
A Fast Distributed SuÆx Array Generation Algorithm�Jo~ao Paulo Kitajima Gonzalo NavarroBioinformati
s Laboratory Dept. of Computer S
ien
eCampinas State University (UNICAMP) University of Chile13083-970 Campinas, SP, Brazil Blan
o En
alada 2120, Santiago, Chilejpk�lbi.d

.uni
amp.br gnavarro�d

.u
hile.
lAbstra
tWe present a distributed algorithm for suÆx arraygeneration, based on the sequential algorithm of Man-ber and Myers. The sequential algorithm is O(n logn)in the worst 
ase and O(n log logn) on average, wheren is the text size. Using p pro
essors 
onne
ted througha high bandwidth network, we obtain O((n=p) log logn)average time, whi
h is an almost optimal speedup. Un-like previous algorithms, the text is not transmittedthrough the network and hen
e the messages ex
hangedare mu
h smaller. We present some experimental evi-den
e to show that the new algorithm 
an be faster thanthe sequential Manber & Myers 
ounterpart.1. Introdu
tionTo redu
e the 
ost of sear
hing in textual databases,spe
ialized indexing stru
tures are adopted [2, 16℄. Themost popular of these are the inverted lists. Invertedlists are useful be
ause their sear
h strategy is based onthe vo
abulary (the set of distin
t words in the text)whi
h is usually mu
h smaller than the text and thus�ts in main memory. For ea
h word, the list of all itso

urren
es (positions) in the text is stored.SuÆx arrays [10℄ or pat arrays [3℄ are more sophisti-
ated indexing stru
tures with similar spa
e overhead.Their main drawba
k is their 
ostly 
onstru
tion andmaintenan
e pro
edures. However, suÆx arrays are su-perior to inverted lists for sear
hing phrases or 
omplexqueries su
h as regular expressions [3, 10℄ or in appli-
ations where the 
on
ept of word is of no use, su
has 
omputational biology [4℄. In this model, the entire�This proje
t has been supported in part by CYTED VII.13AMYRI Proje
t. First author supported by FAPESP fellow-ship 99/01389-0. Se
ond author partially supported by Fonde
ytgrant 1-990627.

text is viewed as one very long string. In this string,ea
h position k is asso
iated to a suÆx, whi
h initiatesat position k. Retrieving the \o

urren
es" of the user-provided patterns is equivalent to �nding the positionsof the suÆxes that start with the given pattern.A suÆx array is a linear stru
ture 
omposed ofpointers (here 
alled index pointers) to every suÆx inthe text (sin
e the user normally bases his queries uponwords and phrases, it is 
ustomary, in do
uments, toindex only word beginnings). These index pointers aresorted a

ording to a lexi
ographi
al ordering of theirrespe
tive suÆxes. To �nd patterns in the text, bi-nary sear
h is performed on the array at O(logn) 
ost(where n is the text size).The simplest approa
h to build the suÆx array se-quentially is to perform a traditional sort of the point-ers, su
h as mergesort or qui
ksort. However, thereexist spe
ialized algorithms for sequential 
onstru
tionof suÆx arrays, su
h as the original one of Manber andMyers [10℄ and, more re
ently, those of Sadakane [13℄.As shown in [13℄, these spe
ialized algorithms outper-form the general purpose sorting te
hniques.If the text is very large, we have to resort to se
-ondary memory and the problem is more diÆ
ult. Thebest known sequential pro
edure for generating largesuÆx arrays [3℄ takes time O(n2 log(m)=m) where m isthe size of the main memory.We present a new algorithm for distributed parallelgeneration of large suÆx arrays in the 
ontext of a highbandwidth network of pro
essors. This is the �rst dis-tributed algorithm whi
h generalizes a spe
ial purposesequential algorithm (i.e. that of Manber and Myers[10℄), instead of the slower general purpose algorithms
onsidered in previous work.Our parallelism model is that of a parallel ma
hinewith distributed memory. Our algorithm sorts in a(distributed) main memory, without se
ondary storage
onsiderations. Assume that we have a number p of



