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Abstract. Recent compressed suffix trees targeted to highly repetitive
text collections reach excellent compression performance, but operation
times in the order of milliseconds. We design a new suffix tree representa-
tion for this scenario that still achieves very low space usage, only slightly
larger than the best previous one, but supports the operations within mi-
croseconds. This puts the data structure in the same performance level of
compressed suffix trees designed for standard text collections, which on
repetitive collections use many times more space than our new structure.

1 Introduction

Suffix trees [33] are a favorite data structure in stringology, with a large num-
ber of applications in bioinformatics [3, 15, 27], thanks to their versatility. Their
main problem is their space usage, which can be as much as 20 bytes per text
character. On DNA text, where each character can be represented in 2 bits, the
suffix tree takes 80 times the text size! On the other hand, most suffix tree al-
gorithms traverse it across arbitrary access paths, and thus secondary memory
representations are not efficient. This restricts the applicability of suffix trees to
small text collections only, for example, a machine with 1GB of RAM can handle
the suffix tree of collections of up to 50 million bases.

Sadakane [30] was the first in introducing a compressed suffix tree (CST)
representation, which requires slightly more than 2 bytes per text character,
a giant improvement over the basic representation. A recent, well engineered
implementation, has been developed by Gog [14]. Fischer et al. [12, 11] developed
a new CST using even less space, between 1 and 1.5 bytes per character, as
shown in practical implementations by Ohlebusch et al. [28] and Cánovas and
Navarro [7, 1]. Their main idea was to avoid the explicit representation of the tree
topology. Their operation times, as a consequence, are slower than Sadakane’s,
but still within microseconds. Russo et al. [29] introduced an even smaller CST,
using about half a byte per character, yet raising operation times to milliseconds.

All these CSTs use space proportional to the empirical entropy of the text col-
lection [23] and perform well on standard text collections (although in most DNA
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collections the entropy is also close to 2 bits per character, i.e., they are not much
compressible with statistical compressors). The fastest growing DNA collections,
however, are formed by the sequenced genomes of hundreds or thousands of indi-
viduals of the same species. This makes those collections highly repetitive, since
for example two human genomes share more than 99.9% of their sequences. Sta-
tistical compression does not take proper advantage of repetitiveness [16], but
other techniques like grammar or Lempel-Ziv compression do.

There have been some indexes aimed at performing pattern matching on
repetitive collections based on those techniques [17, 16, 8, 10, 13]. However, they
do not provide the versatile suffix tree functionality, and they do not seem to
yield a way to obtain it. Instead, the so-called run-length compressed suffix
array [20] (run-length CSA or RLCSA), although based in principle on weaker
compression techniques, yields a data structure that is useful to achieve CSTs
for repetitive collections (because CST implementations always build on a CSA).

Based on the RLCSA, Abeliuk and Navarro [2, 1] introduced the first CST
for repetitive collections. The space on the repetitive biological collections tested
is around 1-2 bits per character (bpc), well below the spaces achieved with the
CSTs for general text collections. Their operation time was, however, in the
order of milliseconds. Their structure is based on the ideas of Fischer et al. [12].

In this paper we introduce a new CST called GCT, for “grammar-compressed
topology”, that achieves times in the order of microseconds, close to the times
of those CSTs using 8 to 12 bpc on general text collections described above.
However, GCT uses much less space on repetitive collections, around 2–3 bpc.
This is slightly larger than the previous structure for repetitive collections [2, 1]
but one to two orders of magnitude faster than it. On an extremely repetitive
collection, GCT uses even less space than that previous structure, near 0.5 bpc.

To achieve this result, we build on Sadakane’s CST [30], but use grammar
compression on the tree structure, instead of representing it plainly with paren-
theses. More precisely, we use string grammar compression on the sequence of
parentheses that represents the suffix tree topology (an idea briefly sketched by
Bille et al. [5] for arbitrary trees). A repetitive text collection turns out to have a
suffix tree with repetitive topology, and having the tree represented in this form
allows us to speed up many operations that are very slow to simulate without
the explicit topology [12].

