Improving the Space Cost of k-NN Search in Metric
Spaces by Using Distance Estimators

Benjamin Bustos and Gonzalo Navarro *

Abstract

Similarity searching in metric spaces has a vast number of appli-
cations in several fields like multimedia databases, text retrieval, com-
putational biology, and pattern recognition. In this context, one of
the most important similarity queries is the k nearest neighbor (k-NN)
search. The standard best-first k-NN algorithm uses a lower bound on
the distance to prune objects during the search. Although optimal in
several aspects, the disadvantage of this method is that its space re-
quirements for the priority queue that stores unprocessed clusters can
be linear in the database size. Most of the optimizations used in spa-
tial access methods (for example, pruning using MinMaxDist) cannot
be applied in metric spaces, due to the lack of geometric properties.
We propose a new k-NN algorithm that uses distance estimators, aim-
ing to reduce the storage requirements of the search algorithm. The
method stays optimal, yet it can significantly prune the priority queue
without altering the output of the query. Experimental results with
synthetic and real datasets confirm the reduction in storage space of
our proposed algorithm, showing savings of up to 80% of the original
space requirement.

Keywords: similarity search, metric spaces, k-NN search.

1 Introduction

The concept of similarity search has applications in a vast number of fields.
For example, content-based retrieval of similar objects in multimedia databases
can be very useful for industrial applications, medicine, molecular biology,

*Authors’ affiliation: Center for Web Research, Department of Computer Science, Uni-
versity of Chile. E-mail: {bebustos,gnavarro}@dcc.uchile.cl. Funded by Millennium
Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile (both authors),
Agencia Espanola de Cooperacién Internacional AECI A/8065/07 (both authors), and
FONDECYT Projects 11070037 (first author) and 1-080019 (second author).

among others. In the case of industrial applications, the engineering and in-
dustrial design, the animation, and the entertainment industry heavily rely
on digitized models of products or parts thereof. Given effective retrieval
capabilities, the re-use of content from existing repositories can support a
more efficient production processes [8]. In medical imaging applications, of-
ten 2D and 3D volume data are generated, e.g., using MRI scans. A possible
application lies in automatic diagnosis support by analysis of organ defor-
mations, via matching the actual images with medical databases of known
deformations [15]. In molecular biology, structural classification is a basic
task. This classification can be supported by geometric similarity search,
where proteins and molecules are modeled as 3D objects, which can be com-
pared against bio-molecular reference databases using similarity measures
that consider geometry, electric properties, and others [1].

Other applications for similarity search include machine learning and
classification (where a new element must be classified according to its closest
existing element); image quantization and compression (where only some
vectors can be represented and those that cannot must be coded as their
closest representable point); text retrieval (where we look for words in a
text database allowing a small number of errors, or we look for documents
which are similar to a given query or document); sequence comparsion in
computational biology (where we want to find a DNA or protein sequence
in a database allowing some errors due to typical variations); etc.

All those applications have some common characteristics [5]. There is
a universe of objects, and a nonnegative distance function defined among
them, which in many interesting cases satisfies the triangle inequality. The
smaller the distance between two objects, the more similar they are. This
distance is assumed to be expensive to compute. We have a finite database,
which is a subset of the universe of objects and can be preprocessed (to
build an index, for instance). Later, given a new object from the universe,
we must retrieve all similar elements found in the database.

A particular case of this problem arises when the space is R? (a vector
space). There are effective methods for this case, such as the kd-tree, R-
tree, and X-tree, among others [2]. However, there are many applications
where the space cannot be regarded as d-dimensional, for example in string
similarity problems that appear in text retrieval or computational biology
applications. We focus in this paper in general metric spaces, although the
solutions are well suited also for d-dimensional spaces. Moreover, when d is
large, methods tailored for vector spaces tend to fail and the metric space
approach might be more successful.

We focus on a popular type of query called k-NN query, which aims at

finding the k database objects closest to a given query. The best known
solutions to this problem (in terms of distance computations) have a serious
memory problem, as they might require to maintain in memory a prior-
ity queue of database objects. This priority queue can be as large as the
database itself. We propose an improved version of these k-NN search algo-
rithms, which uses distance estimators to reduce their storage requirements
without altering the number of distance evaluations nor the outcome of the
algorithm.

We present experimental results on various synthetic and real datasets.
The experiments confirm the reduction in storage space necessary to run
our proposed algorithm compared to the original one. The specific numbers
depend on the database and the query, and can be as low as 8% in some
cases. However, in other cases we show savings of more than 80%, that is,
our algorithm needs less than 20% of the space required to run the original
algorithm.

The paper is organized as follows. Section 2 introduces the basic concepts
of efficient similarity search in metric spaces. Section 3 depicts the proposed
algorithm and analyzes its cost. An experimental evaluation using well
known metric indices is presented in Section 4. Finally, in Section 5 we
present our conclusions and outline the future work.

2 Searching in Metric Spaces

There are excellent books [20, 23] and surveys [9, 5, 2, 14] on efficient simi-
larity queries in metric and multidimensional databases. In this chapter, we
will briefly introduce the main indexing techniques for similarity search and
will motivate the space cost problem of the optimal search algorithm.

Let X be the universe of valid objects, and § : X x X — R a distance
function in X. If § satisfies the properties of a metric, that is, strict positive-
ness (6(x,y) > 0 and 0(z,y) = 0 & = = y), symmetry (0(z,y) = 0(y, x)),
and the triangle inequality (0(x,z) < é(x,y) + 6(y, 2)), then the pair (X, 0)
is a metric space. Let U C X be our finite database, with |U| = n. There
are two typical similarity queries in metric spaces:

e Range query. A range query (q,7), ¢ € X, r € RT, reports all database
objects that are within distance r to ¢, that is, {u € U, d(u,q) < r}.

e k nearest neighbors query (k-NN). Reports the k objects from U that
are closest to ¢, that is, a set C C U such that |C| = k and Vz € C,y €
U - (Cv 5(1‘, Q) S 5(y7 q)

Indexes for metric spaces can be classified into two main categories [5]:
based on pivots and based on compact partitions.

