
Oróstica et al. 
Journal of Translational Medicine          (2022) 20:373  
https://doi.org/10.1186/s12967-022-03572-8

RESEARCH

Total mutational load and clinical features 
as predictors of the metastatic status in lung 
adenocarcinoma and squamous cell carcinoma 
patients
Karen Y. Oróstica7, Juan Saez‑Hidalgo1,2, Pamela R. de Santiago3, Solange Rivas4,5, Sebastian Contreras1,6, 
Gonzalo Navarro1,2, Juan A. Asenjo1, Álvaro Olivera‑Nappa1* and Ricardo Armisén5*   

Abstract 

Background: Recently, extensive cancer genomic studies have revealed mutational and clinical data of large cohorts 
of cancer patients. For example, the Pan‑Lung Cancer 2016 dataset (part of The Cancer Genome Atlas project), sum‑
marises the mutational and clinical profiles of different subtypes of Lung Cancer (LC). Mutational and clinical signa‑
tures have been used independently for tumour typification and prediction of metastasis in LC patients. Is it then 
possible to achieve better typifications and predictions when combining both data streams?

Methods: In a cohort of 1144 Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LSCC) patients, 
we studied the number of missense mutations (hereafter, the Total Mutational Load TML) and distribution of clinical 
variables, for different classes of patients. Using the TML and different sets of clinical variables (tumour stage, age, sex, 
smoking status, and packs of cigarettes smoked per year), we built Random Forest classification models that calculate 
the likelihood of developing metastasis.

Results: We found that LC patients different in age, smoking status, and tumour type had significantly different mean 
TMLs. Although TML was an informative feature, its effect was secondary to the "tumour stage" feature. However, its 
contribution to the classification is not redundant with the latter; models trained using both TML and tumour stage 
performed better than models trained using only one of these variables. We found that models trained in the entire 
dataset (i.e., without using dimensionality reduction techniques) and without resampling achieved the highest perfor‑
mance, with an F1 score of 0.64 (95%CrI [0.62, 0.66]).

Conclusions: Clinical variables and TML should be considered together when assessing the likelihood of LC patients 
progressing to metastatic states, as the information these encode is not redundant. Altogether, we provide new evi‑
dence of the need for comprehensive diagnostic tools for metastasis.
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Background
Lung cancer (LC) is the most common cause of cancer-
related mortality worldwide, responsible for more than 
1.4 million deaths per year [1]. The two major subtypes 
of LC, lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LSCC), are classified as non-small cell 
lung cancers (NSCLC) [2]. Despite the common classifi-
cation, these NSCLCs are likely to have drastically differ-
ent clinical outcomes; LSCC and LUAD patients have an 
overall survival rate of 18% and 65%, respectively, when 
treated with tailored therapy [3, 4]. However, patients can 
receive tailored therapy only after typification, i.e., iden-
tifying what kind of LC they have. Despite advances in 
genomic characterization, associating genomic informa-
tion (as, e.g., mutational profiles) with the clinical out-
comes in NSCLCs remains an open challenge, given its 
complexity and heterogeneity [5].

Together with the mutational signatures characteristic 
of each LC subtype, certain clinical variables can help the 
typification of a tumour. For example, smoking has been 
recognised as the leading risk factor for LC, especially 
for the LUAD subtype [6, 7]. Specific genes are affected 
in these patients depending on whether they are smok-
ers or not. For example, non-smoker LUAD patients 
typically present driver mutations EGFR, KRAS, TP53, 
and fusions in ROS, EML4-ALK, and RET genes [8]. On 
the other hand, smoker LUAD patients commonly have 
KRAS mutations [9]. The tumour mutational burden 
(TMB), defined as the total number of somatic muta-
tions per coding area of a tumour genome, encodes some 
of the information above. As tumours with high TMB 
are likely to express more neoantigens that may sensitise 
them to immunotherapy [10, 11], TMB has been used as 
a predictor of immunotherapy response and effectiveness 
across various tumour types [12, 13]. Therefore, includ-
ing the number of mutations could further characterise 
tumour progression in NSCLCs.

Recently, large-scale sequencing techniques have led 
to the accumulation of genomic information in cancer 
research. This comprehensive mapping of the mutational 
signatures of tumours has allowed researchers to use 
machine learning models to solve classification problems 
or predict relevant clinical outcomes. One of these clini-
cal outcomes is whether a patient will develop metasta-
sis, which is the leading cause of death in cancer patients 
[14]. Therefore, finding which factors (among clinical and 
genomic) are most informative in these models—and 
thus are better predictors for metastasis development—is 

crucial for identifying risks to develop metastasis in the 
early stages of cancer. Finally, this information would 
support medical practitioners adapt their therapeutic 
strategies when treating LC patients.