2 Basic Concepts

2.1 Succinct Tree Representations

We describe the tree representation of Sadakane and Navarro [31]. The tree
topology is represented using a sequence of parentheses. We traverse the suffix
tree in preorder, writing an opening parenthesis when we first arrive at a node,
and a closing one when we leave it. Thus a tree of t nodes is represented with
2t parentheses, as a sequence P [1, 2t]. Each node is identified with the offset
of its opening parenthesis in P . We define the excess of a position, E(i), as
the number of opening minus closing parentheses in P [1, i]. Note that E(i) is



the depth of node i. Many tree navigation operations can be carried out with
two operations related to the excess: fwd(i, d) is the smallest j > i such that
E(j) = E(i)−d, and bwd(i, d) is the largest j < i such that E(j) = E(i)−d. For
example the parenthesis closing the one that opens at position i is at fwd(i, 1),
so the next sibling of node i is j = fwd(i, 1) + 1 if P [j] =′ (′, else i is the
last child of its parent. Analogously, the previous sibling is bwd(i − 1, 0) + 1 if
P [i − 1] =′)′. The parent of node i is bwd(i, 2) + 1 and the h-th level ancestor
is bwd(i, h+ 1) + 1. Other operatons, like the lowest common ancestor between
two nodes, LCA(i, j) requires operation RMQ on the virtual array of depths:
RMQ(i, j) is the position of a minimum in E(i . . . j) and LCA(i, j) is the parent
of node RMQ(i, j) + 1. To convert between nodes and preorder values we need
operation preorder(i), which is the number of opening parentheses in P [1, i], and
node(j), which is the position in P where the jth opening parenthesis appears.
Many other operations are available with these primitives [31].

To implement those operations, the sequence P [1, 2t] is cut into blocks of
b log t parentheses (we use base 2 logarithms by default) and for each block k
we store m[k], the minimum excess within the block, and e[k], the total excess
within the block (we also need p[k], the number of opening parentheses in the
block, but this is implicit as p[k] = (e[k] + b)/2). The blocks are the leaves of
a perfect binary tree of higher-level blocks, for which we also store m[k] and
e[k]. Then, operation fwd(i, d) is solved in O(b + log t) time by first scanning
the block k of the node using precomputed tables, then (if the answer was not
found within block k) climbing up the balanced tree to search for the lowest
ancestor of block k containing the desired excess difference d′ to the right of k
(i.e., where k descends from its left child and its right child k′ holds −m[k′] ≥ d′,
being d′ the value of d plus the excess from i + 1 to the end of block k), then
going down to the leftmost leaf node k′′ that descends from k′ and such that
−m[k′′] ≥ d′′, where d′′ is again d adjusted to the beginning of k′′, and finally
scanning block k′′ to find the exact answer position. Operations bwd, RMQ,
preorder and node are solved analogously, see the article [31] for more details.
By using, for example, b = Θ(log t), one obtains O(log t) time for the operations
and 2t+ o(t) bits to store the the parentheses plus the balanced tree of m[] and
e[] values. (They [31] obtain constant times, but the practical implementation
[4] reaches logarithmic times.)

2.2 Compressed Suffix Trees

Let T [1, n] be a text (or the concatenation of the texts in a collection) over
alphabet [1, σ]. The character at position i of T is denoted T [i], whereas T [i, j]
denotes T [i]T [i+ 1] . . . T [j], a substring of T . A suffix of T is a substring of the
form T [i, n] and a prefix of T is of the form T [1, i]. The suffix trie of T is the
digital tree formed by inserting all the suffixes of T , so that any substring of T
labels the path from the root to a node of the suffix trie, and any suffix of T , in
particular, labels the path from the root to a leaf of the suffix trie. We consider
that the labels in the suffix trie are on the edges, and each leaf corresponding to
suffix T [i, n] is labeled i. The suffix tree of T [33] is formed by compressing the



unary paths of the suffix trie into a unique edge labeled with the concatenation
of the labels of the compressed edges, that is, with a string. The first characters
of the labels of the edges that lead to the children of any node are distinct, and
we assume they are sorted by increasing value left to right. The suffix array [21]
of T is an array A[1, n] of values in [1, n], formed by collecting the leaf labels
of the suffix tree in left-to-right order. Alternatively, A[1, n] can be seen as the
array of all the suffixes of T sorted in lexicographic order.