Pivot-based indexes [5, 21, 7] select a number of “pivot” objects from
the database, and classify all the other objects according to their distance
to the pivots. The canonical pivot-based range query algorithm is as fol-
lows: Given a range query (q,r) and a set of k pivots {p1,...,px},pi € U,
by the triangle inequality it follows for any x € X and 1 < ¢ < k that
5(q,z) > |0(piyx) — d(pi,q)|. The objects u € U of interest are those
that satisfy 0(q,u) < 7, so one can exclude all the objects that satisfy
|0(pisw) — 6(pi, q)| > r for some pivot p; (exclusion condition), without ac-
tually evaluating d(¢q,u). The index consists of the kn distances d(u,p;)
between every object of the database and every pivot. At query time it is
necessary to compute the k distances between the pivots and the query ¢ in
order to apply the exclusion condition. The list of objects {u1,...,u,n} CU
that do not satisfy the exclusion condition must be directly checked against
the query. Several indexes resort to a tree structure to avoid considering
the exclusion condition for each w € U individually. Each tree node p is a
pivot and its subtrees correspond to ranges of distances d(u,p). At search
time, we compute (g, p) and need only to enter tree branches whose ranges
of distances intersect [6(q,p) — r,d(q,p) + 7].

Indexes based on compact partitions [5, 6, 4, 17] divide the space into
zones as compact as possible. Each zone stores a representative point, called
the center, and data that permit discarding the entire zone at query time
without measuring the actual distance from the objects of the zone to the
query. Each zone can be recursively partitioned into more zones, inducing a
search hierarchy. There are two general criteria for partitioning the space:
Voronoi partition and covering radius. The Voronoi diagram of a set of
objects is a partition of the space into cells, each of which consisting of the
objects closer to one particular center than to any other. A set of m centers
is selected and the rest of the objects are assigned to the zone of their closest
center. Given a range query (g,), the distances between ¢ and the m centers
are computed. Let ¢ be the closest center to q. Every zone of center ¢; # ¢
which satisfies (g, ¢;) > d(q,c) + 2r can be discarded, because its Voronoi
area cannot intersect the query ball. On the other hand, the covering radius
cr(c) is the maximum distance between a center ¢ and an object that belongs
to its zone. Given a range query (gq,r), if 6(q,¢;) —r > cr(c;) then zone i
cannot intersect the query ball and all its objects can be discarded.

In most cases, authors focus on solving range queries, as these can be
regarded as being more basic than k-NN queries [5]. Given a technique to
solve range queries, one can derive k-NN query solutions. The most naive

way is to try range queries with increasing radii until retrieving k£ objects or
more. A more sophisticated method is to launch a range search with infinite
radius, and reduce it on the fly as new database objects are compared and
better candidates for the k-NN answer appear (that is, if we have already
found k£ database objects with maximum distance r to ¢, then our search
radius becomes 7). This has been explored especially with tree-like indexes
(the most popular category).

Unlike the case of range searching, where the tree traversal order is irrel-
evant, for k-NN search we wish to find close candidates as soon as possible,
as this will determine how much of the tree is traversed. The most common
traversal order is depth-first traversal. In this case, the tree traversal is recur-
sive, and the criterion to try to find soon good k-NN candidates translates
into traversing the children of the current node from most to least promis-
ing. Given a criterion to prefer one node over another, depth-first traversal
does not achieve the optimal node traversing order because it is forced to
be depth-first. On the other hand, the amount of memory it requires does
not exceed the height of the tree index.

An optimal, best-first traversal ordering [22, 12] uses a global priority
queue where unprocessed tree nodes are inserted, giving higher priority to
the more promising ones, and the tree is traversed in the order given by the
queue. Each extracted node inserts its children in the queue. If this priority
is defined as a lower bound to the distance between ¢ and any element in
the subtree rooted at the tree node, then the search can finish as soon as
the most promising node has a lower bound larger than the distance to
the current k*» NN. This algorithm has been proved to be optimal in the
number of nodes (i.e., disk page accesses) required [2]. It was also proved to
be range-optimal [13], that is, the number of distance computations to find
the k-NN answer is exactly that of a range search with distance §(q, og),
where oy, is the k' NN. This range search would give the same answer as
the k-NN search, so there is no penalty for not knowing (g, o) beforehand.

The algorithm has, however, an important problem, which may discour-
age its use in practice. The problem is the amount of memory required for
the queue, which can store as many elements as the database itself. The
non-optimal depth-first-search algorithm may be preferable for its much
lower space consumption, proportional to the depth of the hierarchy. Samet
[19, 20] proposed a technique to alleviate this problem, based on computing
an upper bound to the distance between ¢ and any subtree element, and
using the fact that one knows that a subtree must have at least one element
within that upper bound distance to q. We refine this idea, which will be
described later as a particular case of ours. Our refinement consists in us-

Symbol Definition

keN # of NN to be retrieved
BCU Ball (cluster of objects)
B.ceU Center of ball B
B.cr eR Covering radius of B
B.bsize € N # objects inside B
B.children Set of children balls of B

B.lbound € R | Lower bound distance from B to ¢
B.ubound € R | Upper bound distance from B to ¢

By Bubble of B
z.csize € N Size of bubble or object in C'
Q Queue with unprocessed balls
C Queue with NN candidates
C.mazUB € R Max. upper bound distance in C
C.size € N Sum of all x.csize in C
z.distq € R Distance from x to g

Table 1: Summary of symbols

ing the information on the number of elements in the ball, all of which lie
within that upper bound. Unlike Samet’s approach, ours translates into a
relevant contribution even on Euclidean spaces, where Samet’s approach is
never better than the MinMaxDist estimator [18].

