A Fast Distributed Suffix Array Generation Algorithm*

Joao Paulo Kitajima
Bioinformatics Laboratory

Campinas State University (UNICAMP)

13083-970 Campinas, SP, Brazil
Jpk@lbi.dce.unicamp. br

Abstract

We present a distributed algorithm for suffiz array
generation, based on the sequential algorithm of Man-
ber and Myers. The sequential algorithm is O(nlogn)
in the worst case and O(nloglogn) on average, where
n 1s the text size. Using p processors connected through
a high bandwidth network, we obtain O((n/p)loglogn)
average time, which is an almost optimal speedup. Un-
like previous algorithms, the text is mot transmitted
through the network and hence the messages exchanged
are much smaller. We present some experimental evi-
dence to show that the new algorithm can be faster than
the sequential Manber & Myers counterpart.

1. Introduction

To reduce the cost of searching in textual databases,
specialized indexing structures are adopted [2, 16]. The
most popular of these are the inverted lists. Inverted
lists are useful because their search strategy is based on
the vocabulary (the set of distinct words in the text)
which is usually much smaller than the text and thus
fits in main memory. For each word, the list of all its
occurrences (positions) in the text is stored.

Suffiz arrays [10] or PAT arrays [3] are more sophisti-
cated indexing structures with similar space overhead.
Their main drawback is their costly construction and
maintenance procedures. However, suffix arrays are su-
perior to inverted lists for searching phrases or complex
queries such as regular expressions [3, 10] or in appli-
cations where the concept of word is of no use, such
as computational biology [4]. In this model, the entire

*This project has been supported in part by CYTED VII.13
AMYRI Project. First author supported by FAPESP fellow-
ship 99/01389-0. Second author partially supported by Fondecyt
grant 1-990627.

Gonzalo Navarro
Dept. of Computer Science
University of Chile
Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile. cl

text is viewed as one very long string. In this string,
each position k is associated to a suffiz, which initiates
at position k. Retrieving the “occurrences” of the user-
provided patterns is equivalent to finding the positions
of the suffixes that start with the given pattern.

A suffiz array is a linear structure composed of
pointers (here called index pointers) to every suffix in
the text (since the user normally bases his queries upon
words and phrases, it is customary, in documents, to
index only word beginnings). These index pointers are
sorted according to a lexicographical ordering of their
respective suffixes. To find patterns in the text, bi-
nary search is performed on the array at O(logn) cost
(where n is the text size).

The simplest approach to build the suffix array se-
quentially is to perform a traditional sort of the point-
ers, such as mergesort or quicksort. However, there
exist specialized algorithms for sequential construction
of suffix arrays, such as the original one of Manber and
Myers [10] and, more recently, those of Sadakane [13].
As shown in [13], these specialized algorithms outper-
form the general purpose sorting techniques.

If the text is very large, we have to resort to sec-
ondary memory and the problem is more difficult. The
best known sequential procedure for generating large
suffix arrays [3] takes time O(n? log(m)/m) where m is
the size of the main memory.

We present a new algorithm for distributed parallel
generation of large suffix arrays in the context of a high
bandwidth network of processors. This is the first dis-
tributed algorithm which generalizes a special purpose
sequential algorithm (i.e. that of Manber and Myers
[10]), instead of the slower general purpose algorithms
considered in previous work.

Our parallelism model is that of a parallel machine
with distributed memory. Our algorithm sorts in a
(distributed) main memory, without secondary storage
considerations. Assume that we have a number p of

Algorithm Average case Worst case
Msort, n(I+ C) n?(I+ C)
Qsort (blogn)I + b(logp)C n?(I+ C)
G-Qsort (blogn)I + bC n*(I+ C)
MDMsort (bloglogn)(I+ C) | log(n)(bI + nC)

Table 1. Complexity comparison among our algo-

rithm (MMsort) and previous work.

processors, each one storing b text positions, composing
a total distributed text of size n = pb. Our final suffix
array will be left distributed (so as to reduce query time
overhead later, or it can be simply merged otherwise).
We assume that the parallelism is coarse-grained, with
a few processors, each one with a large main memory.
Typical values are p in the tenths or hundreds and b in
the millions. We assume at least that p << /n << b.

