of 𝑙

attributes out of [1 . . 𝑑]. From the proof of Lemma 6.8, we have that any element of 𝑃𝑙 must occur

at least ⌈(𝑑 − 𝑙)/2⌉ times in the cycle in order to cover all the possible choices of the 𝑑 − 𝑙 variables
to instantiate next. Now take a particular attribute a ∈ [1 . . 𝑑]. Let 𝑃a,𝑙 ⊆ 𝑃𝑙 be the elements of 𝑃𝑙

where a occurs. Then |𝑃a,𝑙 | =
(
𝑑−1
𝑙−1

)
, which counts all the ways to choose the other 𝑙 − 1 attributes

from the 𝑑 − 1 remaining choices. The elements of 𝑃a,𝑙 , together, occur
(
𝑑−1
𝑙−1

)
⌈(𝑑 − 𝑙)/2⌉ times in the

cycle. Each occurrence of a in the cycle can belong to at most 𝑙 occurrences of 𝑃a,𝑙 . Therefore, amust

occur at least

⌈(
𝑑−1
𝑙−1

)
· ⌈(𝑑 − 𝑙)/2⌉/𝑙

⌉
=

⌈(
𝑑
𝑙

)
· ⌈(𝑑 − 𝑙)/2⌉/𝑑

⌉
times. Adding over all attributes a gives

the lower bound, which holds for every 𝑙 . The bound is simply 𝑑 times the bound of Lemma 6.8.

We now show that the lower bound holds for general order graphs. Per Lemma 7.7, we can

focus on graphs where all the indegrees are 1. Let 𝛿 be the difference between the number of edges

in the graph and the number of distinct strings labeling subpaths of length 𝑙 that do not repeat

attributes. Our lower bound above for cycles applies to the second value, and serves to lower-bound

the number of nodes because 𝛿 ≥ 0 in sets of cycles (𝛿 is exactly zero if all the length-𝑙 subpaths

in the cycles contain 𝑙 different attributes). We now show that 𝛿 ≥ 0 in general, which proves the

theorem, that is, general graphs with the same number of edges do not bring more distinct subpaths

to cover the

(
𝑑
𝑙

)
⌈(𝑑 − 𝑙)/2⌉ needed combinations.

Graphs where all the indegrees are 1 are sets of hairy cycles, that is, cycles with trees possibly

sprouting from each node, as in Figure 11. Let us consider the process of building such graphs

by starting from the cycles and adding one new edge at a time from a node 𝑣 towards a new leaf

𝑢 (which may later become an internal node if another edge from 𝑢 is added). Note that there is

exactly one path of length 𝑙 − 1 leading to 𝑣 . Thus, the new edge we add from 𝑣 to 𝑢 creates at most

one new path of length 𝑙 , namely the one of length 𝑙 − 1 leading to 𝑣 and extended with the new

edge to 𝑢. So the value of 𝛿 for the original cycle is maintained upon edge insertions. □

The lower bound of Theorem 7.9 is tight for all 𝑑 ∈ [2 . . 6], per Table 6, but our exhaustive search
shows that the lower bound of 70 given by the theorem for 𝑑 = 7 is not reachable with single cycles.

The lower bound for the unidirectional case is the same, replacing ⌈(𝑑 − 𝑙)/2⌉ by just (𝑑 − 𝑙).
The formula then becomes 𝑑 ·

(
𝑑−1
𝑙

)
, which is maximized for 𝑙 = ⌊𝑑/2⌋, yielding the lower bound

𝑡𝑤 (𝑑) for the size of unidirectional order indexes. Note that this corresponds exactly to the lower

bound 𝑐𝑡𝑤 (𝑑) ≥ ⌈𝑡𝑤 (𝑑)/𝑑⌉ we had obtained in Section 6.2.1 for unidirectional cycles, with the

difference that an order index does not need to consist of an integral number of cycles of length 𝑑 .

Note that, although our lower bound holds equally for pure-cycles and general order indexes,

there could still be cases where all the best order indexes do not include just sets of cycles. We

have not found such a case by brute force and believe it does not happen, though our computation

power is limited to the upper bounds for CBTWO and CTWO shown in Table 6.

7.2.3 Upper bounds. Every upper bound obtained in Section 6.2.1 multiplied by 𝑑 holds for the size

of an order index, as those are particular cases. Per Theorem 6.9, the smallest unidirectional and

bidirectional cyclic indexes are of size 𝑂 (2𝑑𝑑). In Appendix D.3 we give another upper bound that,

although of this same order, is stricter than those directly derived from the results of Section 6.2.1.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:42 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

8 Supporting updates
Our index has been described and implemented as a static structure: it must be rebuilt from scratch

in order to reflect changes in the database. This is acceptable in many scenarios, for example, we

can maintain a small classic dynamic index with the recent updates and periodically rebuild the

static compressed index, possibly in the background or in another server. There are other cases,

however, where we need to support fine-grained mixes of queries and updates. In this section

we show how to address this case, enabling insertion and deletion of tuples and elements of the

universe in time𝑂 (log𝑈 log𝑛) per column and with a slowdown factor of𝑂 (log𝑛) in query times.

Our first result is a dynamic version of Theorem 7.4.

Theorem 8.1. Adynamic order index built on the order graphG(V, E) of a tableR with𝑛 tuples and

𝑑 attributes, with𝑈 the maximum universe size seen so far, can use |E |𝑛 log𝑈 +𝑜 (|E |𝑛 log𝑈) +𝑂 (𝑈)
bits of space and solve queries 𝑄 of𝑚 tuple patterns in time 𝑂 (𝑄∗ · 𝑑2𝑚 log𝑈 log𝑛), where 𝑄∗ is the
AGM bound of query 𝑄 on R. It can also insert and delete tuples in time 𝑂 (|E | log𝑈 log𝑛).

If the universeU grows and shrinks considerably along time, using space proportional to its

maximum size so far can be inconvenient. For such a case, we also prove the following result.

Theorem 8.2. A dynamic order index built on the order graph G(V, E) of a table R with 𝑛 tuples

and 𝑑 attributes can use |E |𝑛 log𝑛 +𝑜 (|E |𝑛 log𝑛) bits of space and solve queries𝑄 of𝑚 tuple patterns

in time 𝑂 (𝑄∗ · 𝑑2𝑚 log
2 𝑛), where 𝑄∗ is the AGM bound of query 𝑄 on R. It can also insert and delete

tuples in amortized time 𝑂 (|E | log2 𝑛).

For lack of space, we defer all the details to Appendix E.

9 Conclusions
We have introduced the ring: an index that regards the triples of a graph database as cyclic and

bidirectional, so that it can simulate the 6 triple orders as one. The ring supports the worst-case-

optimal (wco) Leapfrog TrieJoin algorithm (LTJ) for solving basic graph patterns using almost no

space on top of the raw triple data, and even in compressed space. Our ring further offers fast

on-the-fly statistics for query optimization. Our experiments show that the ring uses a fraction of

the space of traditional indexes while ranking amongst the best in terms of query times.

We then generalized the concept of ring to relations with 𝑑 > 3 attributes, where a single ring

cannot cover all the 𝑑! orders needed to support worst-case-optimal LTJ. We showed, however,

that the number of rings that need to be stored is 𝑂 (2𝑑), and that it quickly becomes orders of

magnitude smaller than traditional prefix-based indexes like B-trees or tries. This enables the use

of worst-case optimal algorithms for solving multijoin queries on dimensions that were totally

impractical (e.g., only 7 rings, instead of 6! = 720 classical indexes, are needed for 𝑑 = 6).

