
New and Faster Filters forMultiple Approximate String Matching �Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractWe present three new algorithms for on-line multiple string matching allowing errors. Theseare extensions of previous algorithms that search for a single pattern. The average runningtime achieved is in all cases linear in the text size for moderate error level, pattern length andnumber of patterns. They adapt (with higher costs) to the other cases. However, the algorithmsdi�er in speed and thresholds of usefulness. We analyze theoretically when each algorithmshould be used, and show experimentally their performance. The only previous solution for thisproblem allows only one error. Our algorithms are the �rst to allow more errors, and are fasterthan previous work for a moderate number of patterns (e.g. less than 50-100 on English text,depending on the pattern length).Key words: String matching, multipattern search, search allowing errors.1 IntroductionApproximate string matching is one of the main problems in classical string algorithms, withapplications to text searching, computational biology, pattern recognition, etc. Given a text T1::nof length n and a pattern P1::m of length m (both sequences over an alphabet � of size �), and amaximal number of errors allowed, 0 < k < m, we want to �nd all text positions where the patternmatches the text with up to k errors. Errors can be substituting, deleting or inserting a character.We use the term \error level" to refer to � = k=m.In this paper we are interested in the on-line problem (i.e. the text is not known in advance),where the classical solution for a single pattern is based on dynamic programming and has a runningtime of O(mn) [26].In recent years several algorithms have improved the classical one [22]. Some improve the worstor average case by using the properties of the dynamic programming matrix [30, 11, 16, 31, 9].Others �lter the text to quickly eliminate uninteresting parts [29, 28, 10, 14, 24], some of thembeing \sublinear" on average for moderate � (i.e. they do not inspect all the text characters).Yet other approaches use bit-parallelism [3] in a computer word of w bits to reduce the number ofoperations [33, 35, 34, 6, 19].The problem of approximately searching a set of r patterns (i.e. the occurrences of anyone ofthem) has been considered only recently. This problem has many applications, for instance�This work has been supported in part by FONDECYT grant 1990627.1

� Spelling: many incorrect words can be searched in the dictionary at a time, in order to �ndtheir most likely variants. Moreover, we may even search the dictionary of correct words inthe \text" of misspelled words, hopefully at much less cost.� Information retrieval: when synonym or thesaurus expansion is done on a keyword and thetext is error-prone, we may want to search all the variants allowing errors.� Batched queries: if a system receives a number of queries to process, it may improve e�ciencyby searching all them in a single pass.� Single-pattern queries: some algorithms for a single pattern allowing errors (e.g. patternpartitioning [6]) reduce the problem to the search of many subpatterns allowing less errors,and they bene�t from multipattern search algorithms.A trivial solution to the multipattern search problem is to perform r searches. As far as weknow, the only previous attempt to improve the trivial solution is due to Muth & Manber [17], whouse hashing to search many patterns with one error, being e�cient even for one thousand patterns.In this work, we present three new algorithms that are extensions of previous ones to thecase of multiple search. In Section 2 we explain some basic concepts necessary to understandthe algorithms. Then we present the three new techniques. In Section 3 we present \automatonsuperimposition", which extends a bit-parallel simulation of a nondeterministic �nite automaton(NFA) [6]. In Section 4 we present \exact partitioning", that extends a �lter based on exactsearching of pattern pieces [7, 6, 24]. In Section 5 we present \counting", based on countingpattern letters in a text window [14]. In Section 6 we analyze our algorithms and in Section 7 wecompare them experimentally. Finally, in Section 8 we give our conclusions. Some detailed analysesare left for Appendices A and B.Although [17] allows searching for many patterns, it is limited to only one error. Ours are the�rst algorithms for multipattern matching allowing more than one error. Moreover, even for oneerror, we improve [17] when the number of patterns is not very large (say, less than 50{100 onEnglish text, depending on the pattern length). Our multipattern extensions improve over theirsequential counterparts (i.e. one separate search per pattern using the base algorithm) when theerror level is not very high (about � � 0:4 on English text). The �lter based on exact searchingis the fastest for small error levels, while the bit-parallel simulation of the NFA adapts better tomore errors on relatively short patterns.Previous partial and preliminary versions of this work appeared in [5, 20, 21].2 Basic ConceptsWe review in this section some basic concepts that are used in all the algorithms that follow. Inthe paper Si denotes the i-th character of string S (being S1 the �rst character), and Si::j standsfor the substring SiSi+1:::Sj. In particular, if i < j, Si::j = �, the empty string.2.1 Filtering TechiquesAll the multipattern search algorithms that we consider in this work are based in the concept of�ltering, and therefore it is useful to de�ne it here.2

Filtering is based on the fact that it is normally easier to tell that a text position does notmatch than to ensure that it matches. Therefore, a �lter is a fast algorithm that checks for asimple necessary (though not su�cient) condition for an approximate match to occur. The textareas that do not satisfy the necessary condition can be safely discarded, and a more expensivealgorithm has to be run on the text areas that passed the �lter.Since the �lters can be much faster than approximate searching algorithms, �ltering algorithmscan be very competitive (in fact, they dominate on a large range of parameters). The performanceof �ltering algorithms, however, is very sensitive to the error level �. Most �lters work very wellon low error levels and very bad with more errors. This is related with the amount of text that the�lter is able to discard. When evaluating �ltering algorithms, it is important not only to considertheir time e�ciency but also their tolerance to errors.A term normally used when referring to �lters is \sublinearity". It is said that a �lter is sublinearwhen it does not inspect all the characters of the text (like the Boyer-Moore [8] algorithms for exactsearching, which can be at best O(n=m)).Throughout this work we make use of the two following lemmas to derive �ltering conditions.Lemma 1 [6]: If S = Ta::b matches P with at most k errors, and P = p1:::pj (a concatenation ofsub-patterns), then some substring of S matches at least one of the pi's, with at most bk=jc errors.Proof: Otherwise, the best match of each pi inside S has at least bk=jc + 1 > k=j errors. Anoccurrence of P involves the occurrence of each of the pi's, and the total number of errors in theoccurrences is at least the sum of the errors of the pieces. But here, just summing up the errors ofall the pieces we have more than jk=j = k errors and therefore a complete match is not possible.Notice that this does not even consider that the matches of the pi must be in the proper order, bedisjoint, and that some deletions in S may be needed to connect them.In general, one can �lter the search for a pattern of length m with k errors by the search of jsubpatterns of length m=j with k=j errors. Only the text areas surrounding occurrences of piecesmust be checked for complete matches.An important particular case of Lemma 1 arises when one considers j = k+1, since in this casesome pattern piece appears unaltered (zero errors).Lemma 2: [32] If there are i � j such that ed(Ti::j; P) � k, then Tj�m+1::j includes at least m�kcharacters of P .Proof: Suppose the opposite. If j � i < m, then we observe that there are less than m � kcharacters of P in Ti::j . Hence, more than k characters must be deleted from P to match the text.If j� i � m, we observe that there are more than k characters in Ti::j that are not in P , and hencewe must insert more than k characters in P to match the text. A contradiction in both cases.Note that in case of repeated characters in the pattern, they must be counted as di�erentoccurrences. For example, if we search "aaaa" with one error in the text, the last four letters ofeach occurrence must include at least three a's.Lemma 2 (a simpli�cation of that in [32]) says essentially that we can design a �lter for ap-proximate searching based on �nding enough characters of the pattern in a text window (withoutregarding their ordering). For instance, the pattern "survey" cannot appear with one error in thetext window "surger" because there are not �ve letters of the pattern in the text. However, the�lter cannot discard the possibility that the pattern appears in the text window "yevrus".3

