
A Model and a Visual Query Language for Structured TextRicardo Baeza-YatesGonzalo NavarroDepto. de Ciencias de la Computaci�on,Universidad de Chilefrbaeza,gnavarrog@dcc.uchile.cl Jes�us VegasPablo de la FuenteDepto. de Inform�atica,Universidad de Valladolid, Spainfjvegas,pfuenteg@infor.uva.esAbstractWe present a new model to query document data-bases by content and structure. The main merits ofthe model are: it allows rich structure in the docu-ments; the query algebra is intuitive (moreover, com-plemented by a visual query language) and powerful; itis e�ciently implementable; it can be built on top ofa traditional indexing system or even with no index atall; it is strongly oriented to user-de�nable relevanceranking instead of boolean logic; and it allows 
exiblevisualization of results in terms of structure, contentsand highlighting of user-de�ned important parts in thequery.1. IntroductionIn the past �ve years the amount of informationelectronically available has experimented an impres-sive growth. As more and more textual informationbecomes available, the need for better search enginesgains importance. One of the recent trends is to takeadvantage of the structure of documents to formulatemore precise queries. Structure allows to give somecontext to the words being searched, and so the se-mantics of the query is better. Also, many times weremember visual structure that can help to locate adocument. This is especially important because stan-dards to represent structured texts are �nally consoli-dating (e.g. SGML [8] and its instance HTML).A number of models to structure and query textualdatabases by content and structure already exist. Somework regarding the relationship between the power tostructure and query a textual database and the result-ing system e�ciency has been pursued [3]. However,much less work has been devoted to consider the in-terest of those powerful query language for the users.

In traditional information retrieval systems, however,this issue is a central one, despite the lack of ability tohandle structure.Our main goal is to �ll that gap. We de�ne a modelto query document databases by content and struc-ture which is intuitive and expressive. The model canbe implemented in many ways, answering a reasonablesubset of queries in linear time on the size of the in-termediate results. Our query language is not basedin standard boolean logic but in weights, to help inranking. All this is complemented with a visual querylanguage.There are a number of di�erent alternatives to indexstructured text and answer queries by structure andcontent. Most of the indices are ad-hoc. We insteadpropose the use of a traditional inverted index withlittle enhancements to support queries by structure.These indices have been studied in literature and theirbehavior is well known [17, 7]. Moreover, they are themost common indices among current text databases.This makes our model simpler to add to an existinginstalled text database.The organization of the paper follows. First, wepresent previous work on the topic, pointing out thedi�erences between a normal IR system and the user{query{answer process in a structure/content environ-ment. Second, we present our model, which in somesense simpli�es our previous proposal [14], includingthe query language and the visual metaphor associ-ated to it. Third, we present the software architectureof a �rst prototype. Finally, we mention on-going andfuture work.2. Previous WorkTraditionally, textual databases have allowed tosearch their contents (words, phrases, etc.) or theirstructure (e.g. by navigating through a table of con-