Sadakane [30] showed that a functional compressed suffix tree (CST) could
be represented with three components: (1) a compressed suffix array (CSA),
(2) a compressed longest common prefix (LCP) array, and (3) a compressed
representation of the topology of the suffix tree (thus, elements like the string
labels could be deduced from these components without representing them).

There are many CSAs in the literature [25]. The basic functionality they
offer is (a) given a pattern p[1,m], find the suffix array interval A[sp, ep] of the
suffixes of T that start with p (therefore A[sp], A[sp+ 1], . . . , A[ep] is the list of
occurrences of p in T ), (b) given a suffix array position i, return A[i], (c) given a
text position j, return A−1[j], that is, the position in A that points to the suffix
T [j, n], and (d) given [l, r], obtain the text substring T [l, r]. Most CSAs achieve
times of the form O(m) to O(m log n) for operation (a), O(polylog n) for (b) and
(c), and at most O((l−r) log σ+polylog n) for (d). They require space O(n log σ)
bits (as opposed to O(n log n) of classical suffix arrays), and in most cases close
to the empirical entropy of T [23] (a measure of compressibility with statistical
compressors). Note that, within this space, CSAs can reproduce any substring
of T , so T does not need to be stored separately. Mäkinen et al. [20] introduced
the run-length CSA, or RLCSA, which compresses better when T is repetitive
(i.e., it can be represented as the concatenation of a few different substrings).
Statistical compressors do not take proper advantage of repetitiveness [16].

The longest common prefix (LCP) array, LCP [1, n], stores in LCP [i] the
length of the longest common prefix between the suffixes T [A[i], n] and T [A[i−
1], n] (with LCP [1] = 0). Sadakane [30] showed how to represent LCP using just
2n bits, by representing instead PLCP [1, n], where PLCP [j] = LCP [A−1[j]] (or
LCP [i] = PLCP [A[i]]), that is, PLCP is LCP represented in text order, not in
suffix array order. The key property is that PLCP [j+ 1] ≥ PLCP [j]− 1, which
allows PLCP be represented using a bitvector H[1, 2n], at the price of having
to compute A[i] in order to compute LCP [i]. Fischer et al. [12] proved that H
was in addition compressible when the text was statistically compressible, but
Cánovas and Navarro [7, 1] found out that the compressibility was not significant
on standard texts. Instead, Abeliuk and Navarro [2, 1] showed that the technique
proposed to compress H [12] made a significant difference on repetitive texts.

Finally, Sadakane [30] represented the tree topology using succinct trees,
taking 2n to 4n bits since the suffix tree has t = n to 2n nodes. A study of such
succinct tree representations [4] shows that the one described in Section 2.1 is
well suited for the operations required on a suffix tree.

Fischer et al. [12, 11] showed that one can operate without explicitly repre-
senting the tree topology, because each suffix tree node corresponds to a dis-



tinct suffix array interval. One can operate directly on those intervals, and all
the tree operations can be simulated with three primitives on the intervals:
RMQ(i, j) finds the (leftmost) position of the smallest value in LCP [i, j], and
PSV/NSV (i) finds the position in LCP preceding/following i with a value
smaller than LCP [i]. Cánovas and Navarro [8, 1] implemented this theoretical
proposal, speeding up the operations RMQ and PSV/NSV by building the bal-
anced tree described in Section 2.1 on top of the LCP array (instead of array E)
and using ideas similar to those used to navigate trees [31] (albeit the application
is quite different). Ohlebusch et al. [28] presented an alternative implementation
that is more efficient when sufficient space is available.

