
Compact Rich-Functional Binary Relation Representations

Jérémy Barbay1, Francisco Claude2 ?, and Gonzalo Navarro1 ??

1 Department of Computer Science, University of Chile. {jbarbay|gnavarro}@dcc.uchile.cl.
2 David R. Cheriton School of Computer Science, University of Waterloo. fclaude@cs.uwaterloo.ca.

Abstract. Binary relations are an important abstraction arising in a number of data representation
problems. Each existing data structure specializes in the few basic operations required by one single
application, and takes only limited advantage of the inherent redundancy of binary relations. We show
how to support more general operations efficiently, while taking better advantage of some forms of
redundancy in practical instances. As a basis for a more general discussion on binary relation data
structures, we list the operations of potential interest for practical applications, and give reductions
between operations. We identify a set of operations that yield the support of all others. As a first
contribution to the discussion, we present two data structures for binary relations, each of which
achieves a distinct tradeoff between the space used to store and index the relation, the set of operations
supported in sublinear time, and the time in which those operations are supported. The experimental
performance of our data structures shows that they not only offer good time complexities to carry out
many operations, but also take advantage of regularities that arise in practical instances in order to
reduce space usage.

1 Introduction

Binary relations appear everywhere in Computer Science. Graphs, trees, inverted indexes, strings
and permutations are just some examples. Apart from their pervasiveness as such, binary relations
have been used as a tool to complement existing data structures (such as trees [3] or graphs [2])
with additional information, such as weights or labels on the nodes or edges, that can be indexed
and searched. Interestingly, the data structure support for binary relations has not undergone a
systematic study, but rather one triggered by particular applications: we aim to remedy this fact.

Let us say that a binary relation B relates objects in [1, n] with labels in [1, σ], containing t pairs
out of the nσ possible ones. A simple entropy measure using these parameters and ignoring any
other possible regularity is H(B) = log

(
nσ
t

)
= t log nσ

t + O(t) bits (logarithms are base 2 in this
paper). Fig. 1 (left) shows an example of binary relation (identifying labels with rows and objects
with columns henceforth).

Previous work focused on relatively basic primitives for binary relations: extract the list of all
labels associated to an object or of all objects associated to a label (an operation called access),
or extracting the r-th such element (an operation called select), or counting how many of these
are there up to some object/label value (called operation rank).

The first representation specifically designed for binary relations [3] supports rank, select and
access on the rows (labels) of the relation, for the purpose of supporting faster joins on labels,
via a reduction to the rank and select operators on strings, later extended to index text [13], and
to separate the content from the index [4], which in turn allows supporting labeled operations on
planar and quasi-planar labeled graphs [2].

Ad-hoc compressed representations for inverted lists [21] and Web graphs [12] can also be
considered as supporting binary relations. The idea here is to write the objects of the pairs, in
? Funded by NSERC of Canada and Go-Bell Scholarships Program.

?? Funded in part by Fondecyt Grant 1-080019, Chile.

1 2 3 4 5 6 7 8 9
A . . 1
B 1 1 . .
C . . . 1 . 1 . 1 .
D . 1
E 1 . . 1 1
F 1
G 1 . 1 . .
H 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E H D H A C E E G B C B G C F

B 1 10 1 10 10 1 10 1 10 1 10 1 10 10 10
A-D/E-H 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1

3 5 6 10 11 12 14
D A C B C B C

A-B/C-D 1 0 1 0 1 0 1

5 10 12
A B B

A/B 0 1 1

C/D 3 6 11 14
D C C C
1 0 0 0

1 2 4 7 8 9 13 15
E H H E E G G F

E-F/G-H 0 1 1 0 0 1 1 0

1 7 8 15
E E E F

E/F 0 0 0 1

2 4 9 13
H H G G

G/H 1 1 0 0

1 2 3 4 5 6 7 8 9
A-D 0 1 1 1 0 1 1 1 0
E-H 1 1 0 1 1 0 1 0 1

2 3 4 6 7 8
A-B 0 1 0 1 1 0
C-D 1 0 1 1 0 1

3 6 7
A 1 0 0
B 0 1 1

2 4 6 8
C 0 1 1 1
D 1 0 0 0

1 2 4 5 7 9
E-F 1 0 1 1 0 1
G-H 1 1 0 1 1 0

1 4 5 9
E 1 1 1 0
F 0 0 0 1

1 2 5 7
G 0 0 1 1
H 1 1 0 0

Fig. 1. An example of binary relation (left), its representation according to Sec. 4 (middle) and according to Sec. 5
(right). Note that the labels and object numbers are included in each node solely for ease of reading; in the encoding
they are implicit.

label-major order, and support extracting substrings of the resulting string, that is, little more than
access on labels. The string can be compressed by different means depending on the application.

In this paper we aim at describing the foundations of efficient compact data structures for binary
relations. We list operations of potential interest for practical applications of binary relations; we
give various reductions between operators, thus identifying a core set of operations whose support
yields the support of all others; we present two data structures for binary relations (with some
variants), each of which achieves a distinct tradeoff between the space used to store and index the
relation, the set of operations supported in sublinear time, and the time in which those operations
are supported; and we compare the practical performances of the suggested data structures between
themselves and with the theoretical entropy, showing that our data structures not only offer good
time complexities to carry out many operators, but also reduce the space used by taking advantage
of the redundancy of practical instances.