In our communication model, each pair of processors
can exchange messages simultaneously without con-
tention, and broadcasting can be done efficiently. This
setup corresponds to current fast switching technology
with a few large processors [5] such as ATM (Asyn-
chronous Transfer Mode) networks, the IBM SP (based
on the High Performance Switch, HPS), or a Myrinet
switch cluster.

Our new algorithm has a computation and commu-
nication complexity of O(bloglogn) on average. Previ-
ous distributed algorithms for this problem are general-
izations of general purpose sorting algorithms adapted
to suffix arrays: mergesort (Msort [8]) and of quicksort
(Qsort [7] and G-Qsort [11]) have been used. Their
complexities are in Table 1, where I refers to cpuU cost,
and C to communication cost (normally the most im-
portant). Note that none of the algorithms handle well
the worst case, but our new algorithm (MMsort) is
more reasonable. For the average case, only G-Qsort
compares favorably against our new MMsort.

An interesting feature of the new algorithm with re-
spect to the previous ones is that the text is not trans-
mitted across the network, only requests for data and
for updates are sent. Finally, we point out that there is
some related work on sorting strings under the PRAM
model [1, 6], where there is no difficulty in accessing
the data of other processors.

2. The Sequential Algorithm

We describe briefly in this section the sequential
algorithm of [10]. The general idea exploits the fact
that suffixes are part of other suffixes of the same text.

First, the array is bucket-sorted by the first letter of
each suffix, in linear time. After this, [log,n] itera-
tions are carried out, numbered h = 0,1, ...[log, n] — 1.
At iteration h, the suffix array is already sorted by the
first 2" letters of each suffix, and at the end of the it-
eration the suffix array is sorted by the first 2"+ first
letters. Each such iteration is done in linear time using
bucket sort again: the buckets of the h-th iteration are
refined to obtain those of the (h + 1)-th iteration.

The key idea follows. Assume that text positions 7
and j are currently in the same bucket, i.e. they are
equal in their first 2" characters. In order to sort the
text positions ¢ and j by their first 2**! characters,
we just need to know which are the buckets where the
positions i + 2" and j + 2" are at this point. Since
positions i and j are in the same bucket, then text[i..i+
2" 1] = tewt[j.. + 2" — 1]. If we want to sort them by
2h+1 characters, we need to compare text[i..i + 2"+! —
1] against text[j..j + 2"*" —1]. The outcome of this
comparison is exactly that of comparing text[i+2"..i+
2h+1 1] versus text[j + 2"..5 + 2"+ — 1]. Since these
are two text positions (i + 2" and j + 2") compared by
their first 2" characters, the answer corresponds to the
buckets where these two text positions are currently
positioned, since all the text positions are currently
sorted by 2" characters.

Figure 1 illustrates this algorithm. We start with the
unsorted array. In the first step we bucket sort using
the first character. After this, we double the number
of characters already sorted until we obtain n buckets.
This happens in [log, n] steps but, as in the example,
it can happen before.

a b ab aab b a Text

‘l 2 3 45 6 7 8 9‘ Initia array (sorted by O positions)

a b

‘1 3 5 6 9‘ 2 4 7 8‘ Sorted by 1 position
a aa ab ba bb

‘9‘ 5‘ 1 3 6‘ 2 4 8‘ 7‘ Sorted by 2 positions
a abaa abba baab bba

‘9‘ 5‘ 3‘ 1‘ 6‘ 8‘ 4‘ 2‘ 7‘ Sorted by 4 positions
aabb abab ba baba

Figure 1. The sorting algorithm, at a high level.