Abeliuk and Navarro [2, 1] proposed the first CST for repetitive text col-
lections. They build on the representation of Fischer et al., using the RLCSA
and the compressed version of H to represent LCP . The only obstacle was the
balanced tree used to speed up RMQ and PSV/NSV operations, which was
not compressible. They instead used the fact that the differential LCP array
(LCP [i]−LCP [i− 1]) is grammar-compressible as much as the differential suf-
fix array is, and that it compresses particularly well on repetitive text collections.
They applied RePair compression [18] to the differential LCP array and used the
tree grammar (which is compressed, by definition) instead of an incompressible
balanced tree, storing the needed information in the nodes of the grammar tree.
As a result, they obtain very low space usage on repetitive texts (from 0.6 to
4 bits per character, depending on the repetitiveness of the real-life collections
used). A drawback is that the operations require milliseconds, instead of the
microseconds required by most CSTs designed for standard text collections [1].

2.3 Grammar Compression of Strings and Trees

Grammar compression of a string S is the task of finding a (context-free) gram-
mar G that generates (only) S. RePair [18] is a compression algorithm that finds
such a grammar in linear time and space. It finds the most frequent pair ab of
characters in S, creates a rule X → ab, replaces all ab in S by X, and iter-
ates until the most frequent pair appears only once (in subsequent iterations, a
and/or b maybe nonterminals). The final product of RePair is a set R of rules
of the general form X → Y Z and a sequence C of terminals and nonterminals
corresponding to the final reduced version of S after all the replacements.

Grammar compression can also be applied to trees, by using grammars that
generate trees instead of strings [9]. The simplest grammar is one that replaces
full trees, so the associated grammar compression seeks for the minimal DAG
(directed acyclic graph) equivalent to the tree. More powerful variants allow
nonterminals with variables, with which grammar compression can replace con-
nected subgraphs of the tree [22, 19]. In general, supporting even the most basic
traversal operations on those compressed trees is not trivial, even in the sim-
plest DAG compression. Bille et al. [5] sketch a simple idea that retains all the
full power of navigational operations of succinct trees (see Section 2.1). They
basically propose to grammar-compress the string of parentheses P [1, 2t] that
represents the tree, attaching m[] and e[] (and the other) values to the nonter-



minals in order to support efficient navigation. They prove this compression is
a powerful as the simple DAG tree compression, provided some small fixes are
applied to the grammar.

Note that this theoretical idea is what was implemented in practice by
Abeliuk and Navarro [2, 1], as described in Section 2.2, for solving queries on
the LCP array: using the RePair grammar tree instead of a balanced tree for
storing m[] and e[] information. In this paper we implement the idea on the
excess array of an actual tree — the suffix tree of the text. Unlike Bille et al.,
we do not alter the grammar given by RePair, but use it directly.

3 A New CST for Repetitive Text Collections

We introduce a new CST tailored to repetitive texts, building on Sadakane’s
original proposal [30]. We use the RLCSA as the suffix array, and the compressed
representation of H [12, 2] for the LCP array. Unlike the previous CST of Abeliuk
and Navarro, we do represent the suffix tree topology, to avoid paying the high
price in time of omitting it. As anticipated, this tree topology will be grammar-
compressed to exploit repetitiveness. As a result, our CST will use slightly more
space than that of Abeliuk and Navarro, but it will be orders of magnitude faster.
We call it GCT, for “grammar-compressed topology”.

Let R[1, r] be the rules (including void rules for the terminals ’(’ and ’)’)
and C[1, c] the final sequence resulting from applying RePair compression to the
parentheses sequence P [1, 2t]. We use a version of RePair that yields balanced
grammars (i.e., of height O(log t)) in most cases.3

The r rules will be stored using r log r+O(r) bits (as opposed to the 2r log r
bits needed by a plain storage) by simplifying a technique described by Tabei et
al. [32]. The grammar is seen as a DAG where the nodes are the nonterminals
and terminals, and each rule X → Y Z induces arrows from X to Y and to
Z. Now all the arrows from nodes to their left children, seen backward, form a
tree TL, and those to their right children, seen backward, form a tree TR. We
represent TL and TR using a succinct representation [31, 4] in O(r) bits, and
r log r + O(r) bits are used to map preorders from TL to TR and vice-versa,
using a permutation representation [24] that computes the mapping in constant
time and its reverse in time O(log r). We use preorders in TL as nonterminal
identifiers. Therefore, to find Y and Z given X, we compute the TL node with
preorder X, find its parent, and then Y is its preorder number in TL. To find
Z we map the node of X to its TR node, find its parent in TR, map back that
parent to TL, and then Z is its preorder value. The total time is O(log r).