We further introduced order indexes, which generalize sets of rings to general “order” graphs,

where we store columns of the tables in various orders (one column per order graph edge), in a

way that LTJ can be implemented in worst-case-optimal time. We have shown that order indexes

can be more space-efficient than sets of rings, reducing space by up to 20%.

Our findings demonstrate that spending a lot of space is not necessary to achieve, and even

improve, the best current performance in wco indexing of graph databases. Further, we open up

many interesting lines of research regarding time versus space trade-offs in the context of wco join

algorithms. We finish with some concrete lines of future work regarding the ring and order indexes.

Future work. We have found the optimal-size rings only for 𝑑 ≤ 6, and as such the problem of

how to find the minimal indexes for larger 𝑑 is interesting, as well as better understanding the

nature and possibilities of order graphs. However, our lower bounds show that even the smallest

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:43

order graphs become impractical for 𝑑 ≥ 8. A more practical line of research is to explore the

trade-off between maintaining high-arity relations, which necessitate fewer joins but larger indexes,

and decomposing those relations into several lower-arity relations, which need smaller indexes but

more joins, and whose AGM bound is higher. As such, our new indexes enable trade-offs using

higher-arity relations, and thus faster queries, given an allowed memory footprint.

Our focus has been on indexing for wco joins, where our query planning strategy is currently

based on simple methods. Future work could explore further techniques from the literature, such as

tree decompositions for variable ordering [1], low-level caching techniques to reuse intermediate

results [34], adaptive plans that use statistics collected during query evaluation [42], and hybrid

plans that combine wco and non-wco join algorithms for higher-arity relations [24, 42], among

others. Our index may further support custom optimizations. For example, a useful statistic would

be to find howmany different elements are associated with a column range, which can be computed,

at least for backward extensions, in logarithmic time by roughly doubling the space [25]. Supporting

further query operators, such as projection, regular path queries, aggregation, etc., would also be of

interest, particularly regarding the possibilities of pushing such operators to low-level operations

on the index. A recent spin-off of our results, for example, shows that the ring can efficiently

support regular path queries [5]; combining those with wco joins is a formidable challenge.

Acknowledgments
We thank Amine Mhedhbi for help with Graphflow and Daniela Campos for help with CompactLTJ.

This work was supported by ANID – Millennium Science Initiative Program – Code ICN17_002.

Gómez-Brandón was supported in part by MCIN/AEI/10.13039/5011000-11033: grants PID2020-

114635RB-I00; by MCIN/AEI/10.13039/501100011033 and EU/ERDF "A way of making Europe":

PID2022-141027NB-C21; by MCIN/AEI/10.13039/501100011033 and “Next-GenerationEU”/ PRTR:

grants TED2021-129245B-C21, PDC2021-120917-C21 and by GAIN/ Xunta de Galicia: GRC: grants

ED431C 2021/53, and CIGUS 2023-2026. Hogan was supported by FONDECYT Grant No. 1221926.

Navarro was supported by FONDECYT Grant No. 1230755. Reutter was supported by FONDECYT

Grant No. 1221799.

References
[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. 2017. EmptyHeaded: A relational engine for graph

processing. ACM Transactions on Database Systems 42, 4, Article 20 (2017), 44 pages.

[2] M. Abo Khamis, H. Q. Ngo, D. Olteanu, and D. Suciu. 2019. Boolean tensor decomposition for conjunctive queries with

negation. In Proc. 22nd International Conference on Database Theory (ICDT). 21:1–21:19.

[3] S. Álvarez-García, N. Brisaboa, J. Fernández, M. Martínez-Prieto, and G. Navarro. 2015. Compressed vertical partitioning

for efficient RDF management. Knowledge and Information Systems 44, 2 (2015), 439–474.

[4] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. 2017. Foundations of modern query languages

for graph databases. ACM Computing Surveys 50, 5 (2017), 68:1–68:40.

[5] D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, and J. Rojas-Ledesma. 2023. Optimizing RPQs over a compact

graph representation. The VLDB Journal (2023). To appear.

[6] D. Arroyuelo, A. Hogan, G. Navarro, J. Reutter, J. Rojas-Ledesma, and A. Soto. 2021. Worst-case optimal graph joins in

almost no space. In Proc. International Conference on Management of Data (SIGMOD). 102–114.

[7] Me. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. 2010. Matrix “bit” loaded: A scalable lightweight join query processor

for RDF data. In Proc. 19th International Conference on World Wide Web (WWW). 41–50.

[8] A. Atserias, M. Grohe, and D. Marx. 2013. Size bounds and query plans for relational joins. SIAM Journal on Computing

42, 4 (2013), 1737–1767.

[9] J. Barbay, F. Claude, and G. Navarro. 2013. Compact binary relation representations with rich functionality. Information

and Computation 232 (2013), 19–37.

[10] M. J. Bauer, A. J. Cox, and G. Rosone. 2013. Lightweight algorithms for constructing and inverting the BWT of string

collections. Theoretical Computer Science 483 (2013), 134–148.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:44 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

[11] A. Bonifati, W. Martens, and T. Timm. 2019. Navigating the maze of Wikidata query logs. In Proc. 19th World Wide

Web Conference (WWW). 127–138.

[12] A. Bonifati, W. Martens, and T. Timm. 2020. An analytical study of large SPARQL query logs. The VLDB Journal 29,

2-3 (2020), 655–679.

[13] N. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, A. Fariña, and G. Navarro. 2023. Space/time-efficient RDF stores based

on circular suffix sorting. The Journal of Supercomputing 79 (2023), 5643–5683.

[14] N. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, and G. Navarro. 2017. Compressed representation of dynamic binary

relations with applications. Information Systems 69 (2017), 106–123.

[15] M. Burrows and D. Wheeler. 1994. A block sorting lossless data compression algorithm. Technical Report 124. Digital

Equipment Corporation.

[16] F. Claude, G. Navarro, and A. Ordóñez. 2015. The wavelet matrix: An efficient wavelet tree for large alphabets.

Information Systems 47 (2015), 15–32.

[17] O. Curé, G. Blin, D. Revuz, and D. C. Faye. 2014. WaterFowl: A compact, self-indexed and inference-enabled immutable

RDF store. In Proc. 11th European Semantic Web Conference (ESWC). 302–316.

[18] O. Erling. 2012. Virtuoso, a hybrid RDBMS/graph column store. Data Engineering Bulletin 35, 1 (2012), 3–8.

[19] O. Erling and I. Mikhailov. 2009. RDF support in the Virtuoso DBMS. In Networked Knowledge – Networked Media.

Springer, 7–24.

[20] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. 2013. Binary RDF representation for

publication and exchange (HDT). Journal of Web Semantics 19 (2013), 22–41.

[21] P. Ferragina and G. Manzini. 2005. Indexing compressed texts. Journal of the ACM 52, 4 (2005), 552–581.

[22] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. 2007. Compressed representations of sequences and full-text

indexes. ACM Transactions on Algorithms 3, 2 (2007), 20.

[23] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A.

Taylor. 2018. Cypher: An evolving query language for Property Graphs. In Proc. International Conference on Management

of Data (SIGMOD). 1433–1445.

[24] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann. 2020. Adopting worst-case optimal joins in relational

database systems. Proc. VLDB Endowment 13, 11 (2020), 1891–1904.

[25] T. Gagie, J. Kärkkäinen, G. Navarro, and S. J. Puglisi. 2013. Colored range queries and document retrieval. Theoretical

Computer Science 483 (2013), 36–50.