Algorithm Average 
ase Worst 
aseMsort n(I+C) n2(I+C)Qsort (b logn)I+ b(log p)C n2(I+C)G-Qsort (b logn)I+ bC n2(I+C)MMsort (b log logn)(I+C) log(n)(bI+ nC)Table 1. Complexity 
omparison among our algo-rithm (MMsort) and previous work.pro
essors, ea
h one storing b text positions, 
omposinga total distributed text of size n = pb. Our �nal suÆxarray will be left distributed (so as to redu
e query timeoverhead later, or it 
an be simply merged otherwise).We assume that the parallelism is 
oarse-grained, witha few pro
essors, ea
h one with a large main memory.Typi
al values are p in the tenths or hundreds and b inthe millions. We assume at least that p << pn << b.In our 
ommuni
ation model, ea
h pair of pro
essors
an ex
hange messages simultaneously without 
on-tention, and broad
asting 
an be done eÆ
iently. Thissetup 
orresponds to 
urrent fast swit
hing te
hnologywith a few large pro
essors [5℄ su
h as ATM (Asyn-
hronous Transfer Mode) networks, the IBM SP (basedon the High Performan
e Swit
h, HPS), or a Myrinetswit
h 
luster.Our new algorithm has a 
omputation and 
ommu-ni
ation 
omplexity of O(b log logn) on average. Previ-ous distributed algorithms for this problem are general-izations of general purpose sorting algorithms adaptedto suÆx arrays: mergesort (Msort [8℄) and of qui
ksort(Qsort [7℄ and G-Qsort [11℄) have been used. Their
omplexities are in Table 1, where I refers to 
pu 
ostand C to 
ommuni
ation 
ost (normally the most im-portant). Note that none of the algorithms handle wellthe worst 
ase, but our new algorithm (MMsort) ismore reasonable. For the average 
ase, only G-Qsort
ompares favorably against our new MMsort.An interesting feature of the new algorithm with re-spe
t to the previous ones is that the text is not trans-mitted a
ross the network, only requests for data andfor updates are sent. Finally, we point out that there issome related work on sorting strings under the PRAMmodel [1, 6℄, where there is no diÆ
ulty in a

essingthe data of other pro
essors.2. The Sequential AlgorithmWe des
ribe brie
y in this se
tion the sequentialalgorithm of [10℄. The general idea exploits the fa
tthat suÆxes are part of other suÆxes of the same text.

First, the array is bu
ket-sorted by the �rst letter ofea
h suÆx, in linear time. After this, dlog2 ne itera-tions are 
arried out, numbered h = 0; 1; :::dlog2 ne�1.At iteration h, the suÆx array is already sorted by the�rst 2h letters of ea
h suÆx, and at the end of the it-eration the suÆx array is sorted by the �rst 2h+1 �rstletters. Ea
h su
h iteration is done in linear time usingbu
ket sort again: the bu
kets of the h-th iteration arere�ned to obtain those of the (h+ 1)-th iteration.The key idea follows. Assume that text positions iand j are 
urrently in the same bu
ket, i.e. they areequal in their �rst 2h 
hara
ters. In order to sort thetext positions i and j by their �rst 2h+1 
hara
ters,we just need to know whi
h are the bu
kets where thepositions i + 2h and j + 2h are at this point. Sin
epositions i and j are in the same bu
ket, then text[i::i+2h�1℄ = text[j::j+2h�1℄. If we want to sort them by2h+1 
hara
ters, we need to 
ompare text[i::i+2h+1�1℄ against text[j::j + 2h+1 � 1℄. The out
ome of this
omparison is exa
tly that of 
omparing text[i+2h::i+2h+1 � 1℄ versus text[j +2h::j +2h+1 � 1℄. Sin
e theseare two text positions (i+2h and j+2h) 
ompared bytheir �rst 2h 
hara
ters, the answer 
orresponds to thebu
kets where these two text positions are 
urrentlypositioned, sin
e all the text positions are 
urrentlysorted by 2h 
hara
ters.Figure 1 illustrates this algorithm. We start with theunsorted array. In the �rst step we bu
ket sort usingthe �rst 
hara
ter. After this, we double the numberof 
hara
ters already sorted until we obtain n bu
kets.This happens in dlog2 ne steps but, as in the example,it 
an happen before.
a b a b a a b b a
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Sorted by 1 position