3 Algorithm Description

Table 1 lists the notation used throughout this section. We assume that the
database index is a hierarchical data structure which groups close objects
in clusters. We will refer to these clusters in our metric space as balls (for
their shape resemblance in Euclidean spaces, in many index structures).
A ball B from the index contains a number of objects from the database,
represented by B.bsize. The center of B is a distinguished object B.c €
B, usually selected trying to minimize the covering radius of B, B.cr =
max{d(B.c,b), b € B}, that is, the maximum distance between B.c and any
other object in B. Those elements b € B can be recursively organized into
balls, which descend from B forming a search hierarchy. As seen in Section
2, this type of hierarchical clustering index is very popular (for example see
[6, 4, 17]). There are other indexes that, although less obviously, can be
considered as belonging to this scheme (for example, pivot-based indexes
organized in trees).

Given a query ¢ and a ball B, the lower bound distance from ¢ to B,
B.lbound, is a lower bound to d(g,b) for any b € B. Similarly, the upper

bound distance from q to B, B.ubound, is an upper bound to (g, b) for any
b € B.! Figure 1 illustrates both bounds in 2D space using the Euclidean
distance and the covering radius. On index structures for vector spaces
that use minimum bounding rectangles (MBRs), the lower (upper) bound
distance can be defined as the minimum (maximum) distance from ¢ to
the MBR. These distance bounds can be used to prune the search while
performing a similarity query. For example, if we know that the upper
bound distance to the k** NN candidate at some point of the search is
mazU B, and we know that maxU B < B.lbound for a ball B, then it is not
possible that an object inside B is closer to ¢ than any of the current k-NN
candidates. Thus, one can safely discard B and all its descent.

,
B.cr 7
,

,
B.cy’

®c
" Y

3 (q,b.c)-B.cr
(lower bound)

5 (q,B.c)+B.cr
(upper bound)

Figure 1: Distance estimators: Lower and upper bound distance from ¢ to
any object on the ball. This example shows the estimators based on the
covering radius.

3.1 Standard Best-first k.-NN Algorithm

The best-first k&-NN search algorithm [22, 12] uses two priority queues, one
(@) that contains the balls not yet processed (also called active page list in
the literature), and the other (C') with the k-NN candidate list. A ball is
stored in @ if it is not yet processed but its parent was already processed.
At each step of the search, the algorithm removes the ball B from @ with
smallest B.lbound. The distance between the center of each children of B
and ¢ is computed, inserting in C all centers that are closer than the current
k" NN candidate. The children balls are inserted in Q. The algorithm ends
when () becomes empty or when the minimum [bound from a ball in @ is
greater than the distance to ¢ of the current k** NN candidate, as at this
point no other ball can improve the current candidate list.

LOur proposed algorithms are general and will work with any hierarchical index struc-
ture with appropriately defined distance estimators. For simplicity, we will describe them
using the covering radius for computing the distance bounds.

Note that the size of C' never exceeds k, but () can be as large as the
database itself. As explained before (Section 2), this algorithm is optimal
in several aspects but it has a serious memory usage problem (for @), which
our proposal seeks to alleviate.

3.2 Our Proposal

As in the basic algorithm, we use two priority queues, @@ and C. @ still
contains unprocessed balls whose center has already been processed, and is
sorted by lbound. C is still sorted by ubound, but now it will contain a
mixture of objects and bubbles. A bubble By in C corresponds to a ball B
that exists in @, but the bubble itself does not contain any element. From
the bubble Bj, we only know the upper bound B.ubound and size B.bsize
of its corresponding ball B (that is, B.bsize indicates the number of objects
u € U that are inside B). The existence of bubble By, in C just tells us that
there exist B.bsize elements at distance at most B.ubound from ¢, yet we
still do not know those elements. With this upper bound information, we
can prune irrelevant elements from () earlier. For example, assume we find
B such that B.bsize > k. Before knowing the elements of B, we find B’
such that B’.lbound > B.ubound. At this point we can discard B’, as we
know that we will get enough better k-NN candidates from B, even when
we have not yet obtained them.

Our algorithm maintains the following invariants. We assume that there
are at least k elements in the database, otherwise the query is trivial. For
simplicity we assume that balls do not directly contain objects in general,
just further balls. The leaf balls of the tree contain balls that have only one
element, so the balls become empty once one removes their center. This
does not restrict the algorithm in any way, it is just a way to present it.

(1) We process the database hierarchy starting at the root, and never
process a node without having processed its parent.

(77) Any hierarchy ball not yet processed is in @ or descends from a ball
in @, yet the centers of balls in) have already been processed.

(7i7) Any object ¢ in C'is the center of a ball already processed, c.csize = 1.

(iv) Any bubble By in C corresponds to a ball B currently in Q, By.csize =
B.bsize —1 > 0.

(v) C.size > kis the sum of csize’s of objects and bubbles in C. C.mazU B
is the maximum wbound in C, taking c.ubound = c.distq for objects.

(vi) C contains the objects and bubbles with smallest ubound processed so
far.

(vii) If we remove any element from C with ubound equal to C.maxUB,
then C.size < k.

(viii) For any ball B, B.lbound < B.ubound, and the lbound (ubound) of any
descendant of B is not smaller (larger) than B.lbound (B.ubound).

(iz) (optional) For any ball B such that B.bsize > 1, B.lbound < B.ubound.
This holds for many indexes and we can take advantage of it (as shown
in the second point below).

