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Abstract

We present three new algorithms for on-line multiple string matching allowing errors. These
are extensions of previous algorithms that search for a single pattern. The average running
time achieved is in all cases linear in the text size for moderate error level, pattern length and
number of patterns. They adapt (with higher costs) to the other cases. However, the algorithms
differ in speed and thresholds of usefulness. We analyze theoretically when each algorithm
should be used, and show experimentally their performance. The only previous solution for this
problem allows only one error. Our algorithms are the first to allow more errors, and are faster
than previous work for a moderate number of patterns (e.g. less than 50-100 on English text,
depending on the pattern length).

Key words: String matching, multipattern search, search allowing errors.

1 Introduction

Approximate string matching is one of the main problems in classical string algorithms, with
applications to text searching, computational biology, pattern recognition, etc. Given a text T; ,
of length n and a pattern P;_,, of length m (both sequences over an alphabet ¥ of size o), and a
maximal number of errors allowed, 0 < k < m, we want to find all text positions where the pattern
matches the text with up to k errors. Errors can be substituting, deleting or inserting a character.
We use the term “error level” to refer to a = k/m.

In this paper we are interested in the on-line problem (i.e. the text is not known in advance),
where the classical solution for a single pattern is based on dynamic programming and has a running
time of O(mn) [26].

In recent years several algorithms have improved the classical one [22]. Some improve the worst
or average case by using the properties of the dynamic programming matrix [30, 11, 16, 31, 9].
Others filter the text to quickly eliminate uninteresting parts [29, 28, 10, 14, 24|, some of them
being “sublinear” on average for moderate o (i.e. they do not inspect all the text characters).
Yet other approaches use bit-parallelism [3] in a computer word of w bits to reduce the number of
operations [33, 35, 34, 6, 19].

The problem of approximately searching a set of » patterns (i.e. the occurrences of anyone of
them) has been considered only recently. This problem has many applications, for instance
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e Spelling: many incorrect words can be searched in the dictionary at a time, in order to find
their most likely variants. Moreover, we may even search the dictionary of correct words in
the “text” of misspelled words, hopefully at much less cost.

e Information retrieval: when synonym or thesaurus expansion is done on a keyword and the
text is error-prone, we may want to search all the variants allowing errors.

e Batched queries: if a system receives a number of queries to process, it may improve efficiency
by searching all them in a single pass.

e Single-pattern queries: some algorithms for a single pattern allowing errors (e.g. pattern
partitioning [6]) reduce the problem to the search of many subpatterns allowing less errors,
and they benefit from multipattern search algorithms.

A trivial solution to the multipattern search problem is to perform r searches. As far as we
know, the only previous attempt to improve the trivial solution is due to Muth & Manber [17], who
use hashing to search many patterns with one error, being efficient even for one thousand patterns.

In this work, we present three new algorithms that are extensions of previous ones to the
case of multiple search. In Section 2 we explain some basic concepts necessary to understand
the algorithms. Then we present the three new techniques. In Section 3 we present “automaton
superimposition”, which extends a bit-parallel simulation of a nondeterministic finite automaton
(NFA) [6]. In Section 4 we present “exact partitioning”, that extends a filter based on exact
searching of pattern pieces [7, 6, 24]. In Section 5 we present “counting”, based on counting
pattern letters in a text window [14]. In Section 6 we analyze our algorithms and in Section 7 we
compare them experimentally. Finally, in Section 8 we give our conclusions. Some detailed analyses
are left for Appendices A and B.

Although [17] allows searching for many patterns, it is limited to only one error. Ours are the
first algorithms for multipattern matching allowing more than one error. Moreover, even for one
error, we improve [17] when the number of patterns is not very large (say, less than 50-100 on
English text, depending on the pattern length). Our multipattern extensions improve over their
sequential counterparts (i.e. one separate search per pattern using the base algorithm) when the
error level is not very high (about o < 0.4 on English text). The filter based on exact searching
is the fastest for small error levels, while the bit-parallel simulation of the NFA adapts better to
more errors on relatively short patterns.

Previous partial and preliminary versions of this work appeared in [5, 20, 21].

2 Basic Concepts

We review in this section some basic concepts that are used in all the algorithms that follow. In
the paper S; denotes the i-th character of string S (being S; the first character), and S, ; stands
for the substring S;S;41...S;. In particular, if ¢ < 7, S; ; = €, the empty string.

2.1 Filtering Techiques

All the multipattern search algorithms that we consider in this work are based in the concept of
filtering, and therefore it is useful to define it here.



Filtering is based on the fact that it is normally easier to tell that a text position does not
match than to ensure that it matches. Therefore, a filter is a fast algorithm that checks for a
simple necessary (though not sufficient) condition for an approximate match to occur. The text
areas that do not satisfy the necessary condition can be safely discarded, and a more expensive
algorithm has to be run on the text areas that passed the filter.

Since the filters can be much faster than approximate searching algorithms, filtering algorithms
can be very competitive (in fact, they dominate on a large range of parameters). The performance
of filtering algorithms, however, is very sensitive to the error level a. Most filters work very well
on low error levels and very bad with more errors. This is related with the amount of text that the
filter is able to discard. When evaluating filtering algorithms, it is important not only to consider
their time efficiency but also their tolerance to errors.

A term normally used when referring to filters is “sublinearity”. It is said that a filter is sublinear
when it does not inspect all the characters of the text (like the Boyer-Moore [8] algorithms for exact
searching, which can be at best O(n/m)).

Throughout this work we make use of the two following lemmas to derive filtering conditions.

Lemma 1 [6]: If S = T, , matches P with at most k errors, and P = p;...p; (a concatenation of
sub-patterns), then some substring of S matches at least one of the p;’s, with at most |k/j| errors.

Proof: Otherwise, the best match of each p; inside S has at least |k/j| +1 > k/j errors. An
occurrence of P involves the occurrence of each of the p;’s, and the total number of errors in the
occurrences is at least the sum of the errors of the pieces. But here, just summing up the errors of
all the pieces we have more than jk/j = k errors and therefore a complete match is not possible.
Notice that this does not even consider that the matches of the p; must be in the proper order, be
disjoint, and that some deletions in .S may be needed to connect them.

In general, one can filter the search for a pattern of length m with k errors by the search of j
subpatterns of length m/j with k/j errors. Only the text areas surrounding occurrences of pieces
must be checked for complete matches.

An important particular case of Lemma 1 arises when one considers 7 = k+ 1, since in this case
some pattern piece appears unaltered (zero errors).