The main problem when converting this simple idea
into an efficient algorithm is to devise a way to do
all the bucket sorts in linear time avoiding the explo-
sive number of buckets that could be generated'. At

LA naive bucket sort on 2" characters for an alphabet X gen-

erates \Z\Qh buckets, one per string of length 2", and most of
them empty. When h approaches log, n the number of buckets

each iteration, we consider the current buckets in or-
der. Think on the first one. The suffixes starting 2"
positions before those in the first bucket must become
the first suffixes of their buckets. This is because all the
suffixes of the same bucket are equal in their first 2"
letters, and we are moving to the beginning those suf-
fixes followed by the smallest existing 2" length strings.
Once these are moved to the beginning of their buckets,
we continue with the second buckets, and so on. The
idea is, then, that instead of sorting positions i and j
by searching the buckets of i + 2" and j + 2", we wait
until, at some moment, the position i + 2" (or j + 2")
is first found in the linear traversal, and then move the
position i (or j) to the beginning of the bucket.

We consider the algorithm in more detail now. We
first show the arrays used (all of size n) and then the
steps performed.

Pos : suffix array, sorted by the first 2" letters

BH : binary array marking the beginnings of
the current buckets

Prm : reverse Pos permutation being built for

the next iteration
B2H : BH mask being built for next iteration
Count : sizes of the new buckets being created

A In the beginning, Pos is bucket-sorted by the first
letter of the suffix pointed. This is easily done in linear
time. BH is set to 1 at the first cell of each new bucket
and to 0 elsewhere.

B Now, the following code is carried out for h = 0 to
[logyn] —1

1. B2H is initialized to zeros, as well as Count
(which needs initialization only where BH is 1).

2. Prm is set to the reverse permutation of Pos, ex-
cept it points to the beginning of the bucket where
the reverse permutation should point. That is, if
Pos[i] = j, then Prm][j] points to the beginning of
the bucket of i. This is easily assigned on a linear
pass over Pos, by recalling the position of the last
1 of BH and setting Prm[Pos[i]] to that position
(instead of to 7).

3. Now, for each bucket of Pos, in order (their limits
are signaled in BH), we do:
(a) For each position i of the current bucket, do

i. Let d = Pos[i] — 2" be the text pointer
to move

becomes |3|™.

ii. Look at e = Prm][d] to find its current
bucket

iii. Make Prm[d] point to e + Countle],
which is the next free position in the
bucket that starts at e

iv. Set B2H to 1 in the new Prm/[d] position

v. Increment Count[e]

At this point, the reverse permutation Prm
(not Pos) maps the proper suffixes to the be-
ginning of their buckets. Doing this bucket
by bucket will correctly complete the itera-
tion. But we need first to leave B2H in 1
only in the first position of each new bucket
(currently there is a stream of 1’s).

(b) For each position i of the current bucket, do

i. Let d = Pos[i] — 2" be the text pointer
to move

ii. If B2H[Prm][d]] is 1, delete the other 1’s
to the right (until B2H is 0 or BH is 1).
This will only occur for the first element,
of the new bucket.

4. We have finished this iteration. Just restore a cou-
ple of invariants. Set Pos to be the reverse of Prm
(which is the reverse permutation of the new iter-
ation), and make BH[i] = BH[i] or B2H]i] for all
i. If, for all i, BH[i] = 1, then the array is already
sorted and we can preempt the whole algorithm.

To avoid complicating the description of the above
algorithm, we have not considered that, at iteration h,
the text positions n — 2°+! 41 to n are not referenced.
In fact, since we assume that the text is followed by
zeros, these positions must be the first in being moved
to the beginning of their buckets, prior to starting the
bucket-by-bucket traversal.

Figure 2 illustrates the more detailed algorithm, us-
ing the same example of Figure 1. Along the iteration
for each h value we build a new sorted array (reflected
in Prm, Count and B2H). At the end of the iteration
we (basically) copy B2H onto BH and the reverse of
Prm onto Pos (which is the “real” permutation).