In this study, we put forward a new variable to quan-
tify the accumulation of missense mutations in the whole 
exome: the Total Mutational Load (TML). Through the 
TML, we account for potential effects of the accumula-
tion of missense mutations in metastasis development, 
as these may impair tumour-suppressing proteins or pro-
mote the development of proto-oncogenes, thus favour-
ing cancer cells proliferation [15]. First, we studied the 
distribution of the TML and clinical variables across 
patients with different LCs and clinical categories. Then, 
using Random Forest (RF) machine learning models, we 
evaluated how informative the TML and other clinical 
variables (e.g., age, tumour stage, and smoking status) 
were to classify metastasis development in 1144 Pan-
Lung Cancer samples. Finally, we compared different 
data preprocessing and processing alternatives to iden-
tify the one that produces the best-performing models. 
Altogether, we provide new insights on the factors that 
could allow an early identification of patients at risk of 
developing metastasis, and improve understanding of the 
relationship between genomics and clinical variables in 
NSCLC patients.

Methods
Dataset and data preprocessing
Clinical and mutational data from the Pan-Lung Cancer 
2016 dataset was obtained from The Cancer Genome 
Atlas (TCGA) repository [16, 17]. This dataset contains 
1144 LUAD and LSCC patients (“examples”, from a 
data-analytic perspective, Table 1). Protocols for patient 
recruitment, tumour sampling, pathological analysis, 
DNA extraction, and NGS library generation follow the 
ABSOLUTE methodology, are carefully described in [18]. 
In summary, patients and samples were obtained from 
multiple hospitals participating in TCGA. Sample pro-
cessing and pathological assessment were done centrally 
at the TCGA Biospecimen Core Resource, following the 
strict TCGA protocol. A single kit was used to prepare 
all the NGS libraries, the Agilent SureSelect Human All 
Exon 50 Mb kit, followed by Illumina sequencing (paired-
end). Finally, the bioinformatic analysis was standardised, 
and various sequencing quality controls were applied to 
avoid bias and batch effects.

Keywords: Random Forest, Smoking, Clinical variables, Lung Adenocarcinoma (LUAD), Lung Squamous Cell 
Carcinoma (LSCC) and Metastasis



Page 3 of 11Oróstica et al. Journal of Translational Medicine          (2022) 20:373  

For the statistical analysis, we applied a filter to work 
only with those examples where all values for the clinical 
features we evaluated were reported (N = 948). Then, to 
predict metastasis status (M stage), we worked only with 
examples where this variable was reported (N = 728).

Determination of total mutational load (TML)
We filtered mutational data to consider only missense 
mutations and created an m x n mutation count matrix, 

where m = 1144 and n = 17305, respectively, account for 
the number of patients (examples) and genes analysed. 
Each entry of the count matrix Vi,j indicates the number 
of missense mutations in the j’th gene observed in the i’th 
patient. Then, we used the mutCountMatrix() function 
from the Maftools R package [16] to obtain the number 
of missense mutations. As the number of genes was much 
larger than the number of examples, we filtered out genes 
where we observed a near-zero variance within the cohort, 
using the VarianceThreshold() function of the sci-kit learn 
python package [17] with a threshold of 0.05. We then 
computed the TML for each patient, given by Eq. 1:

where TML: Total mutational load.

Statistical analysis
Association between TML and clinical variables
For the statistical analysis, we considered patients’ TML 
and the following clinical variables: sex, tumour stage, 
age, M stage, number of cigarette packages smoked 
per year, and smoking history. Since TML is an over-
dispersed count variable, we modelled it as a negative 
binomial random variable and used a negative binomial 
regression (NBR) explanatory model. Then, we fitted 
model parameters to the clinical variables mentioned 
above. Next, we applied a backward stepwise model 
selection over the NBR to determine the effect of each 
clinical variable on the TML. For this purpose, we used 
the drop1() function with a likelihood-ratio test (LRT), 
selecting predictors using a statistical significance of 
0.05. Finally, we applied the Student’s t-test to determine 
whether the mean TML is equal across and within groups 
of patients filtered by clinical categories.

Reclassification of patients using the regional lymph node 
parameter
The M stage indicates whether cancer cells have spread 
from the primary tumour to other parts of the body. We 
defined three categories for this feature: M0 (cancer has 
not spread), M1 (cancer has spread), and MX (the pathol-
ogist could not determine whether cancer has spread). 
We reclassified patients into two groups: reclassified 
localised cancer (RM0) and reclassified advanced cancer 
(RM1). Each group of patients P results by combining the 
following disjoint categories: (Eq. 2).

where New groups are defined as reclassified localised 
cancer (RM0) and reclassified advanced cancer (RM1) 