[26] T. Gagie, G. Navarro, and S. J. Puglisi. 2012. New algorithms on wavelet trees and applications to Information Retrieval.

Theoretical Computer Science 426-427 (2012), 25–41.

[27] S. Gog, T. Beller, A. Moffat, and M. Petri. 2014. From theory to practice: Plug and play with succinct data structures. In

Proc. 13th International Symposium on Experimental Algorithms, (SEA). 326–337.

[28] G. Gottlob, S. T. Lee, G. Valiant, and P. Valiant. 2012. Size and treewidth bounds for conjunctive queries. Journal of the

ACM 59, 3 (2012), article 16.

[29] G. Gottlob, N. Leone, and F. Scarcello. 1999. Hypertree decompositions and tractable queries. In Proc. 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS). 21–32.

[30] R. Grossi, A. Gupta, and J. S. Vitter. 2003. High-order entropy-compressed text indexes. In Proc. 14th Symposium on

Discrete Algorithms (SODA). 841–850.

[31] S. Harris, A. Seaborne, and E. Prud’hommeaux. 2013. SPARQL 1.1 Query Language. W3C Recommendation. https:

//www.w3.org/TR/sparql11-query/.

[32] A. Harth and S. Decker. 2005. Optimized index structures for querying RDF from the web. In Proc. 3rd Latin American

Web Congress (LA-Web). 71–80.

[33] A. Hogan, C. Riveros, C. Rojas, and A. Soto. 2019. A worst-case optimal join algorithm for SPARQL. In Proc. 18th

International Semantic Web Conference (ISWC). 258–275.

[34] O. Kalinsky, Y. Etsion, and B. Kimelfeld. 2017. Flexible caching in trie joins. In Proc. 20th International Conference on

Extending Database Technology (EDBT). 282–293.

[35] M. A. Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. 2020. Functional aggregate

queries with additive inequalities. ACM Transactions on Database Systems (TODS) 45, 4 (2020), 1–41.

[36] M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. 2016. Joins via geometric resolutions: Worst case and beyond. ACM

Transactions on Database Systems 41, 4 (2016), 22.

[37] M. A. Khamis, H. Q. Ngo, and D. Suciu. 2017. What do Shannon-type inequalities, submodular width, and disjunctive

Datalog have to do with one another?. In Proc. 36th Symposium on Principles of Database Systems (PODS). 429–444.

[38] P. Koutris, T. Milo, S. Roy, and D. Suciu. 2017. Answering conjunctive queries with inequalities. Theory of Computing

Systems 61 (2017), 2–30.

[39] V. Mäkinen and G. Navarro. 2008. Dynamic entropy-compressed sequences and full-text indexes. ACM Transactions on

Algorithms 4, 3, Article 32 (2008).

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:45

[40] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. 2018. Getting the most out of Wikidata: Semantic

technology usage in Wikipedia’s knowledge graph. In Proc. 17th International Semantic Web Conference (ISWC).

376–394.

[41] M. A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. 2016. Practical compressed string dictionaries.

Information Systems 56 (2016), 73–108.

[42] A. Mhedhbi and S. Salihoglu. 2019. Optimizing subgraph queries by combining binary and worst-case optimal joins.

Proc. VLDB Endowment 12, 11 (2019), 1692–1704.

[43] MonetDB. 2013. http://www.monetdb.org.
[44] J. I. Munro. 1996. Tables. In Proc. Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS). 37–42.

[45] J. I. Munro and Y. Nekrich. 2015. Compressed data structures for dynamic sequences. In Proc. 23rd Annual European

Symposium on Algorithms (ESA). 891–902.

[46] J. I. Munro, Y. Nekrich, and J. Scott Vitter. 2016. Fast construction of wavelet trees. Theoretical Computer Science 638

(2016), 91–97.

[47] G. Navarro. 2014. Wavelet trees for all. Journal of Discrete Algorithms 25 (2014), 2–20.

[48] G. Navarro. 2016. Compact Data Structures – A practical approach. Cambridge University Press.

[49] G. Navarro, J. Reutter, and J. Rojas. 2020. Optimal joins using compact data structures. In Proc. 23rd International

Conference on Database Theory (ICDT). 21:1–21:21.

[50] G. Navarro and K. Sadakane. 2014. Fully-functional static and dynamic succinct trees. ACM Transactions on Algorithms

10, 3 (2014), article 16.

[51] T. Neumann and G. Weikum. 2010. The RDF-3X engine for scalable management of RDF data. The VLDB Journal 19

(2010), 91–113.

[52] H. Q. Ngo. 2018. Worst-case optimal join algorithms: Techniques, results, and open problems. In Proc. 37th Symposium

on Principles of Database Systems (PODS). 111–124.

[53] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. 2012. Worst-case optimal join algorithms. In Proc. 31st Symposium on Principles

of Database Systems (PODS). 37–48.

[54] D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra. 2015. Join processing for graph patterns:

An old dog with new tricks. In Proc. 3rd International Workshop on Graph Data Management Experiences and Systems

(GRADES). 2:1–2:8.

[55] D. Olteanu and M. Schleich. 2016. Factorized databases. ACM SIGMOD Record 45, 2 (2016), 5–16.

[56] G. Ottaviano and R. Venturini. 2014. Partitioned Elias-Fano indexes. In Proc. 37th International ACM Conference on

Research and Development in Information Retrieval (SIGIR). 273–282.

[57] M. Raasveldt and H. Mühleisen. 2019. DuckDB: an Embeddable Analytical Database. In Proc. International Conference

on Management of Data (SIGMOD). 1981–1984.

[58] R. Raman, V. Raman, and S. S. Rao. 2007. Succinct indexable dictionaries with applications to encoding k-ary trees,

prefix sums and multisets. ACM Transactions on Algorithms 3, 4, Article 43 (2007).

[59] J. Salas and A. Hogan. 2018. Canonicalisation of monotone SPARQL queries. In Proc. 17th International Semantic Web

Conference (ISWC). 600–616.

[60] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil,

A. Rasin, N. Tran, and S. Zdonik. 2018. C-store: A column-oriented DBMS. In Making Databases Work: The Pragmatic

Wisdom of Michael Stonebraker. ACM, 491–518.

[61] B. B. Thompson, M. Personick, and M. Cutcher. 2014. The Bigdata®RDF Graph Database. In Linked Data Management.

Chapman and Hall/CRC, 193–237.

[62] N. Tziavelis, W. Gatterbauer, and M. Riedewald. 2020. Optimal join algorithms meet top-k. In Proc. International

Conference on Management of Data (SIGMOD). 2659–2665.

[63] N. Tziavelis, W. Gatterbauer, and M. Riedewald. 2021. Beyond equi-joins: Ranking, enumeration and factorization.

Proceedings of the VLDB Endowment 14, 11 (2021), 2599–2612.

[64] T. L. Veldhuizen. 2014. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th International Conference on

Database Theory (ICDT). 96–106.

[65] B. D. Vo and K.-P. Vo. 2007. Compressing table data with column dependency. Theoretical Computer Science 387 (2007),

273–283.

[66] D. Vrandecic and M. Krötzsch. 2014. Wikidata: A free collaborative knowledgebase. Communications of the ACM 57,

10 (2014), 78–85.

[67] C. Weiss, P. Karras, and A. Bernstein. 2008. Hexastore: Sextuple indexing for semantic web data management. Proc.

VLDB Endowment 1, 1 (2008), 1008–1019.