Our first data structure uses the reduction of binary relation operators to string operators [3],
but in conjunction with a wavelet tree rather than one based on permutations, which improves the
time of many operations. Our second data structure extends the wavelet tree for strings to binary
relations. The space used is potentially smaller than for the previous data structure (close to H(B)
bits), at the cost of worse time for some operations, but it permits taking further advantage of some
common regularities present in real-life binary relations. For the sake of simplicity, we aim for the
simplest description of the operations, ignoring any practical improvement that does not make a
difference in terms of complexity, or trivial extensions such as interchanging labels and objects to
obtain other space/time tradeoffs.

2 Basic Concepts

Given a sequence S of length n, drawn from an alphabet Σ of size σ, we want to answer the queries:
(1) ranka(S, i) counts the occurrences of symbol a ∈ Σ in S[1, i]; (2) selecta(S, i) finds the i-th
occurrence of symbol a ∈ Σ in S; and (3) access(S, i) = S[i]. We omit S if clear from context.

For the special case Σ = {0, 1}, the problem has been solved using n + o(n) bits of space while
answering the three queries in constant time [10]. This was later improved to use nH0(S)+o(n) bits
[20]. Here H0(S) is the zero-order entropy of sequence S, defined as H0(S) =

∑
a∈Σ #a/n log(n/#a),

where #a is the number of occurrences of symbol a in S.

2

The wavelet tree [15] reduces the rank/select/access problem for general alphabets to those
on binary sequences. It is a perfectly balanced tree that stores a bitmap of length n at the root;
every position in the bitmap is either 0 or 1 depending on whether the symbol at this position
belongs to the first half of the alphabet or to the second. The left child of the root will handle
the subsequence of S marked with a 0 at the root, and the right child will handle the 1s. This
decomposition into alphabet subranges continues recursively until reaching level dlog σe, where the
leaves correspond to individual symbols. We call Bv the bitmap at node v.

The access query S[i] can be answered by following the path described for position i. At
the root v, if Bv[i] = 0/1, we descend to the left/right child, switching to the bitmap position
rank0/1(Bv, i) in the left/right child, which then becomes the new v. This continues recursively
until reaching the last level, when we arrive at the leaf corresponding to the answer symbol.

Query ranka(S, i) can be answered in a way similar to access, the difference being that we
descend according to a and not to the bit of Bv. We update position i for the child node just as
before. At the leaves, the final bitmap position i corresponds to the answer.

Query selecta(S, i) proceeds as rank, but upwards. We start at the leaf representing a and
update i to select0/1(Bv, i) where v is the parent node, depending on whether the current node
is its left/right child. At the root, the position i is the final result.

Wavelet trees require n log σ+o(n) log σ bits of space, while answering all the queries in O(log σ)
time. If the bitmaps Bv are represented using the technique of Raman et al. [20], the wavelet tree
uses nH0(S) + o(n) log σ bits. Fig. 1 (middle) illustrates the structure. Wavelet trees are not only
used to represent strings [14], but also grids [7], permutations [5], and many other structures.

3 Operations

3.1 Definition of operations

Data structures for binary relations which support efficiently the rank and select operations on
the row (label) yield faster searches in relational databases and text search engines [3] and, in
combination with data structures for ordinal trees, yield faster searches in multi-labeled trees, such
as those featured by semi-structured documents [3] (e.g. XML). A similar technique [2] combining
various data structures for graphs with binary relations yields a family of data structures for edge-
labeled and vertex-labeled graphs that support labeled operations on the neighborhood of each
vertex. The extension of those operations to the union of labels in a given range allows them to
handle more complex queries, such as conjunctions of disjunctions.

As a simple example, an inverted index [21] can be seen as a relation between vocabulary
words (the labels) and the documents where they appear (the objects). Apart from the basic
operation of extracting the documents where a word appears (access on the row), we want to
intersect rows (implemented on top of row rank and select) for phrase and conjunctive queries
(popular in Google-like search engines). Extending these operations to a range of words allows
for stemmed and/or prefix searches (by properly ordering the words). Extracting a column gives
important summarization information on a document: the list of its different words. Intersecting
columns allows for analysis of content between documents (e.g. plagiarism or common authorship
detection). Handling ranges of documents allows for considering hierarchical document structures
such as XML or filesystems (search within a subtree or subdirectory).

As another example, a directed graph is just a binary relation between vertices. Extracting rows
or columns supports direct and reverse navigation from a node. In Web graphs, where the nodes

3

(Web pages) are usually sorted by URL, ranges of nodes correspond to domains and subdirectories.
For example, counting the number of connections between two ranges of nodes allows estimating
the connectivity between two domains. In general, considering domain ranges permits the analysis
and navigation of the Web graph at a coarser granularity (e.g. as a graph of hosts, or institutions).

Several text indexing data structures [8, 13, 16, 17, 19] resort to a grid, which relates for example
text suffixes (in lexicographical order) with their text positions, or phrase prefixes and suffixes in
grammar compression, or two labels that form a rule in straight-line programs, etc. The most
common operation needed is counting and returning all the points in a range.

Obviously, the case where the relation represents a geometric grid, where objects and labels are
simply coordinates, and where pairs of the relation are points at those coordinates, is useful for
GIS and other geometric applications. The generalization of the basic operations to ranges allows
for counting the number of points in a rectangular area, and retrieving them in different orders.

These examples illustrate several useful ways to extend the definition of the rank and select
operations from single rows (labels) or columns (objects) to ranges over both rows and columns.
Consider for instance the extension of select to ranges of labels: select(α, r) yields the position
of the r-th 1 in the row α of the matrix (see Fig. 1 (middle)), corresponding to the r-th object
associated to label α. On the range of rows [α, β], the expression “the r-th 1” requires a total order
on the two-dimensional area defined by the range (e.g. label-major or object-major), which yields
two distinct extensions of the operation. Other applications require instead a select operation that
retrieves the r-th object associated to any label from a given range, regardless of how many pairs
the object participates in. That is, to skip over the columns that are empty in that label range.