In addition, we will store for each nonterminal k the values m[k] and e[k], as
well as s[k] (the size of the string generated by nonterminal k), l[k] (the number
of leaf nodes — i.e., substrings ’()’ — in the string), pl[k] and pr[k] (the first and
last parentheses of the string). To induce small numbers, e[k] will be stored as a
difference with m[k], and all the numbers will be stored with DACs, a technique

3 From www.dcc.uchile.cl/gnavarro/software.



to represent small numbers while supporting direct access [6]. We use the variant
that uses optimal space. To further save space, only some nonterminals k will
store this information, guaranteeing that, if a terminal k is not sampled, we can
obtain its information by combining that of its descendants, such that we will
not have to recursively expand more than y nonterminals, for a parameter y [26].

Sequence C is sampled every z = Θ(log t) positions. For each sample, we
store (i) the cumulative length of the expansion of C up to that position, in
array Cs, (ii) the cumulative excess of the corresponding string, in array Ce,
(iii) the minimum excess within the corresponding string, and (iv) the number
of leaves in the corresponding string, in array Cl. This adds O(c) bits to the
c log r bits used to store sequence C.

The total space is (r+c) log r+O(r+c) bits, asymptotically equal to just the
plain grammar-compressed representation of the compressed sequence P [1, 2t].
Now we describe how to solve operation fwd(i, d), where i is a position in P .

1. We binary search Cs for position i, to find the largest sampled position
j ← Cs[u] < i in C; the excess up to that position is e← Ce[u].

2. We sequentially traverse the terminals and nonterminals k ← C[zu+ 1 . . .],
updating j ← j + s[k] and e← e+ e[k], where we remind that s[k] and e[k]
are the total length and excess, respectively, of the string represented by the
nonterminal k. We stop at the position C[v] where j would exceed i.

3. Now we navigate the expansion of the nonterminal X = C[v]. Let X →
Y Z. If j + s[Y ] < i, then we add j ← j + s[Y ] and e ← e + e[Y ], and
continue recursively with Z; otherwise we continue recursively with Y . When
we finally reach a terminal node, we know the excess e of node i and start
looking for a negative difference d of excess to the right of position j = i.

4. We traverse back (returning from recursion) the path in the grammar fol-
lowed in point 3. If we went towards the right child, we just return. If, instead,
we went towards Y in a rule X → Y Z, then we check whether −m[Z] ≥ d. If
so, the answer is within Z, otherwise we add j ← j+ s[Z] and d← d+ e[Z],
and return to the parent in the recursion.

5. If in the previous point we have established that the answer is within a
nonterminal Z, we traverse the expansion of Z → VW . If −m[V ] < d, then
we add j ← j + s[V ] and d ← d + e[V ], and continue recursively with W ;
else we continue recursively with V . When we reach a leaf, the answer is j.

6. If in point 4 we return from the recursion up to the root symbol C[v] without
yet finding the desired excess difference d, we scan the nonterminals C[v+a]
for a = 1, 2, . . ., increasing j ← j + s[C[v + a]] and d← d+ e[C[v + a]] until
finding an a such that −m[C[v + a]] ≥ d. At this point we look for the final
answer within the symbol C[v + a] just as in point 5.

7. If we reach the next sampled position, v + a = z(u+ 1) without yet finding
the answer, we sequentially traverse the samples u′ = u + 1 . . ., updating
j ← Cs[u

′] and d ← d + Ce[u
′] − Ce[u

′ − 1], until reaching u′ such that
−Cm[u′] ≥ d. Then we traverse C sequentially from C[zu′+ 1] as in point 6.