Lemma 2: [32] If there are ¢ < j such that ed(T; ;, P) < k, then T;_,,11 ; includes at least m — k
characters of P.

Proof: Suppose the opposite. If j — i < m, then we observe that there are less than m — k
characters of P in T; ;. Hence, more than k characters must be deleted from P to match the text.
If j — 4 > m, we observe that there are more than k characters in T; ; that are not in P, and hence
we must insert more than k characters in P to match the text. A contradiction in both cases.

Note that in case of repeated characters in the pattern, they must be counted as different
occurrences. For example, if we search "aaaa" with one error in the text, the last four letters of
each occurrence must include at least three a’s.

Lemma 2 (a simplification of that in [32]) says essentially that we can design a filter for ap-
proximate searching based on finding enough characters of the pattern in a text window (without
regarding their ordering). For instance, the pattern "survey" cannot appear with one error in the
text window "surger" because there are not five letters of the pattern in the text. However, the
filter cannot discard the possibility that the pattern appears in the text window "yevrus".



2.2 Bit-Parallelism

Bit-parallelism is a technique of common use in string matching [3]. It was first proposed in [2, 4].
The technique consists in taking advantage of the intrinsic parallelism of the bit operations inside
a computer word. By using cleverly this fact, the number of operations that an algorithm performs
can be cut down by a factor of at most w, where w is the number of bits in the computer word.

Since in current architectures w is 32 or 64, the speedup is very significant in practice (and
improves with technological progress). In order to relate the behavior of bit-parallel algorithms
to other works, it is normally assumed that w = ©(logn), as dictated by the RAM model of
computation. We prefer, however, to keep w as an independent value.

Some notation we use for bit-parallel algorithms is in order. We denote as by...b; the bits of a
mask of length £, which is stored somewhere inside the computer word. We use C-like syntax for
operations on the bits of computer words, e.g. “|” is the bitwise-or and “<<” moves the bits to
the left and enters zeros from the right, e.g. b,,b,,_1...0201 << 3 = b,,_3...b2b1000. We can also
perform arithmetic operations on the bits, such as addition and subtraction, which operates the
bits as if they formed a number. For instance, b,...b,10000 — 1 = b,...5,01111.

We explain now the first bit-parallel algorithm, since it is the basis of much of which follows
in this work. The algorithm searches a pattern in a text (without errors) by parallelizing the
operation of a non-deterministic finite automaton that looks for the pattern. Figure 1 illustrates
this automaton.
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Figure 1: Nondeterministic automaton that searches "aloha" exactly.

This automaton has m 41 states, and can be simulated in its non-deterministic form in O(mn)
time. The Shift-Or algorithm achieves O(mn/w) worst-case time (i.e. optimal speedup). Notice
that if we convert the non-deterministic automaton to a deterministic one to have O(n) search
time, we get an improved version of the KMP algorithm [15]. However, KMP is twice as slow for
m < w.

The algorithm first builds a table B] | which for each character ¢ stores a bit mask B[c] = b,,...b;.
The mask B[c| has the bit b; in zero if and only if P; = ¢. The state of the search is kept in a
machine word D = d,,...d;, where d; is zero whenever P; ; matches the end of the text read up to
now (i.e. the state numbered 7 in Figure 1 is active). Therefore, a match is reported whenever d,y,
is zero.

D is set to all ones originally, and for each new text character T}, D is updated using the formula

D' « (D<<1) | B[Ty]

The formula is correct because the i-th bit is zero if and only if the (¢ — 1)-th bit was zero
for the previous text character and the new text character matches the pattern at position 7. In
other words, T;_;41.; = P1.; if and only if T;_;41 ;1 = P1.;—1 and T; = P;. It is possible to



relate this formula to the movement that occurs in the non-deterministic automaton for each new
text character: each state gets the value of the previous state, but this happens only if the text
character matches the corresponding arrow.

For patterns longer than the computer word (i.e. m > w), the algorithm uses [m/w| computer
words for the simulation (not all them are active all the time). The algorithm is O(mn/w) worst
case time, and the preprocessing is O(m + o) time and O(o) space. On average, the algorithm is
O(n) even when m > w, since only the first O(1) states of the automaton have active states on
average (and hence the first O(1) computer words need to be updated on average).

It is easy to extend Shift-Or to handle classes of characters. In this extension, each position
in the pattern matches with a set of characters rather than with a single character. The classical
string matching algorithms are not so easily extended. In Shift-Or, it is enough to set the ¢-th bit
of B[c] for every ¢ € P; (P; is a set now). For instance, to search for "survey" in case-insensitive
form, we just set the first bit of B["s"] and of B["S"] to “match” (zero), and the same with the rest.
Shift-Or can also search for multiple patterns (where the complexity is O(mn/w) if we consider
that m is the total length of all the patterns) by arranging many masks B and D in the same
machine word. Shift-Or was later enhanced [34] to support a larger set of extended patterns and
even regular expressions. Recently, in [25], Shift-Or was combined with a sublinear string matching
algorithm, obtaining the same flexibility and an efficiency competitive against the best classical
algorithms.

Many on-line text algorithms can be seen as implementations of clever automata (classically, in
their deterministic form). Bit-parallelism has since its invention became a general way to simulate
simple non-deterministic automata instead of converting them to deterministic. It has the advan-
tage of being much simpler, in many cases faster (since it makes better usage of the registers of the
computer word), and easier to extend to handle complex patterns than its classical counterparts.
Its main disadvantage is the limitations it imposes with regard to the size of the computer word.
In many cases its adaptations to cope with longer patterns are not so efficient.

2.3 Bit-parallelism for Approximate Pattern Matching

We present now an application of bit-parallelism to approximate pattern matching, which is espe-
cially relevant for the present work.

Consider the NFA for searching "patt" with at most k& = 2 errors shown in Figure 2. Every
row denotes the number of errors seen. The first one 0, the second one 1, and so on. Every column
represents matching the pattern up to a given position. At each iteration, a new text character is
considered and the automaton changes its states. Horizontal arrows represent matching a character
(they can only be followed if the corresponding match occurs). All the others represent errors, as
they move to the next row. Vertical arrows represent inserting a character in the pattern (since they
advance in the text and not in the pattern), solid diagonal arrows represent replacing a character
(since they advance in the text and the pattern), and dashed diagonal arrows represent deleting a
character of the pattern (since, as e-transitions, they advance in the pattern but not in the text).
The loop at the initial state allows considering any character as a potential starting point of a
match. The automaton accepts a character (as the end of a match) whenever a rightmost state
is active. Initially, the active states at row ¢ (¢ € 0..k) are those at the columns from 0 to ¢, to
represent the deletion of the first ¢ characters of the pattern P; ,,.



no errors

1 error

2 errors

Figure 2: An NFA for approximate string matching. We show the active states after reading the
text "pait".