We generalize the access operation to ranges of labels and objects by supporting the search
for the minimal (resp. maximal) label or object that participates in a given rectangular area of
the relation, and the search for the first related pair (in label-major or object-major order) in this
area. Among other applications, this supports the search for the highest (resp. lowest) neighbor
of a point, when the binary relation encodes the levels of points in a planar graph representing a
topography map [2].

The sum of those examples yields many distinct extensions for each of the rank, select and
access operations. We list in Table 1 their formal definitions. Each of them is useful to improve
the performance of various applications of binary relation data structures.

3.2 Reductions between operations

The solid arrows in Fig. 2 show the constant-time reductions that we identified among the op-
erations; disregard the rest for now. A solid arrow op → op′ means that solving op we also
solve op′. First, rel rnk is a particular case of rel num, whereas the latter can be supported by
adding/subtracting four rel rnk queries at the corners of the rectangle. Hence they are equivalent.
With a constant number of any of these we also cover the areas described by rel rnk obj maj and
rel rnk lab maj, and vice versa, thus these are equivalent too. Obviously, obj rnk1 and lab rnk1
are particular cases of rel num. Also, lab rnk1 is a particular case of lab rnk, itself a particular
case of lab num. Note that lab num does not reduce to lab rnk because a label could be related
with objects inside and outside the range [x, y]. Similar reductions hold for objects.

Obviously the support for the select operation rel sel lab maj implies the support for the
access operation rel acc lab maj, and accessing the first result of the latter gives the solution
for the minimum operation rel min lab maj. In turn this gives the minimum label in a range
[α, σ]× [x, y], thus if this label is β, we get the next label by rerunning the query on [β+1, σ]× [x, y],

4

Table 1. Operations of interest for binary relations on [1, σ] × [1, n] (labels × objects). x, y, z are objects (usually
such that x ≤ z ≤ y); α, β, γ are labels (usually such that α ≤ γ ≤ β); r is an integer (typically an index, parameter
of a select operation) and ‘#’ is short for ‘number’. The solutions for maxima are similar to those for minima. The
last two columns are the complexities we achieve in Section 4 and 5, respectively, per delivered datum.

Operation Meaning String BRWT
rel num(α, β, x, y) # of pairs in [α, β]× [x, y] O(log σ) O(β − α + log σ) (*)

rel rnk(α, x) # of pairs in [1, α]× [1, x] O(log σ) O(α + log σ)
rel rnk lab maj(x, y, α, z) # of pairs within [x, y], up to (α, z), in label-major order O(log σ) O(α + log σ) (*)
rel sel lab maj(α, r, x, y) r-th pair within [x, y]× [α, σ] in label-major order O(log σ) O(r log σ) (*)
rel acc lab maj(α, x, y) consecutive pairs within [α, σ]× [x, y] in label-major order O(log σ) O(log σ)
rel min lab maj(α, x, y) minimum pair within [α, σ]× [x, y] in label-major order O(log σ) O(log σ)

rel rnk obj maj(α, β, γ, x) # of pairs within [α, β], up to (γ, x), in object-major order O(log σ) O(β − α + log σ)
rel sel obj maj(α, β, x, r) r-th pair within [α, β]× [x, n] in object-major order (+) O(r log σ) (*)
rel acc obj maj(α, β, x) consecutive pairs within [α, β]× [x, n] in object-major order O(log σ) O(log σ)
rel min obj maj(α, β, x) minimum pair within [α, β]× [x, n] in object-major order O(log σ) O(log σ)

lab num(α, β, x, y) # of distinct labels within [α, β]× [x, y] O(β − α + log σ) O(β − α + log σ)
lab rnk(α, x, y) # of distinct labels within [1, α]× [x, y] O(α + log σ) O(α + log σ)

lab sel(α, r, x, y) r-th distinct label within [α, σ]× [x, y] O(r log σ) O(r log σ)
lab acc(α, x, y) consecutive labels within [α, σ]× [x, y] O(log σ) O(log σ)
lab min(α, x, y) minimum label within [α, σ]× [x, y] O(log σ) O(log σ)

obj num(α, β, x, y) # of distinct objects within [α, β]× [x, y] O(r log σ) O(r log σ)
obj rnk(α, β, x) # of distinct objects within [α, β]× [1, x] O(r log σ) O(r log σ)

obj sel(α, β, x, r) r-th distinct object within [α, β]× [x, n] O(r log σ) O(r log σ)
obj acc(α, β, x) consecutive objects within [α, β]× [x, n] O(log σ) O(log σ)
obj min(α, β, x) minimum object within [α, β]× [x, n] O(log σ) O(log σ)
lab rnk1(α, x) # of distinct labels within [1, α]× x O(log σ) O(r log σ)

lab sel1(α, r, x) r-th distinct label within [α, σ]× x O(log σ) O(r log σ)
obj rnk1(α, x) # of distinct objects within α× [1, x] O(log σ) O(log σ)

obj sel1(α, x, r) r-th distinct object within α× [x, n] O(log σ) O(log σ)

(+) O(min(r, log n, log r log(β − α + 1)) log σ)
(*) O(log σ) if [x, y] = [1, n]

this way supporting lab acc. The latter, in turn, gives the solution to lab min in its first iteration,
whereas successive invocations to lab min (in a fashion similar to rel min lab maj) solves lab acc.
Also analogously as before, lab sel allows supporting lab min by asking the first occurrence,
and lab sel1 is a particular case of lab sel. Note also that rel sel lab maj allows supporting
lab sel1, by requiring the pairs starting at the desired rows, and extracting the resulting objects.
By symmetry, analogous reductions hold for objects instead of labels.