[68] M. Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc. 7th International Conference on Very Large

Databases (VLDB). 82–94.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:46 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

A Extensions to basic graph patterns
Our Ring structure can easily handle some extensions to the basic graph patterns we study.

Equality selections 𝑥 = 𝑎 (which are analogous to constants in triple patterns) can be extended

to range selections by leaving 𝑥 as a variable and allowing the queries to specify a range 𝑎 ≤
𝑥 ≤ 𝑏 for any variable 𝑥 , where 𝑎 and 𝑏 are constants. When it turns to bind the variable 𝑥 in

leapfrog_search, we use 𝑎 instead of minU in line 3 and add the condition 𝑐 ≤ 𝑏 in line 4 (see

Algorithm 1). To handle lonely variables with a restricted range, the wavelet tree can also obtain

all the 𝑘 distinct values 𝑐 ∈ [𝑎 . . 𝑏] appearing in 𝑆 [𝑠 . . 𝑒] in time 𝑂 (𝑘 log(𝑈 /𝑘)) [26].
This can be further extended to ranges over different variables. For example, a condition like

𝑥 ≤ 𝑦 can be handled by adding the range constraint 𝑥 ≤ 𝑦0 if 𝑥 is instantiated after we bind

𝑦 := 𝑦0, or by adding 𝑦 ≥ 𝑥0 if 𝑦 is instantiated after we bind 𝑥 := 𝑥0. More complex constraints

like 𝑥 ≤ 𝑦 + 𝑧 can be handled similarly, by adding a range on the last variable that is instantiated.

While likely to be practical, the worst-case optimality of such an approach is far from obvious.

Khamis et. al argue that variants of LTJ algorithms are not able to achieve optimal running times for

range inequalities, even if they support enumerating only those elements that satisfy them [35], and

that one must use instead join algorithms capable of exploring multiple query plans at once, such

as PANDA [37]. However, it may be also be possible to use the ring, and its range functionalities,

to enable hybrid approaches for queries with range inequalities, such as those in [38, 63].

B Detailed experimental setup
In the following we give further details on the experimental setup. Materials including scripts, code,

queries and data can be found on the webpage http://68.183.136.91/.

B.1 The Wikidata graphs
We take the same Wikidata graphs as proposed for the Wikidata Graph Pattern Benchmark

(WGPB) [33], which can be downloaded from https://zenodo.org/record/4035223. The graph is

based on the 2018/11/18 truthy version of Wikidata, where the raw dump contains 3,303,288,386

triples. Multilingual labels, aliases and descriptions were removed, leaving only English labels. The

result is a graph of 969,496,651 triples with 5,419 unique predicates; this was the graph used in

our paper for the Wikidata real-world experiments. In the graph recommended for the WGPB

experiments [33], triples whose predicates appear in fewer than 1,000 triples or more than 1,000,000

triples were also removed.

B.2 System details
In the following we provide additional details about the alternative indexes and systems that we

compare with Ring and C-Ring.

Blazegraph: We use version 2.1.6 with the HTTP interface, obtaining the code from https://github.

com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md.

DuckDB: We use version 0.8.1, obtaining the code from https://duckdb.org/#quickinstall and

sending queries via the Python client library.

EmptyHeaded: We obtained the code from https://github.com/HazyResearch/EmptyHeaded. Data

were indexed in memory.

Graphflow: Weobtained the code fromhttps://github.com/queryproc/optimizing-subgraph-queries-

combining-binary-and-worst-case-optimal-joins/. Data were indexed in memory.

Qdag: We choose the version that uses BFS enumeration of the graph nodes and threading. We

obtained the code from the authors.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://68.183.136.91/
https://zenodo.org/record/4035223
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
https://duckdb.org/#quickinstall
https://github.com/HazyResearch/EmptyHeaded
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:47

Jena: We use Jena TDB version 3.10.0, from https://github.com/apache/jena. We use the HTTP

interface.

Jena LTJ: We obtained it from https://github.com/cirojas/jena-leapfrog and used in the same way

as Jena. It is based on Jena TDB version 3.10.0.

Postgres: We use version 13.3, obtaining the code via an Ubuntu package and sending queries via

the command line interface.

RDF-3X: We use version 0.3.7 with the command-line interface (to the best of our knowledge,

HTTP is not supported), obtaining the code from https://code.google.com/archive/p/rdf3x/.

Virtuoso: We use version 7.2.5.1 with the HTTP interface. The code was downloaded from https:

//github.com/openlink/virtuoso-opensource.

In the case of the systems with HTTP interfaces we also tried running queries using command-

line interfaces to eliminate HTTP overhead, but found that the HTTP interfaces in general offered

better performance (particularly in the case of Jena and Jena LTJ). The systems were configured

per vendor recommendations for the machine used. We refer to http://68.183.136.91/ for further

details on how we configured and ran these systems.

B.3 Query sets
We use the standard WGPB queries — which consist of 50 instances of 17 abstract query patterns,

each generating at least one result and limited to 1000 results — without modification. We refer to

Hogan et al. [33] for further details on the generation of these queries; we downloaded them from

https://zenodo.org/record/4035223.

For real-world experiments, in search of challenging queries, we download the 122,980 queries

that gave timeouts from the Wikidata query logs [40] spanning from June 2017 to March 2018.

We remove Wikidata-specific features (e.g., SERVICE clauses for labels) and extract basic graph

patterns from queries with precisely one basic graph pattern. We subsequently filter the patterns

to ensure that they are weakly connected (avoiding Cartesian products), that they have at least

one variable, and that their constants appear in the dataset. We chose not to filter queries with

empty results as these often occur in practice. We also canonically label the variables of the patterns

and de-duplicate them modulo isomorphism [59]. We project all variables and limit the results to

1000 (per WGPB). This process yielded 1,300 queries for testing. We provide an example of one of

the more challenging cases in Figure 13, which looks for information about people who died on

the same date. The average number of triple patterns and variables per query was 2.07 and 3.49,

respectively; in Figure 14 we present box-plots for these numbers where although most queries

have only 1 or 2 triple patterns and variables, more complex queries have up to 15 triple patterns

and 30 variables. In Table 7 we show the most common types of triple patterns; we find all possible

types (aside from all constants), where 221 triple patterns (8.1%) have variable predicates and 5 of

those involve joins on those variable predicates.

C Time distributions for fixed-predicate indexes
Figure 15 shows the distributions of the original Ring and CRing, as well as their variants optimized

for fixed predicates and the optimized variant of Qdags.

D Minimal order graphs
Figure 16 shows the five non-isomorphic order graphs of minimal size 6 for triples, in the unidirec-

tional case (i.e., we can only move backwards). It includes using two rings, a cycle of length 6, and

various single hairy rings.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/apache/jena
https://github.com/cirojas/jena-leapfrog
https://code.google.com/archive/p/rdf3x/
https://github.com/openlink/virtuoso-opensource
https://github.com/openlink/virtuoso-opensource
http://68.183.136.91/
https://zenodo.org/record/4035223

111:48 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

SELECT * WHERE {
?v1 wdt:P21 ?v3 . # sex or gender
?v1 wdt:P31 wd:Q5 . # instance of human
?v1 wdt:P570 ?v2 . # date of death
?v1 wdt:P734 ?v0 . # family name
?v4 wdt:P21 ?v3 . # sex or gender
?v4 wdt:P31 wd:Q5 . # instance of human
?v4 wd:P570 ?v2 . # date of death
?v4 wd:P734 ?v0 . # family name

} LIMIT 1000

Fig. 13. A difficult real-world query in SPARQL syntax

0 5 10 15 20 25 30

Variables

Triple patterns

Fig. 14. Box-plots of number of variables and triple patterns in real-world queries

Table 7. Most common types of triple patterns where ? indicates a variable and s, p, o indicate constants

Type Count Perc.