2.2 Bit-ParallelismBit-parallelism is a technique of common use in string matching [3]. It was �rst proposed in [2, 4].The technique consists in taking advantage of the intrinsic parallelism of the bit operations insidea computer word. By using cleverly this fact, the number of operations that an algorithm performscan be cut down by a factor of at most w, where w is the number of bits in the computer word.Since in current architectures w is 32 or 64, the speedup is very signi�cant in practice (andimproves with technological progress). In order to relate the behavior of bit-parallel algorithmsto other works, it is normally assumed that w = �(logn), as dictated by the RAM model ofcomputation. We prefer, however, to keep w as an independent value.Some notation we use for bit-parallel algorithms is in order. We denote as b`:::b1 the bits of amask of length `, which is stored somewhere inside the computer word. We use C-like syntax foroperations on the bits of computer words, e.g. \j" is the bitwise-or and \<<" moves the bits tothe left and enters zeros from the right, e.g. bmbm�1:::b2b1 << 3 = bm�3:::b2b1000. We can alsoperform arithmetic operations on the bits, such as addition and subtraction, which operates thebits as if they formed a number. For instance, b`:::bx10000� 1 = b`:::bx01111.We explain now the �rst bit-parallel algorithm, since it is the basis of much of which followsin this work. The algorithm searches a pattern in a text (without errors) by parallelizing theoperation of a non-deterministic �nite automaton that looks for the pattern. Figure 1 illustratesthis automaton.
l oa h aFigure 1: Nondeterministic automaton that searches "aloha" exactly.This automaton has m+1 states, and can be simulated in its non-deterministic form in O(mn)time. The Shift-Or algorithm achieves O(mn=w) worst-case time (i.e. optimal speedup). Noticethat if we convert the non-deterministic automaton to a deterministic one to have O(n) searchtime, we get an improved version of the KMP algorithm [15]. However, KMP is twice as slow form � w.The algorithm�rst builds a table B[] which for each character c stores a bit maskB[c] = bm:::b1.The mask B[c] has the bit bi in zero if and only if Pi = c. The state of the search is kept in amachine word D = dm:::d1, where di is zero whenever P1::i matches the end of the text read up tonow (i.e. the state numbered i in Figure 1 is active). Therefore, a match is reported whenever dmis zero.D is set to all ones originally, and for each new text character Tj , D is updated using the formulaD0 (D << 1) j B[Tj]The formula is correct because the i-th bit is zero if and only if the (i � 1)-th bit was zerofor the previous text character and the new text character matches the pattern at position i. Inother words, Tj�i+1::j = P1::i if and only if Tj�i+1::j�1 = P1::i�1 and Tj = Pi. It is possible to4

relate this formula to the movement that occurs in the non-deterministic automaton for each newtext character: each state gets the value of the previous state, but this happens only if the textcharacter matches the corresponding arrow.For patterns longer than the computer word (i.e. m > w), the algorithm uses dm=we computerwords for the simulation (not all them are active all the time). The algorithm is O(mn=w) worstcase time, and the preprocessing is O(m + �) time and O(�) space. On average, the algorithm isO(n) even when m > w, since only the �rst O(1) states of the automaton have active states onaverage (and hence the �rst O(1) computer words need to be updated on average).It is easy to extend Shift-Or to handle classes of characters. In this extension, each positionin the pattern matches with a set of characters rather than with a single character. The classicalstring matching algorithms are not so easily extended. In Shift-Or, it is enough to set the i-th bitof B[c] for every c 2 Pi (Pi is a set now). For instance, to search for "survey" in case-insensitiveform, we just set the �rst bit of B["s"] and of B["S"] to \match" (zero), and the same with the rest.Shift-Or can also search for multiple patterns (where the complexity is O(mn=w) if we considerthat m is the total length of all the patterns) by arranging many masks B and D in the samemachine word. Shift-Or was later enhanced [34] to support a larger set of extended patterns andeven regular expressions. Recently, in [25], Shift-Or was combined with a sublinear string matchingalgorithm, obtaining the same
exibility and an e�ciency competitive against the best classicalalgorithms.Many on-line text algorithms can be seen as implementations of clever automata (classically, intheir deterministic form). Bit-parallelism has since its invention became a general way to simulatesimple non-deterministic automata instead of converting them to deterministic. It has the advan-tage of being much simpler, in many cases faster (since it makes better usage of the registers of thecomputer word), and easier to extend to handle complex patterns than its classical counterparts.Its main disadvantage is the limitations it imposes with regard to the size of the computer word.In many cases its adaptations to cope with longer patterns are not so e�cient.2.3 Bit-parallelism for Approximate Pattern MatchingWe present now an application of bit-parallelism to approximate pattern matching, which is espe-cially relevant for the present work.Consider the NFA for searching "patt" with at most k = 2 errors shown in Figure 2. Everyrow denotes the number of errors seen. The �rst one 0, the second one 1, and so on. Every columnrepresents matching the pattern up to a given position. At each iteration, a new text character isconsidered and the automaton changes its states. Horizontal arrows represent matching a character(they can only be followed if the corresponding match occurs). All the others represent errors, asthey move to the next row. Vertical arrows represent inserting a character in the pattern (since theyadvance in the text and not in the pattern), solid diagonal arrows represent replacing a character(since they advance in the text and the pattern), and dashed diagonal arrows represent deleting acharacter of the pattern (since, as �-transitions, they advance in the pattern but not in the text).The loop at the initial state allows considering any character as a potential starting point of amatch. The automaton accepts a character (as the end of a match) whenever a rightmost stateis active. Initially, the active states at row i (i 2 0::k) are those at the columns from 0 to i, torepresent the deletion of the �rst i characters of the pattern P1::m.5

pp
p aa

a
t
tt t

tt� � ���� �� 1 errorno errors�
2 errors

111 11
0 001 11

0 011
�� �� �� �� ��� � � ����� D1 D2Figure 2: An NFA for approximate string matching. We show the active states after reading thetext "pait".An interesting application of bit-parallelism is to simulate this automaton in its nondeterministicform. A �rst approach [34] obtained O(kdm=wen) time, by packing each automaton row in amachine word and extending the Shift-Or algorithm to account for the vertical and diagonal arrows.Note that even if all the states �t in a single machine word, the k+ 1 rows have to be sequentiallyupdated because of the �-transitions. The same happens in the classical dynamic programmingalgorithm [26], which can be regarded as a column-wise simulation of this NFA.In this paper we are interested in a more recent simulation technique [6], where we show that bypacking diagonals of the automaton instead of rows or columns all the new values can be computedin one step if they �t in a computer word. We give a brief description of the idea.Because of the �-transitions, once a state in a diagonal is active, all the subsequent states in thatdiagonal become active too, so we can de�ne the minimal active row of each diagonal,Di (diagonalsare numbered by looking the column they start at, e.g. D1 and D2 are enclosed in dotted linesin Figure 2). The new values for Di (i 2 1::m� k) after we read a new text character c can becomputed by D0i = min(Di + 1; Di+1 + 1; g(Di�1; c))where g(Di; c) = min(fk + 1g [f j = j � Di ^ Pi+j == c g)where it always holds D0 = D00 = 0 and we report a match whenever Dm�k � k. The formula forD0i accounts for replacements, insertions and matches, respectively. Deletions are accounted for bykeeping the minimum active row. All the interesting matches are caught by considering only thediagonals D1:::Dm�k. 6