We consider the analysis now. It is clear that each
iteration of Step 2 takes O(n) time, since the iterations
on each bucket take time proportional to the bucket
size, and their sizes add up n. The array is totally
sorted after h = log, n iterations because the longest
suffix is of length n, and hence sorting all the strings by
their first 2" = n letters is enough. The cost is therefore
O(nlogn) in the worst case. However, as pointed out
in [10], the algorithm is O(nloglogn) on average. This

(temporary permutation)
iteration h=0
7 8| (last dlements)

93 5 6 1[2 4

8 7| (by bucketa)
8, 7] (by bucketb)
iteration h=1
2[7] (last elements)

l9,5/3 6 1]2 4

9,51 3 6[2 4

o] 5] 1 3 6] s

IS

2] 7] (by bucket a)
2[7] (by bucket a)

IS

6| 8
6| 8
6] 8, 4

o 5] 1 3

IN

9| 5| 3 1
[o] 5] 3,

[o] 5] 3, 1 2] 7] (by bucket ab)

a b ab aab b a Text

[1 2 3456 7 89| !Intidary

a b (sorted by 0 positions)

[1 35 6 9]2 4 7 8 Initia buket sort
(sorted by 1 position)

a aa ab ba bb

o] 5] 1 3 6] 2 4 8] 7] Sortedby2positions

a abaa abba baab bba

‘9‘ 5‘ 3‘ 1‘ 6‘ 8‘ 4‘ 2‘ 7‘ Sorted by 3 positions

aabb abab ba baba

Figure 2. The sorting algorithm, at a detailed level. We have stopped when the array became totally sorted.

is because the average length of the longest repeated
substring in the text (or equivalently, the height of the
suffix tree) is O(logn) [14].

3. A Distributed Algorithm

For the distributed version, we assume that we have
p processors, and each one stores a contiguous portion
of size b = n/p of the text. Each processor will also
store a slice of the corresponding Pos, Prm, BH, and
Count arrays (and some extra arrays, as seen later).

The most delicate part of the parallelization is that
the original algorithm strongly relies on sequential ex-
ecution. We first explain two heavily used primitives
and later depict our distributed algorithm.

Pairwise Exchange At some points, each processor
has some data to exchange with each other processor.
Assume that the total amount of data each processor
has to send and to receive is O(b). Ideally, each proces-
sor has on average O(b/p) data to exchange with each
other, but the general situation can be unbalanced.

Algorithms to pair all the processors with each other
in O(p) turns with synchronization barriers were pre-
sented in [15, 11]. If the data is uniformly distributed
the average complexity of each turn is O(b/p) [11], and
the total average cost for pairwise exchange is O(b).
However, in the worst case an unbalanced transfer
schedule yields O(b) time per turn, for a total com-
munication complexity of O(n).

Batched List of Requests When a processor needs
to perform some actions on the data stored in others, it
sends them a request to do so. To avoid the overhead

of many small messages, the requests are buffered. An
array of p buffers, one per receiving processor, is main-
tained. The total cost of this primitive is O(p + r)
where r is the number of requests to send.

3

3.1. The Algorithm

We depict now the algorithm using the above ex-
plained primitives.

A The first step is to bucket sort the global suffix
array. Each processor will end up storing a slice of
the alphabet. For instance, the first one could contain
all the suffixes starting with ’a’, ’b’, and some suffixes
starting with ’c’. Any choice of which suffixes starting
with ’c’ are left in the first processor is suitable, as long
as all the processors take the same decisions separately
and consistently. We perform the following steps.

1. Each processor bucket-sorts its local text in Pos.

2. Each processor broadcasts how many suffixes it
has starting with each letter.

3. Each processor, with the information gathered
from the others, determines which letters should it
administer and which processors have them. All
processors use the same algorithm, so each one
knows which part of Pos to send to each other.

4. The processes exchange pairwise the correspond-
ing parts of Pos.

5. Each processor initializes its local section of BH.

B This part is the most complex, and hence we use a
more powerful formalism. The algorithm to be carried
out at each processor is depicted in Figure 3.