?p? 1,449 53.1%

?po 1,012 37.1%

??? 146 5.4%

sp? 45 1.7%

s?? 40 1.5%

??o 33 1.2%

s?o 2 0.07%

Total 2,727

The rest of the section shows the smallest bidirectional order indexes we found, both in the

form of rings and cycles. For the lower dimensions, where we found all the minimal solutions via

exhaustive search, we show all the nonredundant solutions. We consider two solutions redundant

if they are isomorphic as order graphs, that is, if one can be obtained from the other by renaming

the indices (and taking into account circularity and bidirectionality); rings 1,2,3 and 2,1,3 are
the same upon exchanging 1 with 3 and shifting, for example.

D.1 Rings
For 𝑑 = 1, 𝑑 = 2, and 𝑑 = 3, the only minimal solution is a single ring: 1; 1,2; and 1,2,3. For 𝑑 ≥ 4

we need more than one ring. For 𝑑 = 4, in particular, two rings suffice, and exhaustive search shows

that there is only one solution if we remove redundant ones:

1,2,3,4
1,2,4,3

For example, by exchanging 1 with 2, this solution matches the one listed in Figure 11, where

2,1,3,4 appears in the lower ring and 2,1,4,3 appears in the upper ring.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:49

0

0.01

0.02

0.03

0.04

0.05

T
im

e
(s
ec
s)

P2 P3 P4 T2 Ti2

Ring fixed P

C-Ring fixed P

Ring

C-Ring

Qdag

0

0.01

0.02

0.03

T
im

e
(s
ec
s)

T3 Ti3 J3 T4 Ti4 J4

0

0.04

0.08

0.12

0.16

0.2

T
im

e
(s
ec
s)

Tr1 Tr2 S1 S2 S3 S4

Fig. 15. Comparison of query times (in seconds), now including fixed-predicate structures

312

3

132

213 321

2
1

3

231

123

2

1

132

213 321

2
1

3

123

3

312

2

231

1

231

123

213

321

132

312

3

3

2

2

1

1

132

213 321

2
1

3

312

3

1

123

3

312

2

231

2

213

3
321

1
132

231
2

1

123

Fig. 16. The five non-isomorphic complete unidirectional order graphs of minimum size 6 for triples (𝑑 = 3).

Exhaustive search also shows that we need five rings for 𝑑 = 5; the following are the (only) 3

nonredundant solutions of this size:

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:50 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

1,2,3,4,5 1,2,3,4,5 1,2,3,4,5
1,2,3,5,4 1,2,3,5,4 1,2,4,5,3
1,2,4,3,5 1,2,4,3,5 1,2,5,3,4
1,2,5,4,3 1,3,2,5,4 1,3,2,5,4
1,3,5,2,4 1,3,4,2,5 1,3,4,2,5

The 5 rings of each solution amount to 25 elements, whereas our lower bound is 20. Still, no set of

4 rings (with total size 20) suffices for 𝑑 = 5. The lower bound is instead matched with single cycles,

as we see in Section D.2.

We need seven rings for 𝑑 = 6. Our exhaustive search finds 7 nonredundant solutions:

1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
1,2,3,5,6,4 1,2,3,5,6,4 1,2,3,6,5,4 1,2,4,3,6,5 1,2,4,3,6,5 1,2,4,3,6,5 1,2,4,3,6,5
1,2,4,5,6,3 1,2,4,6,3,5 1,2,4,6,3,5 1,2,5,4,6,3 1,2,5,6,4,3 1,2,5,6,4,3 1,2,5,6,4,3
1,2,6,4,3,5 1,3,2,6,5,4 1,3,2,5,6,4 1,3,5,6,2,4 1,2,6,5,3,4 1,2,6,5,3,4 1,2,6,5,3,4
1,3,4,2,6,5 1,3,6,2,4,5 1,3,6,2,4,5 1,4,3,5,2,6 1,3,2,5,4,6 1,3,2,6,4,5 1,3,5,2,4,6
1,4,3,6,2,5 1,4,3,5,2,6 1,4,3,5,2,6 1,4,6,2,3,5 1,3,6,2,4,5 1,3,5,2,4,6 1,3,6,2,4,5
1,4,5,2,3,6 1,5,2,4,3,6 1,5,2,4,3,6 1,5,4,2,3,6 1,4,6,2,3,5 1,4,5,2,3,6 1,4,5,2,3,6

This number of rings amounts to 42 elements in total, which matches our lower bound that holds

for every order index.

We were unable to run an exhaustive search for the rings on 𝑑 = 7. Instead, we used an

approximation of the set cover problem to find the following solution, which uses 12 rings:

1,2,7,3,6,5,4 1,2,6,5,4,7,3 1,2,7,3,5,4,6 1,3,6,4,2,5,7 1,4,7,2,6,3,5
1,2,5,4,3,6,7 1,3,5,7,6,2,4 1,5,4,3,2,7,6 1,3,5,2,7,6,4 1,4,3,2,5,6,7
1,5,7,4,2,3,6 1,2,3,4,7,6,5

This solution, of size 84, does not match our lower bound of 70.

The largest dimension we have explored is 𝑑 = 8, where our approximation found a solution

with 25 rings, for a total size of 200:

1,3,6,7,8,4,2,5 1,2,3,7,5,4,6,8 1,4,3,8,5,6,2,7 1,4,7,8,2,3,5,6 1,5,8,2,6,4,3,7
1,6,2,3,4,5,8,7 1,4,2,7,5,6,3,8 1,2,6,8,7,3,5,4 1,5,6,7,4,2,3,8 1,3,2,5,8,4,6,7
1,3,8,7,5,2,4,6 1,2,8,4,6,3,7,5 1,4,5,6,3,2,7,8 1,3,5,8,7,6,2,4 1,6,5,2,3,7,4,8
1,2,3,4,8,6,5,7 1,2,6,8,3,7,4,5 1,3,2,5,4,7,8,6 1,3,4,6,5,2,8,7 1,2,7,6,3,4,5,8
1,4,6,8,3,2,5,7 1,5,3,8,2,4,7,6 1,5,4,3,8,7,2,6 1,3,7,6,4,8,2,5 1,4,7,3,2,6,8,5

This is far from our lower bound of 168.

D.2 Cycles
For 𝑑 = 1, 𝑑 = 2, and 𝑑 = 3, the only minimal solution is a single cycle of length 𝑑 : 1; 1,2; and
1,2,3. The minimal cycles for 𝑑 = 4 require 8 elements, just as with rings. The following are the

only two minimal nonredundant cycles for 𝑑 = 4, found by exhaustive search (cf. Figure 11):

1,2,3,4,1,2,4,3

1,2,3,4,2,1,4,3

Exhaustive search finds 3 minimal nonredundant cycles of length 20 for 𝑑 = 5:

1,2,3,4,5,1,3,4,1,2,5,3,2,4,1,5,2,4,5,3

1,2,3,4,5,1,4,2,3,5,2,1,3,5,4,2,5,1,3,4

1,2,3,4,5,1,4,2,3,5,2,1,4,3,1,5,2,4,5,3

Each cycle is smaller than the size 25 of the smallest possible set of rings and matches our lower

bound, which holds for every order index.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:51

We could not run an exhaustive search for the minimum cycles in dimension 𝑑 = 6. Instead, we

used a gradient descent technique to find the following cycle:

1,2,3,4,5,6,3,4,1,6,2,5,3,1,4,2,6,3,5,1,4,6,5,2,1,3,6,4,2,5,1,6,3,2,4,5,6,1,2,3,5,4

The cycle is of size 42, which matches our lower bound, and thus our gradient descent found an

optimal solution. We remark that, for all 𝑑 ≤ 6, we have found cycles whose size matches the lower

bound that holds for every order index.