tents), but not both at the same time. Recently, manymodels have appeared that allow mixing both types ofqueries.Mixing contents and structure in queries allows topose very powerful queries, being much more expres-sive than each mechanism by itself. By using a querylanguage that integrates both types of queries, the re-trieval quality of textual databases can be potentiated.However, despite all the work done on e�cientand/or expressive query languages for structured text[14, 1, 16, 4, 12, 9], the issue of the user's viewpointhas not been studied in detail.In a classic information retrieval system the queryprocess is well de�ned. The user makes a query, thesystem answers it and the user evaluates the results.If the user needs are satis�ed, the process is �nished.Otherwise, the user can submit another query, �lteringthe previous answer or starting again (for example, see[5, 6]).There are some aspects in the IR content basedsystems that change in the IR structure{content sys-tems. In content-based systems, users do not need toknow where the query must be, therefore the structureknowledge is not important. Also, a document is moreor less relevant if the query appears more or less timesin it (although this depends on the exact ranking al-gorithm used). Now, when we put structure into thequery, the user knowledge on structure becomes im-portant, and the document relevance is related withthe place where we can �nd the information. There islittle previous work on relevance ranking for structuredtext [15].So, it is important that the user should know thedocument structure if we want to use it in the query.Therefore, the interface must show the document struc-ture and assist the query process in this way. However,almost all proposals for query languages that includestructure [3, 11] are too complex for a �nal user. Thatis one of the main reasons because structure is not used.One solution to this problem is a visual query language.A visual language is closer to the user than the tradi-tional ones and makes it easier to express relations be-tween objects. On the other hand, a visual languageslimits the expressiveness of the language, because themain goals are simplicity and easiness of use. Thereare very few languages of this kind [10].Another problem is how to show the structure inthe answer. One helpful solution is to use a visualmetaphor to represent every occurrence of the query.If possible, this metaphor should be similar to theone used in the visual query language. This interfaceshould also help the user to rank the retrieved docu-ments and evaluate the precision of the answer [15].

Although there is work on the database commu-nity and on commercial systems on these ideas, theapproach and the goals of this paper are di�erent.Also, several systems can handle SGML (for example,Search'97 of Verity) but they only provide partial sup-port of content and structural queries (mainly, onlystructural inclusion).3. Proposed ModelIn traditional IR models, documents are based onelements that reference only their content. In our casewe have content elements, c, and structure elements, s.In addition, content elements are not only text-based,as they include any type of data as images or audio.Therefore, we have to de�ne how documents will bedescribed in terms of content and structure.
3.1. MetadataIn traditional IR systems, the structure is very sim-ple (none at all or a sequence of �elds) and it is notdi�cult to specify. Text with rich structure can bespeci�ed by ad-hoc techniques or by proposed stan-dards as SGML. We have chosen SGML to de�ne ourstructure de�nition language. We call this metadata.This information is also useful to:� guide the user in the querying process suggestingcontent and structural elements that can be in-cluded;� optimize the queries;� link the query with the searching engine; and� verify the syntax of the database and the query.For each structural or content element of the data-base we de�ne a metadata element. They are de�nedusing an instance of SGML [8], using a simple formatthat speci�es the name of the element (which will bethe tag name for it), its type (using a set of prede�nedtypes), a list of elements that can be included inside it,the set of its initial and �nal tag markers in the text,and a description of the element.This metadata should describe one hierarchy of in-formation elements (and just one). This is a restrictionthat we impose, but in practice is very rare to �nd doc-uments with more than a hierarchy and one hierarchyis simpler for the user to understand.Also, implicitly, the fact that elements can only beincluded inside other elements implies that either an el-ement is contained completely in another one or theirintersection is empty. Therefore, we use a collection of2



segments to represent the whole content and structureof the database. Each segment is de�ned by its initialand �nal position and segments do not overlap unlessone is inside another. We do not make distinctions atthe segment level about content or structure, simplify-ing the indexing and searching process. This plus thefact that we have only one hierarchy, implies that eachdocument can be described by a tree that representssegment inclusion as in [14].
3.2. Query LanguageThe visual query language must be based on a for-mal query language. Following the work in [14], wede�ne an intermediate language that will be used be-tween the user interface and the search engine.The speci�c language is divided in two parts. Atthe top level, we have an algebra that returns rankeddocuments. It is formed by a union of one or more sub-queries. The documents retrieved are those contain-ing segments that are retrieved by at least one non-negative subquery. Formally, we have that a query Qis Q = (s1 � q1; � � � ; sm � qm)where Q is the union of the subqueries qi. Each sub-query qi can be a presence expression or an inclusionexpression (we later describe these two). The coef-�cients si are the weights of the subqueries. Positiveweights increase the relevance of a subquery, while neg-ative weights decrease the relevance and can be con-sidered as the negation operator. The default value forthe weights is 1. Later we explain one possible rankingmechanism by using these weights.The language for the subqueries is an algebra on seg-ments. It retrieves a set of segments with an associatedweight. The presence operator has the form:(e1; � � � ; em)where each element ei can be a basic element (eithercontent or structure). This means that at least one ofthe elements must be present. For example, (a,b,c)implies the documents that have a or b or c. If we wantto force more elements to be present, we concatenatethese expressions. For example, (a)(b) means thatboth a and b must be present.The inclusion operator is used to indicate that anexpression has to be included in a structure element.It has the following general form:(S(e1; � � � ; em))where S is a structural element, and at least one ofthe elements e1 to em is contained in it. Again, the