V heo..[logy n]—1
1. Vi€ array
Count[i]«0
B2H[i]+0
2. last<0
Vi€ array
SetPrm(Poslil,last) —] = own(Pos[i])
if bucket changes, last«i
V Set Prm(pi,i)
Prm[pi]=i
3. Vi€ array
d « Pos[i]—2"
GetPrm(i,d) own(d)
VY GetPrm(i,d) vr
AnswPrm(i,Prm[d])) ~—— - r
vV AnswPrm(i,pd)
eeli]«pd
4. v bucket of Pos
Vi€ bucket
e<—eeli]
AccessCount(i,e)
Vi€ bucket
e<—eeli]
CloseBucket() ~——— = own(e)
5. Vrel..p
7«0
V AccessCount(ie) ~ |
CountValue(i,e+Countle]) |
B2H e+ Countle]]+1
Count[e]++
acc[jl«e
J++
if CloseBucket() =~ |
vj'€el.j
e+acc[j']
Countle]——
Vel
e«acclj']
B2H[e+Countle]+1]«+0
Countle]++
V Close Bucket() r
do nothing
6. vV CountV alue(i,ce)
d«Pos[i]—2"
SetPrm(d,ce)
vV SetPrm(d,ce)
Prmld]<ce
7. v i€ array
SetPos(Prmlil,i) — = own(Prml[i])
V SetPos(pi,i)
Pos[pi]«i
V i€ array
BH[i]« BH][i] or B2H][i]

own(e)

vl

own(d)

Figure 3. Part B of the distributed algorithm.

Left-to-right arrows represent messages emitted.
The receiving processor is given at the end of the ar-
row, where own(z) means the processor owning the ar-
ray position z. Right-to-left arrows represent incoming
messages, which are generally used to execute a loop
body for each message arrived. Sometimes we indicate

the originating processor, in order to put a condition
on it, or just in order to use the processor number (we
use Vr to indicate that there is no condition on the
sending processor r). The rest is a quite traditional
pseudocode.

It is important to note that all the messages are ex-
changed using the technique of pairwise exchange ex-
plained and sent in batch. Only after a loop is com-
pleted we send all the outgoing messages generated
during the loop.

We explain now the rationale of the different parts,
using the numbers on the left of the code. The following
actions are carried out at each processor, for h = 0 to

[logyn] — 1

1. The local portions of Count and B2H are initial-
ized to zero.

2. Prm is set to point to the beginning of the buckets
where the reverse permutation should point. This
corresponds to perform a linear pass over Pos, set-
ting Prm/[Pos[i]] = last, where last is the position
of the beginning of the last bucket before position
1. However, the Prm positions to update may re-
side in other processors. Note that there is no
sequentiality constraints in the order of honoring
the SetPrm() requests, because each position of
Prm is updated only once.

3. We need to read Prm positions from other pro-
cessors. This step is equivalent to B.3.a.i and
B.3.a.ii of the sequential algorithm, i.e. to com-
puting d = Pos[i] — 2" and then e = Prm][d] for
all the positions of the local Pos array. ee[] is an
extra array used to store the e values that the se-
quential algorithm computes on the fly.

Steps 4 to 6 correspond to B.3.a.ii to B.3.a.v and
B.3.b of the sequential algorithm. In order to paral-
lelize it we make a separate pass over the buckets join-
ing all these steps.

4. We traverse Pos linearly, bucket by bucket. For
each bucket we send all the AccessCount() re-
quests to update Count and B2H, and to retrieve
the resulting Count values. After each bucket
we need to signal the bucket termination to all
the processes we have sent some message for this
bucket. We could send only one CloseBucket()
message to each such processor, but this cannot
be efficiently done when there are much less than
p elements in the bucket (which is a normal case).
So we do it as in the sequential algorithm (B.3.b):
if a processor received & AccessCount() messages,
it will receive x Close Bucket() messages.

5. We now serve the requests sent in the previous
step. It is crucial to do it ordered by the sending
processor (the requests sent by each processor are
internally ordered). The list of requests received
from each processor has blocks of AccessCount()
requests followed by blocks (of the same length)
of CloseBucket() requests. The AccessCount()
requests are used to send back to the processor the
current e + Countle] value, and then to put 1 in
B2H at this position? (step B.3.a.iv of sequential
algorithm) and increment Countle] (step B.3.a.v
of sequential algorithm). We also store in an extra
array accl] the e values received?, for purposes that
are made clear shortly.