The smallest cycle we found for 𝑑 = 7 using gradient descent is of size 84, just like the smallest

set of rings we found and larger than our lower bound of 70:

1,2,3,4,5,6,7,2,3,4,7,5,1,2,6,4,3,7,1,5,6,4,2,7,3,1,6,5,2,7,4,1,3,6,2,5,4,1,7,6,3,2,
4,5,7,3,2,1,6,5,4,7,6,2,1,3,5,7,2,1,4,6,3,5,1,4,6,7,3,5,2,1,4,3,5,7,6,1,4,2,3,5,6,7

We conjecture that smaller cycles exist closer to the lower bound of 70, but our exhaustive search

has shown that no cycle of size 70 exists for 𝑑 = 7.

The largest dimension we have explored is 𝑑 = 8, where we found a cycle of length 209:

2,3,6,7,1,8,3,2,6,4,5,8,5,1,3,2,6,1,4,5,6,3,7,1,5,4,8,3,7,1,5,2,8,4,6,7,3,2,5,8,1,4,
6,3,8,4,2,1,5,7,2,8,3,4,1,5,3,8,6,7,1,4,3,5,7,2,6,1,4,7,5,2,8,5,3,4,8,6,7,3,5,2,1,6,
8,4,7,3,2,1,8,5,6,3,4,2,1,7,5,6,4,8,1,2,7,3,8,6,2,4,1,3,6,5,2,4,7,3,1,8,6,7,2,4,5,1,
3,6,8,7,5,4,2,3,1,8,5,7,4,3,6,1,7,2,8,6,5,4,3,2,8,5,6,7,1,3,2,5,4,8,7,3,5,1,6,4,7,2,
3,5,6,7,4,8,1,3,6,2,7,8,5,3,6,2,8,1,4,7,5,6,2,8,1,7,4,2,6,5,1,7,8,2,4,5,1,6,8,7,4

This is larger than the best solution based on rings we found, of size 200, and far from our lower

bound of 168. We again conjecture that smaller cycles exist closer to the lower bound.

D.3 A refined upper bound for cyclic indexes
The upper bound of Lemma 6.7 translates into the following stricter bound for single-cycle indexes.

Lemma D.1. There exists a single-cycle unidirectional order index of size 𝑂 (2𝑑𝑑), more precisely,

𝑓 (⌊𝑑/2⌋, ⌈𝑑/2⌉) + 𝑓 (⌈𝑑/2⌉, ⌊𝑑/2⌋), where

𝑓 (𝑥,𝑦) = ©«𝑠𝑤 (𝑥) · ⌊𝑥/2⌋ +
𝑥∑

𝑙= ⌊𝑥/2⌋+1

(
𝑥

𝑙

)ª®¬ · 𝑡𝑤 (𝑦) +©«𝑡𝑤 (𝑦) · (⌈𝑦/2⌉ − 1) +
𝑦∑

𝑙= ⌈𝑦/2⌉

(
𝑦

𝑙

)
· (𝑦 − 𝑙)ª®¬ ·𝑠𝑤 (𝑥)

Proof. In Lemma 6.7 we build 𝑠𝑤 (⌊𝑑/2⌋) · 𝑡𝑤 (⌈𝑑/2⌉) + 𝑠𝑤 (⌈𝑑/2⌉) · 𝑡𝑤 (⌊𝑑/2⌋) unidirectional
rings of length 𝑑 , which is shown to be𝑂 (2𝑑). Those rings are formed by pairing, for 𝑐 := ⌊𝑑/2⌋, all
the 𝑠𝑤 (𝑐) elements of a 𝑐-sufficient set for the first half of symbols with all the 𝑡𝑤 (𝑑 − 𝑐) elements

of a (𝑑 − 𝑐)-complete set for the second half of symbols, and vice versa. Since we do not use those

rings in cyclic form to support LTJ, they can be concatenated to form a single unidirectional cycle

of length 𝑑 (𝑠𝑤 (⌊𝑑/2⌋) · 𝑡𝑤 (⌈𝑑/2⌉) + 𝑠𝑤 (⌈𝑑/2⌉) · 𝑡𝑤 (⌊𝑑/2⌋)) ∈ 𝑂 (2𝑑𝑑).
This calculation can be tightened by noting that we do not need all those rings to be of length

𝑑 . Let 𝑠1, . . . , 𝑠𝑠𝑤 (𝑐) be the lengths of the strings in the (𝑐, 𝑐)-sufficient set and 𝑡1, . . . , 𝑡𝑡𝑤 (𝑑−𝑐) be
the lengths of the strings in the (𝑑 − 𝑐)-complete set. Then the total length of the rings we must

produce is

∑
𝑖, 𝑗 (𝑠𝑖 + 𝑡 𝑗) = 𝑡𝑤 (𝑑 − 𝑐) · (∑𝑖 𝑠𝑖) + 𝑠𝑤 (𝑐) · (

∑
𝑗 𝑡 𝑗).

As per Lemma 6.6, we need to produce only

(
𝑐
𝑙

)
suffixes of length 𝑙 = ⌊𝑐/2⌋ + 1, . . . , 𝑐 in order to

build all the needed strings in the 𝑐-sufficient sets. Therefore, to contain all the needed suffixes, we

can build all the

(
𝑐
⌊𝑐/2⌋

)
necessary strings of length ⌊𝑐/2⌋, and extend only

(
𝑐
𝑙

)
of those to length 𝑙 ,

for each 𝑙 = ⌊𝑐/2⌋ + 1, . . . , 𝑐 . The total length obtained is then

∑
𝑖 𝑠𝑖 = 𝑠𝑤 (𝑐) · ⌊𝑐/2⌋ +∑𝑐

𝑙= ⌊𝑐/2⌋+1
(
𝑐
𝑙

)
,

which, multiplied by 𝑡𝑤 (𝑑 − 𝑐), corresponds to the first part of the formula we are proving.

Similarly, Lemma 6.3 shows that we need to produce only

(
𝑑−𝑐
𝑙

)
(𝑑 − 𝑐 − 𝑙) prefixes of lengths

𝑙 = ⌈(𝑑 − 𝑐)/2⌉, . . . , 𝑑 − 𝑐 , to build all the needed strings in the (𝑑 − 𝑐)-complete sets. The analogous

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:52 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

calculation then yields

∑
𝑗 𝑡 𝑗 = 𝑡𝑤 (𝑑 − 𝑐) · (⌈(𝑑 − 𝑐)/2⌉ − 1) +∑𝑑−𝑐

𝑙= ⌈(𝑑−𝑐)/2⌉
(
𝑑−𝑐
𝑙

)
(𝑑 − 𝑐 − 𝑙), which,

multiplied by 𝑠𝑤 (𝑐), leads to the second part of the formula in the lemma.

The formula 𝑓 (⌊𝑑/2⌋, ⌈𝑑/2⌉) corresponds to combining a 𝑐-sufficient set with a (𝑑 − 𝑐)-complete

set; 𝑓 (⌈𝑑/2⌉, ⌊𝑑/2⌋) corresponds to a (𝑑 − 𝑐)-sufficient set combined with a 𝑐-complete set. □

The lemma yields constructive upper bounds for CTWO indexes that are about twice the size we

had obtained in Table 6 via exhaustive search and approximations.