ei can be content or structure elements. This inclu-sion is transitive (in fact, we cannot query for onlydirect inclusion). For example, section(a,b) returnsthe documents that have a or b inside a section. As forpresence, may want to force two or more elements to beincluded. For that, we use the same syntax as before.For example, section(a)(b) implies that both a andb must be included in the section.This language is an implicit boolean language withinclusion. The weights are used basically for union andsubtraction (or and butnot), and concatenation is setintersection (and).
3.3. A Visual RepresentationOur proposed metaphor is very simple. The mainmotivation is that the algebra just de�ned cannot beeasily understood by a normal user, nor even an ex-pert used. What the user usually sees is a page of text.So our visual language will be a page where the struc-ture is composed from a set of prede�ned objects andthe content is written where we want to �nd it. Eachstructure element will be a rectangle with its name inthe top (using the special name Text if it is a contentelement). Each content element is placed inside the rec-tangle. Weights are speci�ed in a scroll bar at the rightside of each rectangle. For example, a content elementis given in Figure 1 where we use the name \Text" toindicate a content rectangle for the word \hello".
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Figure 1. Visual Query for ("hello").Union of queries are obtained by putting rectanglesbesides each other. Inclusion is obtained by placing rec-tangles inside rectangles. Figure 2 shows the query (3� Chapter(a), -c) where a must be inside a chapterand we assign negative relevance to documents havingthe content element c.The answer is a list of documents, and we can use thesame visual metaphor to show how the query matcheseach document by using its speci�c content and struc-ture. In this way, the same language is used for bothtasks. Nevertheless, one visualization is not enough,3
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Figure 2. Visual Query for(3�Chapter(a),-c).and other views for the answer should be provided [2].An ambitious goal can be to allow the user to edit ananswer, such that can be submitted as a new query.
3.4. RankingThe ranking notion that we have chosen can be for-malized in the following way. Let D be the set of doc-uments in the database. To each document dj 2 D weassociate a relevance R(dj) with respect to the queryQ. Initially R0(dj) = 0. Let �(dj; qi) be the numberof times that qi appears in dj (given by the search en-gine), which are always occurrences of content elements(structural elements are not counted).The �nal relevance is given by a 2-tuple, the �rstfor the positive weights and the second for the negativeweights. That is, 8dj 2 D,R(dj) = (x; y)x = Xi; si>0 si � �(dj; qi)y = � Xi; si<0 si � �(dj; qi))The need for computing separately the positive andnegative weights is for ranking purposes as explainednext.An initial algorithm that we are using to rank thedocuments is as follows:� Only consider documents with some positiveweight (that is, x > 0).� Sort the remaining documents using x� y.� Including or not documents with negative weightmight be a user-de�ned option, because even if the�nal score is negative, it had some positive weight.