The rest of the following theorem stems from inverse-function relations between rank and
select queries, as well as one-by-one solutions to counting and direct-access problems.

Theorem 1. All the arrows in Figure 2 represent constant-time reductions that hold
for the operations. In addition, the pairs (lab num, lab sel) support each other with
an O(log σ) penalty factor, (obj num, obj sel) with an O(log n) penalty factor, and
(rel rnk lab maj, rel sel lab maj) and (rel rnk obj maj, rel sel obj maj) with an O(log(σn))
penalty factor. Finally, in pairs (lab acc, lab sel), (rel acc lab maj, rel sel lab maj),
(obj acc, obj sel), and (rel acc obj maj, rel sel obj maj), the first operation supports the sec-
ond with an O(r) penalty factor, where r is the parameter of the select operation. Finally, the
access operations support the corresponding rank (and counting) operations in time proportional
to the answer of the latter.

5

lab_sel1 lab_acc obj_acc obj_min obj_sel1

obj_numlab_num rel_rnk

lab_rnk

lab_rnk1 obj_rnk1

obj_rnkrel_rnk_lab_maj

rel_sel_lab_maj

rel_acc_lab_maj

rel_min_lab_maj rel_min_obj_maj

rel_acc_obj_maj

rel_sel_obj_maj

rel_rnk_obj_maj

rel_num

lab_min

lab_sel obj_sel

Fig. 2. Results achieved by reducing to strings. Grayed boxes are the operations we adressed directly; all the others
are supported via reductions given in Thm. 1: constant-time ones are represented by solid arrows, and non-constant-
time ones by dashed arrows. Operations supported in time O(log σ) are in solid squares. Dashed squares represent
operations supported in higher time. We draw only the dashed arrows needed to follow the source of the operations
supported via non-constant-time reductions.

4 Reduction to Strings

A simple representation for binary relations [3, 13] consists in a bitmap B[1, n+t] and a string S[1, t]
over the alphabet [1, σ]. The bitmap B[n + t] concatenates the consecutive cardinalities of the n
columns of the relation in unary. The string S contains the rows (labels) of the pairs of the relation
in column (object)-major order (see Fig. 1 (right)). Barbay et al. showed [3] that an easy way to
support the rank and select operations on the rows of the binary relation is to support the rank
and select operations on B and S, using any of the several data structures known for bitmaps
and strings. We show that representing S using a wavelet tree yields the support for more complex
operations. For this purpose, we define the mapping from a column number x to its last element in
S as map(x) = rank1(B, select0(B, x)). The inverse, from a position in S to its column number, is
unmap(m) = rank0(B, select1(B, m)) + 1. Both mappings take constant time. Finally, let us also
define for shortness rankc(B, x, y) = rankc(B, y) − rankc(B, x − 1). The following operations are
supported efficiently, and many others are derived with Thm. 1.
• rel rnk(α, x) in O(log σ) time. This is rank≤α(S, map(x)), where operation rank≤α(S, m) counts
the number of symbols ≤ α in S[1,m]. It can be supported in time O(log σ) in a string wavelet tree
by following the root-to-leaf branch corresponding to α, while counting at each node the number
of objects preceding position m that are related with a label preceding α, as follows. Start at the
root v with counter c ← 0. If α corresponds to the left subtree, then enter the left subtree with
m← rank0(Bv,m). Else enter the right subtree with c← c+rank0(Bv,m) and m← rank1(Bv,m).
When a leaf is reached (indeed, that of α), the answer is c + m.
• rel sel lab maj(α, r, x, y) in O(log σ) time. We first get rid of α by setting r ← r +
rel num(1, α−1, x, y) and thus reduce to the case α = 1. Furthermore we map x and y to the domain
of S by x← map(x−1)+1 and y ← map(y). We first find which is the symbol β whose row contains
the r-th element. For this sake we first find the β such that rank≤β−1(S, x, y) < r ≤ rank≤β(S, x, y).
This is achieved in time O(log σ) as follows. Start at the root v and set r′ ← r. If rank0(Bv, x, y) ≥ r,
then continue to the left subtree with x ← rank0(Bv, x − 1) + 1 and y ← rank0(Bv, y).
Else continue to the right subtree with r′ ← r′ − rank0(Bv, x, y), x ← rank1(Bv, x − 1) + 1,
and y ← rank1(Bv, y). The leaf arrived at is β. Finally, we set r ← r − r′, and answer
(β, unmap(selectβ(S, r + rankβ(S, x− 1)))).