An interesting application of bit-parallelism is to simulate this automaton in its nondeterministic
form. A first approach [34] obtained O(k[m/w]|n) time, by packing each automaton row in a
machine word and extending the Shift-Or algorithm to account for the vertical and diagonal arrows.
Note that even if all the states fit in a single machine word, the k 4+ 1 rows have to be sequentially
updated because of the e-transitions. The same happens in the classical dynamic programming
algorithm [26], which can be regarded as a column-wise simulation of this NFA.

In this paper we are interested in a more recent simulation technique [6], where we show that by
packing diagonals of the automaton instead of rows or columns all the new values can be computed
in one step if they fit in a computer word. We give a brief description of the idea.

Because of the e-transitions, once a state in a diagonal is active, all the subsequent states in that
diagonal become active too, so we can define the minimal active row of each diagonal, D; (diagonals
are numbered by looking the column they start at, e.g. D; and D, are enclosed in dotted lines
in Figure 2). The new values for D; (¢ € 1..m — k) after we read a new text character ¢ can be
computed by

D; = min( D; +1, D;y1+1, g(Di_1,¢))
where g¢(D;,¢) = min({k+1} U {j/j>D; AN Pyj==c})
where it always holds Dy = Dj = 0 and we report a match whenever D,,_; < k. The formula for
D accounts for replacements, insertions and matches, respectively. Deletions are accounted for by

keeping the minimum active row. All the interesting matches are caught by considering only the
diagonals D;...Dp, .



We use bit-parallelism to represent the D;’s in unary. Each one is hold in k 4 1 bits (plus an
overflow bit) and stored sequentially inside a bit mask D. Interestingly, the effect is the same if we
read the diagonals bottom-up and exchange 0 <+ 1, with each bit representing a state of the NFA.
The update formula can be seen either as an arithmetic implementation of the previous formula in
unary or as a logical simulation of the flow of bits across the arrows of the NFA.

As in Shift-Or, a table of (m bits long) masks 5[] is built representing match or mismatch
against the pattern. A table Blc] is built by mapping the bits of 5[] to their appropriate positions
inside D. Figure 3 shows how the states are represented inside the masks D and B.

separator separator

\L \L final state
D Of Of 1f{ 1y Oof Of O] 1

AA A Ah A

(2,3)(1,2)(0,1)  (2,4)(1,3)(0,2)
t a p t t a
B[’t’] O 0) 1f 13 0) 0] Of 1

Figure 3: Bit-parallel representation of the NFA of Figure 2.

This representation requires k+ 2 bits per diagonal, so the total number of bits is (m—k)(k+2).
If this number of bits does not exceed the computer word size w, the update can be done in O(1)
operations. The resulting algorithm is linear and very fast in practice.

For our purposes, it is important to realize that the only connection between the pattern and
the algorithm is given by the 5[] table, and that the pattern can use classes of characters just as in
the Shift-Or algorithm. We use this property next to search for multiple patterns.

3 Superimposed Automata

In this section we describe an approach based on the bit-parallel simulation of the NFA just de-
scribed.

Suppose we have to search r patterns P!, ..., P". We are interested in the occurrences of any one
of them, with at most k errors. We can extend the previous bit-parallelism approach by building
the automaton for each one, and then “superimpose” all the automata.

Assume that all patterns have the same length (otherwise, truncate them to the shortest one).
Hence, all the automata have the same structure, differing only in the labels of the horizontal
arrows.

The superimposition is defined as follows: we build the b] ] table for each pattern, and then take
the bitwise-and of all the tables (recall that 0 means match and 1 means mismatch). The resulting
b[] table matches at position ¢ with the i-th character of any of the patterns. We then build the
automaton as before using this table.



The resulting automaton accepts a text position if it ends an occurrence of a much more relaxed
pattern with classes of characters, namely

(P} oy PI} AP}, oy 5} oo APy PLY

for example, if the search is for "patt" and "wait", as shown in Figure 4, the string "pait" is
accepted with zero errors.

@ no errors

Fb 1 error

\

\\Q 2 errors

Figure 4: An NFA to filter the search for "patt" and "wait".

For a moderate number of patterns, the filter is strict enough at the same cost of a single search.
Each occurrence reported by the automaton has to be verified for all the involved patterns (we use
the single-pattern automaton for this step). That is, we have to retraverse the last m + k = O(m)
characters to determine if there is actually an occurrence of some of the patterns.

If the number of patterns is too large, the filter will be too relaxed and will trigger too many
verifications. In that case, we partition the set of patterns into groups of r’ patterns each, build
the automaton of each group and perform [r/7'] independent searches. The cost of this search
is O(r/r' n), where »' is small enough to make the cost of verifications negligible. This »' always
exists, since for »’ = 1 we have a single pattern per automaton and no verification is needed.

When grouping, we use the heuristic of sorting the patterns and packing neighbors in the same
group, trying to have the same first characters.

3.1 Hierarchical Verification

The simplest verification alternative (which we call “plain”) is that, once a superimposed automaton
reports a match, we try the individual patterns one by one in the candidate area. However, a smarter
verification technique (which we call hierarchical) is possible.



Assume first that » is a power of two. Then, when the automaton reports a match, run two
new automata over the candidate area: one which superimposes the first half of the patterns and
another with the second half. Repeat the process recursively with each of the two automata that
finds again a match. At the end, the automata will represent single patterns and if they find a
match we know that their patterns have been really found (see Figure 5). Of course the automata
for the required subsets of patterns are all preprocessed. Since they correspond to the internal
nodes of a binary tree of r leaves, they are 2r — 1 = O(r), so the space and preprocessing cost does
not change. If r is not a power of two then one of the halves may have one more pattern than the
other.

NSNS

. L
/ 2 \ 3 / 4\
Figure 5: The hierarchical verification method for 4 patterns. Each node of the tree represents a

check (the root represents in fact the global filter). If a node passes the check, its two children are
tested. If a leaf passes the check, its pattern has been found.

The advantage of hierarchical verification is that it can remove a number of candidates from
consideration in a single test. Moreover, it can even find that no pattern has really matched before
actually checking any specific pattern (i.e. it may happen that none of the two halves match
in a spurious match of the whole group). The worst-case overhead over plain verification is just
a constant factor, that is, twice as many tests over the candidate area (2r — 1 instead of r). On
average, as we show later analytically and experimentally, hierarchical verification is by far superior
to plain verification.