(1)TMLi =
∑M

j
Vi,j

(2)
PRM0 = PM0 ∪ PMx,N0

PRM1 = PM1 ∪ PMx,N1 ∪ PMx,N2 ∪ PMx,N3

Table 1 Distribution of clinical features in 1144 Pan‑Lung Cancer 
samples

Clinical features Entire 
cohort 
N = 1144

%

Metastasis class

 M0 731 63.9%

 M1 22 1.9%

 MX 210 18.4%

Cancer type

 Lung Adenocarcinoma 660 57.7%

 Lung Squamous Cell Carcinoma 484 42.3%

Tumour stage

 Stage I 8 0.7%

 Stage IA 246 21.5%

 Stage IB 321 28.1%

 Stage II 4 0.3%

 Stage IIA 129 11.3%

 Stage IIB 174 15.2%

 Stage III 3 0.3%

 Stage IIIA 155 13.5%

 Stage IIIB 34 3.0%

 Stage IV 8 3.3%

Age range

  <  = 60 years 61 29.5%

  > 60 years 146 70.5%

Gender

 Female 468 40.9%

 Male 673 58.8%

N stage

 N0 624 54.5%

 N1 221 19.3%

 N2 113 9.9%

 NX 16 1.4%

Smoking status

 Current reformed smoker for < or = 15 years 407 35.6%

 Current reformed smoker for > 15 years 212 18.5%

 Current reformed smoker, duration not speci‑
fied

86 7.5%

 Current smoker 271 23.7%

 Lifelong non‑smoker 111 9.7%
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based on metastasis status and regional lymph nodes 
parameter (N).

The RM1 group was defined based on the regional 
lymph nodes parameter (N), which indicates whether 
cancer has spread to surrounding lymph nodes. N0 indi-
cates no spreading to lymph nodes, while N1, N2, and 
N3 show that cancer has reached the lymph nodes in dif-
ferent degrees. Here, we hypothesise that cancer spread 
to lymph nodes is a precursor to developing metastasis. 
Consistently, it is unlikely that a patient in the N0 class 
could have any metastasis. Therefore, we used RM1 as a 
positive metastasis class and RM0 as a negative one for 
training and comparing our classification models.

Random forest models
To identify the best predictors of metastasis status in 
patients with LUAD and LSCC, we built four Random 
Forest (RF) classification models. In these models, we use 
a combination of TML and clinical features to determine 
the metastasis status [19]. To assess which of these vari-
ables allowed a better prediction of the metastasis status, 
we used different combinations of TML and clinical vari-
ables as follows:

(1) RF Model 1: MS ∼ Clinical variables + TML
(2) RF Model 2: MS ∼ Clinical variables (excl. Tumour 

stage) + TML
(3) RF Model 3: MS ∼ Clinical variables
(4) RF Model 4: MS ∼ Clinical variables (excl. Tumour 

stage)

Each model was benchmarked as described in the next 
section.

Benchmarking of the classification models
Our model benchmarking analysis consisted of four 
stages (Fig.  1). In the preprocessing stage (01), we 
checked the data for consistency and encoded categorical 
variables (i.e., representing them numerically) using the 
One-Hot Encoding method [20]. We also standardised 
the TML around zero, subtracting the mean and dividing 
by the sample standard deviation. We then merged both 
datasets (standardised TML and encoded clinical vari-
ables) into the final input dataset. Before that, however, 
we generated different subsets to assess how informative 
each of the variables was. In an on–off basis, we studied 
the effects of i) including or not the tumour stage, and ii) 
including or not the TML (i.e., four possibilities).

Second, we performed a classification stage (02). Due 
to the high number of predictors (i.e., inputs to the clas-
sification model) in the input dataset for RF models 1 
and 2, we performed a PCA to reduce its dimensional-
ity. For this, after preprocessing, we apply a PCA to each 
input dataset and preserve only the 100 most informa-
tive principal components. These were the effective input 
datasets for the model evaluation, training, and assess-
ment. Noteworthy, PCA is applied on the whole input 
dataset; If the calculation was performed independently 
on the training or validation sets, the resulting principal 
components would be biased to the data selection and 
the particular partition. Then, to prevent overfitting and 

Fig. 1 Benchmarking stages. The proposed benchmarking for model comparison has four main stages. First (stage 01), we preprocess the dataset 
and apply different classification and validation strategies to generate an input dataset. Second (stage 02), we train Random Forest models using 
different subsets of the input dataset, aiming to assess the relative importance of each data stream. In this stage, we also evaluate whether applying 
dimensionality reduction techniques (PCA) and different resampling schemes affects model performance. We repeat the experiment on 100 
different partitions (training and validation) of the input dataset, obtaining performance distributions instead of single values. Third (stage 03), we 
analyse the performance distributions and error sources to assess which strategies perform better under each condition. Finally (stage 04), we 
selected the best model for the dataset studied and identified the feature that most contributed to the classification
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class imbalance when splitting the dataset between train-
ing (70%) and validation (30%), we tested three different 
sampling methods: oversampling, undersampling, and no 
resampling [21]. We applied this to both datasets (with 
PCA and without PCA) and used the resulting training 

sets to generate our models. As the splitting between the 
training and validation datasets was random, the 70/30 
partition was repeated 100 times, using different random 
seeds, thus generating 100 different models (per dataset 
and sampling method).