The above invariants ensure the correctness of the following termination
conditions.

e Assume) = () at some point. Then we have processed all the database
objects (i,47). Moreover, there cannot be bubbles in C (iv), so C
contains just objects, of csize =1 (iii). Therefore, C' contains exactly
k objects (v,vii), and those are the objects with smallest distq in the
database (vi). Thus C is the correct answer to the query.

e Assume, at some point, that B has the smallest [bound in) and
B.lbound > C.maxUB. Because of condition (viii), ubound > lbound
for any element and lbound for a descendant of B can never be smaller
than B.lbound. Thus, condition (vi) holds for all the database, not
only for the elements processed so far (ii). Moreover, C' cannot con-
tain any bubble B}, because Bj.lbound < Bj.ubound < C.mazUB <
B.lbound for any ball B in @), and ball B’ must be in @ (iv). Thus
the same arguments as before show that C'is the correct answer to the

query.

The second point above makes clear the correctness of the following
observation, which is the key to the space reduction we achieve.

Observation 1 If, for some B, B.lbound > C.maxUB (or B.lbound >
C.mazxUB if (ix) holds), then the output of the algorithm does not vary if
we remove B and all its descent from Q.

If condition (ix) holds, then, if B; were in C, it would hold B’.csize >
1 (iv), and thus Bj.lbound < Bj.ubound, and it would be sufficient that
B.lbound > C.maxUB to know that we have already the correct answer in

C'. For simplicity, we assume for the rest of the paper that condition (ix)
holds; it is already clear how to modify the algorithms otherwise.

We explain now how we set and maintain the invariants throughout the
algorithm. We initialize () with the only ball that roots the whole index
(for simplicity, we assume there is only one such root, it is easy to insert
several roots if so is the index structure). Its center and corresponding
bubble are inserted in C' (only the center if & = 1 or the bubble size is
zero). This satisfies all the invariants. At each step of the algorithm, we
extract the ball B from @) with smallest B.lbound. Recall that B.c has
already been processed. Now, to restore invariant (i7), we must insert in
Q@ every child B’ of B such that B'.lbound < C.maxUB (otherwise, we
know that the descent objects of B’ can be immediately pruned from the
search, by Obs. 1). Then, to restore invariants (74, 7v), we must insert into
C every center B’.c and bubble B, as well as remove bubble By from C,
if present. Actually, if By is in C, we will replace it with the centers B'.c
and bubbles Bj, which add up the same By.csize. This replacement cannot
affect invariants (v,vi) as the new ubounds are never larger than that of
By, (viii; note that C.maxzUB adjusts automatically as the maximum of
the priority queue C'). Yet, we have to restore invariant (vii). We must
remove from C' the elements with largest ubound as long as C.size > k.
We choose those with largest ubound so as to maintain (vi), and update
C.size and C.mazxUB to maintain (v). The remaining invariant (i) holds
because we only access B’ from its already processed parent B. Although
not necessary for the correctness of the algorithm, we remove balls of @)
that become irrelevant each time C.maxUB is reduced (according to Obs.
1). This further diminishes the memory requirement for Q.

Algorithm 1 shows the pseudocode of the proposed k-NN search algo-
rithm. Note that we enforce that lbound is increasing and ubound is de-
creasing as we descend in the hierarchy (viii). Although this should hold,
it might not occur automatically if we simply use, for example B’.ubound =
d(q,B'.c) + B'.cr for B’ child of B, because the ball of B’ could exceed
spatially that of B, although we know that there cannot be objects of
B’ in the exceeded area (Figure 2 illustrates). Thus, the correct value is
B’ ubound = min(B.ubound, 6(q,B'.c) + B'.cr). We make the correction
only if By is in C, otherwise B.ubound > C.mazU B and the correction is ir-
relevant. The same holds for B".lbound = max(B.lbound, B'.c.distq— B'.cr),
which might permit pruning B’ from @ earlier.

Add2 is a special procedure to insert into C, which in addition to the
element and its ubound takes the csize of the element. Add2 takes care of
updating C.size and C.maxzU B, and of maintaining invariants (vi, vii). Al-

Algorithm 1: Our proposed k-NN search algorithm

© 0w N O oA W N

1
11
12
13
14
15
16

o

17
18
19
20
21
22
23
24
25

26

27

Input: Index, g € X, k€N

Output: k-NN

Q < 0

C «— 0,

CmaxUB «— o0o;

C.size « 0;

B « root of Index;

B.c.distq < 6(q, B.c);

B.lbound +— B.c.distq — B.cr;

Q.Add(B, B.lbound);

C.Add2(B.c, B.c.distq, 1);

C.Add2(B, B.c.distq+ B.cr, B.bsize — 1);

while Q # () do

B — Q.DequeueMin();

if B, € C then
ubound «— By.ubound,
C.size «— C.size — By.csize;
C.Remove(By);

Ise ubound «— oo;
foreach B’ € B.children do
B'.c.distq «— 6(q, B'.c);
C.Add2(B'.c, B'.c.distq, 1);
if B'.bsize > 1 then
B'.lbound +— max(B.lbound, B'.c.distq — B'.cr);
if B'.lbound < C.maxUB then Q.Add(B’, B'.lbound);
minub «— min{ubound, B'.c.distq+ B'.cr};
C.Add2(B', minub, B'.bsize — 1);

| Q.Shrink();

0]

return C

0 (q,B.c)+B.cr
o)

@)

0(q,B’.c)+B’.cr

Figure 2: The correct ubound for B’ is min{B.ubound, 6(q, B'.c) + B'.cr}.
The index hierarchy ensures that no object farther than B.cr from B.c can
be stored in B’.

gorithm 2 shows the pseudocode of the Add2 function for C. The algorithm
assumes that C is a priority queue sorted decreasingly by ubound, and in
case of ties, it is sorted increasingly by csize. This is necessary to ensure
that condition (viii) is maintained.