3.2 Automaton Partitioning

Up to now we have considered short patterns, whose NFA fit into a computer word. If this is not
the case (i.e. (m — k)(k+ 2) > w), we partition the problem. In this subsection and the next we
adapt the two partitioning techniques described in [6].

The simplest technique to cope with a large automaton is to use a number of machine words
for the simulation. The idea is as follows: once the (large) automata have been superimposed,
we partition the superimposed automaton into a matrix of subautomata, each one fitting in a
computer word. Those subautomata behave slightly differently than the simple one, since they
must propagate bits to their neighbors. Figure 6 illustrates.

Once the automaton is partitioned, we run it over the text updating its subautomata. Each
step takes time proportional to the number of cells to update, i.e. O(k(m — k)/w). Observe,
however, that it is not necessary to update all the subautomata, since those on the right may not
have any active state. Following [31], we keep track of up to where we need to update the matrix
of subautomata, working only on the “active” cells.
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Figure 6: A large NFA partitioned into a matrix of I x J computer words, satisfying (£, +1){. < w.

3.3 Pattern Partitioning

This technique is based on Lemma 1 of Section 2.1. We can reduce the size of the problem if
we divide the pattern in j parts, provided we search all the sub-patterns with |k/j| errors. Each
match of a sub-pattern must be verified to determine if it is in fact a complete match.

To perform the partition, we pick the smallest j such that the problem fits in a single computer
word (i.e. ([m/j]— [k/7])(|®/j] + 2) < w). The limit of this method is reached for j = k + 1,
since in that case we search with zero errors. The algorithm for this case is qualitatively different
and is described in Section 4.

We divide each pattern in j subpatterns as evenly as possible. Once we partition all the »
patterns, we are left with j x » subpatterns to be searched with |k/j| errors. We simply group
them as if they were independent patterns to search with the general method. The only difference
is that, after determining that a subpattern has appeared, we have to verify its complete pattern.

Another kind of hierarchical verification, which we call “hierarchical piece verification”, is ap-
plied in this case too. As shown in [23, 24|, the single-pattern algorithm can verify hierarchically
whether the complete pattern matches given that a piece matches (see Figure 7). That is, instead
of checking the complete pattern we check the concatenation of two pieces containing the one
that matched, and if it matches then we check the concatenation of four pieces, and so on. This
works because Lemma 1 applies at each level of the tree of Figure 7. The method is orthogonal to
our hierarchical verification idea because hierarchical piece verification works bottom-up instead of
top-down and operates on pieces of the pattern rather than on sets of patterns.

As we are using our hierarchical verification on the sets of pattern pieces to determine which
piece matched given that a superimposition of them matched, we are coupling two different hierar-
chical verification techniques in this case: we first use our new mechanism to determine which piece
matched from the superimposed group and then use hierarchical piece verification to determine the
occurrence of the complete pattern the piece belongs to. Figure 8 illustrates the whole process.

10



aaabbbcccddd

aaabbb cccddd

aaa bbb ccc ddd

Figure 7: The hierarchical piece verification method for a pattern split in 4 parts. The boxes
(leaves) are the elements which are actually searched, and the root represents the whole pattern.

At least one pattern at each level must match in any occurrence of the complete pattern. If the
bold box is found, all the bold lines may be verified.

3 piecesto search hierarchical verif.
p22isfound

P1

P2

P3 p33

hierarchical piece verif.
_ 4 P2 isfinally found

eachoneis ¢ pl4
splitin4 5 pi3

{ , P2

_7
\ p21 p22 _ -~ p23 p24

\ p21 p22 p23 p24

the pieces are arranged in ~ -
2 superimposed groups
and searched

Figure 8: The whole process of pattern partitioning with hierarchical verifications.

4 Partitioning into Exact Searching

This technique (called “exact partitioning” for short) is based on a single-pattern filter which
reduces the problem of approximate searching to a problem of multipattern exact searching. The

algorithm first appeared in [34], and was later improved in [7, 6, 24]. We first present the single-
pattern version and then our extension to multiple patterns.

4.1 A Filter Based on Exact Searching

A particular case of Lemma 1 shows that if a pattern matches a text position with k errors, and we
split the pattern in k41 pieces, then at least one of the pieces must be present with no errors in each
occurrence (this is a folklore property which has been used several times [34, 18, 12]). Searching
with zero errors leads to a completely different technique.

Since there are efficient algorithms to search for a set of patterns exactly, we partition the
pattern in k 4 1 pieces (of similar length), and apply a multipattern exact search for the pieces.
Each occurrence of a piece is verified to check if it is surrounded by a complete match. If there are

11



not too many verifications, this algorithm is extremely fast.

From the many algorithms for multipattern search, an extension of Sunday’s algorithm [27] gave
us the best results. We build a trie with the sub-patterns. From each text position we search the
text characters into the trie, until a leaf is found (match) or there is no path to follow (mismatch).
The jump to the next text position is precomputed as the minimum of the jumps allowed in each
sub-pattern by the Sunday algorithm.

As in [24], we use the same technique for hierarchical piece verification of a single pattern
presented in Section 3.3.

4.2 Searching Multiple Patterns

Observe that we can easily add more patterns to this scheme. Suppose we have to search for »
patterns P!, ..., P". We cut each one into k + 1 pieces and search in parallel for all the r(k + 1)
pieces. When a piece is found in the text, we use a classical algorithm to verify its pattern in the
candidate area.

Note an important difference with superimposed automata. In this multipattern search we know
which piece has matched. This is not the case in superimposed automata, where not only we do
not know which piece matched, but it is even possible that no piece has really matched. The work
to determine which is the matching piece (carried out by hierarchical verification in superimposed
automata) is not necessary here. Moreover, we only detect real matches, so there are no more
matches in the union of patterns than the sum of the individual matches.

Therefore, there is no point in separating the search for the r(k + 1) pieces in groups. The
only reason to superimpose less patterns is that the shifts of the Sunday algorithm are reduced as
the number of patterns grow, but as we show in the experiments, this never justifies in practice
splitting one search into two.

5 A Counting Filter

We present now a filter based on counting letters in common between the pattern and a text window.
This filter was first presented in [14] (a simple variant of [13]), but we use a slightly different version
here. Our variant uses a fixed-size instead of variable-size text window (a possibility already noted
n [32]), which makes it better suited for parallelization. We first explain the single-pattern filter
and then extend it to handle many patterns using bit-parallelism.