After the block of AccessCount() is served we
have the block of CloseBucket(). Only the first
such message of each block is considered: we re-
view (using acc[]) the set of e values in the last
AccessCount() block and use this to transform the
stream of 1’s of B2H so as to leave only the first
of these 1’s. This is done in a way somewhat dif-
ferent from the sequential algorithm (step B.3.b),
because we have not yet updated Prm.

6. We use the information received in CountValue()
about the values of e + Countle], in order to set
Prm[d] = e + Countle] (step B.3.a.ii of the se-
quential algorithm). Since the d position is in
general in another processor we need to exchange
requests.

7. Set Pos to be the reverse of Prm, using a pro-
cess similar to that used to set Prm in terms of
Pos. Later, make BH = BH or B2H. This cor-
responds to step B.4 of the sequential algorithm.

Again, we have not complicated the description with
the initial pass that, at each iteration, must be made
to update the final positions of the text.

4. Analysis

We analyze now the computation and communica-
tion complexity of our algorithm. We present the com-
plexities using factors I (for internal computation time)
and C (for communication time). To simplify some
measures, we make the assumption p < b.

We divide the analysis in the same parts A and B
of the description of the algorithm.

2Note that the BH position to access could surpass the scope
of the current processor, and a request to the neighboring one
could be necessary for this matter.

3Note that ee[] and acc|] can share their memory.

A The global bucket sort by the first letters has three
steps. Step 1 has O(b) computation complexity and no
communication. Step 2 has O(|X|p) communication
complexity, where X is the alphabet of the text and
is considered of constant size. Step 3 involves only
computation and can be easily done in O(|X|+p) time.
Step 5 is clearly O(b) computation time. The most
interesting step is the 4th, a pairwise exchange. As
explained in Section 3, this costs O(b) communication
on average, but the worst case is O(n). Hence, the
total complexity of Part A is O(b+ p)I+O(b+ p)C =
O(b)(I+C) on average, and O(b)I+O(n)C in the worst

case.

B The second part is repeated log, n times at most,
but only O(loglogn) times on average (see the end
of Section 2). The step-by-step analysis is simple,
once we note that most of them consist in pairwise
exchanges (see Section 3) which in all cases are uni-
formly distributed. Step 1 is O(b)I. Steps 2 to 7
are all O(b)I + O(b)C on average and O(b)I + O(n)C
in the worst case. The most interesting step is per-
haps the 5th, because of the multiple traversals on the
same requests, but these impose in any case a constant,
factor overhead that does not change the complexity.
Hence, Part B is O(bloglogn)(I + C) on average and
O(blogn)I + O(nlogn)C at worst.

The result is that our algorithm has an average
complexity of O(bloglogn) both in computation and
communication, while the worst case is not better
than that of the sequential algorithm. Notice that, if
vn < b < n, then loglogn = O(loglogh). We con-
sider scalability now. If we double n and p, the new
cost T'(2n,2p) (both in I and C complexities) becomes
bloglog(2n) = T'(n,p) x (1 + O(1/(lognloglogn))).
The ideal scalability condition is T'(2n,2p) = T'(n,p).

Table 1 presents a comparison between our complex-
ity (MMsort) and that of previous algorithms (Msort
[8] based on mergesort and Qsort [7] and G-Qsort [11]
based on quicksort), when all the suffixes are indexed.

As explained in Section 1, previous algorithms did
not handle properly the worst case. Our algorithm han-
dles this case much better. On average, we have the
best computation complexity (inheriting from the se-
quential algorithm), but our communication complex-
ity is O(bloglogn) instead of O(b) of G-Qsort.