Initial array (sorted by 0 positions)

Figure 1. The sorting algorithm, at a high level.The main problem when 
onverting this simple ideainto an eÆ
ient algorithm is to devise a way to doall the bu
ket sorts in linear time avoiding the explo-sive number of bu
kets that 
ould be generated1. At1A na��ve bu
ket sort on 2h 
hara
ters for an alphabet � gen-erates j�j2h bu
kets, one per string of length 2h, and most ofthem empty. When h approa
hes log2 n the number of bu
kets



ea
h iteration, we 
onsider the 
urrent bu
kets in or-der. Think on the �rst one. The suÆxes starting 2hpositions before those in the �rst bu
ket must be
omethe �rst suÆxes of their bu
kets. This is be
ause all thesuÆxes of the same bu
ket are equal in their �rst 2hletters, and we are moving to the beginning those suf-�xes followed by the smallest existing 2h length strings.On
e these are moved to the beginning of their bu
kets,we 
ontinue with the se
ond bu
kets, and so on. Theidea is, then, that instead of sorting positions i and jby sear
hing the bu
kets of i+ 2h and j + 2h, we waituntil, at some moment, the position i+ 2h (or j + 2h)is �rst found in the linear traversal, and then move theposition i (or j) to the beginning of the bu
ket.We 
onsider the algorithm in more detail now. We�rst show the arrays used (all of size n) and then thesteps performed.Pos : suÆx array, sorted by the �rst 2h lettersBH : binary array marking the beginnings ofthe 
urrent bu
ketsPrm : reverse Pos permutation being built forthe next iterationB2H : BH mask being built for next iterationCount : sizes of the new bu
kets being 
reatedA In the beginning, Pos is bu
ket-sorted by the �rstletter of the suÆx pointed. This is easily done in lineartime. BH is set to 1 at the �rst 
ell of ea
h new bu
ketand to 0 elsewhere.B Now, the following 
ode is 
arried out for h = 0 todlog2 ne � 11. B2H is initialized to zeros, as well as Count(whi
h needs initialization only where BH is 1).2. Prm is set to the reverse permutation of Pos, ex-
ept it points to the beginning of the bu
ket wherethe reverse permutation should point. That is, ifPos[i℄ = j, then Prm[j℄ points to the beginning ofthe bu
ket of i. This is easily assigned on a linearpass over Pos, by re
alling the position of the last1 of BH and setting Prm[Pos[i℄℄ to that position(instead of to i).3. Now, for ea
h bu
ket of Pos, in order (their limitsare signaled in BH), we do:(a) For ea
h position i of the 
urrent bu
ket, doi. Let d = Pos[i℄ � 2h be the text pointerto movebe
omes j�jn.

ii. Look at e = Prm[d℄ to �nd its 
urrentbu
ketiii. Make Prm[d℄ point to e + Count[e℄,whi
h is the next free position in thebu
ket that starts at eiv. Set B2H to 1 in the new Prm[d℄ positionv. In
rement Count[e℄At this point, the reverse permutation Prm(not Pos) maps the proper suÆxes to the be-ginning of their bu
kets. Doing this bu
ketby bu
ket will 
orre
tly 
omplete the itera-tion. But we need �rst to leave B2H in 1only in the �rst position of ea
h new bu
ket(
urrently there is a stream of 1's).(b) For ea
h position i of the 
urrent bu
ket, doi. Let d = Pos[i℄ � 2h be the text pointerto moveii. If B2H [Prm[d℄℄ is 1, delete the other 1'sto the right (until B2H is 0 or BH is 1).This will only o