5.1 A Simple Counter

This filter is based in Lemma 2 of Section 2.1. It passes over the text examining an m-letters
long window. It keeps track of how many characters of P are present in the current text window
(accounting for multiplicities too). If, at a given text position j, m — k or more characters of P are
in the window T;_,,41.;, the window area is verified with a classical algorithm.

We implement the filtering algorithm as follows. We keep a counter count of pattern characters
appearing in the text window. We also keep a table A[] where, initially, the number of times that
each character ¢ appears in P is kept in A[c]. Throughout the algorithm, each entry Alc] indicates
how many occurrences of ¢ can still be taken as belonging to P. For example, if h’ appears once

12



in P, we count only one of the *h’s of the text window as belonging to P. When Alc] is negative,
it means that ¢ must exit the text window — A[c] times before we take it again as belonging to P.
For example, if we run the pattern "aloha" over the text "aaaaaaaa", it will hold A[”a”] = -3,
and the value of the counter will be 2. This is independent on k.

To advance the window, we must include the new character T} ; and exclude the last character,
T;—m+1. To include the new character, we subtract one from A[T;1;]. If it was greater than zero
before being decremented, it is because the new character T, is in P, so we increment count. To
exclude the old character T;_,,41, we add one to A[T;_,,41]. If its is greater than zero after being
incremented, it is because T;_,,11 was considered to be in P, so we decrement count. Whenever
count reaches m — k we verify the preceding area.

As can be seen, the algorithm is not only linear (excluding verifications), but the number of
operations per character is very small.

5.2 Keeping Many Counters in Parallel

To search r patterns in the same text, we use bit-parallelism to keep all the counters in a single
machine word. We must do that for the A[] table and for count.

The values of the entries of A[] lie in the range [—m..m], so we need exactly £+1 = 14 [log,(m+
1)] bits to store them. This is also enough for count, since it is in the range [0..m]. Hence, we can
pack |w/(1 + [logy(m + 1)])] ~ w/log, m patterns of length m in a single search (recall that w
is the number of bits in the computer word). If the patterns have different lengths, we can either
truncate them to the shortest length or use a window size of the longest length. If we have more
patterns, we must divide the set in subsets of maximal size and search each subset separately. We
focus our attention on a single subset now.

The algorithm simulates the simple one as follows. We have a table MA[] that packs all the
A[] tables. Each entry of MA[] is divided in bit areas of length £ + 1. In the area of the machine
word corresponding to each pattern, we store its normal A[] value, set to 1 the most significant bit
of the area, and subtract 1 (i.e. we store 2¢ — 1+ A[]). When, in the algorithm, we have to add or
subtract 1 to all A[]’s, we can easily do it in parallel without causing overflow from an area to the
next. Moreover, the corresponding A[] value is not positive if and only if the most significant bit
of the area is zero.

We have also a parallel counter Mcount, where the areas are aligned with MA[]. It is initialized
by setting to 1 the most significant bit of each area and then subtracting m — k at each one, i.e. we
store 2¢ — (m — k). Later, we can add or subtract 1 in parallel without causing overflow. Moreover,
the window must be verified for a pattern whenever the most significant bit of its area reaches 1.
The condition can be checked in parallel, but when some of the most significant bits reach 1, we
need to sequentially check which one it was.

Finally, observe that the counters that we want to selectively increment or decrement correspond
exactly to the MA[] areas that have a 1 in their most significant bit (i.e. those whose A[] value
is positive). This allows an obvious bit mask-shift-add mechanism to perform this operation in
parallel on all the counters. Figure 9 illustrates.
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Figure 9: The bit-parallel counters. The example corresponds to the pattern "aloha" searched with
1 error and the text window "hello". The A values are A['a’] = 2, A['1'] = Al'e'] = -1, A['0’] =
A['m'] =0, and count = 3.

6 Analysis

We are interested in the complexity of the presented algorithms, as well as in the restrictions that
a and r must satisfy for each mechanism to be efficient in filtering most of the unrelevant part of
the text.

To this effect, we define two concepts. First, we say that a multipattern search algorithm is
optimal if it searches r patterns in the same time it takes to search one pattern. If we call C,, , the
cost to search r patterns in a text of size n, then an algorithm is optimal if C,, = C, ;. Second,
we say that a multipattern search algorithm is useful if it searches r» patterns in less than the time
it takes to search them one by one with the corresponding sequential algorithm, i.e. C,, < rCp .
As we work with filters, we are interested in the average case analysis, since in the worst case none
is useful.

We compare in Table 1 the complexities and limits of applicability of all the algorithms. Muth
& Manber are included for completeness. The analysis leading to these results is presented later in
this section.

‘ Algorithm ‘ Complexity ‘ Optimality ‘ Usefulness ‘
Simple Superimp. m n a<l-— e\/g a<l—e/\/o
Automaton Part. azzrl‘ira) n a<l-— e\/g a<l-—e/\/o

Pattern Part. ﬁ n a<l—e/= a<l-—e/\/o
1 1
Part. Exact Search L+ aa’l/o‘ n| o< log_(rm)+©(log, log, (rm)) a < log, m+0©(log_ log, m)
Counting %gﬂ n o< e ™ a<e ™
Muth & Manber mn k=1 k=1

Table 1: Complexity, optimality and limit of applicability for the different algorithms.
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We present in Figure 10 a schematical representation of the areas where each algorithm is the

best in terms of complexity. We show later how the experiments match those figures.

Exact partitioning is the fastest choice in most reasonable scenarios, for the error levels where
it can be applied. First, it is faster than counting for m/logm < acrl/o‘/w, which does not
hold asymptotically but holds in practice for reasonable values of m. Second, it is faster
than superimposing automata for min(y/w,w/m) < ¢*/%=1/(1/a — 1), which is true in most
practical cases.

The only algorithm which can be faster than exact partitioning is that of Muth & Manber

[17], namely for » > aol/*. However, it is limited to k = 1.

For increasing m, counting is asymptotically the fastest algorithm since its cost grows as
O(log m) instead of O(m) thanks to its optimal use of the bits of the computer word. However,
its applicability is reduced as m grows, being useless at the point where it wins over exact
partitioning.

When the error level is too high for exact partitioning, superimposing automata is the only
remaining alternative. Automaton partitioning is better for m < /w, while pattern parti-
tioning is asymptotically better. Both algorithms have the same limit of usefulness, and for
higher error levels no filter can improve over a sequential search.

