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Abstract

We present a new model to query document data-
bases by content and structure. The main merits of
the model are: it allows rich structure in the docu-
ments; the query algebra is intuitive (moreover, com-
plemented by a visual query language) and powerful; it
is efficiently implementable; it can be built on top of
a traditional indexing system or even with no index at
all; it is strongly oriented to user-definable relevance
ranking instead of boolean logic; and it allows flexible
visualization of results in terms of structure, contents
and highlighting of user-defined important parts in the
query.

1. Introduction

In the past five years the amount of information
electronically available has experimented an impres-
sive growth. As more and more textual information
becomes available, the need for better search engines
gains importance. One of the recent trends is to take
advantage of the structure of documents to formulate
more precise queries. Structure allows to give some
context to the words being searched, and so the se-
mantics of the query is better. Also, many times we
remember visual structure that can help to locate a
document. This is especially important because stan-
dards to represent structured texts are finally consoli-
dating (e.g. SGML [8] and its instance HTML).

A number of models to structure and query textual
databases by content and structure already exist. Some
work regarding the relationship between the power to
structure and query a textual database and the result-
ing system efficiency has been pursued [3]. However,
much less work has been devoted to consider the in-
terest of those powerful query language for the users.
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In traditional information retrieval systems, however,
this issue is a central one, despite the lack of ability to
handle structure.

Our main goal is to fill that gap. We define a model
to query document databases by content and struc-
ture which is intuitive and expressive. The model can
be implemented in many ways, answering a reasonable
subset of queries in linear time on the size of the in-
termediate results. Our query language is not based
in standard boolean logic but in weights, to help in
ranking. All this is complemented with a visual query
language.

There are a number of different alternatives to index
structured text and answer queries by structure and
content. Most of the indices are ad-hoc. We instead
propose the use of a traditional inverted index with
little enhancements to support queries by structure.
These indices have been studied in literature and their
behavior is well known [17, 7]. Moreover, they are the
most common indices among current text databases.
This makes our model simpler to add to an existing
installed text database.

The organization of the paper follows. First, we
present previous work on the topic, pointing out the
differences between a normal IR system and the user—
query—answer process in a structure/content environ-
ment. Second, we present our model, which in some
sense simplifies our previous proposal [14], including
the query language and the visual metaphor associ-
ated to it. Third, we present the software architecture
of a first prototype. Finally, we mention on-going and
future work.

2. Previous Work

Traditionally, textual databases have allowed to
search their contents (words, phrases, etc.) or their
structure (e.g. by navigating through a table of con-



tents), but not both at the same time. Recently, many
models have appeared that allow mixing both types of
queries.

Mixing contents and structure in queries allows to
pose very powerful queries, being much more expres-
sive than each mechanism by itself. By using a query
language that integrates both types of queries, the re-
trieval quality of textual databases can be potentiated.

However, despite all the work done on efficient
and/or expressive query languages for structured text
[14, 1, 16, 4, 12, 9], the issue of the user’s viewpoint
has not been studied in detail.

In a classic information retrieval system the query
process is well defined. The user makes a query, the
system answers it and the user evaluates the results.
If the user needs are satisfied, the process is finished.
Otherwise, the user can submit another query, filtering
the previous answer or starting again (for example, see
[5, 6]).

There are some aspects in the IR content based
systems that change in the IR structure—content sys-
tems. In content-based systems, users do not need to
know where the query must be, therefore the structure
knowledge is not important. Also, a document is more
or less relevant if the query appears more or less times
in it (although this depends on the exact ranking al-
gorithm used). Now, when we put structure into the
query, the user knowledge on structure becomes im-
portant, and the document relevance is related with
the place where we can find the information. There is
little previous work on relevance ranking for structured
text [15].

So, it is important that the user should know the
document structure if we want to use it in the query.
Therefore, the interface must show the document struc-
ture and assist the query process in this way. However,
almost all proposals for query languages that include
structure [3, 11] are too complex for a final user. That
is one of the main reasons because structure is not used.
One solution to this problem is a visual query language.
A visual language is closer to the user than the tradi-
tional ones and makes it easier to express relations be-
tween objects. On the other hand, a visual languages
limits the expressiveness of the language, because the
main goals are simplicity and easiness of use. There
are very few languages of this kind [10].

Another problem is how to show the structure in
the answer. One helpful solution is to use a visual
metaphor to represent every occurrence of the query.
If possible, this metaphor should be similar to the
one used in the visual query language. This interface
should also help the user to rank the retrieved docu-
ments and evaluate the precision of the answer [15].