ur for the �rst elementof the new bu
ket.4. We have �nished this iteration. Just restore a 
ou-ple of invariants. Set Pos to be the reverse of Prm(whi
h is the reverse permutation of the new iter-ation), and make BH [i℄ = BH [i℄ or B2H [i℄ for alli. If, for all i, BH [i℄ = 1, then the array is alreadysorted and we 
an preempt the whole algorithm.To avoid 
ompli
ating the des
ription of the abovealgorithm, we have not 
onsidered that, at iteration h,the text positions n� 2h+1+1 to n are not referen
ed.In fa
t, sin
e we assume that the text is followed byzeros, these positions must be the �rst in being movedto the beginning of their bu
kets, prior to starting thebu
ket-by-bu
ket traversal.Figure 2 illustrates the more detailed algorithm, us-ing the same example of Figure 1. Along the iterationfor ea
h h value we build a new sorted array (re
e
tedin Prm, Count and B2H). At the end of the iterationwe (basi
ally) 
opy B2H onto BH and the reverse ofPrm onto Pos (whi
h is the \real" permutation).We 
onsider the analysis now. It is 
lear that ea
hiteration of Step 2 takes O(n) time, sin
e the iterationson ea
h bu
ket take time proportional to the bu
ketsize, and their sizes add up n. The array is totallysorted after h = log2 n iterations be
ause the longestsuÆx is of length n, and hen
e sorting all the strings bytheir �rst 2h = n letters is enough. The 
ost is thereforeO(n logn) in the worst 
ase. However, as pointed outin [10℄, the algorithm is O(n log logn) on average. This
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Figure 2. The sorting algorithm, at a detailed level. We have stopped when the array be
ame totally sorted.is be
ause the average length of the longest repeatedsubstring in the text (or equivalently, the height of thesuÆx tree) is O(logn) [14℄.3. A Distributed AlgorithmFor the distributed version, we assume that we havep pro
essors, and ea
h one stores a 
ontiguous portionof size b = n=p of the text. Ea
h pro
essor will alsostore a sli
e of the 
orresponding Pos, Prm, BH , andCount arrays (and some extra arrays, as seen later).The most deli
ate part of the parallelization is thatthe original algorithm strongly relies on sequential ex-e
ution. We �rst explain two heavily used primitivesand later depi
t our distributed algorithm.Pairwise Ex
hange At some points, ea
h pro
essorhas some data to ex
hange with ea
h other pro
essor.Assume that the total amount of data ea
h pro
essorhas to send and to re
eive is O(b). Ideally, ea
h pro
es-sor has on average O(b=p) data to ex
hange with ea
hother, but the general situation 
an be unbalan
ed.Algorithms to pair all the pro
essors with ea
h otherin O(p) turns with syn
hronization barriers were pre-sented in [15, 11℄. If the data is uniformly distributedthe average 
omplexity of ea
h turn is O(b=p) [11℄, andthe total average 
ost for pairwise ex
hange is O(b).However, in the worst 
ase an unbalan
ed transfers
hedule yields O(b) time per turn, for a total 
om-muni
ation 
omplexity of O(n).Bat
hed List of Requests When a pro
essor needsto perform some a
tions on the data stored in others, itsends them a request to do so. To avoid the overhead

of many small messages, the requests are bu�ered. Anarray of p bu�ers, one per re
eiving pro
essor, is main-tained. The total 
ost of this primitive is O(p + r),where r is the number of requests to send.3.1. The AlgorithmWe depi
t now the algorithm using the above ex-plained primitives.A The �rst step is to bu
ket sort the global suÆxarray. Ea
h pro
essor will end up storing a sli
e ofthe alphabet. For instan
e, the �rst one 
ould 
ontainall the suÆxes starting with 'a', 'b', and some suÆxesstarting with '
'. Any 
hoi
e of whi
h suÆxes startingwith '
' are left in the �rst pro
essor is suitable, as longas all the pro
essors take the same de
isions separatelyand 
onsistently. We perform the following steps.1. Ea
h pro
essor bu
ket-sorts its lo
al text in Pos.2. Ea
h pro
essor broad
asts how many suÆxes ithas starting with ea
h letter.3. Ea
h pro
essor, with the information gatheredfrom the others, determines whi
h letters should itadminister and whi
h pro
essors have them. Allpro
essors use the same algorithm, so ea
h oneknows whi
h part of Pos to send to ea
h other.4. The pro
esses ex
hange pairwise the 
orrespond-ing parts of Pos.5. Ea
h pro
essor initializes its lo
al se
tion of BH .