6

• rel sel obj maj(α, β, x, r) in O(min(log n, log r log(β − α + 1)) log σ) time. Object-major is
the order in which the elements are written in S. First, we note that the particular case where
[α, β] = [1, σ] is easily solved in O(log σ) time, by doing r′ ← r + rel num(α, β, 1, x − 1) and re-
turning (S[r′], unmap(r′)). In the general case, one can obtain time O(log n log σ) by binary search-
ing the column y such that rel num(α, β, x, y) < r ≤ rel num(α, β, x, y + 1). Then the answer
is (lab sel1(α, r − rel num(α, β, x, y), y), y). Finally, to obtain the other complexity, we find the
O(log(β−α+1)) wavelet tree nodes that cover the interval [α, β]; let these be v1, v2, . . . , vk. We map
position x from the root towards those vis, obtaining all the mapped positions xi in O(k+log σ) time.
Now the answer is within the positions [xi, xi + r− 1] of some i. We cyclically take each vi, choose
the middle element of its interval, and map it towards the root, obtaining position y, corresponding
to pair (S[y], unmap(y)). If rel rnk obj maj(α, β, S[y], unmap(y))− rel rnk(α, β, 1, x− 1) = r, the
answer is (S[y], unmap(y)). Otherwise we know whether y is before or after the answer. So we discard
the left or right interval in vi. After O(k log r) such iterations we have reduced all the intervals of
length r of all the nodes vi, finding the answer. Each iteration costs O(log σ) time.
• rel acc obj maj(α, β, x) in O(log σ) time per pair output. Just as for the last solution of the
previous operator, we obtain the positions xi at the nodes vi that cover [α, β]. The first element to
deliver is precisely one of those xi. We have to merge the results, choosing always the smaller, as
we return from the recursion that identifies the vi nodes. If we are in vi, we return y = xi. Else,
if the left child of v returned y, we map it to y′ ← rank0(Bv, y). Similarly, if the right child of v
returned y, we map it to y′′ ← rank1(Bv, y). If we have only y′ (y′′), we return y = y′ (y = y′′); if
we have both we return y = min(y′, y′′). The process takes O(log σ) time. When we arrive at the
root we have the next position y where a label in [α, β] occurs in S. We can then report all the
pairs (S[y + j], unmap(y)), for j = 0, 1, . . ., as long as unmap(y + j) = unmap(y) and S[y + j] ≤ β.
Once we have reported all the pairs corresponding to object unmap(y), we can obtain those of the
next objects by repeating the procedure from rel acc obj maj(α, β, unmap(y) + 1).
• lab num(α, β, x, y) in O(β−α+log σ) time. After mapping x and y to positions in S, we descend
in the wavelet tree to find all the leaves in [α, β] while remapping [x, y] appropriately. We count
one more label each time we arrive at a leaf, and we stop descending from an internal node if its
range [x, y] is empty.
• obj sel1(α, x, r) in O(log σ) time: This is a matter of selecting the r-th occurence of the label α
in S, after the position of the pair (α, x). The formula is unmap(selectα(S, r+obj rnk1(α, x−1))).

The overall result is stated in the next theorem and illustrated in Fig. 2.

Theorem 2. There is a representation for a binary relation B, of t pairs over [1, σ] × [1, n],
using t log σ + o(t) log σ + O(min(t, n log(t/n))) bits of space. The structure supports opera-
tions rel rnk(α, x), rel sel lab maj(α, r, x, y), rel sel obj maj(1, σ, x, r) (note the limitation),
rel acc obj maj(α, β, x), and obj sel1(α, x, r), in time O(log σ), plus rel sel obj maj(α, β, x, r)
in time O(min(log n, log r log(β − α + 1)) log σ), and lab num(α, β, x, y) in time O(β − α + log σ).
This yields the support for other operations via the reductions from Thm. 1.

Proof. The operations have been obtained throughout the section. For the space, B contains n 1s
out of n+ t, so a compressed representation [20] requires O(n log n+t

n) = O(min(t, n log(t/n))). The
wavelet tree for S[1, t] requires t log σ + o(t) log σ bits of space. ¤

Note that the particular case rel num(1, σ, x, y) can be answered in O(1) time using B’s succinct
encoding. In general the space result is incomparable with tH(B): if all the nσ pairs are related,

7

then tH0(S) = nσ log σ and H(B) = 0; but if all the pairs are within a row, then tH0(S) = 0 and
H(B) > 0. In the particular case where t ≤ n, t log σ ≤ tH(B) + O(t), while the wavelet tree for S
requires tH0(S) ≤ t log σ bits: this difference can be relevant depending on the distribution of pairs
across the rows.

5 Binary Relation Wavelet Trees (BRWT)

We propose now a special wavelet tree structure to represent binary relations. This wavelet tree
contains two bitmaps per level at each node v, Bl

v and Br
v . At the root, Bl

v[1, n] has the x-th bit
set to 1 iff there exists a pair of the form (α, x) for α ∈ [1, bσ/2c], and Br

v has the x-th bit set
to 1 iff there exists a pair of the form (α, x) for α ∈ [bσ/2c + 1, σ]. Left and right subtrees are
recursively built on the positions set to 1 in Bl

v and Br
v , respectively. The leaves (where no bitmap

is stored) correspond to individual rows of the relation. We store a bitmap B[1, n + t] recording
in unary the number of elements in each row. See Fig. 1. Let us define constant-time functions
lab(r) = 1 + rank0(B, select1(B, r)) and poslab(α) = rank1(B, select0(B,α)) on B.

Note that, because an object x may propagate both left and right, the sizes of the second-level
bitmaps may add up to more than n bits. Indeed, the last level contains t bits and represents all
the pairs sorted in row-major order.