We use bit-parallelism to represent the Di's in unary. Each one is hold in k + 1 bits (plus anover
ow bit) and stored sequentially inside a bit mask D. Interestingly, the e�ect is the same if weread the diagonals bottom-up and exchange 0$ 1, with each bit representing a state of the NFA.The update formula can be seen either as an arithmetic implementation of the previous formula inunary or as a logical simulation of the
ow of bits across the arrows of the NFA.As in Shift-Or, a table of (m bits long) masks b[] is built representing match or mismatchagainst the pattern. A table B[c] is built by mapping the bits of b[] to their appropriate positionsinside D. Figure 3 shows how the states are represented inside the masks D and B.separator separator(0,1) (1,3)(0,2)(2,4)(1,2)(2,3) �nal state0 0 0 00 1 1 1DB['t'] 0 0 1 1t a p 0 0 0 1t t aFigure 3: Bit-parallel representation of the NFA of Figure 2.This representation requires k+2 bits per diagonal, so the total number of bits is (m�k)(k+2).If this number of bits does not exceed the computer word size w, the update can be done in O(1)operations. The resulting algorithm is linear and very fast in practice.For our purposes, it is important to realize that the only connection between the pattern andthe algorithm is given by the b[] table, and that the pattern can use classes of characters just as inthe Shift-Or algorithm. We use this property next to search for multiple patterns.3 Superimposed AutomataIn this section we describe an approach based on the bit-parallel simulation of the NFA just de-scribed.Suppose we have to search r patterns P 1; :::; P r. We are interested in the occurrences of any oneof them, with at most k errors. We can extend the previous bit-parallelism approach by buildingthe automaton for each one, and then \superimpose" all the automata.Assume that all patterns have the same length (otherwise, truncate them to the shortest one).Hence, all the automata have the same structure, di�ering only in the labels of the horizontalarrows.The superimposition is de�ned as follows: we build the b[] table for each pattern, and then takethe bitwise-and of all the tables (recall that 0 means match and 1 means mismatch). The resultingb[] table matches at position i with the i-th character of any of the patterns. We then build theautomaton as before using this table. 7

The resulting automaton accepts a text position if it ends an occurrence of a much more relaxedpattern with classes of characters, namelyfP 11 ; :::; P r1g fP 12 ; :::; P r2g ::: fP 1m; :::; P rmgfor example, if the search is for "patt" and "wait", as shown in Figure 4, the string "pait" isaccepted with zero errors.
p or w� � ���� ��

no errors1 error2 errors
a ta tt or ia tt or i

t or ip or wp or w�
�� �� �� �� ������� � � �Figure 4: An NFA to �lter the search for "patt" and "wait".For a moderate number of patterns, the �lter is strict enough at the same cost of a single search.Each occurrence reported by the automaton has to be veri�ed for all the involved patterns (we usethe single-pattern automaton for this step). That is, we have to retraverse the last m+ k = O(m)characters to determine if there is actually an occurrence of some of the patterns.If the number of patterns is too large, the �lter will be too relaxed and will trigger too manyveri�cations. In that case, we partition the set of patterns into groups of r0 patterns each, buildthe automaton of each group and perform dr=r0e independent searches. The cost of this searchis O(r=r0 n), where r0 is small enough to make the cost of veri�cations negligible. This r0 alwaysexists, since for r0 = 1 we have a single pattern per automaton and no veri�cation is needed.When grouping, we use the heuristic of sorting the patterns and packing neighbors in the samegroup, trying to have the same �rst characters.3.1 Hierarchical Veri�cationThe simplest veri�cation alternative (which we call \plain") is that, once a superimposed automatonreports a match, we try the individual patterns one by one in the candidate area. However, a smarterveri�cation technique (which we call hierarchical) is possible.8

Assume �rst that r is a power of two. Then, when the automaton reports a match, run twonew automata over the candidate area: one which superimposes the �rst half of the patterns andanother with the second half. Repeat the process recursively with each of the two automata that�nds again a match. At the end, the automata will represent single patterns and if they �nd amatch we know that their patterns have been really found (see Figure 5). Of course the automatafor the required subsets of patterns are all preprocessed. Since they correspond to the internalnodes of a binary tree of r leaves, they are 2r� 1 = O(r), so the space and preprocessing cost doesnot change. If r is not a power of two then one of the halves may have one more pattern than theother. 123412 341 2 3 4Figure 5: The hierarchical veri�cation method for 4 patterns. Each node of the tree represents acheck (the root represents in fact the global �lter). If a node passes the check, its two children aretested. If a leaf passes the check, its pattern has been found.The advantage of hierarchical veri�cation is that it can remove a number of candidates fromconsideration in a single test. Moreover, it can even �nd that no pattern has really matched beforeactually checking any speci�c pattern (i.e. it may happen that none of the two halves matchin a spurious match of the whole group). The worst-case overhead over plain veri�cation is justa constant factor, that is, twice as many tests over the candidate area (2r � 1 instead of r). Onaverage, as we show later analytically and experimentally, hierarchical veri�cation is by far superiorto plain veri�cation.3.2 Automaton PartitioningUp to now we have considered short patterns, whose NFA �t into a computer word. If this is notthe case (i.e. (m � k)(k + 2) > w), we partition the problem. In this subsection and the next weadapt the two partitioning techniques described in [6].The simplest technique to cope with a large automaton is to use a number of machine wordsfor the simulation. The idea is as follows: once the (large) automata have been superimposed,we partition the superimposed automaton into a matrix of subautomata, each one �tting in acomputer word. Those subautomata behave slightly di�erently than the simple one, since theymust propagate bits to their neighbors. Figure 6 illustrates.Once the automaton is partitioned, we run it over the text updating its subautomata. Eachstep takes time proportional to the number of cells to update, i.e. O(k(m � k)=w). Observe,however, that it is not necessary to update all the subautomata, since those on the right may nothave any active state. Following [31], we keep track of up to where we need to update the matrixof subautomata, working only on the \active" cells.9

���
���
���

���
���
���

Information flow

Affected area

���������
���������
���������
���������

���������
���������
���������
���������

���
���
���

���
���
��� I rows

J columns

c

rFigure 6: A large NFA partitioned into a matrix of I�J computer words, satisfying (`r+1)`c � w.3.3 Pattern PartitioningThis technique is based on Lemma 1 of Section 2.1. We can reduce the size of the problem ifwe divide the pattern in j parts, provided we search all the sub-patterns with bk=jc errors. Eachmatch of a sub-pattern must be veri�ed to determine if it is in fact a complete match.To perform the partition, we pick the smallest j such that the problem �ts in a single computerword (i.e. (dm=je � bk=jc)(bk=jc + 2) � w). The limit of this method is reached for j = k + 1,since in that case we search with zero errors. The algorithm for this case is qualitatively di�erentand is described in Section 4.We divide each pattern in j subpatterns as evenly as possible. Once we partition all the rpatterns, we are left with j � r subpatterns to be searched with bk=jc errors. We simply groupthem as if they were independent patterns to search with the general method. The only di�erenceis that, after determining that a subpattern has appeared, we have to verify its complete pattern.Another kind of hierarchical veri�cation, which we call \hierarchical piece veri�cation", is ap-plied in this case too. As shown in [23, 24], the single-pattern algorithm can verify hierarchicallywhether the complete pattern matches given that a piece matches (see Figure 7). That is, insteadof checking the complete pattern we check the concatenation of two pieces containing the onethat matched, and if it matches then we check the concatenation of four pieces, and so on. Thisworks because Lemma 1 applies at each level of the tree of Figure 7. The method is orthogonal toour hierarchical veri�cation idea because hierarchical piece veri�cation works bottom-up instead oftop-down and operates on pieces of the pattern rather than on sets of patterns.As we are using our hierarchical veri�cation on the sets of pattern pieces to determine whichpiece matched given that a superimposition of them matched, we are coupling two di�erent hierar-chical veri�cation techniques in this case: we �rst use our new mechanism to determine which piecematched from the superimposed group and then use hierarchical piece veri�cation to determine theoccurrence of the complete pattern the piece belongs to. Figure 8 illustrates the whole process.10