Clearly, other ranking schemes can be devised, but thisis a simple one. An evaluation study of this and otherstrategies is planned.4. PrototypeWe have developed a �rst prototype (the one shownin the examples), which is based on a three level archi-tecture, like the ANSI relational database standard, toachieve logical and physical independence. The threelevels in our case are:� external: user interface for querying and viewingthe results.� conceptual: receives the query in some languageand establishes the search strategy (optimization).When the search engines return the answers, theseare combined, �ltered and weighted before passingit to the external level to be visualized.� internal: several search engines, each one cansearch about one di�erent kind of data: structure,some kind of content (text, images, sound, video),etc. The elements of this level communicate thesearch results to the conceptual level using the seg-ment model (with a speci�c format).All these levels share the data de�nition (metadata),where the structure and contents allowed in the docu-ments are de�ned. The complete architecture is shownin Figure 3.
4.1. The External LevelThe external level is where the queries are formedand the results are visualized. The objectives of thislevel are:� To present to the user an interface that allows tomake queries and to view the results.� To obtain a representation of the query in an al-gebra expression that will be solved by conceptuallevel.� To show the results delivered by the conceptuallevel using the di�erent visualizations associatedto the answer, as well as correctly displaying thedi�erent media present in contents.
4.2. The Conceptual LevelThis level is responsible for the implementation ofthe language. It receives from the external level a query4
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Figure 3. System Architecture.expressed in the algebra and delivers back the set ofdocuments that match the query, together with theirranks and segments to highlight.It also interacts with the internal level, from whereit retrieves the set of segments corresponding to basicconstructor names and queries on content.The query syntax tree is solved in four stepsStep 1 - Query optimization: The query is opti-mized and an access plan is devised.Step 2 - Obtaining candidate documents: Theset of documents that match the query is com-puted.Step 3 - Ranking: For each matching document, itsrank is computed.Step 4 - Highlighting: For each document to be vi-sualized, its structure and areas to highlight areobtained.In order to give the user early feedback on the resultof the query, Step 2 is not monolithic. Instead, thedocuments can be obtained one at a time. Moreover,Step 3 can be performed at any time and in any order of

document. This allows the external level to implementa smooth displaying of results that allows the user toperform an early evaluation of his query.In Step 1, the �rst optimization which is performedis to convert the query tree into a DAG (directedacyclic graph), factoring common subexpressions. Thisis especially important because the external level ex-pands conditions which are preferential into two ex-pressions (with and without the condition) that sharepossibly complex operands.Some simpli�cations are performed on the expres-sion used in Step 2, which are not valid for Step 3.For instance, all the information on preferences is dis-carded, as well as negated operations (since they willnot a�ect the result set, only its rank). This may alsoincrement the degree of operand sharing in the DAG(i.e. two operands may be equal except for prefer-ences).Further optimizations include exchanging the orderof some operations, for instance the one which corre-sponds to the identity A(B)(C) = A(C)(B). It is moreconvenient to solve �rst the smaller between B and C,since hopefully this will leave less segments to operateagainst the other one. This cannot be done beforehand,since it is necessary to obtain B and C before decidingthe best execution order.The operations on segments can be performed infull or lazy form. In the �rst form, the arguments of anoperation are completely computed before starting tosolve the operation. In the second form, we ask a �rstresult to the root of the expression tree. The root, inorder to deliver a �rst result, asks more results to itschildren, and so on. The advantage of lazy evaluation isthat some parts of the results are never computed, be-cause it is possible to determine beforehand that theywill not be needed.Step 2 obtains the documents which match thequery, with no weight information. This requires muchless work than obtaining the full data. In Step 3 we donot search for matching documents, but given a doc-ument that matches the query we evaluate its weight.Similarly, in Step 4 we obtain the interesting struc-tural components and the list of segments that mustbe highlighted. Therefore, we work on Step 3 only onmatching documents, which avoids the heavy work ondetermining highlighting on a document that will notclassify. In the same spirit, we work on Step 4 (whichis even harder) only on documents that the user reallywants to display.Steps 2, 3 and 4 may look similar (since they use thesame query) but they are very di�erent. First, as ex-plained, more optimization can be performed for Step2. Second, Step 2 needs to locate matching documents5