To avoid the sequential scan in point 7, we can build a balanced tree with
cumulative Cs, Ce and Cm values on top of the sequence of samples, incurring



a negligible extra space of O(c) bits, but this makes imperceptible difference
in practice. In complexity terms, the operation requires O(log t) steps because
the grammar is balanced, and the most expensive part of a step is computing
component Z in the expansions X → Y Z. Thus the overall time complexity is
O(log2 t). This could be reduced to O(log t) time by using a plain representation
of the grammar rules, but in practice our representation is already very fast and
reducing space is more interesting.

In practice, we regularly sample the universe [1, n] instead of the extent [1, c]
of C, so as to avoid the binary search in point 1. Although this introduces an
overhead of O(n) extra bits in theory (to achieve guaranteed logarithmic time),
it works better in practice in both space and time.

The operation bwd(i, d) is analogous. For LCA(i, j) we traverse all theO(log t)
grammar nodes between positions i and j and locate the point where the mini-
mum excess occurs; we omit the details for lack of space. Operations preorder(i)
and node(j) require a similar traversal considering the values s[k] and the (vir-
tual) values p[k]. Finally, the storage of l[k], pl[k] and pr[k] is necessary to
convert suffix tree leaves into suffix array positions, and back; once again the
details are omitted but the reader can work them out easily once the concept
behind fwd(i, d) is understood.

4 Experimental Results and Discussion

To facilitate comparisons with previous work [1], we use the same computer
and datasets. The computer is an Intel Core2 Duo at 3.16GHz, with 8GB of
RAM and 6MB cache, running Linux version 2.6.24-24. We use various DNA
collections from the Repetitive Corpus of Pizza&Chili.4 Collections Influenza

(148MB) and Para (410MB) are the most repetitive ones, whereas Escherichia
(108MB) is less repetitive. These are collections of genomes of various bacteria
of those species. In order to show how results improve with higher repetitiveness,
and although it is not a biological collection, we have also included Einstein

(89MB), corresponding to the Wikipedia versions of the article about Einstein
in German. We use their same mechanism for choosing random suffix tree nodes,
and averaged over 10,000 runs to obtain each data point.

For our CST (called “GCT” in the plots), we used various combinations of
parameters y and z, obtained a cloud of points, and chose the dominant ones. We
used the balanced version of RePair, which consistently gave us better results.
We used the RLCSA with parameters blockSize = 32 and sample = 128. The
previous CST for repetitive collections [2, 1] is called “NPR-Repet” in the plots,
and is obtained with the best reported point among their use of balanced and
unbalanced RePair. We include the smallest CST for general collections [29]
(called “FCST” in the plots), which is basically insensitive to the repetitiveness
and achieves times within milliseconds, close to those of NPR-Repet. Since our
CST achieves times within microseconds, it is worthy to compare its performance

4 http://pizzachili.dcc.uchile.cl/repcorpus
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Fig. 1. Space-time tradeoffs for CST operations, part I.

with the smallest CST that reaches that time range [8, 1]; we choose their variant
FMN-RRR and call it “NPR”. We do not include Sadakane’s CST because even
a good implementation [14] uses too much space for our interests. For the same
reason we do not use the faster and larger variants of NPR, as they represent
LCP values directly and these become very large on repetitive collections (≈ 27
bpc only the LCPs!). For lack of space, we show each operation on one collection.
See Fig. 1 and 2, with times in logscale. Not all the previous CSTs implement
all the operations, so they may not appear in some plots.

The first figure is sufficient to discuss the space. On the repetitive DNA
collections, our GCT achieves 2–3 bpc, compared to 1–2 bpc reached by NPR-
Repet (in exchange, our times are up to 2 orders of magnitude faster, as discussed
soon). On the less repetitive DNA sequence, GCT uses more than 6 bpc, whereas
NPR-Repet uses 4–5 bpc. For this collection, NPR-Repet is already reached by
FCST, the smallest CST for general texts, which uses about 4.5 bpc and is
faster than NPR-Repet (but way slower than GCT). Interestingly, on the most
repetitive collection, GCT achieves even less space than NPR-Repet, 0.5 bpc.
Finally, NPR always uses more than 8 bpc, well beyond the others.
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Fig. 2. Space-time tradeoffs for CST operations, part II, and space breakdown.