aaabbbcccdddaaabbb cccdddccc dddbbbaaaFigure 7: The hierarchical piece veri�cation method for a pattern split in 4 parts. The boxes(leaves) are the elements which are actually searched, and the root represents the whole pattern.At least one pattern at each level must match in any occurrence of the complete pattern. If thebold box is found, all the bold lines may be veri�ed.
P1
P2
P3

P2

p12 p14

p24

p34p33

p22

p32p31

p21 p23

p13p11

p21 p22 p23 p24

p23 p24p21 p22

p22

p11

p12

p13

p21

p14
p22

p23

p24

p31

p32

p33

p34

each one is
split in 4

3 pieces to search

2 superimposed groups
the pieces are arranged in

hierarchical verif.
p22 is found

and searched

hierarchical piece verif.
P2 is finally found

Figure 8: The whole process of pattern partitioning with hierarchical veri�cations.4 Partitioning into Exact SearchingThis technique (called \exact partitioning" for short) is based on a single-pattern �lter whichreduces the problem of approximate searching to a problem of multipattern exact searching. Thealgorithm �rst appeared in [34], and was later improved in [7, 6, 24]. We �rst present the single-pattern version and then our extension to multiple patterns.4.1 A Filter Based on Exact SearchingA particular case of Lemma 1 shows that if a pattern matches a text position with k errors, and wesplit the pattern in k+1 pieces, then at least one of the pieces must be present with no errors in eachoccurrence (this is a folklore property which has been used several times [34, 18, 12]). Searchingwith zero errors leads to a completely di�erent technique.Since there are e�cient algorithms to search for a set of patterns exactly, we partition thepattern in k + 1 pieces (of similar length), and apply a multipattern exact search for the pieces.Each occurrence of a piece is veri�ed to check if it is surrounded by a complete match. If there are11

not too many veri�cations, this algorithm is extremely fast.From the many algorithms for multipattern search, an extension of Sunday's algorithm [27] gaveus the best results. We build a trie with the sub-patterns. From each text position we search thetext characters into the trie, until a leaf is found (match) or there is no path to follow (mismatch).The jump to the next text position is precomputed as the minimum of the jumps allowed in eachsub-pattern by the Sunday algorithm.As in [24], we use the same technique for hierarchical piece veri�cation of a single patternpresented in Section 3.3.4.2 Searching Multiple PatternsObserve that we can easily add more patterns to this scheme. Suppose we have to search for rpatterns P 1; :::; P r. We cut each one into k + 1 pieces and search in parallel for all the r(k + 1)pieces. When a piece is found in the text, we use a classical algorithm to verify its pattern in thecandidate area.Note an important di�erence with superimposed automata. In this multipattern search we knowwhich piece has matched. This is not the case in superimposed automata, where not only we donot know which piece matched, but it is even possible that no piece has really matched. The workto determine which is the matching piece (carried out by hierarchical veri�cation in superimposedautomata) is not necessary here. Moreover, we only detect real matches, so there are no morematches in the union of patterns than the sum of the individual matches.Therefore, there is no point in separating the search for the r(k + 1) pieces in groups. Theonly reason to superimpose less patterns is that the shifts of the Sunday algorithm are reduced asthe number of patterns grow, but as we show in the experiments, this never justi�es in practicesplitting one search into two.5 A Counting FilterWe present now a �lter based on counting letters in common between the pattern and a text window.This �lter was �rst presented in [14] (a simple variant of [13]), but we use a slightly di�erent versionhere. Our variant uses a �xed-size instead of variable-size text window (a possibility already notedin [32]), which makes it better suited for parallelization. We �rst explain the single-pattern �lterand then extend it to handle many patterns using bit-parallelism.5.1 A Simple CounterThis �lter is based in Lemma 2 of Section 2.1. It passes over the text examining an m-letterslong window. It keeps track of how many characters of P are present in the current text window(accounting for multiplicities too). If, at a given text position j, m� k or more characters of P arein the window Tj�m+1::j , the window area is veri�ed with a classical algorithm.We implement the �ltering algorithm as follows. We keep a counter count of pattern charactersappearing in the text window. We also keep a table A[] where, initially, the number of times thateach character c appears in P is kept in A[c]. Throughout the algorithm, each entry A[c] indicateshow many occurrences of c can still be taken as belonging to P . For example, if 'h' appears once12

in P , we count only one of the 'h's of the text window as belonging to P . When A[c] is negative,it means that c must exit the text window �A[c] times before we take it again as belonging to P .For example, if we run the pattern "aloha" over the text "aaaaaaaa", it will hold A["a"] = �3,and the value of the counter will be 2. This is independent on k.To advance the window, we must include the new character Tj+1 and exclude the last character,Tj�m+1. To include the new character, we subtract one from A[Tj+1]. If it was greater than zerobefore being decremented, it is because the new character Tj+1 is in P , so we increment count. Toexclude the old character Tj�m+1, we add one to A[Tj�m+1]. If its is greater than zero after beingincremented, it is because Tj�m+1 was considered to be in P , so we decrement count. Whenevercount reaches m� k we verify the preceding area.As can be seen, the algorithm is not only linear (excluding veri�cations), but the number ofoperations per character is very small.5.2 Keeping Many Counters in ParallelTo search r patterns in the same text, we use bit-parallelism to keep all the counters in a singlemachine word. We must do that for the A[] table and for count.The values of the entries of A[] lie in the range [�m::m], so we need exactly `+1 = 1+dlog2(m+1)e bits to store them. This is also enough for count, since it is in the range [0::m]. Hence, we canpack bw=(1 + dlog2(m + 1)e)c � w= log2m patterns of length m in a single search (recall that wis the number of bits in the computer word). If the patterns have di�erent lengths, we can eithertruncate them to the shortest length or use a window size of the longest length. If we have morepatterns, we must divide the set in subsets of maximal size and search each subset separately. Wefocus our attention on a single subset now.The algorithm simulates the simple one as follows. We have a table MA[] that packs all theA[] tables. Each entry of MA[] is divided in bit areas of length `+ 1. In the area of the machineword corresponding to each pattern, we store its normal A[] value, set to 1 the most signi�cant bitof the area, and subtract 1 (i.e. we store 2` � 1 +A[]). When, in the algorithm, we have to add orsubtract 1 to all A[]'s, we can easily do it in parallel without causing over
ow from an area to thenext. Moreover, the corresponding A[] value is not positive if and only if the most signi�cant bitof the area is zero.We have also a parallel counter Mcount, where the areas are aligned withMA[]. It is initializedby setting to 1 the most signi�cant bit of each area and then subtractingm�k at each one, i.e. westore 2`� (m�k). Later, we can add or subtract 1 in parallel without causing over
ow. Moreover,the window must be veri�ed for a pattern whenever the most signi�cant bit of its area reaches 1.The condition can be checked in parallel, but when some of the most signi�cant bits reach 1, weneed to sequentially check which one it was.Finally, observe that the counters that we want to selectively increment or decrement correspondexactly to the MA[] areas that have a 1 in their most signi�cant bit (i.e. those whose A[] valueis positive). This allows an obvious bit mask-shift-add mechanism to perform this operation inparallel on all the counters. Figure 9 illustrates.13