without traversing the whole database, while Steps 3and 4 do not need to locate the documents. Third,Steps 2 and 3 do not need the exact positions (in char-acters) of the segments associated to words and struc-ture elements. Any numbering scheme (such as theword-count instead of character-count) would work aslong as the left-to-right relationships are preserved. Onthe other hand, Step 4 needs exact positions to deter-mine what to highlight. This makes Steps 2 and 3 verysuitable to be solved with the use of a classical invertedindex, while Step 4 is more likely to be solved by anon-line processing on the matched document.With regard to costs, Step 2 can be implemented inlinear time with respect to the total size of the inter-mediate results (see [14], where Step 2 is the main op-eration). Steps 3 and 4 are applied only to individualdocuments (which are to be ranked or displayed, re-spectively), and are implemented in time proportionalto the total size of the intermediate results of that doc-ument only.
4.3. The Internal LevelThis level is responsible for retrieving the areas cor-responding to each structure element and to queries oncontent. Since there may be di�erent media in the con-tent of a document (text, audio, etc.), we can have aseparate index for each content medium.It is also possible to have a separate specialized in-dex for the structure. However, we use a di�erent ap-proach here, which makes this model very easy to inte-grate with already installed information retrieval sys-tems. The idea is to solve queries on structure by usingthe index on textual content. If a language has markupinformation to describe the structure (such as SGML),we only need that the tags that mark the beginningand end of structures are considered as words in theirown and indexed as any other word. That is, we needthat the index be able to e�ciently retrieve all the po-sitions where the beginning or end tags are present inthe text. It is not hard to deduce the hierarchy in lin-ear time given the information on positions (moreover,this is the same information stored in an ad-hoc indexproposed in [14]). This requirement is not very hard toaccomplish given an already present inverted index forthe textual content.It is also possible that there is no explicit markupinformation, but it is derived, by a parsing process onthe text. In that case, we can modify the �lters of theinformation retrieval system. All those systems accessthe text via an interface that eliminates format infor-mation (for example, to seamlessly index documentsgenerated with di�erent word processors), maps char-

acters, eliminate stopwords, replace synonyms, etc. Weshould make that �lter to generate bogus tags when-ever it decides that a structural element has begun orended.The idea of using the content index to answer querieson structure has been previously used in another model[16]. However, they do not allow nesting in the struc-tures, while we allow it with no additional overhead.Moreover, since the most e�cient way to obtain thestructure given the set of tags positions is to processthem in ascending order, an inverted list is more suit-able than the su�x arrays [13] used in that model,which deliver the positions in su�x order rather thanin positional order.Finally, it is worth to mention that the model canbe implemented with no index at all, if we can pay forthe time overhead (that is, an additional search timewhich is proportional to the text size). Moreover, somesteps of the search are better performed on-line.5. Conclusions and Future WorkWe are currently testing and extending the proto-type of the model based in the software architecturedescribed here. After that, we plan to do an usabilitytest of our visual language. Also, ranking can alwaysbe improved. Further study on how our proposal canhelp user guided and automatic ranking is needed.Another future work should compare the expressive-ness of the proposed model with previous proposals asin [3]. In particular, we are limiting the structure toonly one hierarchy of non-overlapped elements. Nev-ertheless, most documents only have one, namely thelogical structure, which usually does not overlap (e.g.SGML like). Our language also does not allow directrelations of inclusion, that is, to �nd parent-child re-lationships on the hierarchical tree. All inclusion re-lations are transitive. In most cases, this limitation isnot important. On the other hand, languages withoutthis restriction are more complex, need special indicesand not always are e�cient [3].References[1] R. Baeza-Yates. An hybrid query model for fulltext retrieval systems. Technical Report DCC-1994-2, Dept. of Computer Science, Univ. of Chile,1994. ftp://sunsite.dcc.uchile.cl/pub/users/-rbaeza/hybridmodel.ps.gz.[2] R. Baeza-Yates. Visualizing large answers in text data-bases. In Int. Workshop on Advanced User Interfaces(AVI'96), pages 101{107, Gubbio, Italy, May 1996.ACM Press.6
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