B This part is the most 
omplex, and hen
e we use amore powerful formalism. The algorithm to be 
arriedout at ea
h pro
essor is depi
ted in Figure 3.8 h20::dlog2 ne�18 i2 arrayCount[i℄ 0B2H[i℄ 0last 08 i2 array2.1. SetPrm(Pos[i℄;last)if bu
ket 
hanges, last i8 SetPrm(pi;i)Prm[pi℄=i8 i2 arrayd Pos[i℄�2hGetPrm(i;d)8 GetPrm(i;d)AnswPrm(i;Prm[d℄)8 AnswPrm(i;pd)ee[i℄ pd8 bu
ket of Pos4. 8i2 bu
kete ee[i℄A

essCount(i;e)8i2 bu
kete ee[i℄CloseBu
ket()j 08 r21:::p8 A

essCount(i;e) rrCountV alue(i;e+Count[e℄)B2H[e+Count[e℄℄ 1Count[e℄++a

[j℄ ej++if CloseBu
ket() r8 j021::je a

[j0℄Count[e℄��8 j021::je a

[j0℄B2H[e+Count[e℄+1℄ 0Count[e℄++8 CloseBu
ket() rdo nothing8 CountV alue(i;
e)d Pos[i℄�2hSetPrm(d;
e) own(d)8 SetPrm(d;
e)Prm[d℄ 
e8 i2 arraySetPos(Prm[i℄;i) own(Prm[i℄)8 SetPos(pi;i)Pos[pi℄ i8 i2 arrayBH[i℄ BH[i℄ or B2H[i℄

own(e)own(e)r8rown(d)
own(Pos[i℄)3.

5.

6.7.
Figure 3. Part B of the distributed algorithm.Left-to-right arrows represent messages emitted.The re
eiving pro
essor is given at the end of the ar-row, where own(x) means the pro
essor owning the ar-ray position x. Right-to-left arrows represent in
omingmessages, whi
h are generally used to exe
ute a loopbody for ea
h message arrived. Sometimes we indi
ate

the originating pro
essor, in order to put a 
onditionon it, or just in order to use the pro
essor number (weuse 8r to indi
ate that there is no 
ondition on thesending pro
essor r). The rest is a quite traditionalpseudo
ode.It is important to note that all the messages are ex-
hanged using the te
hnique of pairwise ex
hange ex-plained and sent in bat
h. Only after a loop is 
om-pleted we send all the outgoing messages generatedduring the loop.We explain now the rationale of the di�erent parts,using the numbers on the left of the 
ode. The followinga
tions are 
arried out at ea
h pro
essor, for h = 0 todlog2 ne � 11. The lo
al portions of Count and B2H are initial-ized to zero.2. Prm is set to point to the beginning of the bu
ketswhere the reverse permutation should point. This
orresponds to perform a linear pass over Pos, set-ting Prm[Pos[i℄℄ = last, where last is the positionof the beginning of the last bu
ket before positioni. However, the Prm positions to update may re-side in other pro
essors. Note that there is nosequentiality 
onstraints in the order of honoringthe SetPrm() requests, be
ause ea
h position ofPrm is updated only on
e.3. We need to read Prm positions from other pro-
essors. This step is equivalent to B.3.a.i andB.3.a.ii of the sequential algorithm, i.e. to 
om-puting d = Pos[i℄ � 2h and then e = Prm[d℄ forall the positions of the lo
al Pos array. ee[℄ is anextra array used to store the e values that the se-quential algorithm 
omputes on the 
y.Steps 4 to 6 
orrespond to B.3.a.iii to B.3.a.v andB.3.b of the sequential algorithm. In order to paral-lelize it we make a separate pass over the bu
kets join-ing all these steps.4. We traverse Pos linearly, bu
ket by bu
ket. Forea
h bu
ket we send all the A