Algorithm 3 shows the pseudocode for the pruning of), Shrink, called
each time the maximum upper bound distance C.mazU B might change,
to reduce the storage requirements of the search algorithm. Note that,
thanks to the use of Shrink, we can always finish when @ becomes empty,
since if the other termination condition holds, then Shrink will take care
of removing all the remaining elements from). To reduce the CPU cost
associated to Shrink, one should call it only when C.maxU B has changed
(not when it might have changed, as shown for simplicity), and implement
@ as a min-max heap.

A key element of our k-NN algorithm is B.bsize. If this value is not
stored in the index, then the proposed algorithm cannot run and the best
that one can do in that case is to assume B.bsize = 2 for internal hierarchy
nodes (since B.bsize > 2, for the center and at least another point). This
is precisely what was done by Samet in previous work [19], and we refine it
here assuming B.bsize is known. Slightly better than assuming B.bsize = 2
is, if B has c¢b child balls and co child objects, assume B.bsize = 2 - ¢b + co.

Algorithm 2: Add2 algorithm for C'

Input: B, ubound € RT, csize € N

if ubound < C.maxUB then

By, < CreateBubble(B);

Byp.ubound «— ubound;

By.csize «— csize;

C.size «— C.size + By.csize;

C.Add(By, By.ubound);

while C.size — C.Max().csize > k do
C.size — C.size — C.Mazx().csize;
C.DequeueMax();

10 if C.size > k then C.mazUB «— C.max().ubound;

© W N O A W N

Algorithm 3: Shrink algorithm for @

1 while Q # 0 and Q.Max().lbound > C.MaxUB do
2 L Q.DequeueMax();

3.3 Example

Figure 3 shows an example of a k-NN query for some k£ > 1. The index
consists of a ball B which has three child balls: B1, B2, and B3. From
the figure, it follows that B.bsize = 1+ X +Y + Z, and let us suppose
that X > k. The figure shows the index hierarchy up to the first level. In
the beginning, B.c is inserted into C, as well as the bubble B, with upper
bound B.c.distq+ B.cr. Thus, C.size =1+ X +Y +Z > k and if we extract
the bubble with greater ubound then C.size = 1 < k, thus the invariants
hold. Ball B is inserted into) and the algorithm enters the loop. Ball B
is extracted from @, and then By is removed from C. Now the algorithm
processes the children of B. The object Bl.c and the bubble B1; are inserted
into C. Meanwhile, B.c is removed from C' because Bl.ubound < B.c.distq
and C.size > k with Bl, and Bl.c in C. The maximum upper bound
C.maxUB is updated to C.maxzUB = Bl.ubound, B1 is inserted into @),
and the algorithm invokes Q.Shrink(). B2 and B3 will never be inserted into
Q, because C.mazxUB < B2.lbound < B3.lbound. Therefore, the maximum
length of @ until this step was 1. Using the standard algorithm, B2 and
B3 will be inserted into @, even when they will never be removed from
the queue (the algorithm will stop searching before removing them), thus

B3.bsize=Z

B3.Ibound

| ; B.c
! : © B2.c !
| ! ’ o

B.c.distq
Bl.bsize=X>=k : ’

- B2.bsize=Y

B2.Ibound

Figure 3: Example of a k-NN query. Note (visually) that all k.-NN are on
B1 and Bl.ubound < B.c.distq.

wasting storage space.

Assume now that B1l, B2, and B3 are inserted into @ (for example,
this could be the case if the index contained several roots). The algorithm
removes B1 from () and processes each of its children. Then, it updates
C.mazU B. Note that the algorithm ensures that C.maxUB < Bl.ubound.
Next, procedure Q.Shrink() is invoked, which removes balls B2 and B3
from @, thus diminishing the average length of) during the search.

In both cases, the algorithm was able to prune balls B2 and B3 without
processing them and at a very early stage of the search. Therefore, the
storage requirements for () was successfully diminished using our proposed
algorithm.

3.4 Cost Analysis of the Proposed Algorithm

Now we compare the computational complexity of the original and our pro-
posed k-NN search algorithms. Firstly, as both algorithms perform a best-
first traversal of the index, it follows that they carry out exactly the same
number of distance computations for the same query object. Thus, for this
concept the CPU cost is the same on both algorithms. Moreover, this implies
that our algorithm is also optimal in the number of node accesses required
to answer k-NN queries, and it is range-optimal (see Section 2).

Regarding the insertion/deletions of elements in @, the CPU cost of the
original algorithm is O(totQ - log mazx(Q), where totQ is the overall number
of balls ever inserted into () and maz() the maximum size of () across the
process. The cost for our proposed algorithm is the same, noting that in our
case tot@ and max@ will be smaller, given that we avoid some insertions
into Q.

With respect to C, the CPU cost of the original algorithm is in the worst
case O(totQ -log k), since all centers from balls in () may be inserted into C,
and it is ensured that only one object per iteration may be extracted from
C. For our proposed algorithm, in the worst case it may be possible that
tot@) objects and tot() bubbles are inserted into C, but then the algorithm
may extract up to k elements from C' after an insertion (cf. Algorithm 2,
lines 7-9 of the pseudocode). However, it is not possible to extract more
elements that those inserted into C, therefore the total CPU cost in the
worst case is also O(tot@ - log k), that is, it is the same CPU cost compared
with the original algorithm. Note that the query “Bp € C” in line 13 of
Algorithm 1 requires a dictionary data structure built on top of C' (such as
a hash table) if one wants to avoid an O(k) time linear traversal. Such a
table involves spending O(k) extra memory, but this is usually irrelevant as
k is very small in all meaningful cases.