5. Experimental Analysis

5.1. Sequential Generation

A suffix array is a vector of addresses, ordered by the
value of the addressed entity (and not by the address
itself). Therefore, a naive implementation of a suffix
array builder may use a standard sort algorithm, imple-
mented, for example, as a built-in library sort routine
like C gsort. However, these classical algorithms do
not assume any content interdependence among the el-
ements to be sorted. This drawback has already been
proven experimentally relevant, comparing suffix ar-
rays generators implemented using standard sort pro-
cedures against programs using smart techniques like
those based on Manber & Myers [10] and Sadakane [13]
algorithms.

We compared once more the execution times of
two sequential and in-core suffix array generators, one
based on an efficient version of the QuickSort algorithm
(asort) [9] and one based on the Manber & Myers
strategy. Both programs were executed on an Intel
Linux workstation with half gigabyte of main memory
and a 400 MHz processor. The input text is a random-
generated genome. We measured total elapsed time
on a quiet machine, starting with 1 megabyte of in-
put text. With a 30 megabyte genome, the Manber &
Myers program generated a suffix array in 85% of the
elapsed time of the standard gsort based implemen-
tation. Our measures also showed the O(nloglogn)
behavior of the Manber & Myers algorithm and the
O(nlogn) complexity for gsort. For increasing input
text sizes, the gap between execution times of both
programs will keep improving. A collateral conclusion
was derived from this first comparative study: execu-
tion times may be important even for suffix arrays be-
ing generated completely in gigabytes primary memory
(we ran a suffix array generator based on quicksort on a
genome with 25 megabases and it took almost 2 hours).

5.2. Parallel Generation

We implemented a very simplified prototype of our
parallel algorithm in order to perform some compara-
tive measures. We used an interpreted programming
language, Perl, running on a 2 processor shared mem-
ory workstation. Communication is performed through
message passing using sockets. Although much less ef-
ficient than compiled programs, Perl scripts are very
suitable for string processing and for the development
of Web active pages. Like Java, another interpreted
language, Perl also has been used currently for the

development of parallel applications. The goal of the
shared memory here is to simulate a very fast network.

The first phase of the parallel algorithm is compared
against the first phase of the sequential algorithm (Ta-
ble 2).

input // comp. | // bucket | // comm. seq.
size time time phase 1
8 kb 0.15 0.08 0.12 0.13
16 kb 0.29 0.14 0.19 0.33
32 kb 0.62 0.33 0.31 0.64
64 kb 1.21 0.66 0.62 1.28
128 kb 2.35 1.32 1.39 2.57
256 kb 4.86 2.62 2.78 5.24
512 kb 9.70 5.26 5.67 10.34
1024 kb 19.33 10.45 11.77 20.67

Table 2. Execution and communication times of

Phase 1. Time unit is second.

The measures presented in Table 2 show that the
prototype program should improve its efficiency in two
directions: (1) reduce the additional computation time,
not related to the bucketsort and (2) reduce the com-
munication time.

The additional computation time not related to the
bucketsort is the computation time related to house-
keeping of arrays and counters, much of which could
be simplified. When we compare the sequential phase
1 with only the bucketsort of the parallel version, we
verify an ideal speedup of 2, showing that the paral-
lelism is being exploited.

The reduction of the communication time is related
to the use of parallel communication and an efficient
communication network. Even using shared memory,
as in the case of our prototype, the use of TCP/IP
sockets generates a high overhead. In our prototype,
communication is not parallel and the measures pre-
sented in Table 2 can be reduced by 2.

The second phase of our algorithm is much more
complex and the corresponding prototype program pre-
sented very low efficiency due mainly to the use of sock-
ets. Table 3 presents the obtained measures.

We tried to understand in more details this low effi-
ciency. We measured only phases B1, B2, and B3 total
elapsed and communication times for different input
sizes and verified a communication overhead superior
to 50% of the total execution time. For steps B4 to B7,
communication corresponded to around 40% of the to-
tal execution times of these steps. This communication
overhead was also detected in phase I and even when
communicating through a shared memory, the use of
a protocol based on sockets is not the best choice (be-

[input size | // total time | // comm. time | seq. phase 2
8 kb 1.15 0.70 0.08
16 kb 3.05 1.66 0.16
32 kb 8.12 3.67 0.34
64 kb 23.49 8.75 0.67
128 kb 75.36 22.65 1.37

Table 3. Execution and communication times of first

iteration of Phase 2. Time unit is second.

sides the need of a switch to exploit communication
parallelism). Also, like in phase I, this prototype does
not use threads: there is no parallelism between send
and receive (communication times should be reduced
by a factor of 2).