essCount() re-quests to update Count and B2H , and to retrievethe resulting Count values. After ea
h bu
ketwe need to signal the bu
ket termination to allthe pro
esses we have sent some message for thisbu
ket. We 
ould send only one CloseBu
ket()message to ea
h su
h pro
essor, but this 
annotbe eÆ
iently done when there are mu
h less thanp elements in the bu
ket (whi
h is a normal 
ase).So we do it as in the sequential algorithm (B.3.b):if a pro
essor re
eived x A

essCount() messages,it will re
eive x CloseBu
ket() messages.



5. We now serve the requests sent in the previousstep. It is 
ru
ial to do it ordered by the sendingpro
essor (the requests sent by ea
h pro
essor areinternally ordered). The list of requests re
eivedfrom ea
h pro
essor has blo
ks of A

essCount()requests followed by blo
ks (of the same length)of CloseBu
ket() requests. The A

essCount()requests are used to send ba
k to the pro
essor the
urrent e + Count[e℄ value, and then to put 1 inB2H at this position2 (step B.3.a.iv of sequentialalgorithm) and in
rement Count[e℄ (step B.3.a.vof sequential algorithm). We also store in an extraarray a

[℄ the e values re
eived3, for purposes thatare made 
lear shortly.After the blo
k of A

essCount() is served wehave the blo
k of CloseBu
ket(). Only the �rstsu
h message of ea
h blo
k is 
onsidered: we re-view (using a

[℄) the set of e values in the lastA

essCount() blo
k and use this to transform thestream of 1's of B2H so as to leave only the �rstof these 1's. This is done in a way somewhat dif-ferent from the sequential algorithm (step B.3.b),be
ause we have not yet updated Prm.6. We use the information re
eived in CountV alue()about the values of e + Count[e℄, in order to setPrm[d℄ = e + Count[e℄ (step B.3.a.iii of the se-quential algorithm). Sin
e the d position is ingeneral in another pro
essor we need to ex
hangerequests.7. Set Pos to be the reverse of Prm, using a pro-
ess similar to that used to set Prm in terms ofPos. Later, make BH = BH or B2H . This 
or-responds to step B.4 of the sequential algorithm.Again, we have not 
ompli
ated the des
ription withthe initial pass that, at ea
h iteration, must be madeto update the �nal positions of the text.4. AnalysisWe analyze now the 
omputation and 
ommuni
a-tion 
omplexity of our algorithm. We present the 
om-plexities using fa
tors I (for internal 
omputation time)and C (for 
ommuni
ation time). To simplify somemeasures, we make the assumption p � b.We divide the analysis in the same parts A and Bof the des
ription of the algorithm.2Note that the BH position to a

ess 
ould surpass the s
opeof the 
urrent pro
essor, and a request to the neighboring one
ould be ne
essary for this matter.3Note that ee[℄ and a

[℄ 
an share their memory.