MA[c]McountA[c]count�(m�k)+2`+2`�1 10000m = 5; k = 1; r = 3; ` = 3 MA [a]MA [l]MA [o]MA [h]MA [e]count � m�k ? (false)A[c]> 0 ?0 10 0111 111 1 11 01 Mcount0 1 1 1Figure 9: The bit-parallel counters. The example corresponds to the pattern "aloha" searched with1 error and the text window "hello". The A values are A[0a0] = 2; A[0l0] = A[0e0] = �1; A[0o0] =A[0h0] = 0, and count = 3.6 AnalysisWe are interested in the complexity of the presented algorithms, as well as in the restrictions that� and r must satisfy for each mechanism to be e�cient in �ltering most of the unrelevant part ofthe text.To this e�ect, we de�ne two concepts. First, we say that a multipattern search algorithm isoptimal if it searches r patterns in the same time it takes to search one pattern. If we call Cn;r thecost to search r patterns in a text of size n, then an algorithm is optimal if Cn;r = Cn;1. Second,we say that a multipattern search algorithm is useful if it searches r patterns in less than the timeit takes to search them one by one with the corresponding sequential algorithm, i.e. Cn;r < rCn;1.As we work with �lters, we are interested in the average case analysis, since in the worst case noneis useful.We compare in Table 1 the complexities and limits of applicability of all the algorithms. Muth& Manber are included for completeness. The analysis leading to these results is presented later inthis section.Algorithm Complexity Optimality UsefulnessSimple Superimp. r�(1��)2 n � < 1� eq r� � < 1� e=p�Automaton Part. �m2r�w(1��) n � < 1� eq r� � < 1� e=p�Pattern Part. mr�pw(1��) n � < 1� eq r� � < 1� e=p�Part. Exact Search �1 + rm��1=�� n � < 1log�(rm)+�(log� log�(rm)) � < 1log� m+�(log� log�m)Counting r logmw n � < e�m=� � < e�m=�Muth & Manber mn k = 1 k = 1Table 1: Complexity, optimality and limit of applicability for the di�erent algorithms.14

We present in Figure 10 a schematical representation of the areas where each algorithm is thebest in terms of complexity. We show later how the experiments match those �gures.� Exact partitioning is the fastest choice in most reasonable scenarios, for the error levels whereit can be applied. First, it is faster than counting for m= logm < ��1=�=w, which does nothold asymptotically but holds in practice for reasonable values of m. Second, it is fasterthan superimposing automata for min(pw;w=m) < �1=��1=(1=�� 1), which is true in mostpractical cases.� The only algorithm which can be faster than exact partitioning is that of Muth & Manber[17], namely for r > ��1=�. However, it is limited to k = 1.� For increasing m, counting is asymptotically the fastest algorithm since its cost grows asO(logm) instead of O(m) thanks to its optimal use of the bits of the computer word. However,its applicability is reduced as m grows, being useless at the point where it wins over exactpartitioning.� When the error level is too high for exact partitioning, superimposing automata is the onlyremaining alternative. Automaton partitioning is better for m � pw, while pattern parti-tioning is asymptotically better. Both algorithms have the same limit of usefulness, and forhigher error levels no �lter can improve over a sequential search.NONEUSEFUL PatternPartitioningPartitioningAutomatonPartitioning into Exact Search1�e=p�1= log� mpw m� NONEUSEFUL 1�e=p�1= log� mPartitioning into Exact SearchSuperimposed Automata rMuth-Manber��1=��Figure 10: The areas where each algorithm is better, in terms of �, m and r. In the left plot(varying m), we have assumed a moderate r (i.e. less than 50).6.1 Superimposed AutomataSuppose that we search r patterns. As explained before, we can partition the set in groups of r0patterns each, and search each group separately (with its r0 automata superimposed). The size ofthe groups should be as large as possible, but small enough for the veri�cations to be not signi�cant.We analyze which is the optimal value for r0 and which is the complexity of the search.15

In [6] we prove that the probability of a given text position matching a random pattern witherror level � is O(
m), where
 = 1=(�1���2�(1� �)2(1��)). It is also proved that
 < 1 whenever� < 1� e=p�, and experimentally shown that this holds very precisely in practice if we replace eby 1.09. In fact, a very abrupt phenomenon occurs, since the matching probability is very low for� � 1� 1:09=p� and very high otherwise.In this formula, 1=� stands for the probability of a character crossing a horizontal edge of theautomaton (i.e. the probability of two characters being equal). To extend this result, we note thatwe have r0 characters on each edge now, so the above mentioned probability is 1 � (1 � 1=�)r0,which is smaller than r0=�. We use this upper bound as a pessimistic approximation (which standsfor the case of all the r0 characters being di�erent, and is tight for r0 << �).As the single-pattern algorithm is O(n) time, the multipattern algorithm is optimal on averagewhenever the total cost of veri�cations is O(1) per character. Since each veri�cation costs O(m)(because we use a linear-time algorithm on an area of length m + k = O(m)), we need that thetotal number of veri�cations performed is O(1=m) per character, on average. If we used the plainveri�cation scheme, this would mean that the probability that a superimposed automaton matchesa text position should be O(1=(mr)), as we have to perform r veri�cations.If hierarchical veri�cation is not used we have that, as r increases, matching becomes moreprobable (because it is easier to cross a horizontal edge of the automaton) and it costs more(because we have to check the r patterns one by one). This results in two di�erent limits on themaximum allowable r, one for each of the two facts just stated. The limit due to the increased costof each veri�cation is more stringent than that of increased matching probability.The resulting analysis without hierarchical veri�cation is very complex and is omitted herebecause hierarchical veri�cation yields considerably better results and a simpler analysis. As weshow in Appendix A, the average cost to verify a match of the superimposed automaton is O(m)when hierarchical veri�cation is used, instead of the O(rm) cost of plain veri�cation. That is, thecost does not grow as the number of patterns increases.Hence, the only limit that prevents us from superimposing all the r patterns is that the matchingprobability becomes higher. That is, if � > 1� epr=�, then the matching probability is too highand we will spend too much time verifying almost all text positions. On the other hand, we cansuperimpose as much as we like before that limit is reached. This tells that the best r (which wecall r�) is the maximum one not reaching the limit, i.e.r� = �(1� �)2e2 (1)Since we partition in sets small enough to make the veri�cations not signi�cant, the cost issimply O(r=r� n) = O(rn=(�(1� �)2)).This means that the algorithm is optimal for r = O(�) (taking the error level as a constant), oralternatively � � 1� epr=�. On the other hand, for � > 1� e=p�, the cost is O(rn), not betterthan the trivial solution (i.e. r� = 1 and hence no superimposition occurs and the algorithm is notuseful). Figure 11 illustrates.Automaton Partitioning: the analysis for this case is similar to the simple one, except becauseeach step of the large automaton takes time proportional to the total number of subautomata, i.e.16