NONE USEFUL NONE USEFUL

1—e//5 N

Pattern «
Partitioning

Automaton
Partitioning

Superimposed Automata

1/log, m
1/log, m
Partitioning into Exact Search

Partitioning into Exact Search

Muth-Manber
T
Vw acl/

Figure 10: The areas where each algorithm is better, in terms of «, m and r. In the left plot
(varying m), we have assumed a moderate r (i.e. less than 50).

6.1 Superimposed Automata

Suppose that we search r patterns. As explained before, we can partition the set in groups of r’
patterns each, and search each group separately (with its ' automata superimposed). The size of

the groups should be as large as possible, but small enough for the verifications to be not significant.
We analyze which is the optimal value for ' and which is the complexity of the search.



In [6] we prove that the probability of a given text position matching a random pattern with
error level a is O(y™), where v = 1/(0*~%a?*(1 — @)?(1=%)). It is also proved that y < 1 whenever
a < 1—e/y/o, and experimentally shown that this holds very precisely in practice if we replace e
by 1.09. In fact, a very abrupt phenomenon occurs, since the matching probability is very low for
a <1-1.09/y/c and very high otherwise.

In this formula, 1/0 stands for the probability of a character crossing a horizontal edge of the
automaton (i.e. the probability of two characters being equal). To extend this result, we note that
we have ' characters on each edge now, so the above mentioned probability is 1 — (1 — 1/0)’"',
which is smaller than r'/o. We use this upper bound as a pessimistic approximation (which stands
for the case of all the 7' characters being different, and is tight for ' << o).

As the single-pattern algorithm is O(n) time, the multipattern algorithm is optimal on average
whenever the total cost of verifications is O(1) per character. Since each verification costs O(m)
(because we use a linear-time algorithm on an area of length m + k = O(m)), we need that the
total number of verifications performed is O(1/m) per character, on average. If we used the plain
verification scheme, this would mean that the probability that a superimposed automaton matches
a text position should be O(1/(mr)), as we have to perform r verifications.

If hierarchical verification is not used we have that, as r increases, matching becomes more
probable (because it is easier to cross a horizontal edge of the automaton) and it costs more
(because we have to check the r patterns one by one). This results in two different limits on the
maximum allowable 7, one for each of the two facts just stated. The limit due to the increased cost
of each verification is more stringent than that of increased matching probability.

The resulting analysis without hierarchical verification is very complex and is omitted here
because hierarchical verification yields considerably better results and a simpler analysis. As we
show in Appendix A, the average cost to verify a match of the superimposed automaton is O(m)
when hierarchical verification is used, instead of the O(rm) cost of plain verification. That is, the
cost does not grow as the number of patterns increases.

Hence, the only limit that prevents us from superimposing all the » patterns is that the matching
probability becomes higher. That is, if & > 1 — e+/r/a, then the matching probability is too high
and we will spend too much time verifying almost all text positions. On the other hand, we can
superimpose as much as we like before that limit is reached. This tells that the best » (which we
call 7*) is the maximum one not reaching the limit, i.e.

o(l—a)?
. (1)

Since we partition in sets small enough to make the verifications not significant, the cost is
simply O(r/r* n) = O(rn/(c(1 — @)?)).

This means that the algorithm is optimal for r = O(o) (taking the error level as a constant), or
alternatively @ < 1 — ey/r/a. On the other hand, for a > 1 — ¢/4/7, the cost is O(rn), not better
than the trivial solution (i.e. 7* =1 and hence no superimposition occurs and the algorithm is not
useful). Figure 11 illustrates.

Automaton Partitioning: the analysis for this case is similar to the simple one, except because
each step of the large automaton takes time proportional to the total number of subautomata, i.e.
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Figure 11: Behavior of superimposed automata. On the left, the cost increases linearly with », with
slope depending on a. On the right, the cost of a parallel search (t,) approaches r single searches
(rts) when a grows.

O(k(m — k)/w). In fact, this is a worst case since on average not all cells are active, but we use
the worst case because we superimpose all the patterns we can until the worst case of the search is
almost reached. Therefore, the cost formula is

e? k(m — k) o — am? -
(1- a)?e w =0 (crw(l - a) )

This is optimal for r = O(ow) (for constant ), or alternatively for o < 1 —ey/r/0. It is useful
fora <1-—e/\/o.

Pattern Partitioning: we have now jr patterns to search with |k/j| errors. The error level is
the same for subproblems (recall that the subpatterns are of length m/j).

To determine which piece matched from the superimposed group, we pay O(m) independently
of the number of pieces superimposed (thanks to the hierarchical verification). Hence the limit for
our grouping is given by Eq. (1). In both the superimposed and in the single-pattern algorithm,
we also pay to verify if the match of the piece is part of a complete match. As we show in [23], this
cost is negligible for a < 1 — e/+/o, which is less strict than the limit given by Eq. (1).

As we have jr pieces to search, we need an analytical expression for j. Since j is just large
enough so that the subpatterns fit in a computer word, j = (m — k)d(w, o), for

_ 14+ +/1+we/(l—a)

w

d(w, a)
where d(w, &) can be shown to be O(1/4/w) by maximizing it in terms of o (see [23]).
Therefore, the complexity is
jre? _ 0 < m >
sl-ay " = ool —a)

On the other hand, the search cost of the single-pattern algorithm is O(jrn). With respect to
the simple algorithm for short patterns, both costs have been multiplied by j, and therefore the
limits for optimality and usefulness are the same.
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If we compare the complexities of pattern versus automaton partitioning, we have that pattern
partitioning is better for £ > /w. This means that for constant a and increasing m, pattern
partitioning is asymptotically better.

6.2 Partitioning into Exact Searching

In [6] we analyze this algorithm as follows. Except for verifications, the search time can be made
O(n) in the worst case by using an Aho-Corasick machine [1], and O(an) in the best case if we use
a multipattern Boyer-Moore algorithm. This is because we search pieces of length m/(k+1) ~ 1/c.

We are interested in analyzing the cost of verifications. Since we cut the pattern in k41 pieces,
they are of length [m/(k+ 1)] or [m/(k + 1)]. The probability of each piece matching is at most
1/l™/(+1)] Hence, the probability of any piece matching is at most (k+ 1)/0Lm/(k+1)J.

We can easily extend that analysis to the case of multiple search, since we have now r(k + 1)
pieces of the same length. Hence, the probability of verifying is »(k + 1)/0Lm/(k+1)J. We check
the matches using a classical algorithm such as dynamic programming. Note that in this case we
know which pattern to verify, since we know which piece matched. As we show in [23], the total
verification cost if the pieces are of length £ is O(£?) (in our case, £ = m/(k+1)). Hence, the search

rm
where the “1” must be changed to “a” if we consider the best case.