Another upper bound for the size of the smallest unidirectional cyclic index is 2𝑠 + 2𝑑 − 2, where
𝑠 is the size of any bidirectional cyclic index: Given such a bidirectional cyclic index 𝑣1, . . . , 𝑣𝑠 , cut

it at any point 𝑣𝑠 , and build a unidirectional cyclic index by concatenating 𝑣1, . . . , 𝑣𝑠 , 𝑣1, . . . , 𝑣𝑑−1
with its reverse. For any segment that the bidirectional index had to extend in backward direction,

there is an equivalent segment in the copy that can be followed in forward direction.

E Supporting updates – the details
We show how to obtain the results claimed in Section 8. The bitvectors of length 𝑛 we described in

Section 2.3.1 can be implemented so that they support bit insertions and deletions, in addition to

supporting access, rank, and select, all in time 𝑂 (log𝑛). The space stays 𝑛 + 𝑜 (𝑛) bits, and even

𝑚 log
2
(𝑛/𝑚) +𝑂 (𝑚) + 𝑜 (𝑛) bits for sparse bitvectors with𝑚 1s [39]. A wavelet tree (Section 2.3.2)

implemented on those dynamic bitvectors supports insertion and deletion of symbols in a sequence

𝑆 [1 . . 𝑛] over alphabet [1 . .𝑈], as well as access, rank, and select queries, all in time𝑂 (log𝑈 log𝑛)
[39]. The other algorithms we describe in Section 2.3.2, like those to solve range-next-value or to

extract all the distinct values in a range [26], can also be implemented directly on the dynamic

bitvectors, and thus with the same 𝑂 (log𝑛) slowdown factor.

Using those dynamic wavelet trees, we can then obtain the same results of Theorems 3.13, 6.1,

and 7.4, with an𝑂 (log𝑛) slowdown factor in the time complexities.
12
We next show how to support

insertions and deletions of tuples and elements of the universe in the most general context of the

order indexes of Section 7.

E.1 Inserting and deleting tuples
The first part of inserting a new tuple 𝑡 in a table is to update the 𝑑 arrays 𝐴∗ so as to reflect that

there is one more occurrence of each of the values in 𝑡 . This is better done with the representation

as bitvectors 𝐷∗, which will now be dynamic: if the value of the 𝑗 th attribute of 𝑡 is 𝑐 , then we must

insert a bit 0 at position select1 (𝐷 𝑗 , 𝑐 + 1) of 𝐷 𝑗 . This takes time 𝑂 (𝑑 log𝑛) in total.

Once the bitvectors 𝐷∗ are updated, we must determine the position where (the corresponding

attribute of) 𝑡 should be inserted in the column of some node of the order graph; this will be called

the anchor node. For this sake we make use of the same property referred to in Section 7: there

must exist a path of 𝑑 edges in the order graph containing all the labels in [1 . . 𝑑]. Let 𝑣0, . . . , 𝑣𝑑 be

the nodes in this path, representing orders Π0, . . . ,Π𝑑 , and ℓ𝑗 = Π 𝑗 (1) be the attribute labeling the

edge 𝑣 𝑗−1 → 𝑣 𝑗 , for 1 ≤ 𝑗 ≤ 𝑑 . Further let 𝐶1, . . . ,𝐶𝑑 be the columns corresponding to the edges,

𝐶 𝑗 := 𝐶
Π 𝑗−1
ℓ𝑗

. We now perform 𝑑 restrictions, exactly as described in the proof of Theorem 7.4 (and

as in Lemma 3.14, if 𝑑 = 3), for the values of 𝑡 , on the columns 𝐶1, . . . ,𝐶𝑑 .

12
It is possible to reduce the times to𝑂 (log𝑈 log𝑛/(log log𝑛)2) using slightly faster access, rank, and select on wavelet

trees [50]. Operation range-next-value can be done with𝑂 (log𝑈 /log log𝑛 + log log𝑛) bitvector operations [9, Lem. 11],

which on dynamic bitvectors becomes𝑂 (log𝑈 log𝑛/(log log𝑛)2 + log𝑛) time. We prefer to stick to the simpler and more

practical results [39], however. Other more efficient dynamic sequence representations [45] do not support range-next-value.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

The Ring: Worst-Case Optimal Joins in Graph Databases using (Almost) No Extra Space 111:53

If 𝑡 does not exist in the table, there will be some column 𝐶 𝑗 where the restricted range becomes

empty, 𝐶 𝑗 [𝑠 . . 𝑒] with 𝑠 > 𝑒 . The anchor node is then 𝑣 𝑗 , in whose order Π 𝑗 the tuple 𝑡 should be

inserted at position 𝑠 . If 𝑡 exists, on the other hand, it should not be inserted.
13

We insert the values of 𝑡 in all the columns 𝐶∗ starting from the anchor node 𝑣 𝑗 , by propagating

the position 𝑠 across the order graph edges starting from 𝑣 𝑗 . If we know that 𝑡 should be at position

𝑠 in the order Π𝑣 of a node 𝑣 and there is an edge from 𝑣 to 𝑢, with order Π𝑢 , labeled with attribute

𝑖 = Π𝑢 (1), then we insert the value of attribute 𝑖 of 𝑡 at position 𝐶
Π𝑣

𝑖
[𝑠], and after this is done the

position of 𝑡 in Π𝑢 is 𝑠 ′ := 𝐹
Π𝑣

𝑖
(𝑠) (Eq. (2)). This process is analogous to that of inserting a circular

string in the Burrows-Wheeler Transform of a dynamic set of circular strings [39, Sec. 3.6].

If the order graph is a single cycle, this process reaches all the edges of the graph. If the graph

is formed by a set of rings, as in Section 6.2, we must find an anchor node in each ring and then

propagate the position of 𝑡 inside each ring. Other order graph shapes can be handled as well, for

example if each connected component is a cycle containing a path of length 𝑑 with the 𝑑 distinct

attributes, and there are trees sprouting from the cycle nodes. Those include all the order graphs

we have found to be of interest in Section 7. We can then update those order indexes upon the

insertion of 𝑡 in time 𝑂 (|E | log𝑈 log𝑛), where |E | is the number of edges in the order graph.

Deleting an existing tuple 𝑡 follows the inverse process. We perform the 𝑑 restrictions on the

edges that connect 𝑣0, . . . , 𝑣𝑑 , reaching the position 𝑠 of 𝑡 in the order Π𝑣𝑑 . From 𝑣𝑑 , which acts as

our anchor node, we propagate the deletion. This time, we compute the position 𝑠 ′ before removing

𝑡 : if we know the position 𝑠 of 𝑡 in Π𝑣 and there is an edge 𝑣 → 𝑢 labeled by attribute 𝑖 , we compute

𝑠 ′ := 𝐹
Π𝑣

𝑖
(𝑠) and only then remove𝐶

Π𝑣

𝑖
[𝑠] (if 𝑣 is connected to several nodes, we delete the position

after computing 𝑠 ′ on all its out-neighbors). Once we have updated all the columns 𝐶∗, we remove

the 0 at position𝐷 𝑗 [select1 (𝐷 𝑗 , 𝑐+1)−1] for every value 𝑐 at every attribute 𝑗 of 𝑡 . Thus, we delete
a tuple from the index in time 𝑂 (|E | log𝑈 log𝑛). Since 𝑑 ≤ |E|, this is the total time complexity.