Thus, our proposed algorithm has the same CPU cost as the original one,
but it always uses less memory for (. As previously observed, our algorithm
needs to know how many objects are within each ball of the index, which
also uses some memory space (one integer value per internal node, which is
usually very modest). Many indexes already store this value. Otherwise,
in most practical situations, there is always some free room on each index
node, because it is almost impossible to completely use its assigned space
(equal to the size of a disk data page), so the extra integer can be stored
“for free”. Also, we experimentally observed that the memory savings are
at least an order of magnitude higher than the extra space used. Although
not easy to guarantee analytically, the next section shows that the space
savings are very significant in practice.

4 Experimental Evaluation

In this section, we show empirically that our proposed technique can achieve
significant space savings. The exact amount will depend on the type of
metric space and queries posed to it.

For our experiments, we used several synthetic and real-world databases:

e Gaussian: This is a set of synthetic databases that are formed by
clusters in a vector space using different dimensionalities (8-D, 16-D,
and 32-D), where the objects that conform each cluster follows a Gaus-
sian distribution. Each Gaussian database contains 1,000 clusters, and
their centers are random points with coordinates uniformly distributed
in [0,1]. The variance for the Gaussian distribution was set equal to
0.001 for each coordinate, to produce compact clusters. The size of
each cluster is similar but not necessarily equal, and the whole dataset
contains 100,000 objects. We generated 1,000 random query points,
which follow the same data distribution as the database.

e (Corel Features: The Corel image features contains features from 68,040
images extracted from a Corel image collection. The features are
based on the color histogram (32-D), color histogram layout (32-D), co-
occurrence texture (16-D), and color moments (9-D). This database is
available at the UCI KDD Archive [10]. For our experiments, we used
the color histogram (CH) and the layout histogram (LH) databases.
We selected a subset of this database consisting on 65,515 images, be-
cause there were some missing features for some of the images. For
each database, we choose 1,000 images at random to be used as queries.

e FEdge structure: This database contains 20,197 feature vectors (edge
structure, 18-D) extracted from the Corel image database. We selected
1,000 random objects from the database as query points.

e FEnglish String DB: It contains 69, 069 strings (a dictionary of English
words). We selected 1,000 random strings as query points.

We used the Manhattan distance as the metric for the multidimensional
databases. Other metrics (e.g., Euclidean) may be used, but better results
have been obtained with respect to the effectiveness of the search using the
Manhattan distance [3] (which is in accordance with theoretical results [11]),
and it is the (computationally speaking) cheapest Minkowski distance. For
the English String DB, we used the edit distance (the minimum number of
insertions, deletions and replacements performed to convert one string into
another) as the metric, as it is relevant for many applications [16].

The number of objects per cluster was selected depending on the dimen-
sionality of the dataset, in such a way that all objects from the cluster (plus
a small header) could fit on a disk datapage. Setting the datapage size to 4
Kb, we obtained the following cluster size values: 127 (8-D), 63 (16-D), 56

(18-D), and 31 (32-D). For the English String DB, we used a cluster size of
16.

We compared the standard best-first k-NN algorithm (labeled HS) against
ours (labeled Ours) and the best-first version proposed by Samet [19] (la-
beled Samet)?. As representative index structures, we used the List Of
Clusters [4] and the M-tree [6]. The List of Clusters can be seen as a “list
of balls”, that is, a search hierarchy with only one level, while the M-tree
is a more general hierarchical index structure. The former usually performs
better on higher dimensional spaces. To compare the storage requirements
of each search algorithm, we computed the mean of the maximum queue
lengths (max{|@|}) obtained on each query, and the average length of @
over all queries. The first measure indicates how much memory (on aver-
age) needs the search algorithm to answer the k-NN query. The second
measure is related with the number of disk accesses made if the queue were
stored on secondary memory. All results are shown as percentages of the
database size.

Figures 4 to 6 show the results obtained with the Gaussian databases.
Our algorithm needs considerably less memory than the standard algorithm,
especially for high dimensions. For example, our algorithm used only 18%
of the memory required by the standard algorithm in 32-D and using List
of Clusters (k = 50). In low dimensions, the gain was smaller (48% of the
memory requirement of the standard algorithm), but still considerable. The
List of Clusters performed better than the M-tree in terms of storage usage.
In this index, our algorithm was consistently better than the simpler version
by Samet. The average length of the queue was up to 5 times shorter than
the standard algorithm. In the M-tree, on the other hand, all the space
performances were rather similar. The charts also show that the storage
efficiency degrades as k grows, especially in the case of the M-tree.

We obtained similar results with real-world datasets (see Figures 7 to
9). For example, with the color histogram database, our algorithm only
used 34% of the storage requirement of the standard algorithm with List of
Clusters. The average queue length was always smaller than 32% of that
of the standard algorithm. Similar improvements were obtained with the
layout histogram and the edge structure databases. Finally, the obtained
results with the English String DB were not as good as with the other
database, but the algorithm was able to save 16% of the memory used by

2 Actually, Samet speaks mostly of depth-first algorithms [19], but the paper mentions
that the best-first algorithm could be handled as well. As we are interested only in the
optimal traversal order in this paper, we compare only its best-first version.

Gaussian 8-D Gaussian 8-D

0.5 T T

o
[a) —
S @
=)
[g
3 =1
: 2 o2 §
g o3t B <
= List of Clusters — HS —— 015 List of Clusters - HS ——]
02+ List of Clusters — Samet —%— _| List of Clusters — Samet ——
List of Clusters — Ours —=— 01 List of Clusters — Ours —>— -
01 M-tree - HS ---@--- M-tree - HS ---&---
T M-tree ~ Samet - - 0.05 |- M-tree — Samet 1
M-tree - Ours - M-tree - Ours ---
0 L 1 0 L f
50 100 150 200 50 100 150 200
k k

Figure 4: Gaussian 8-D: Mean of the maximum queue length (left) and
average queue length (right).