Although there is work on the database commu-
nity and on commercial systems on these ideas, the
approach and the goals of this paper are different.
Also, several systems can handle SGML (for example,
Search’97 of Verity) but they only provide partial sup-
port of content and structural queries (mainly, only
structural inclusion).

3. Proposed Model

In traditional IR models, documents are based on
elements that reference only their content. In our case
we have content elements, ¢, and structure elements, s.
In addition, content elements are not only text-based,
as they include any type of data as images or audio.
Therefore, we have to define how documents will be
described in terms of content and structure.

3.1. Metadata

In traditional IR systems, the structure is very sim-
ple (none at all or a sequence of fields) and it is not
difficult to specify. Text with rich structure can be
specified by ad-hoc techniques or by proposed stan-
dards as SGML. We have chosen SGML to define our
structure definition language. We call this metadata.
This information is also useful to:

e guide the user in the querying process suggesting
content and structural elements that can be in-

cluded;
e optimize the queries;
e link the query with the searching engine; and
e verify the syntax of the database and the query.

For each structural or content element of the data-
base we define a metadata element. They are defined
using an instance of SGML [8], using a simple format
that specifies the name of the element (which will be
the tag name for it), its type (using a set of predefined
types), a list of elements that can be included inside it,
the set of its initial and final tag markers in the text,
and a description of the element.

This metadata should describe one hierarchy of in-
formation elements (and just one). This is a restriction
that we impose, but in practice is very rare to find doc-
uments with more than a hierarchy and one hierarchy
is simpler for the user to understand.

Also, implicitly, the fact that elements can only be
included inside other elements implies that either an el-
ement is contained completely in another one or their
intersection is empty. Therefore, we use a collection of



segments to represent the whole content and structure
of the database. Each segment is defined by its initial
and final position and segments do not overlap unless
one is inside another. We do not make distinctions at
the segment level about content or structure, simplify-
ing the indexing and searching process. This plus the
fact that we have only one hierarchy, implies that each
document can be described by a tree that represents
segment inclusion as in [14].

3.2. Query Language

The visual query language must be based on a for-
mal query language. Following the work in [14], we
define an intermediate language that will be used be-
tween the user interface and the search engine.

The specific language is divided in two parts. At
the top level, we have an algebra that returns ranked
documents. It is formed by a union of one or more sub-
queries. The documents retrieved are those contain-
ing segments that are retrieved by at least one non-
negative subquery. Formally, we have that a query @
is

Q:(Slqua"'aszQm)

where @ is the union of the subqueries g;. Each sub-
query g; can be a presence expression or an inclusion
expression (we later describe these two). The coef-
ficients s; are the weights of the subqueries. Positive
weights increase the relevance of a subquery, while neg-
ative weights decrease the relevance and can be con-
sidered as the negation operator. The default value for
the weights is 1. Later we explain one possible ranking
mechanism by using these weights.

The language for the subqueries is an algebra on seg-
ments. It retrieves a set of segments with an associated
weight. The presence operator has the form:

(ela"'aem)

where each element e; can be a basic element (either
content or structure). This means that at least one of
the elements must be present. For example, (a,b,c)
implies the documents that have a or b or c. If we want
to force more elements to be present, we concatenate
these expressions. For example, (a)(b) means that
both a and b must be present.

The inclusion operator is used to indicate that an
expression has to be included in a structure element.
It has the following general form:

(S(elv"'vem))

where S is a structural element, and at least one of
the elements e; to e, is contained in it. Again, the

e; can be content or structure elements. This inclu-
sion is transitive (in fact, we cannot query for only
direct inclusion). For example, section(a,b) returns
the documents that have a or b inside a section. As for
presence, may want to force two or more elements to be
included. For that, we use the same syntax as before.
For example, section(a)(b) implies that both a and
b must be included in the section.

This language is an implicit boolean language with
inclusion. The weights are used basically for union and
subtraction (or and butnot), and concatenation is set
intersection (and).

3.3. A Visual Representation

Our proposed metaphor is very simple. The main
motivation is that the algebra just defined cannot be
easily understood by a normal user, nor even an ex-
pert used. What the user usually sees is a page of text.
So our visual language will be a page where the struc-
ture is composed from a set of predefined objects and
the content is written where we want to find it. Each
structure element will be a rectangle with its name in
the top (using the special name Text if it is a content
element). Each content element is placed inside the rec-
tangle. Weights are specified in a scroll bar at the right
side of each rectangle. For example, a content element
is given in Figure 1 where we use the name “Text” to
indicate a content rectangle for the word “hello”.

Text X

hello |1

Figure 1. Visual Query for ("hello").

Union of queries are obtained by putting rectangles
besides each other. Inclusion is obtained by placing rec-
tangles inside rectangles. Figure 2 shows the query (3
X Chapter(a), —-c) where a must be inside a chapter
and we assign negative relevance to documents having
the content element c.