The plots of Fig. 1 measure simple tree traversal operations: going to the first
child (fChild), to the next sibling (nSibling), to the parent (parent), computing
the tree depth of the node (tDepth), a level ancestor of the node (LAQt), and the
lowest common ancestor of two nodes (LCA). Our GCT excells on those opera-
tions because it represents the tree topology explicitly. In the simplest operations
(the first four), GCT runs in 10–50 microseconds (µsec), whereas NPR-Repet
takes 300 to over 10,000 µsec (i.e., 10 milliseconds, msec). The FCST uses around
1-50 msec and NPR takes 0.1–5 msec. Operation LAQt is implemented directly
on CGT, but in others requires a linear search for the proper ancestor node.
It takes around 50 µsec on GCT, 1–3 msec on NPR, and around 50 msec on
NPR-Repet. Operation LCA is relatively complex, and it takes around 100 µsec
on our GCT and NPR, and 1–3 msec on NPR-Repet and FCST. Thus, our GCT
is 1–2 orders of magnitude faster than comparable CSTs on those operations.

Fig. 2 includes operations that are exclusive of suffix trees, and access the
other CSA components. The suffix link operation (sLink) requires, in our case,
to map nodes to suffix array leaves, compute function Ψ on the RLCSA [20],
map back to suffix tree nodes, and compute an LCA. Our GCT and NPR take



near 200 µsec to complete this operation, whereas NPR-Repet and FCST use
2–5 msec, an order of magnitude slower. Operation sDepth computes the string
depth of a node, and is crucial for other suffix tree operations. It requires mapping
nodes to the CSA and accessing the LCP data (i.e., bitvector H). It takes around
70 µsec on the GCT, 100–200 µsec on NPR, and 300–1000 µsec on NPR-Repet
and FCST. Operation LAQs finds the ancestor of the node with the given string
depth. It requires a binary search on sDepth on the GCT, but is computed
directly on NPR and NPR-repet [1]. It takes 500 µsec on GCT, 50–200 µsec on
NPR, and around 2 msec on NPR-Repet. Operation letter gives the ith letter of
the string represented by a node. It requires mapping to the CSA and computing
Ψ i−1 on the RCLSA. Our GCT solves it in 10–20 µsec, while NPR and NPR-
Repet require 2 µsec (they do not require mapping to the CSA), and FCST takes
50 µsec. Finally, the most complex operation is child, which descends to a child
by an edge labeled with a given letter. It must compute sDepth and then traverse
linearly the children of the node, computing letter for each. It takes 300–500 µsec
on GST, 1–3 msec on NPR and FCST, and around 20 msec on NPR-Repet.

As a conclusion, GCT outperforms the general-purpose CSTs on repetitive
collections by 1–2 orders of magnitude in time in most operations, and by a factor
of 2–4 in space. It uses some more space than NPR-Repet, the alternative for
repetitive collections, but it is 2 orders of magnitude faster for most operations.
The times obtained on larger CSTs [30, 14, 1] are, of course, much lower: the
large NPR [1] reaches 1 µsec in most operations (except 10 µsec on LCA and
100 µsec on child). However, these use more than 25 bpc on our collections.

Fig. 2 finishes with a space breakdown of the GCT structure (note it starts
at 60%). In all cases, the sum of the RLCSA and the H components (i.e., those
inherited from previous CSTs) account for 85–95% of the space, so the tree
topology adds only 5–15% of space, which is responsible for speedups of orders of
magnitude. Within the topology, the grammar itself (C+Dictionary) dominates
the space on the least repetitive collection, whereas the extra data we insert for
speeding up operations gains importance as repetitiveness increases.
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