E.2 Modifying the universe
In graph databases seen as sets of tuples, inserting/deleting tuples corresponds to inserting/deleting

graph edges but also, indirectly, to inserting/deleting graph nodes and edge labels. In the general

case, this operation may then involve modifying the universe𝑈 .

Modifying 𝑈 is complicated in our representation because the wavelet trees are structured

according to a binary partition of [1 . .𝑈]. We will support the following update operations:

• Doubling the universe range, from [1 . .𝑈] to [1 . . 2𝑈], where 𝑈 will always be a power of 2.

• Allocating a new element of the universe, within the current range [1 . .𝑈].
• Removing an element from the universe, if it does not appear in any tuple.

• Halving the universe range, from [1 . .𝑈] to [1 . .𝑈 /2].
The requirement that 𝑈 is a power of 2 affects the space usage only sublinearly: our original

terms log
2
𝑈 may become now as large as ⌈log

2
𝑈 ⌉ < 1 + log

2
𝑈 . Using powers of 2 brings impor-

tant simplifications for expanding the universe because the wavelet trees are perfectly balanced.

Doubling𝑈 corresponds to prepending a 0-bit to every symbol in each represented sequence 𝑆 . If

we have the wavelet tree𝑊 for 𝑆 , the new wavelet tree of 𝑆 on alphabet [1 . . 2𝑈] has a new root

node, with a bitvector formed by 𝑛 0s, whose left child is𝑊 and whose right child is a perfectly

balanced wavelet tree with𝑈 leaves and all empty bitvectors.

Though simple, this expansion requires𝑂 (𝑛 +𝑈) time in principle. The𝑂 (𝑈) cost, coming from

creating the wavelet subtree with empty bitvectors, is easily removed by deamortization: we do

not represent the children of a wavelet tree node whose bitvector is empty; we do that only when

13
If we want to allow for repeated tuples, we can insert the new copy of 𝑡 anywhere in [𝑠 . . 𝑒 + 1] of order Π𝑑 .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:54 D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto

some symbol must be represented in that node. If we use wavelet matrices [16] instead of wavelet

trees, doubling𝑈 is even easier: we just create a new bitvector of 𝑛 0s preceding the others.

To eliminate the 𝑂 (𝑛) time needed to create a bitvector of all 0s, we resort to a format that

gap-encodes the number of 0s between consecutive 1s [39, Sec. 3.4]. In this format, a sequence of 𝑛

0s is created in constant time and uses only 𝑂 (log𝑛) bits. Such gap-encoded bitvectors can also be

operated in 𝑂 (log𝑛) time and within the same compressed space we use [39, Sec. 5].
14

As a result, we support doubling the universe range in constant time per (wavelet tree/matrix

of) index column, and within the same asymptotic space we have been using.

We maintain the maximum universe element in use,𝑈 ′ ≤ 𝑈 . To allocate a new universe element,

we just set𝑈 ′ := 𝑈 ′ + 1 and return𝑈 ′, if this does not exceed𝑈 . If𝑈 ′ exceeds𝑈 , however, we must

double the universe range as explained, so that𝑈 becomes 2𝑈 .

For removing an element of [1 . .𝑈] that is no longer in use, we simply leave the symbol unused

and maintain a gap-encoded dynamic bitvector 𝑅 [1 . .𝑈] marking with 1s the removed symbols.

Setting some position 𝑅 [𝑝] := 1 then takes time 𝑂 (log𝑛), and we incur 𝑂 (𝑈) extra bits of space.
When a new symbol has to be allocated, we first try to reuse removed symbols: if 𝑝 := select1 (𝑅, 1)
returns a result, we return 𝑝 and set 𝑅 [𝑝] := 0. Otherwise, we increase𝑈 ′ and possibly double the

universe range, as explained. When we have to double the universe, 𝑅 is always a sequence of𝑈 0s,

so we can easily convert it into a gap-encoded sequence of 2𝑈 0s in constant time.

Thus, overall, we allocate and remove universe elements in𝑂 (|E | + log𝑛) time, using𝑂 (𝑈) extra
bits of space. Note, however, that 𝑈 must now be interpreted as the maximum size ever reached by

the universe, because it never decreases. We then obtain Theorem 8.1.

If using space and time related to the maximum universe size seen so far is a problem, we must

implement the last operation in our list. Concretely, we halve 𝑈 when 𝑅 contains less than 𝑈 /2 0s,
that is, less than half the elements in [1 . .𝑈] is in use. We then guarantee that log

2
𝑈 is at most 1

more than the logarithm of the current universe size.

Halving the universe range is a costly operation, however. We map every universe element 𝑖

to rank0 (𝑅, 𝑖), reconstruct all the wavelet trees over alphabet [1 . .𝑈 /2], and reset 𝑅 to 𝑈 /2 0s.

If we remove the symbols of the wavelet tree of 𝑆 [1 . . 𝑛] one by one, and insert their remapped

values into a new wavelet tree, we incur no extra space and the cost is 𝑂 (|E |𝑛 log𝑈 log𝑛). Since
we do this only after𝑈 /2 element removals, the amortized cost to remove a universe element is

𝑂 (|E |(𝑛/𝑈) log𝑈 log𝑛). This is too high if𝑈 is much smaller than 𝑛. An alternative is to reduce

the universe from 𝑈 to 𝑈 /(𝑛/𝑈) only when the fraction of used elements falls below 𝑈 /𝑛. The
amortized time is then 𝑂 (|E | log𝑈 log𝑛), but in exchange the universe range can be 𝑛/𝑈 times

larger than necessary, and thus all the log𝑈 terms in our space and time complexities become log𝑛.

We thus obtain Theorem 8.2.

14
Their gap encoding result [39, Thm. 6] can create a long bitvector of 0s efficiently, as explained, but only their so-called

block-identifier encoding [39, Thm. 7] achieves the desired space when the number of 1s becomes significant. We can obtain

the best of both worlds by switching from gap to block-identifier encoding on the bit chunks that become sufficiently dense

of 1s. Those chunks are encoded independently and can be re-encoded in time𝑂 (log𝑛) , retaining our complexities.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related works and concepts
	2.1 Graph joins and patterns
	2.2 Worst-case optimal joins
	2.3 Compact data structures

	3 One ring to index them all
	3.1 Orders, tables, and columns
	3.2 Navigation between a table and its re-sorting
	3.3 The ring index for graphs
	3.4 Processing joins
	3.5 Variables appearing more than once in a triple pattern
	3.6 Rings in compressed space

	4 Engineering and implementation
	4.1 Indexing
	4.2 Join algorithm
	4.3 Variable elimination order
	4.4 Fixed predicates

	5 Experimental results
	5.1 Experimental setup
	5.2 Graph patterns benchmark
	5.3 Real-world benchmark at full scale

	6 Quads and higher dimensions
	6.1 Indexing quads
	6.2 Indexing higher dimensions

	7 From rings to order graphs
	7.1 Types and sizes of order indexes
	7.2 Lower and upper bounds on index sizes

	8 Supporting updates
	9 Conclusions
	Acknowledgments
	References
	A Extensions to basic graph patterns
	B Detailed experimental setup
	B.1 The Wikidata graphs
	B.2 System details
	B.3 Query sets

	C Time distributions for fixed-predicate indexes
	D Minimal order graphs
	D.1 Rings
	D.2 Cycles
	D.3 A refined upper bound for cyclic indexes

	E Supporting updates – the details
	E.1 Inserting and deleting tuples
	E.2 Modifying the universe