The answer is a list of documents, and we can use the
same visual metaphor to show how the query matches
each document by using its specific content and struc-
ture. In this way, the same language is used for both
tasks. Nevertheless, one visualization is not enough,
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Figure 2. Visual for(3x

Chapter(a),-c).

Query

and other views for the answer should be provided [2].
An ambitious goal can be to allow the user to edit an
answer, such that can be submitted as a new query.

3.4. Ranking

The ranking notion that we have chosen can be for-
malized in the following way. Let D be the set of doc-
uments in the database. To each document d; € D we
associate a relevance R(d;) with respect to the query
Q. Initially Ro(d;) = 0. Let v(d;, g;) be the number
of times that g; appears in d; (given by the search en-
gine), which are always occurrences of content elements
(structural elements are not counted).

The final relevance is given by a 2-tuple, the first
for the positive weights and the second for the negative
weights. That is, Vd; € D,

R(d;) (z,y)
r = Z s X v(dy, ¢;)
%, $;>0
y o= — Y sixv(da)
%, $;<0

The need for computing separately the positive and
negative weights is for ranking purposes as explained
next.

An initial algorithm that we are using to rank the
documents is as follows:

e Only consider documents with some positive
weight (that is, z > 0).

e Sort the remaining documents using z — y.

e Including or not documents with negative weight
might be a user-defined option, because even if the
final score is negative, it had some positive weight.

Clearly, other ranking schemes can be devised, but this
is a simple one. An evaluation study of this and other
strategies is planned.

4. Prototype

We have developed a first prototype (the one shown
in the examples), which is based on a three level archi-
tecture, like the ANSI relational database standard, to
achieve logical and physical independence. The three
levels in our case are:

e external: user interface for querying and viewing
the results.

e conceptual: receives the query in some language
and establishes the search strategy (optimization).
When the search engines return the answers, these
are combined, filtered and weighted before passing
it to the external level to be visualized.

e internal: several search engines, each one can
search about one different kind of data: structure,
some kind of content (text, images, sound, video),
etc. The elements of this level communicate the
search results to the conceptual level using the seg-
ment model (with a specific format).

All these levels share the data definition (metadata),
where the structure and contents allowed in the docu-
ments are defined. The complete architecture is shown
in Figure 3.

4.1. The External Leve

The external level is where the queries are formed
and the results are visualized. The objectives of this
level are:

e To present to the user an interface that allows to
make queries and to view the results.

e To obtain a representation of the query in an al-
gebra expression that will be solved by conceptual
level.

e To show the results delivered by the conceptual
level using the different visualizations associated
to the answer, as well as correctly displaying the
different media present in contents.

4.2. The Conceptual Level

This level is responsible for the implementation of
the language. It receives from the external level a query
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Figure 3. System Architecture.

expressed in the algebra and delivers back the set of
documents that match the query, together with their
ranks and segments to highlight.

It also interacts with the internal level, from where
it retrieves the set of segments corresponding to basic
constructor names and queries on content.

The query syntax tree is solved in four steps

Step 1 - Query optimization: The query is opti-
mized and an access plan is devised.

Step 2 - Obtaining candidate documents: The
set of documents that match the query is com-
puted.

Step 3 - Ranking: For each matching document, its
rank is computed.

Step 4 - Highlighting: For each document to be vi-
sualized, its structure and areas to highlight are
obtained.

In order to give the user early feedback on the result
of the query, Step 2 is not monolithic. Instead, the
documents can be obtained one at a time. Moreover,
Step 3 can be performed at any time and in any order of

document. This allows the external level to implement
a smooth displaying of results that allows the user to
perform an early evaluation of his query.

In Step 1, the first optimization which is performed
is to convert the query tree into a DAG (directed
acyclic graph), factoring common subexpressions. This
is especially important because the external level ex-
pands conditions which are preferential into two ex-
pressions (with and without the condition) that share
possibly complex operands.

Some simplifications are performed on the expres-
sion used in Step 2, which are not valid for Step 3.
For instance, all the information on preferences is dis-
carded, as well as negated operations (since they will
not affect the result set, only its rank). This may also
increment the degree of operand sharing in the DAG
(i.e. two operands may be equal except for prefer-
ences).

Further optimizations include exchanging the order
of some operations, for instance the one which corre-
sponds to the identity A(B)(C) = A(C)(B). It is more
convenient to solve first the smaller between B and C,
since hopefully this will leave less segments to operate
against the other one. This cannot be done beforehand,
since it is necessary to obtain B and C before deciding
the best execution order.