1tprtse2�(1��)2tp 1r 1� ep�r �1� eprp�Figure 11: Behavior of superimposed automata. On the left, the cost increases linearly with r, withslope depending on �. On the right, the cost of a parallel search (tp) approaches r single searches(rts) when � grows.O(k(m � k)=w). In fact, this is a worst case since on average not all cells are active, but we usethe worst case because we superimpose all the patterns we can until the worst case of the search isalmost reached. Therefore, the cost formula ise2(1� �)2� k(m� k)w rn = O �m2�w(1� �) rn!This is optimal for r = O(�w) (for constant �), or alternatively for � � 1� epr=�. It is usefulfor � � 1� e=p�.Pattern Partitioning: we have now jr patterns to search with bk=jc errors. The error level isthe same for subproblems (recall that the subpatterns are of length m=j).To determine which piece matched from the superimposed group, we pay O(m) independentlyof the number of pieces superimposed (thanks to the hierarchical veri�cation). Hence the limit forour grouping is given by Eq. (1). In both the superimposed and in the single-pattern algorithm,we also pay to verify if the match of the piece is part of a complete match. As we show in [23], thiscost is negligible for � < 1� e=p�, which is less strict than the limit given by Eq. (1).As we have jr pieces to search, we need an analytical expression for j. Since j is just largeenough so that the subpatterns �t in a computer word, j = (m� k)d(w; �), ford(w; �) = 1 +p1 + w�=(1� �)wwhere d(w; �) can be shown to be O(1=pw) by maximizing it in terms of � (see [23]).Therefore, the complexity is jre2�(1� �)2 n = O� m�pw(1� �) rn�On the other hand, the search cost of the single-pattern algorithm is O(jrn). With respect tothe simple algorithm for short patterns, both costs have been multiplied by j, and therefore thelimits for optimality and usefulness are the same.17

If we compare the complexities of pattern versus automaton partitioning, we have that patternpartitioning is better for k > pw. This means that for constant � and increasing m, patternpartitioning is asymptotically better.6.2 Partitioning into Exact SearchingIn [6] we analyze this algorithm as follows. Except for veri�cations, the search time can be madeO(n) in the worst case by using an Aho-Corasick machine [1], and O(�n) in the best case if we usea multipattern Boyer-Moore algorithm. This is because we search pieces of lengthm=(k+1) � 1=�.We are interested in analyzing the cost of veri�cations. Since we cut the pattern in k+1 pieces,they are of length bm=(k + 1)c or dm=(k + 1)e. The probability of each piece matching is at most1=�bm=(k+1)c. Hence, the probability of any piece matching is at most (k + 1)=�bm=(k+1)c.We can easily extend that analysis to the case of multiple search, since we have now r(k + 1)pieces of the same length. Hence, the probability of verifying is r(k + 1)=�bm=(k+1)c. We checkthe matches using a classical algorithm such as dynamic programming. Note that in this case weknow which pattern to verify, since we know which piece matched. As we show in [23], the totalveri�cation cost if the pieces are of length ` is O(`2) (in our case, ` = m=(k+1)). Hence, the searchcost is O�1 + rm��1=�� nwhere the \1" must be changed to \�" if we consider the best case.We consider optimality and usefulness now. An optimal algorithm should pay O(n) total searchtime, which holds for� < 1log�(rm) + log�(1=�) = 1log�(rm) + �(log� log�(rm))The algorithm is always useful, since it searches at the same cost independently on the numberof patterns, and the number of veri�cations triggered is exactly the same as if we searched eachpattern separately. However, if � > 1=(log� m+�(log� log� m)), then both algorithms (single andmultipattern) work as much as dynamic programming and hence the multipattern search is notuseful. The other case when the algorithm could not be useful is when the shifts of a Boyer-Mooresearch are shortened by having many patterns up to the point where it is better to perform separatesearches. This never happens in practice.6.3 CountingIf the number of veri�cations is negligible, each pass of the algorithms is O(n). In the case ofmultiple patterns, only O(w= logm) patterns can be packed in a single search, so the cost to searchr patterns is O(rn log(m)=w).The di�cult part of the analysis is the maximum error level � that the �ltration scheme cantolerate while keeping the number of veri�cations low. We assume that we use dynamic program-ming to verify potential matches. We call � the probability of verifying. If � � log(m)=(wm2) thealgorithm keeps linear (i.e. optimal) on average. The algorithm is always useful since the numberof veri�cations triggered with the multipattern search is the same as for the single-pattern version.18

However, if � � 1=m both algorithms work O(rmn) as for dynamic programming and hence the�lter is not useful.We derive in Appendix B a pessimistic bound for the limit of optimality and usefulness, namely� < e�m=� (Eq. (5)). Hence, as m grows, we can tolerate smaller error levels. This limit holdsfor any condition of the type � = O(1=mc), independently of the constant c. In our case, we needc = 2 for optimality and c = 1 for usefulness.7 Experimental ResultsWe experimentally study our algorithms and compare them against previous work. We tested with10 megabytes of lower-case English text. The patterns were randomly selected from the same text.We use a Sun UltraSparc-1 running Solaris 2.5.1, with 64 megabytes of RAM, and w = 32. Eachdata point was obtained by averaging the Unix's user time over 10 trials. We present all the timesin tenths of seconds per megabyte.We do not present results on random text to avoid an excessively lengthly exposition. In general,all the �lters improve as the alphabet size � grows. Lower-case English text behaves approximatelyas random text with � = 15, which is the inverse of the probability that two random letters areequal.Figure 12 (left) compares the plain and hierarchical veri�cation methods against a sequentialapplication of the r searches, for the case of superimposed automata when the automaton �ts in acomputer word. We show the cases of increasing r and of increasing k. It is clear that hierarchicalveri�cation outperforms plain veri�cation in all cases. Moreover, the analysis for hierarchical veri-�cation is con�rmed since the maximum r up to where the cost of the parallel algorithm does notgrow linearly is very close to r� = (1� �)2�=1:092. On the other hand, the algorithm with simpleveri�cation degrades sooner, since the veri�cation cost grows with r.The mentioned maximum r� value is the point where the parallelism ratio is maximized. Thatis, if we have to search for 2r� patterns, it is better to split them in two groups of size r� and searcheach group sequentially. To stress this point, Figure 12 (right) shows the quotient between theparallel and the sequential algorithms, where the optimum is clear for superimposed automata. Onthe other hand, the parallelism ratio of exact partitioning keeps improving as r grows, as predictedby the analysis (there is an optimum for larger m, related to the Sunday shifts, but it still does notjustify to split a search in two).When we compare our algorithms against the others, we consider only hierarchical veri�cationand use this r� value to obtain the optimal grouping for the superimposed automata algorithms.The exact partitioning, on the other hand, performs all the searches in a single pass. In counting,it is clear that the speedup is optimal and we pack as many patterns as we can in a single search.Notice that the plots which depend on r show the point where r� should be selected. Thosewhich depend on k (for �xed r), on the other hand, just show how the parallelization works as theerror level increases, which cannot be controlled by the algorithm.We compare now our algorithms among them and against others. We begin with short patternswhose NFA �t in a computer word. Figure 13 shows the results for increasing r and for increasingk. For low and moderate error levels, exact partitioning is the fastest algorithm. In particular, it isfaster than previous work [17] when the number of patterns is below 50 (for English text). When19