We consider optimality and usefulness now. An optimal algorithm should pay O(n) total search
time, which holds for

cost is

1 1
log, (rm) +log,(1/a) —  log,(rm)+ O(log, log,(rm))

The algorithm is always useful, since it searches at the same cost independently on the number
of patterns, and the number of verifications triggered is exactly the same as if we searched each
pattern separately. However, if o > 1/(log, m + ©(log, log, m)), then both algorithms (single and
multipattern) work as much as dynamic programming and hence the multipattern search is not
useful. The other case when the algorithm could not be useful is when the shifts of a Boyer-Moore
search are shortened by having many patterns up to the point where it is better to perform separate
searches. This never happens in practice.

6.3 Counting

If the number of verifications is negligible, each pass of the algorithms is O(n). In the case of
multiple patterns, only O(w/logm) patterns can be packed in a single search, so the cost to search
r patterns is O(rnlog(m)/w).

The difficult part of the analysis is the maximum error level « that the filtration scheme can
tolerate while keeping the number of verifications low. We assume that we use dynamic program-
ming to verify potential matches. We call A the probability of verifying. If A < log(m)/(wm?) the
algorithm keeps linear (i.e. optimal) on average. The algorithm is always useful since the number
of verifications triggered with the multipattern search is the same as for the single-pattern version.
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However, if A > 1/m both algorithms work O(rmn) as for dynamic programming and hence the
filter is not useful.

We derive in Appendix B a pessimistic bound for the limit of optimality and usefulness, namely
a < "™/ (Eq. (5)). Hence, as m grows, we can tolerate smaller error levels. This limit holds
for any condition of the type A = O(1/m¢), independently of the constant ¢. In our case, we need
¢ = 2 for optimality and ¢ = 1 for usefulness.

7 Experimental Results

We experimentally study our algorithms and compare them against previous work. We tested with
10 megabytes of lower-case English text. The patterns were randomly selected from the same text.
We use a Sun UltraSparc-1 running Solaris 2.5.1, with 64 megabytes of RAM, and w = 32. Each
data point was obtained by averaging the Unix’s user time over 10 trials. We present all the times
in tenths of seconds per megabyte.

We do not present results on random text to avoid an excessively lengthly exposition. In general,
all the filters improve as the alphabet size o grows. Lower-case English text behaves approximately
as random text with o = 15, which is the inverse of the probability that two random letters are
equal.

Figure 12 (left) compares the plain and hierarchical verification methods against a sequential
application of the r searches, for the case of superimposed automata when the automaton fits in a
computer word. We show the cases of increasing » and of increasing k. It is clear that hierarchical
verification outperforms plain verification in all cases. Moreover, the analysis for hierarchical veri-
fication is confirmed since the maximum r up to where the cost of the parallel algorithm does not
grow linearly is very close to 7* = (1 — a)20/1.092. On the other hand, the algorithm with simple
verification degrades sooner, since the verification cost grows with r.

The mentioned maximum r* value is the point where the parallelism ratio is maximized. That
is, if we have to search for 2r* patterns, it is better to split them in two groups of size * and search
each group sequentially. To stress this point, Figure 12 (right) shows the quotient between the
parallel and the sequential algorithms, where the optimum is clear for superimposed automata. On
the other hand, the parallelism ratio of exact partitioning keeps improving as r grows, as predicted
by the analysis (there is an optimum for larger m, related to the Sunday shifts, but it still does not
justify to split a search in two).

When we compare our algorithms against the others, we consider only hierarchical verification
and use this r* value to obtain the optimal grouping for the superimposed automata algorithms.
The exact partitioning, on the other hand, performs all the searches in a single pass. In counting,
it is clear that the speedup is optimal and we pack as many patterns as we can in a single search.

Notice that the plots which depend on r show the point where r* should be selected. Those
which depend on k (for fixed r), on the other hand, just show how the parallelization works as the
error level increases, which cannot be controlled by the algorithm.

We compare now our algorithms among them and against others. We begin with short patterns
whose NFA fit in a computer word. Figure 13 shows the results for increasing r and for increasing
k. For low and moderate error levels, exact partitioning is the fastest algorithm. In particular, it is
faster than previous work [17] when the number of patterns is below 50 (for English text). When
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Figure 12: Comparison of sequential and multipattern algorithms for m = 9. The rows correspond
tok =1, k= 3 and r = 5, respectively. The left plots show search time and the right plots show
the ratio between the parallel (¢,) and the sequential time (r X t,).
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the error level increases, superimposed automata is the best choice. This agrees with the analysis.
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Figure 13: Comparison among algorithms for m = 9. The top plots show increasing r for k =1
and k = 3. The bottom plots show increasing k for » = 8 and » = 16.

We consider longer patterns now (m = 30). Figure 14 shows the results for increasing » and
for increasing k. As before, exact partitioning is the best where it can be applied, and improves
over previous work [17] for » up to 90-100. For these longer patterns the superimposed automata
technique also degrades, and only rarely is it able to improve over exact partitioning. In most cases
it only begins to be the best when it (and all the others) are no longer useful.

Figure 15 summarizes some of our experimental results, becoming a practical version of the
theoretical Figure 10. The main differences are that exact partitioning is better in practice than
what its complexity suggests, and that there is no clear winner between pattern and automaton
partitioning.
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Figure 14: Comparison among algorithms for m = 30. The top plots show, for increasing r, k = 1
and k = 4. The bottom plots show, for increasing k, r = 8 and » = 16. Pattern partitioning is not
run for k = 1 because it would resort to exact partitioning.
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8 Conclusions

We have presented a number of different filtering algorithms for multipattern approximate search-
ing. These are the only algorithms that allow an arbitrary number of errors. On the other hand,
the only previous work allows just one error and we have outperformed it when the number of
patterns to search is below 50-100 on English text, depending on the pattern length.

We have explained, analyzed and experimentally tested our algorithms. We have also presented
a map of the best algorithms for each case. Many of the ideas we propose here can be used to
adapt other single-pattern approximate searching algorithms to the case of multipattern searching.
For instance, the idea of superimposing automata can be adapted to most bit-parallel algorithms,
such as [19]. Another fruitful idea is that of exact partitioning, where a multipattern exact search
is easily adapted to search the pieces of many patterns. There are many other filtering algorithms
of the same type, e.g. [28]. On the other hand, other exact multipattern search algorithms may be
better suited to other search parameters (e.g. working better on many patterns).