The operations on segments can be performed in
full or lazy form. In the first form, the arguments of an
operation are completely computed before starting to
solve the operation. In the second form, we ask a first
result to the root of the expression tree. The root, in
order to deliver a first result, asks more results to its
children, and so on. The advantage of lazy evaluation is
that some parts of the results are never computed, be-
cause it is possible to determine beforehand that they
will not be needed.

Step 2 obtains the documents which match the
query, with no weight information. This requires much
less work than obtaining the full data. In Step 3 we do
not search for matching documents, but given a doc-
ument that matches the query we evaluate its weight.
Similarly, in Step 4 we obtain the interesting struc-
tural components and the list of segments that must
be highlighted. Therefore, we work on Step 3 only on
matching documents, which avoids the heavy work on
determining highlighting on a document that will not
classify. In the same spirit, we work on Step 4 (which
is even harder) only on documents that the user really
wants to display.

Steps 2, 3 and 4 may look similar (since they use the
same query) but they are very different. First, as ex-
plained, more optimization can be performed for Step
2. Second, Step 2 needs to locate matching documents



without traversing the whole database, while Steps 3
and 4 do not need to locate the documents. Third,
Steps 2 and 3 do not need the exact positions (in char-
acters) of the segments associated to words and struc-
ture elements. Any numbering scheme (such as the
word-count instead of character-count) would work as
long as the left-to-right relationships are preserved. On
the other hand, Step 4 needs exact positions to deter-
mine what to highlight. This makes Steps 2 and 3 very
suitable to be solved with the use of a classical inverted
index, while Step 4 is more likely to be solved by an
on-line processing on the matched document.

With regard to costs, Step 2 can be implemented in
linear time with respect to the total size of the inter-
mediate results (see [14], where Step 2 is the main op-
eration). Steps 3 and 4 are applied only to individual
documents (which are to be ranked or displayed, re-
spectively), and are implemented in time proportional
to the total size of the intermediate results of that doc-
ument only.

4.3. Thelnternal Leve

This level is responsible for retrieving the areas cor-
responding to each structure element and to queries on
content. Since there may be different media in the con-
tent of a document (text, audio, etc.), we can have a
separate index for each content medium.

It is also possible to have a separate specialized in-
dex for the structure. However, we use a different ap-
proach here, which makes this model very easy to inte-
grate with already installed information retrieval sys-
tems. The idea is to solve queries on structure by using
the index on textual content. If a language has markup
information to describe the structure (such as SGML),
we only need that the tags that mark the beginning
and end of structures are considered as words in their
own and indexed as any other word. That is, we need
that the index be able to efficiently retrieve all the po-
sitions where the beginning or end tags are present in
the text. It is not hard to deduce the hierarchy in lin-
ear time given the information on positions (moreover,
this is the same information stored in an ad-hoc index
proposed in [14]). This requirement is not very hard to
accomplish given an already present inverted index for
the textual content.

It is also possible that there is no explicit markup
information, but it is derived, by a parsing process on
the text. In that case, we can modify the filters of the
information retrieval system. All those systems access
the text via an interface that eliminates format infor-
mation (for example, to seamlessly index documents
generated with different word processors), maps char-

acters, eliminate stopwords, replace synonyms, etc. We
should make that filter to generate bogus tags when-
ever it decides that a structural element has begun or
ended.

The idea of using the content index to answer queries
on structure has been previously used in another model
[16]. However, they do not allow nesting in the struc-
tures, while we allow it with no additional overhead.
Moreover, since the most efficient way to obtain the
structure given the set of tags positions is to process
them in ascending order, an inverted list is more suit-
able than the suffix arrays [13] used in that model,
which deliver the positions in suffix order rather than
in positional order.

Finally, it is worth to mention that the model can
be implemented with no index at all, if we can pay for
the time overhead (that is, an additional search time
which is proportional to the text size). Moreover, some
steps of the search are better performed on-line.

5. Conclusions and Future Work

We are currently testing and extending the proto-
type of the model based in the software architecture
described here. After that, we plan to do an usability
test of our visual language. Also, ranking can always
be improved. Further study on how our proposal can
help user guided and automatic ranking is needed.

Another future work should compare the expressive-
ness of the proposed model with previous proposals as
in [3]. In particular, we are limiting the structure to
only one hierarchy of non-overlapped elements. Nev-
ertheless, most documents only have one, namely the
logical structure, which usually does not overlap (e.g.
SGML like). Our language also does not allow direct
relations of inclusion, that is, to find parent-child re-
lationships on the hierarchical tree. All inclusion re-
lations are transitive. In most cases, this limitation is
not important. On the other hand, languages without
this restriction are more complex, need special indices
and not always are efficient [3].
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