The following operations can be carried out efficiently on this structure.
• rel num(α, β, x, y) in O(β−α + log σ) time. We project the interval [x, y] from the root to each
leaf in [α, β], adding up the resulting interval sizes at leaves. Of course we can stop earlier if the
interval becomes empty. Note that we can only count pairs at the leaves. In the case [x, y] = [1, n]
we can achieve O(1) time, as the answer is simply poslab(β) − poslab(α − 1). Note this allows
solving the restricted case rel rnk lab maj(1, n, α, z) in O(log σ) time.
• rel sel lab maj(α, r, 1, n) in O(log σ) time. Let r′ ← r + poslab(α− 1) and β ← lab(r′), thus
β is the row where the answer is. Now we start at position y = r′−poslab(β−1) in leaf β and walk
the wavelet tree upwards while mapping y ← select1(Bl

v, y) or y ← select1(Br
v , y), depending on

whether we are left or right child of our parent v, respectively. When we reach the root, the answer
is (β, y). Note we are only solving the particular case [x, y] = [1, n].
• rel acc lab maj(α, x, y) in O(log σ) time per pair output. Map [x, y] from the root to each
leaf in [α, σ], abandoning a path when [x, y] becomes empty. (Because left and right child cannot
become simultaneously empty, the total amount of work is proportional to the number of leaves that
contain pairs to report.) Now, for each leaf γ arrived at with interval [x′, y′], map each z′ ∈ [x′, y′]
up to the root, to discover the associated object z, and return (γ, z).
• rel acc obj maj(α, β, x) in O(log σ) time per pair output. Just as in Section 4, we cover
[α, β] with O(log σ) wavelet tree nodes v1, v2, . . . , and map x to xi at each such vi, all in O(log σ)
time. Now, in the way back of this recursion, we obtain the next y ≥ x in the root associated
to some label in [α, β], by following a process analogous to that for rel acc obj maj in Section 4.
Finally, we start from position y′ = y at the root v and report all the pairs related to y: Recursively,
we descend left if Bl

v[y
′] = 1, and then right if Br

v [y
′] = 1, remapping y′ appropriately at each step,

and keeping within the interval [α, β]. Upon reaching each leaf γ we report (γ, y). Then we continue
from rel acc obj maj(α, β, y + 1).
• lab num(α, β, x, y) in O(β − α + log σ) time. Map [x, y] from the root to each leaf in [α, β],
adding one per leaf where the interval is nonempty. Recursion can stop when [x, y] becomes empty.
• obj sel1(α, x, r) in O(log σ) time. Map x− 1 from the root to x′ in leaf α, then walk upwards
the path from x′ + r to the root and report the position obtained.

8

lab_sel1 lab_acc obj_acc obj_min obj_sel1

obj_numlab_num rel_rnk

lab_rnk

lab_rnk1 obj_rnk1

obj_rnkrel_rnk_lab_maj

rel_sel_lab_maj

rel_acc_lab_maj

rel_min_lab_maj rel_min_obj_maj

rel_acc_obj_maj

rel_sel_obj_maj

rel_rnk_obj_maj

rel_num

lab_min

lab_sel obj_sel

Fig. 3. Results achieved by the binary-relation wavelet tree. The nomenclature is as for Fig. 2.

We have obtained the following theorem, illustrated in Fig. 3 (we ignore the particular cases).

Theorem 3. There is a representation for a binary relation B, of t pairs over [1, σ] × [1, n], us-
ing log(1 +

√
2)tH(B) + o(tH(B)) + O(t + n) bits of space. The structure supports operations

rel num(α, β, 1, n), rel rnk lab maj(1, n, α, z), rel sel lab maj(α, r, 1, n) (note the limitations of
these three), rel acc lab maj(α, x, y), rel acc obj maj(α, β, x), and obj sel1(α, x, y), in time
O(log σ), plus rel num(α, β, x, y) and lab num(α, β, x, y) in time O(β − α + log σ). This yields the
support for other operations via the reductions from Thm. 1.

Proof. The operations have been obtained throughout the section. For the space, B contains n 1s
out of n+ t, so a compressed representation [20] requires O(n log n+t

n) = O(min(t, n log(t/n))). The
space of the wavelet tree can be counted as follows. Except for the 2n bits in the root, each other
bit is induced by the presence of a pair. Each pair has a unique representative bit in a leaf, and
also induces the presence of bits up to the root. Yet those leaf-to-root paths get merged, so that
not all those bits are different. Consider an element x related to tx labels. It induces tx bits at tx
leaves, and their paths of bits towards the single x at the root. At worst, all the O(tx) bits up to
level log tx are created for these elements, and from there on all the tx paths are different, adding
up a total of O(tx)+ tx log σ

tx
. Adding over all x we get O(t)+

∑
x tx log σ

tx
. This is maximized when

tx = t/n for all x, yielding O(t) + t log σn
t = tH(B) + O(t) bits.

Instead of representing two bitmaps (which would multiply the above value by 2), we can
represent a single sequence Bv with the possible values of the two bits at each position, 00, 01,
10, 11. Only at the root 00 is possible. Except for those 2n bits, we can represent the sequence
over an alphabet of size 3 using the representation from Ferragina et al. [14], to achieve at worst
(log 3)tH(B)+o(tH(B)) bits for this part while retaining constant-time rank and select over each
Bl

v and Br
v . (To achieve this, we maintain the directories for the original bitmaps, of sublinear-size.)