A number of practical optimizations to our algorithms are possible, for instance

o If the patterns have different lengths, we truncate them to the shortest one when superimpos-
ing automata. We can select cleverly the substrings to use, since having the same character
at the same position in two patterns improves the filtering mechanism.

e We used simple heuristics to group subpatterns in superimposed automata. These can be
improved to maximize common letters too. A more general technique could group patterns
which are similar in terms of number of errors needed to convert one into the other (i.e. a
clustering technique).

o We are free to partition each pattern in k + 1 pieces as we like in exact partitioning. This is
used in [24] to minimize the expected number of verifications when the letters of the alphabet
do not have the same probability of occurrence (e.g. in English text). An O(m?®) dynamic
programming algorithm is presented there to select the best partition, and this could be
applied to multipattern search.
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A Analysis of Hierarchical Verification

We are interested in the expected cost to verify the presence of any of r patterns given that their
superimposition has been found in a particular text region. The probability of such an automaton
matching the text is the same as for a single pattern, except because the alphabet size is reduced
from o to o/r. Moreover, when we find a match, we are not able to say which is the pattern that
actually matched (in fact it is possible that none matched). Hence, we must verify all the patterns
in the area to determine which matched, if any.

We analyze the technique of “hierarchical verification”: first divide the set of patterns in two
halves and see whether each half matches. For each matching half, subdivide it and so on until the
individual patterns that matched are detected.

Given an area to check for 7 patterns of length ¢, the naive verification will take O(rT'({)) time,
where T'({) is the verification cost for a single pattern. We analyze now the effect of this hierarchical
verification. In [23] it is proved that for a single pattern the matching probability is O(y*), where

T = (cr(l—a)Z) h

When r patterns of length £ are superimposed, the value of v changes because it is a function

of 0. We use instead

627‘ l-o l-o (2)

' = _ = T
7 o(l— a)? 7

(where we notice that the old v corresponds now to ;). In the case of r superimposed patterns
the matching probability is therefore O(v%).

For each match we have to verify an area of length O(¢) (at cost T'({)) for two sets of r/2
superimposed patterns each. Each set is found with probability 'yf /2 and so on. The probability
that a group of size r/2 matches given that the larger set matched is (recall Figure 7)

P(parent A child) < P(parent) 7,{/2 B 1

p t nod hild nod = = =
(parent node / child node) P(child) = "P(child) ~2 2f(1—ax)
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where we have used Eq. (2) for the last step. In particular 7, i = 7, /2H1=),
The total cost due to verifications is therefore

£ £
r Yr
+ (2 T(£) + 2 722 (2 T(f) + 2 7/4... ) ) = 2T(Oyt + AT(OY, o + 8T (O a + -
r r/2
or more formally
log, r—1 log, r—1

2T(0) D, 2 = 2T(0)y, Y, 2070
=0 =0

and since the summation is O(1) we have a total cost of (v¢T'(¢£)). Hence, we work O(T(£)) per
verification instead of O(rT'({)) that we would work using a naive verification. This shows that
we do not pay more per verification by superimposing more patterns (although the probability of
verifying is increased).

Notice that we assumed that the summation is O(1), which is not true for o > 1 — 1/¢. This
happens only for very high error levels, which are of no interest in practice since the matching
probability is already very high.

B Analysis of the Counting Filter

We find an upper bound for the probability of triggering a verification, and use it to derive a safe
limit for o to make verification costs negligible. We consider constant a and varying m (the results
are therefore a limit on a). We then extend the results to the other cases.

The upper bound is obtained by using a pessimistic model which is simpler than reality. We
assume that every time a letter in the text window matches the pattern, it is counted regardless
of how many times it appeared in the window. Therefore, if we search "aloha" with 1 error in the
text window "aaaaa" the verification will be triggered because there are 5 letters in the pattern
(where in fact our counter will not trigger a verification because it counts only 2 a’s).

Consider a given letter in the text window. The probability of that letter being counted is that
of appearing in the pattern. This is the same as being equal to some letter of the pattern. The
probability of not being equal to a given letter is (1 — 1/0). The probability of not being in the
pattern is therefore p = (1 — 1/0)™.

In our simplified model, each pattern letter is counted independently of the rest. Therefore the
number X of letters in the text window that did not match the pattern is the sum of m (window
length) random variables that take the value 1 with probability p, and zero otherwise. This has a
Binomial distribution B(m, p).

Therefore, our question is when the probability Pr(X < k) is O(1/m?) (so that the algorithm
is linear) or when it is O(1/m) (so that it is useful). In the proof we use O(1/m?), since as we will
see shortly the result is the same for any polynomial in 1/m.

We first analyze the case where the mean of the distribution is beyond k, i.e. mp > k. This
is the same as the condition @ < p. As Pr(X = j) increases with j for j < mp, we have

Pr(X <k)<kPr(X=kF).
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Therefore, it suffices to prove that Pr(X = k) = O(1/m?®) for optimality or that Pr(X = k) =
O(1/m?) for usefulness. By using the Stirling approximation to the factorial we have

mmpk(l _ p)m—k

Pr(X =k) = (?)Pk(l - P)m_k = Kk (m — k)m—F O(\/E)

which can be rewritten as

(pa(]- _p)l—a )m O(\/E)

a®(l — a)l-«

It is clear that the above formula is o(1/poly(m)) whenever the base of the exponential is < 1.
This is
PP1-p) " <a®(l-a)t™" (3)

To determine the cases where the above condition is valid, we define the function

fl)=2*(1—z)' ™™
which reaches its maximum at # = . This shows that Eq. (3) holds everywhere, and therefore the

probability of matching is O(1/m?) in the area under consideration, i.e. whenever a < p.

On the other hand, if the median of the distribution is less than k, then just the term of the
summation corresponding to the median » = mp is (using Stirling again)

M\ pr_ ym-p) (PP P)l_p)m =12 — Q12
(mp)p (1-p) (pip(l D) e = e ()
which is not O(1/m).

Therefore, we arrive to the conclusion that the filter is optimal and useful whenever

a<p=(1-2)" = 1+001/0) (5)

and is not useful otherwise.

We have considered the case of constant o = k/m. Obviously, the filter is linear for k = o(m)
and is not useful for k¥ = m — o(m). The unexplored area is k = mp — o(m). It is easy to see
that the filter is not useful in this case, by considering Pr(X = mp — €) with € = o(m), and using
Stirling as in Eq. (4). The resulting condition is 1 — €2/(m?p(1 — p)) = O(m~'/?), which does not
hold for any € = o(m).
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