Gaussian 16-D Gaussian 16-D
25 — 2 T T
List of Clusters - HS —+—
List of Clusters — Samet —*—
List of Clusters — Ours —<—
2+ 4 M-tree - HS ---3---

15 M-tree — Samet
M-tree - Ours ---

15 F —

Mean max |Q| (%DB)
-
\
Avg |Q| (%DB)

List of Clusters - HS —+—
List of Clusters - Samet —*—
List of Clusters — Ours —=—
M-tree = HS ---G&---

M-tree - Samet - -

M-tree - Ours - -

0 L 1 0 L L
50 100 150 200 50 100 150 200

0.5

Figure 5: Gaussian 16-D: Mean of the maximum queue length (left) and
average queue length (right).

Gaussian 32-D Gaussian 32-D
8 . —— 45 T —
List of Clusters - HS —+— List of Clusters - HS —+—
List of Clusters — Samet —*— 4 b List of Clusters — Samet —*— |
r List of Clusters — Ours —=— 7 List of Clusters — Ours —<—
M-tree - HS ---&--- M-tree - HS ---&
6 M-tree - Samet ---o--- | 35 M-tree - Samet b
I M-tree - Ours ---&--- M-tree - Ours ---
g @
< a
I3 g
3 i
£ =
§ 2
i3
=
0 L L
50 100 150 200
k k

Figure 6: Gaussian 32-D: Mean of the maximum queue length (left) and
average queue length (right).

the standard algorithm on average.

Corel Features - Color Histogram Corel Features - Color Histogram
5 . — 25 . —

List of Clusters - HS —+— List of Clusters - HS —+—
List of Clusters - Samet —*— List of Clusters — Samet —*—
List of Clusters — Ours —*— List of Clusters — Ours —»—
4+ M-tree - HS ---@--- 2+ M-tree - HS ---3---

M-tree - Samet ---6--- M-tree - Samet --

M-tree - Ours ---4--- M-tree - Ours --

Mean max |Q| (%DB)
Avg |Q| (%DB)

50 100 150 200 50 100 150 200

Figure 7: Corel features CH: Mean of the maximum queue length (left) and
average queue length (right).

Corel Features — Layout Histogram Corel Features - Layout Histogram
35 T T 3 T T
List of Clusters - HS —+—
List of Clusters — Samet —*—
3 - 25 1 List of Clusters — Ours —<— |
- M-tree - HS ---3---
M-tree — Samet ---o---
o 251 M-tree - Ours --
a . 2r B
: 2
c ‘g &
] <3
£ 15 4 >
s 00—] 2
o
= 1 List of Clusters ~ HS —+— |
List of Clusters - Samet —*—
List of Clusters — Ours —=—
05 M-tree - HS ---&--- 1
M-tree - Samet -
M-tree - Ours -
0 L 1 0 L L
50 100 150 200 50 100 150 200
k k

Figure 8: Corel features LH: Mean of the maximum queue length (left) and
average queue length (right).

Table 2 summarizes the improvements in storage requirements of our
algorithm over the standard k-NN search.

5 Conclusions

We presented an improved version of the optimal-order £-NN search algo-
rithm, using distance estimators (such as the upper and lower bound dis-
tance to the query object) in order to reduce the storage requirements of the
search algorithm. Our proposed algorithm aims to prune from the active
page list, as soon as possible, all nodes from the index where it is ensured
that no relevant objects can be found. We also introduce the concept of

Edge Structure

Edge Structure

List of

List of Clusters — Samet —*—
List of Clusters — Ours —<—

M

-tree — Samet ---o---
M-tree - Ours ---&---

T
Clusters - HS —+— |

M-tree - HS ---&--- |

18 T T
14
12
a ~ 1F
° - i)
g B a
o = em TR g
% [S I3
£ i N C 2
c 220075
& osf 1 =<
= List of Clusters - HS —+—
04 List of Clusters - Samet —*— _{
List of Clusters - Ours —*—
M-tree - HS ---3---
0.2 M-tree - Samet ---o--- |
M-tree - Ours ---&---
0 L L [
50 100 150 200 50
k

Figure 9: Edge structure: Mean of the

average queue length (right).

English String DB

English String DB

maximum queue length (left) and

List of Clusters - HS —+—
List of Clusters — Samet —*— 7
List of Clusters — Ours —<—

M-tree — Samet ---©---

M-tree - HS ---@---]

M—tree‘— Ours ---4---

8
7
6
[
g ¥ -
g a
g g
5 4 I3
£ <
é 3+ — E 15
= List of Clusters - HS —+—
2 List of Clusters - Samet —*— | 1F
List of Clusters — Ours —x—
s M-tree - HS ---&--- | 05 -
M-tree - Samet ---©---
M-tree - Ours ---4---
0 I I I 0
20 40 60 80 100 20

k

Figure 10: English String DB: Mean

and average queue length (right).