To improve the constant log 3 to log(1 +
√

2), we consider that the representation by Ferragina
et al. actually achieves |Bv|H0(Bv) bits. We call `x = |Bv| ≤ tx and Hx = |Bv|H0(Bv). After
level log tx, there is space to put all the tx bits separately, thus using only 01 and 10 symbols we
achieve `x = tx and Hx = tx bits. Yet, this is not the worst that can happen. Hx can be increased
by collapsing some 01’s and 10’s into 11’s (thus reducing `x). Note that collapsing further 01’s or
10’s or 11’s with 11’s effectively removes one symbol from Bv, which cannot increase Hx, thus we
do not consider these. Assume the tx bits are partitioned into t01 01’s, t10 10’s, and t11 11’s, so
that tx = t01 + t10 + 2t11, `x = t01 + t10 + t11, and Hx = t01 log `x

t01
+ t10 log `x

t10
+ t11 log `x

t11
. As

t11 = (tx − t01 − t10)/2, the maximum of Hx as a function of t01 and t10 yields the worst case at

9

t01 = t10 =
√

2
4 tx, so t11 = (1

2 −
√

2
4)tx and `x = (1

2 +
√

2
4)tx, where Hx = log(1 +

√
2)tx bits. This

can be achieved separately at each level. Using the same distribution of 01’s, 10’s, and 11’s for all
x we add up to (1 +

√
2)t log σn

t + O(t) bits. ¤

Note that this is a factor of log(1 +
√

2) ≈ 1.272 away of the entropy of B. On the other hand,
it is actually better if the tx do not distribute uniformly.

6 Exploiting Regularities

Real-life binary relations exhibit regularities that permit compressing them far more than to tH(B)
bits. For example, social networks, Web graphs, and inverted indexes follow well-known properties
such as clustering of the matrix, uneven distribution of 1s across rows and/or columns, similarity
across rows and/or columns, etc. [6, 1, 9].

The space tH0(S) achieved in Thm. 2 can indeed be improved upon certain regularities. The
wavelet tree of S, when bitmaps are compressed with local encoding methods [20], achieves locality
in the entropy [18]. That is, if S = S1S2 . . . Sn then the space achieved is

∑
x |Sx|H0(Sx)+O(n log t).

In particular, if Sx corresponds to the labels related to object x, then the space will benefit from
clustering in the binary relation: If each object is related only to a small subset of labels, then
its Sx will have a small alphabet and thus a small entropy. Alternatively, similar columns (albeit
not rows) induce copies in string S. This is not captured by the zero-order entropy, but it is by
grammar compression methods. Some have been exploited for graph compression [12].

The space formula in Thm. 3 can also be refined: If some objects are related to many labels and
others to few, then

∑
x tx log σ

tx
can be smaller than tH(B). This second approach can be easily

modified to exploit several other regularities. Imagine we represent bitmaps Bl
v and Br

v separately,
but instead of Br

v we store B′
v = Bl

v xor Br
v , while keeping the original sublinear structures for rank

and select. Any access to O(log n) contiguous bits in Br
v is achieved in constant time under the

RAM model by xor-ing Bl
v and B′

v.
The following regularities turn into a highly compressible B′

v, that is, one with few or many
0’s: (1) Row-wise similarities between nearby rows, extremely common on Web graphs [6], yield an
almost-all-zero B′

v; (2) (sub)relations that are actually permutations or strings, that is, with exactly
one 1 per column, yield an almost-all-one B′

v. This second kind of (sub)relations are common in
relational databases, for example when objects or labels are primary keys in the table.

As there exists no widely agreed-upon notion of entropy for binary relations that goes further
than log

(
nσ
t

)
, we show now some experiments on the performance of these representations on some

real-life relations. We choose instances of three types of binary relations: (1) Web graphs, (2) social
networks, (3) inverted indexes. In a Web graph, pages are nodes and hyperlinks are edges, thus the
relation is between nodes. In a social network, nodes are actors such as persons, and edges represent
interactions like friendship. In an inverted index, words are related to the documents where they
appear. All these are applications where compressed representations are relevant to manipulate
very large binary relations.

For (1), we downloaded two crawls from the WebGraph project [6], http://law.dsi.unimi.it.
Crawl EU (2005) contains n = σ = 862, 664 nodes and t = 19, 235, 140 edges. Crawl Indochina
(2004) contains n = σ = 7, 414, 866 nodes and t = 194, 109, 311 edges. For (2), we downloaded a
coauthorship graph from DBLP (http://dblp.uni-trier.de/xml), which is a symmetric relation,
and kept the upper triangle of the symmetric matrix (this is reasonable because we are able to access

10

B H(B) Gap String BRWT +xor Best Ad-Hoc

EU 16.68 5.52 12.57 7.72 6.87 4.38 (WebGraph)
Indochina 19.55 3.12 12.81 4.07 3.93 1.47 (WebGraph)
DBLP 18.52 6.18 15.97 13.54 11.67 21.9 (WebGraph)
FT 12.45 3.54 13.91 9.32 7.85 6.20 (Rice)

Table 2. Entropy and space consumption, in bits per pair, of different binary relation representations over relations
from different applications. Ad-hoc representations have limited functionality.

the relation in both directions). The result contains n = σ = 452, 477 authors and t = 1, 481, 877
coauthorships. For (3), we consider the relation FT, the inverted index for all of the Financial
Times collections from trec-4 (http://trec.nist.gov), converting the terms to lowercase. It
relates σ = 502, 259 terms with n = 210, 139 documents, using t = 51, 290, 320 pairs.

Table 2 shows, for these relations B, their entropy H(B), their gap complexity (defined below),
the space of the string representation of Section 4, the space of the BRWT representation of
Section 5, and that using the xor-improvement described above. All spaces are measured in bits
per pair of the relation.