A The global bu
ket sort by the �rst letters has threesteps. Step 1 has O(b) 
omputation 
omplexity and no
ommuni
ation. Step 2 has O(j�jp) 
ommuni
ation
omplexity, where � is the alphabet of the text andis 
onsidered of 
onstant size. Step 3 involves only
omputation and 
an be easily done in O(j�j+p) time.Step 5 is 
learly O(b) 
omputation time. The mostinteresting step is the 4th, a pairwise ex
hange. Asexplained in Se
tion 3, this 
osts O(b) 
ommuni
ationon average, but the worst 
ase is O(n). Hen
e, thetotal 
omplexity of Part A is O(b+ p)I+O(b+ p)C =O(b)(I+C) on average, and O(b)I+O(n)C in the worst
ase.
B The se
ond part is repeated log2 n times at most,but only O(log logn) times on average (see the endof Se
tion 2). The step-by-step analysis is simple,on
e we note that most of them 
onsist in pairwiseex
hanges (see Se
tion 3) whi
h in all 
ases are uni-formly distributed. Step 1 is O(b)I. Steps 2 to 7are all O(b)I + O(b)C on average and O(b)I + O(n)Cin the worst 
ase. The most interesting step is per-haps the 5th, be
ause of the multiple traversals on thesame requests, but these impose in any 
ase a 
onstantfa
tor overhead that does not 
hange the 
omplexity.Hen
e, Part B is O(b log logn)(I +C) on average andO(b logn)I+O(n logn)C at worst.The result is that our algorithm has an average
omplexity of O(b log logn) both in 
omputation and
ommuni
ation, while the worst 
ase is not betterthan that of the sequential algorithm. Noti
e that, ifpn � b � n, then log logn = �(log log b). We 
on-sider s
alability now. If we double n and p, the new
ost T (2n; 2p) (both in I and C 
omplexities) be
omesb log log(2n) = T (n; p) � (1 + O(1=(logn log logn))).The ideal s
alability 
ondition is T (2n; 2p) = T (n; p).Table 1 presents a 
omparison between our 
omplex-ity (MMsort) and that of previous algorithms (Msort[8℄ based on mergesort and Qsort [7℄ and G-Qsort [11℄based on qui
ksort), when all the suÆxes are indexed.As explained in Se
tion 1, previous algorithms didnot handle properly the worst 
ase. Our algorithm han-dles this 
ase mu
h better. On average, we have thebest 
omputation 
omplexity (inheriting from the se-quential algorithm), but our 
ommuni
ation 
omplex-ity is O(b log logn) instead of O(b) of G-Qsort.



5. Experimental Analysis5.1. Sequential GenerationA suÆx array is a ve
tor of addresses, ordered by thevalue of the addressed entity (and not by the addressitself). Therefore, a na��ve implementation of a suÆxarray builder may use a standard sort algorithm, imple-mented, for example, as a built-in library sort routinelike C qsort. However, these 
lassi
al algorithms donot assume any 
ontent interdependen
e among the el-ements to be sorted. This drawba
k has already beenproven experimentally relevant, 
omparing suÆx ar-rays generators implemented using standard sort pro-
edures against programs using smart te
hniques likethose based on Manber & Myers [10℄ and Sadakane [13℄algorithms.We 
ompared on
e more the exe
ution times oftwo sequential and in-
ore suÆx array generators, onebased on an eÆ
ient version of the Qui
kSort algorithm(qsort) [9℄ and one based on the Manber & Myersstrategy. Both programs were exe
uted on an IntelLinux workstation with half gigabyte of main memoryand a 400 MHz pro
essor. The input text is a random-generated genome. We measured total elapsed timeon a quiet ma
hine, starting with 1 megabyte of in-put text. With a 30 megabyte genome, the Manber &Myers program generated a suÆx array in 85% of theelapsed time of the standard qsort based implemen-tation. Our measures also showed the O(n log logn)behavior of the Manber & Myers algorithm and theO(n logn) 
omplexity for qsort. For in
reasing inputtext sizes, the gap between exe
ution times of bothprograms will keep improving. A 
ollateral 
on
lusionwas derived from this �rst 
omparative study: exe
u-tion times may be important even for suÆx arrays be-ing generated 
ompletely in gigabytes primary memory(we ran a suÆx array generator based on qui
ksort on agenome with 25 megabases and it took almost 2 hours).5.2. Parallel GenerationWe implemented a very simpli�ed prototype of ourparallel algorithm in order to perform some 
ompara-tive measures. We used an interpreted programminglanguage, Perl, running on a 2 pro
essor shared mem-ory workstation. Communi
ation is performed throughmessage passing using so
kets. Although mu
h less ef-�
ient than 
ompiled programs, Perl s
ripts are verysuitable for string pro
essing and for the developmentof Web a
tive pages. Like Java, another interpretedlanguage, Perl also has been used 
urrently for the