0 300 5 10 15 20 25 300
20
0481216
20

rt
0 300 5 10 15 20 25 300.0

1.0
0.00.20.40.60.8
1.0

rtprts
0 300 5 10 15 20 25 300

30
06121824
30

rt
0 300 5 10 15 20 25 300.0

1.0
0.00.20.40.60.8
1.0

rtprts
1 71 2 3 4 5 6 70

10
02468
10

kt
1 71 2 3 4 5 6 70.0

1.0
0.00.20.40.60.8
1.0

ktprts
Sequential NFA Superimposed, plain verif.Exact Partitioning Superimposed, hierarchical verif.Figure 12: Comparison of sequential and multipattern algorithms for m = 9. The rows correspondto k = 1, k = 3 and r = 5, respectively. The left plots show search time and the right plots showthe ratio between the parallel (tp) and the sequential time (r � ts).20

the error level increases, superimposed automata is the best choice. This agrees with the analysis.� � �� � � � � � � �0 1000 20 40 60 80 1000
10
02468
10

rt � �0 1000 20 40 60 80 1000
50
010203040
50

rt
� � �1 71 2 3 4 5 6 70

20
051015
20

kt � � �
1 71 2 3 4 5 6 70

30
0510152025
30

kt
Exact Partitioning Superimposed Automata� Counting � Muth & Manber (k = 1)Figure 13: Comparison among algorithms for m = 9. The top plots show increasing r for k = 1and k = 3. The bottom plots show increasing k for r = 8 and r = 16.We consider longer patterns now (m = 30). Figure 14 shows the results for increasing r andfor increasing k. As before, exact partitioning is the best where it can be applied, and improvesover previous work [17] for r up to 90{100. For these longer patterns the superimposed automatatechnique also degrades, and only rarely is it able to improve over exact partitioning. In most casesit only begins to be the best when it (and all the others) are no longer useful.Figure 15 summarizes some of our experimental results, becoming a practical version of thetheoretical Figure 10. The main di�erences are that exact partitioning is better in practice thanwhat its complexity suggests, and that there is no clear winner between pattern and automatonpartitioning. 21

� � � � � � � � �� � � � � � � �0 1000 20 40 60 80 1000
30
0510152025
30

rt � � � � � � � �
0 1000 20 40 60 80 1000

30
0510152025
30

rt
� � � �1 151 3 5 7 9 11 13 150

70
01020304050
6070 kt � � � �1 151 3 5 7 9 11 13 150

70
01020304050
6070 kt

Exact Partitioning Pattern Partitioning Automaton Partitioning� Counting � Muth & Manber (k = 1)Figure 14: Comparison among algorithms for m = 30. The top plots show, for increasing r, k = 1and k = 4. The bottom plots show, for increasing k, r = 8 and r = 16. Pattern partitioning is notrun for k = 1 because it would resort to exact partitioning.22

NONE USEFUL

m

NONE USEFUL

Partitioning into Exact Search

Superimposed Automata

r
Muth-Manber

α

0.3

Partitioning into Exact Search

9 30

Superimposed Automata

50 - 100

0.4

α

0.4

0.3Figure 15: The areas where each algorithm is better, in practice, on English text. In the right plotwe assumed m = 9. Compare with Figure 10.8 ConclusionsWe have presented a number of di�erent �ltering algorithms for multipattern approximate search-ing. These are the only algorithms that allow an arbitrary number of errors. On the other hand,the only previous work allows just one error and we have outperformed it when the number ofpatterns to search is below 50{100 on English text, depending on the pattern length.We have explained, analyzed and experimentally tested our algorithms. We have also presenteda map of the best algorithms for each case. Many of the ideas we propose here can be used toadapt other single-pattern approximate searching algorithms to the case of multipattern searching.For instance, the idea of superimposing automata can be adapted to most bit-parallel algorithms,such as [19]. Another fruitful idea is that of exact partitioning, where a multipattern exact searchis easily adapted to search the pieces of many patterns. There are many other �ltering algorithmsof the same type, e.g. [28]. On the other hand, other exact multipattern search algorithms may bebetter suited to other search parameters (e.g. working better on many patterns).A number of practical optimizations to our algorithms are possible, for instance� If the patterns have di�erent lengths, we truncate them to the shortest one when superimpos-ing automata. We can select cleverly the substrings to use, since having the same characterat the same position in two patterns improves the �ltering mechanism.� We used simple heuristics to group subpatterns in superimposed automata. These can beimproved to maximize common letters too. A more general technique could group patternswhich are similar in terms of number of errors needed to convert one into the other (i.e. aclustering technique).� We are free to partition each pattern in k + 1 pieces as we like in exact partitioning. This isused in [24] to minimize the expected number of veri�cations when the letters of the alphabetdo not have the same probability of occurrence (e.g. in English text). An O(m3) dynamicprogramming algorithm is presented there to select the best partition, and this could beapplied to multipattern search. 23

AcknowledgementsWe thank Robert Muth and Udi Manber for their implementation of [17]. We also thank theanonymous referees for their detailed comments that improved this work.References[1] A. Aho and M. Corasick. E�cient string matching: an aid to bibliographic search. CACM,18(6):333{340, June 1975.[2] R. Baeza-Yates. E�cient Text Searching. PhD thesis, Dept. of Computer Science, Univ. ofWaterloo, May 1989. Also as Research Report CS-89-17.[3] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress,volume I, pages 465{476. Elsevier Science, September 1992.[4] R. Baeza-Yates and G. Gonnet. A new approach to text searching. CACM, 35(10):74{82,October 1992.[5] R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In Proc. WADS'97,LNCS 1272, pages 174{184, 1997.[6] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 23(2):127{158, 1999.[7] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching. In Proc.CPM'92, pages 185{192, 1992. LNCS 644.[8] R. S. Boyer and J. S. Moore. A fast string searching algorithm. CACM, 20(10):762{772, 1977.[9] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate string match-ing algorithms. In Proc. CPM'92, pages 172{181, 1992. LNCS 644.[10] W. Chang and E. Lawler. Sublinear approximate string matching and biological applications.Algorithmica, 12(4/5):327{344, 1994.[11] Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAM J. ofComputing, 19(6):989{999, 1990.[12] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval. In Proc.FOCS'94, pages 722{731, 1994.[13] R. Grossi and F. Luccio. Simple and e�cient string matching with k mismatches. InformationProcessing Letters, 33(3):113{120, 1989.[14] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string matching algo-rithms. Software Practice and Experience, 26(12):1439{1458, 1996.24