6. Conclusions

We have presented and analyzed a new distributed
suffix array generation algorithm. It is based on the
Manber & Myers sequential algorithm [10], unlike pre-
vious work [8, 7, 11] which are based on general purpose
sequential sorting algorithms. Some unique features of
the new algorithm are its low CPU cost and the fact
that the text is never transmitted through the network
(and hence the messages are much shorter in practice).

The presented algorithm can be adapted to index
words on natural language texts. The only change is
the Step A of the algorithm, which must be replaced
by the computation of the whole vocabulary and its
frequencies. Such a distributed algorithm has already
been presented in [12], and its cost is close to O(b)I +
O(4/n)C, which is negligible compared to that of Part
B. We have omitted it here for lack of space.

References

[1] A. Apostolico, C. Iliopoulos, G. Landau,
B. Schieber, and U. Vishkin. Parallel construction
of a suffix tree with applications. Algorithmica,
3:347 365, 1988.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern In-
formation Retrieval. Addison-Wesley, 1999.

[3] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider.
New indices for text: PAT trees and PAT arrays.
In Information Retrieval — Data Structures & Al-
gorithms, pages 66 82. Prentice-Hall, 1992.

[4] D. Gusfield. Algorithms on Strings, Trees, and
Sequences - Computer Science and Computaional
Biology. Cambridge University Press, 1997.

[5] J. Hennessy and D. Patterson. Computer Archi-
tecture: a Quantitative Approach. Morgan Kauf-
mann, 2nd edition, 1996.

[6] J. Jaja, K. W. Ryu, and U. Vishkin. Sorting
strings and constructing digital search trees in par-
allel. Theor. Comp. Sci., 154(2):225 245, 1996.

[7] J. Kitajima, G. Navarro, B. Ribeiro, and N. Zi-
viani. Distributed generation of suffix arrays: a
quicksort-based approach. In Proc. WSP’97, pages
53 69. Carleton University Press, 1997.

[8] J. Kitajima, B. Ribeiro, and N. Ziviani. Network
and memory analysis in distributed parallel gener-
ation of PAT arrays. In Proc. 8th Brazilian Symp.
on Comp. Arch. - High-Performance Processing,
pages 193-202. Brazilian Comp. Soc., 1996.

[9] D. Knuth. The Art of Computer Programming,
volume 3: Sorting and Searching. Addison-Wesley,
1973.

[10] U. Manber and E. Myers. Suffix arrays: a new
method for on-line string searches. SIAM Journal
on Computing, pages 935 948, Oct. 1993.

[11] G. Navarro, J. Kitajima, B. Ribeiro, and N. Zi-
viani. Distributed generation of suffix arrays. In
Proc. CPM’97, LNCS 1264, pages 102-115, 1997.

[12] B. Ribeiro, J. Kitajima, G. Navarro, C. Sant’Ana,
and N. Ziviani. Parallel generation of inverted lists
for distributed text collections. In Proc. SCCC’98,
pages 149 157. IEEE CS Press, 1998.

[13] K. Sadakane. A fast algorithm for making suffix
arrays and for burrows-wheeler transformation. In
Proc. DCC"98, pages 129-138, 1998.

[14] W. Szpankowski. Probabilistic analysis of gener-
alized suffix trees. In Proc. CPM’92, pages 1-14,
1992. LNCS 644.

[15] T. Tabe, J. Hardwick, and Q. Stout. Statistical
analysis of communication time on the IBM SP2.
Comp. Sci. and Statistics, 27:347 351, 1995.

[16] 1. Witten, A. Moffat, and T. Bell. Managing Gi-
gabytes. Van Nostrand Reinhold, New York, 1994.