The general entropy does not consider the regularities of the binary relation exploited by our
data structures. The gap complexity is the sum of the logarithms of the consecutive differences
of objects associated to each label. It is upper bounded by the entropy and gives a more refined
measure that accounts for clustering in the matrix. The string representation of Section 4 already
improves upon the entropy, but not much. Although it has more functionality, this representation
requires significantly more space than the BRWT, which takes better advantage of regularities.
Note, however, that for example Web graphs are much more amenable than the social network to
exploiting such regularities, while the inverted index is in between. The xor improvement has a
noticeable additional effect on the BRWT space, reducing it by about 5%–15%. Particularly on the
Web graphs, this latter variant becomes close to the gap complexity.

The last column of the table shows the compression achieved by the best ad-hoc alternatives,
which support a very restricted set of operations in sublinear time (namely, extracting all the
labels associated to an object). The results for crawls Indochina and EU are the best reported in
the WebGraph Project page, and they even break the gap complexity. For FT we measured the space
required by Rice encoding of the differential inverted lists, plus pointers from the vocabulary to
the sequence. This state-of-the-art in inverted indexes [21]. Finally, in absence of available software
specifically targeted at compressing social networks, we tried WebGraph v. 1.7 (default parameters)
on DBLP. As this is an undirected graph, we duplicate each edge {i, j} as (i, j) and (j, i). This is
not necessary on our representations, as we can extract direct and reverse neighbors. As it can be
seen, our representations are by far the best in this case where no specific compressors exist.

7 Conclusions

Motivated by their many applications, we have proposed a rich set of primitives of interest in
applications of binary relation data structures. We proposed/extended representations that achieve
compressed space and logarithmic time for many of those operations, yet others remain a challenge.
We have experimentally shown how these compression methods perform reasonably well on some
real-life binary relations. The times we have achieved for most operations is O(log σ), where σ is
the number of labels. These can probably be improved to O(log σ

log log t) by using recent techniques on

11

multiary wavelet trees [7], which would reach the best results achieved with wavelet trees for much
simpler problems [14]. Our representations allow dynamic variants, where new pairs and/or objects
can be inserted in/deleted from the waveleet trees [18, 11]. Adding/removing labels, instead, is an
open challenge, as it alters the wavelet tree shape. The space of our structures is close but does not
reach the entropy of the binary relation, H(B), in the worst theoretical case. An ambitious goal is
to support all the operations we have defined in logarithmic time and within H(B)(1+o(1)) bits of
space. A related issue is to define a finer notion of binary relation entropy that captures regularities
that arise in real life, so as to express the space we achieve in terms of those finer measures.

Finally, there is no reason why our list of operations should be exclusive. For example, deter-
mining whether a pair is related in the transitive closure of B is relevant for many applications (e.g.
ancestorship in trees, paths in graphs). Alternatively one could enrich the data itself, for exam-
ple associating a tag to each object/label pair, so that one can not only ask for the tag of a pair
but also find pairs with some tag range within a range of the relation, and so on. This extension
has already found applications, e.g. [13]. Another extension is n-ary relations, which would more
naturally capture joins in the relational model.

References

1. R. Baeza-Yates and G. Navarro. Modeling text databases. In Recent Advances in Applied Probability, pages 1–25.
Springer, 2004.

2. J. Barbay, L. C. Aleardi, M. He, and J. I. Munro. Succinct representation of labeled graphs. In ISAAC, LNCS
2906, pages 575–584, 2007.

3. J. Barbay, A. Golynski, I. Munro, and S. Srinivasa Rao. Adaptive searching in succinctly encoded binary relations
and tree-structured documents. Theoretical Computer Science, 387(3):284–297, 2007.

4. J. Barbay, M. He, I. Munro, and S. Srinivasa Rao. Succinct indexes for strings, binary relations and multi-labeled
trees. In SODA, pages 680–689, 2007.

5. J. Barbay and G. Navarro. Compressed representations of permutations, and applications. In STACS, pages
111–122, 2009.

6. P. Boldi and S. Vigna. The WebGraph framework I: compression techniques. In WWW, pages 595–602, 2004.
7. P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search structures on a grid with

applications to text indexing. In WADS, 2009. To appear.
8. Y.-F. Chien, W.-K. Hon, R. Shah, and J. Vitter. Geometric Burrows-Wheeler transform: Linking range searching

and text indexing. In DCC, pages 252–261, 2008.
9. F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan. On compressing social

networks. In KDD, pages 219–228, 2009.
10. D. Clark. Compact Pat Trees. PhD thesis, Univ. of Waterloo, Canada, 1996.
11. F. Claude. Compressed data structures for Web graphs. Master’s thesis, University of Chile, 2008. Advisor: G.

Navarro.
12. F. Claude and G. Navarro. A fast and compact Web graph representation. In SPIRE, LNCS 4726, pages 105–116,

2007.
13. F. Claude and G. Navarro. Self-indexed text compression using straight-line programs. In MFCS, LNCS 5734,

pages 235–246, 2009.
14. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text

indexes. ACM Transactions on Algorithms (TALG), 3(2):article 20, 2007.
15. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In SODA, pages 841–850, 2003.
16. J. Kärkkäinen. Repetition-Based Text Indexing. PhD thesis, Univ. of Helsinki, Finland, 1999.
17. V. Mäkinen and G. Navarro. Rank and select revisited and extended. Theoretical Computer Science, 387(3):332–

347, 2007.
18. V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text indexes. ACM Transactions

on Algorithms, 4(3):article 32, 2008. 38 pages.
19. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms, 2(1):87–114, 2004.
20. R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applications to encoding k-ary

trees and multisets. In SODA, pages 233–242, 2002.
21. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers, 2nd edition, 1999.

12