[15] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM J.on Computing, 6(1):323{350, 1977.[16] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching. J. ofAlgorithms, 10:157{169, 1989.[17] R. Muth and U. Manber. Approximate multiple string search. In Proc. CPM'96, LNCS 1075,pages 75{86, 1996.[18] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,12(4/5):345{374, 1994.[19] G. Myers. A fast bit-vector algorithm for approximate pattern matching based on dynamicprogamming. In Proc. CPM'98, LNCS 1448, pages 1{13, 1998.[20] G. Navarro. Multiple approximate string matching by counting. In Proc. WSP'97, pages125{139. Carleton University Press, 1997.[21] G. Navarro. Approximate Text Searching. PhD thesis, Department of Computer Science,University of Chile, December 1998. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-thesis98.ps.gz. Also as Tech. Report TR/DCC-98-14.[22] G. Navarro. A guided tour to approximate string matching. Technical Report TR/DCC-99-5, Dept. of Computer Science, Univ. of Chile, July 1999. Submitted. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/survasm.ps.gz.[23] G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pattern matching.Technical Report TR/DCC-98-5, Dept. of Computer Science, Univ. of Chile, 1998. Submitted.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/dexp.ps.gz.[24] G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching. Informa-tion Processing Letters, 1999. To appear. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-hpexact.ps.gz.[25] G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fast extended stringmatching. In Proc. CPM'98, LNCS 1448, pages 14{33, 1998.[26] P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. ofAlgorithms, 1:359{373, 1980.[27] D. Sunday. A very fast substring search algorithm. CACM, 33(8):132{142, August 1990.[28] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching. In Proc.ESA'95, 1995. LNCS 979.[29] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM Journal onComputing, 22(2):243{260, 1993. 25

[30] E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64:100{118, 1985.[31] E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.[32] E. Ukkonen. Approximate string matching with q-grams and maximal matches. TheoreticalComputer Science, 1:191{211, 1992.[33] A. Wright. Approximate string matching using within-word parallelism. Software Practice andExperience, 24(4):337{362, 1994.[34] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, October1992.[35] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited expres-sion matching. Algorithmica, 15(1):50{67, 1996.A Analysis of Hierarchical Veri�cationWe are interested in the expected cost to verify the presence of any of r patterns given that theirsuperimposition has been found in a particular text region. The probability of such an automatonmatching the text is the same as for a single pattern, except because the alphabet size is reducedfrom � to �=r. Moreover, when we �nd a match, we are not able to say which is the pattern thatactually matched (in fact it is possible that none matched). Hence, we must verify all the patternsin the area to determine which matched, if any.We analyze the technique of \hierarchical veri�cation": �rst divide the set of patterns in twohalves and see whether each half matches. For each matching half, subdivide it and so on until theindividual patterns that matched are detected.Given an area to check for r patterns of length `, the naive veri�cation will take O(rT (`)) time,where T (`) is the veri�cation cost for a single pattern. We analyze now the e�ect of this hierarchicalveri�cation. In [23] it is proved that for a single pattern the matching probability is O(
`), where
 = e2�(1� �)2! 1��When r patterns of length ` are superimposed, the value of
 changes because it is a functionof �. We use instead
r = e2r�(1� �)2! 1�� = r1��
 (2)(where we notice that the old
 corresponds now to
1). In the case of r superimposed patternsthe matching probability is therefore O(
r̀).For each match we have to verify an area of length O(`) (at cost T (`)) for two sets of r=2superimposed patterns each. Each set is found with probability
r̀=2 and so on. The probabilitythat a group of size r=2 matches given that the larger set matched is (recall Figure 7)P (parent node = child node) = P (parent ^ child)P (child) � P (parent)P (child) =
r̀=2
r̀ = 12`(1��)26

where we have used Eq. (2) for the last step. In particular
r=2i =
r=2i(1��).The total cost due to veri�cations is therefore
r̀ 2 T (`) + 2
r̀=2
r̀ 2 T (`) + 2
r̀=4
r̀=2 ::: ! ! = 2T (`)
r̀ + 4T (`)
r̀=2+ 8T (`)
r̀=4+ :::or more formally 2T (`) log2 r�1Xi=0 2i
r̀=2i = 2T (`)
r̀ log2 r�1Xi=0 2(1�`(1��))iand since the summation is O(1) we have a total cost of (
r̀T (`)). Hence, we work O(T (`)) perveri�cation instead of O(rT (`)) that we would work using a naive veri�cation. This shows thatwe do not pay more per veri�cation by superimposing more patterns (although the probability ofverifying is increased).Notice that we assumed that the summation is O(1), which is not true for � � 1 � 1=`. Thishappens only for very high error levels, which are of no interest in practice since the matchingprobability is already very high.B Analysis of the Counting FilterWe �nd an upper bound for the probability of triggering a veri�cation, and use it to derive a safelimit for � to make veri�cation costs negligible. We consider constant � and varying m (the resultsare therefore a limit on �). We then extend the results to the other cases.The upper bound is obtained by using a pessimistic model which is simpler than reality. Weassume that every time a letter in the text window matches the pattern, it is counted regardlessof how many times it appeared in the window. Therefore, if we search "aloha" with 1 error in thetext window "aaaaa" the veri�cation will be triggered because there are 5 letters in the pattern(where in fact our counter will not trigger a veri�cation because it counts only 2 a's).Consider a given letter in the text window. The probability of that letter being counted is thatof appearing in the pattern. This is the same as being equal to some letter of the pattern. Theprobability of not being equal to a given letter is (1 � 1=�). The probability of not being in thepattern is therefore p = (1� 1=�)m.In our simpli�ed model, each pattern letter is counted independently of the rest. Therefore thenumber X of letters in the text window that did not match the pattern is the sum of m (windowlength) random variables that take the value 1 with probability p, and zero otherwise. This has aBinomial distribution B(m; p).Therefore, our question is when the probability Pr(X � k) is O(1=m2) (so that the algorithmis linear) or when it is O(1=m) (so that it is useful). In the proof we use O(1=m2), since as we willsee shortly the result is the same for any polynomial in 1=m.We �rst analyze the case where the mean of the distribution is beyond k, i.e. mp > k. Thisis the same as the condition � < p. As Pr(X = j) increases with j for j < mp, we havePr(X � k) � k Pr(X = k). 27

Therefore, it su�ces to prove that Pr(X = k) = O(1=m3) for optimality or that Pr(X = k) =O(1=m2) for usefulness. By using the Stirling approximation to the factorial we havePr(X = k) = mk!pk(1� p)m�k = mmpk(1� p)m�kkk(m� k)m�k O(pm)which can be rewritten as p�(1� p)1����(1� �)1��!m O(pm)It is clear that the above formula is o(1=poly(m)) whenever the base of the exponential is < 1.This is p�(1� p)1�� < ��(1� �)1�� (3)To determine the cases where the above condition is valid, we de�ne the functionf(x) = x�(1� x)1��which reaches its maximum at x = �. This shows that Eq. (3) holds everywhere, and therefore theprobability of matching is O(1=m2) in the area under consideration, i.e. whenever � < p.On the other hand, if the median of the distribution is less than k, then just the term of thesummation corresponding to the median r = mp is (using Stirling again) mmp!pmp(1� p)m(1�p) = pp(1� p)1�ppp(1� p)1�p!m
(m�1=2) =
(m�1=2) (4)which is not O(1=m).Therefore, we arrive to the conclusion that the �lter is optimal and useful whenever� < p = �1� 1��m = e�m=� (1 +O(1=�)) (5)and is not useful otherwise.We have considered the case of constant � = k=m. Obviously, the �lter is linear for k = o(m)and is not useful for k = m � o(m). The unexplored area is k = mp � o(m). It is easy to seethat the �lter is not useful in this case, by considering Pr(X = mp� �) with � = o(m), and usingStirling as in Eq. (4). The resulting condition is 1� �2=(m2p(1� p)) = O(m�1=2), which does nothold for any � = o(m).
28