60
k

80 100

of the maximum queue length (left)

Table 2: Storage requirements (maximum and average queue length) of our
algorithm (standard algorithm: 100%, k = 50)

Database LC-max | LC-avg | MT-max | MT-avg
Gaussian 8-D 49.4% | 48.3% 93.7% 86.5%
Gaussian 16-D 19.5% 19.2% 96.2% 88.3%
Gaussian 32-D 18.5% | 18.2% 96.3% 89.1%

Color Histogram 34.6% | 32.3% 93.4% 89.1%
Layout Histogram 30.8% | 28.4% 93.7% 88.9%
Edge Structure 26.1% | 23.4% 86.8% 81.3%
English String DB (k = 100) 95.6% 83.4% 98.4% 92.1%

bubbles, which are “abstract” index nodes with no elements inside. Bubbles
can be used to prune index nodes from the active page list using the distance
estimators, even if the algorithm has not yet visited the index nodes which
actually contain the objects inside the bubble. We tested our algorithm with
several synthetic and real-world datasets, using two state-of-art index struc-
tures for metric spaces. Our experimental results confirm that the storage
requirements of our proposed algorithm are considerably smaller compared
with the standard k-NN algorithm (up to 5 times smaller).

We observed that the best results (i.e., the larger savings in space) were
obtained with the List of Clusters. This result can be explained as follows:
the List of Clusters produces more compact balls (regions) than the M-
tree, due to the dynamic nature of the latter. For example, for the color
histogram database the average covering radius using the M-tree was 0.32,
while the average covering radius using List of Clusters was only 0.18. Also,
the M-tree creates more balls than the List of Clusters, and not all them
are necessarilly full (as in the case of the List Clusters). This means that
the “density” of each ball in the M-tree is smaller than in the balls of the
List of Clusters. Thus, the search algorithm is able to find better distance
estimations to the balls with the List of Clusters, which allows this index to
discard balls from () sooner than the M-tree.

We plan to continue exploring the trade-off between the index size and
the storage requirements for the active page list. Further improvements
on the average length of () may be obtained if one has more structural
information about the balls, at the cost of storing more information on each
index node.

Although we focused in this paper on indexes for metric spaces, our
technique is general and can be adapted with minimal effort to be used with
spatial access methods. In that case, each subtree is usually bounded by a
hyperrectangle. Our heuristic translates into the following rule: Assume a
tree node contains bsize elements within a hyperrectangle. Then there are
bsize elements at distance max d(q, c), where ¢ ranges among all the corners
of the hyperrectangle. This heuristic is different from the usual MinMaxDist
[18], which gives a better distance estimator but holds only for one object
per tree node. If we use the simpler rule by Samet [19] our work builds on,
and translate it to a spatial data structure, the result is always inferior to
the MinMaxDist heuristic.

Acknowledgments

We thank Christian Rohrdantz for implementing the algorithms and the
index structures, and for running the experimental evaluation.

References

[1]

M. Baroni, G. Cruciani, S. Sciabola, F. Perruccio, and J. Mason. A common
reference framework for analyzing/comparing proteins and ligands. Finger-
prints for ligands and proteins (FLAP): Theory and applications. Journal of
Chemical Information Modeling, 47:279-294, 2007.

C. Bohm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3):322-373, 2001.

B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vrani¢. An experimental
effectiveness comparison of methods for 3D similarity search. International
Journal on Digital Libraries, Special issue on Multimedia Contents and Man-
agement in Digital Libraries, 6(1):39-54, 2006.

E. Chavez and G. Navarro. A compact space decomposition for effective metric
indexing. Pattern Recognition Letters, 26(9):1363-1376, 2005.

E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Searching in metric
spaces. ACM Computing Surveys, 33(3):273-321, 2001.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In Proc. 23rd Intl. Conf. on Very Large
Databases (VLDB’97), pages 426-435. Morgan Kaufmann, 1997.

V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching
index for metric data sets. Multimedia Tools and Applications, 21(1):9-33,
2003.

T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin. Modeling by example. ACM Transactions
on Graphics, 23(3):652-663, 2004.

V. Gaede and O. Giinther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998.

S. Hettich and S. Bay. The UCI KDD archive [http://kdd.ics.uci.edu], 1999.
A. Hinneburg, C. Aggarwal, and D. Keim. What is the nearest neighbor in

high dimensional spaces? In Proc. 26th International Conference on Very
Large Databases (VLDB’00), pages 506-515. Morgan Kaufmann, 2000.

G. Hjaltason and H. Samet. Ranking in spatial databases. In Proc. th Intl.
Symp. on Advances in Spatial Databases, LNCS 951, pages 83-95. Springer-
Verlag, 1995.

[13]

[14]

[15]

[16]

[17]

G. Hjaltason and H. Samet. Incremental similarity search in multimedia
databases. Technical Report CS-TR-4199, University of Maryland, Computer
Science Department, 2000.

G. Hjaltason and H. Samet. Index-driven similarity search in metric spaces.
ACM Trans. on Database Systems, 28(4):517-580, 2003.

Daniel A. Keim. Efficient geometry-based similarity search of 3D spatial
databases. In Proc. ACM International Conference on Management of Data
(SIGMOD’99), pages 419-430. ACM Press, 1999.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88, 2001.

G. Navarro. Searching in metric spaces by spatial approximation. The VLDB
Journal, 11(1):28-46, 2002.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proc.
ACM International Conference on Management of Data (SIGMOD’95), pages
71-79. ACM Press, 1995.

H. Samet. Depth-first k-nearest neighbor finding using the MaxNearest-
Dist estimator. In Proc. 12th Intl. Conf. on Image Analysis and Processing
(ICIAP’03), pages 486-491. IEEE Computer Society, 2003.

H. Samet. Foundations of Multidimensional and Metric Data Structures. Mor-
gan Kaufmann, 2006.

R. Santos-Filho, A. Traina, C. Traina Jr., and C. Faloutsos. Similarity search
without tears: The OMNI family of all-purpose access methods. In Proc. 17th
Intl. Conf. on Data Engineering (ICDE’01), pages 623—-630. IEEE Computer
Society, 2001.

J. Uhlmann. Implementing metric trees to satisfy general proximity /similarity
queries. Manuscript, 1991.

P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach (Advances in Database Systems). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