development of parallel appli
ations. The goal of theshared memory here is to simulate a very fast network.The �rst phase of the parallel algorithm is 
omparedagainst the �rst phase of the sequential algorithm (Ta-ble 2).input // 
omp. // bu
ket // 
omm. seq.size time time phase 18 kb 0.15 0.08 0.12 0.1316 kb 0.29 0.14 0.19 0.3332 kb 0.62 0.33 0.31 0.6464 kb 1.21 0.66 0.62 1.28128 kb 2.35 1.32 1.39 2.57256 kb 4.86 2.62 2.78 5.24512 kb 9.70 5.26 5.67 10.341024 kb 19.33 10.45 11.77 20.67Table 2. Exe
ution and 
ommuni
ation times ofPhase 1. Time unit is se
ond.The measures presented in Table 2 show that theprototype program should improve its eÆ
ien
y in twodire
tions: (1) redu
e the additional 
omputation time,not related to the bu
ketsort and (2) redu
e the 
om-muni
ation time.The additional 
omputation time not related to thebu
ketsort is the 
omputation time related to house-keeping of arrays and 
ounters, mu
h of whi
h 
ouldbe simpli�ed. When we 
ompare the sequential phase1 with only the bu
ketsort of the parallel version, weverify an ideal speedup of 2, showing that the paral-lelism is being exploited.The redu
tion of the 
ommuni
ation time is relatedto the use of parallel 
ommuni
ation and an eÆ
ient
ommuni
ation network. Even using shared memory,as in the 
ase of our prototype, the use of TCP/IPso
kets generates a high overhead. In our prototype,
ommuni
ation is not parallel and the measures pre-sented in Table 2 
an be redu
ed by 2.The se
ond phase of our algorithm is mu
h more
omplex and the 
orresponding prototype program pre-sented very low eÆ
ien
y due mainly to the use of so
k-ets. Table 3 presents the obtained measures.We tried to understand in more details this low eÆ-
ien
y. We measured only phases B1, B2, and B3 totalelapsed and 
ommuni
ation times for di�erent inputsizes and veri�ed a 
ommuni
ation overhead superiorto 50% of the total exe
ution time. For steps B4 to B7,
ommuni
ation 
orresponded to around 40% of the to-tal exe
ution times of these steps. This 
ommuni
ationoverhead was also dete
ted in phase I and even when
ommuni
ating through a shared memory, the use ofa proto
ol based on so
kets is not the best 
hoi
e (be-



input size // total time // 
omm. time seq. phase 28 kb 1.15 0.70 0.0816 kb 3.05 1.66 0.1632 kb 8.12 3.67 0.3464 kb 23.49 8.75 0.67128 kb 75.36 22.65 1.37Table 3. Exe
ution and 
ommuni
ation times of �rstiteration of Phase 2. Time unit is se
ond.sides the need of a swit
h to exploit 
ommuni
ationparallelism). Also, like in phase I, this prototype doesnot use threads: there is no parallelism between sendand re
eive (
ommuni
ation times should be redu
edby a fa
tor of 2).6. Con
lusionsWe have presented and analyzed a new distributedsuÆx array generation algorithm. It is based on theManber & Myers sequential algorithm [10℄, unlike pre-vious work [8, 7, 11℄ whi
h are based on general purposesequential sorting algorithms. Some unique features ofthe new algorithm are its low 
pu 
ost and the fa
tthat the text is never transmitted through the network(and hen
e the messages are mu
h shorter in pra
ti
e).The presented algorithm 
an be adapted to indexwords on natural language texts. The only 
hange isthe Step A of the algorithm, whi
h must be repla
edby the 
omputation of the whole vo
abulary and itsfrequen
ies. Su
h a distributed algorithm has alreadybeen presented in [12℄, and its 
ost is 
lose to O(b)I +O(pn)C, whi
h is negligible 
ompared to that of PartB. We have omitted it here for la
k of spa
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