Fig. 2 Age, smoking history, and cancer type affect the TML in all patients. (A) TML by age‑range. > 60 years old, n = 713, ≦ 60 years old, n = 208. 
(B) TML by smoking history. Lifelong non‑smoker, n = 83, ≦ 30 cigarette packs smoking, n = 235, > 30cigarrette packs, n = 491. (C, D) Statistically 
meaningful differences between the median of the TML distributions were found only for LUAD patients, hinting to LSCC having other origins 
than smoking. Current smokers have the highest TML for both age groups, and, within that group, young patients seem to have a higher TML than 
older patients. LUAD: lung adenocarcinoma; LSCC: lung squamous cell carcinoma. TML: Total Mutational Load; ***** p < 0.0001; ** p < 0.001; NS 
non‑significant



Page 6 of 11Oróstica et al. Journal of Translational Medicine          (2022) 20:373 

The Meta-analysis stage (03) consisted on using the val-
idation dataset to obtain performance metrics (Accuracy, 
Recall, Precision and the F1 score) and assess the classi-
fication power of each of the generated models. Perfor-
mance metrics were defined as follows:

Accuracy = (TP + TN)
/

(TP + FP + TN + FN)

Recall = TP
/

(TP + FN)

Precision = TP
/

(TP + FP)

where: TP: True positive rate, TN: True negative rate,FP: 
False positive rate, FN: False negative rate.

As we had 100 different validation datasets, instead of a 
single value, we obtained a distribution of performance met-
rics and used them to assess classification performance and 
uncertainty. We compared the models generated using dif-
ferent datasets and sampling criteria, selecting those with the 
lowest false positive rate and the highest true positive rate. 
Finally, we assess which of the strategies for preprocessing 
(i.e., with or without PCA) and resampling (without, over-
sampling, or undersampling) produced the best-performing 
models, and rank the importance of the different features 
contributing to achieve the classification of metastatic status 
(04). The above is critical, as by identifying the most informa-
tive features in the classification of patients with known 
metastatic status, we can assess the risk of new patients 
developing metastasis.

Results
Relationship between the TML and clinical variables
Patients belonging to different categories of age, packs 
of cigarettes smoked per year, and cancer type had sig-
nificantly different mean TMLs (cf. Figure 2 and Table 2). 
When we compared the TML of patients in different age 
ranges, we found younger LC patients (≦ 60 years old) to 
have higher TMLs compared to older patients (51.7 vs 
66.0) (Fig. 2A). Also, smoker patients who have smoked 
more than 30 packs of cigarettes annually have, on aver-
age, a higher TML than those who have smoked less than 
30 packs per year (respectively 60.1 and 55) and those 
that are lifelong non-smokers (21.0) (Fig. 2B). As is shown 
in Fig. 2, the TML is affected by cigarette consumption in 
LUAD, as lifelong non-smokers have a significantly lower 
TML than current and reformed smokers (Fig. 3).

When we evaluate the mean TML by cancer subtype, 
considering the age ranges and types of smokers, we find 
that for LUAD patients, the mean TMLs were signifi-
cantly different, both for those under and over 60 years 
independently. Also, the current smokers had the highest 
TML, while never-smokers had a lower mean TML. An 
interesting finding was that current young smokers have 
a higher mean TML than patients older than 60  years 
(Fig.  2C). However, for LSCC patients, we do not see 
these significant differences. The TML means are simi-
lar between age and types of smokers groups (Fig.  2D). 
Considering the cancer type, we found that the TML was 
higher in patients with LUAD than in patients with LSCC 
(57.8 vs 52.4) (Fig.  3). Interestingly, we found that ciga-
rette consumption does not impact the TML in LSCC 
patients (Fig. 3).

F1 = 2 ∗ ((Precision ∗ Recall)
/

(Precision+ Recall)Table 2 Association between clinical data and TML

* p < 0.1
** p < 0.01
*** p < 0.001

Clinical features LRT P-value

Sex 0.2670 0.09

Tumour stage 5.5828 0.5512

Age range 5.6112 0.0010**

M stage 5.6824 0.4351

Cigarette packs per year 3.8632 0.0477740*

Smoking history 2.4781 0.3604040

Cancer type 9.4596 0.0008893***

Fig. 3 Smoking history affects the TML in LUAD but not in LSCC 
patients. LUAD patients: Current reformed smoker, n = 287, current 
smoker, n = 110, and lifelong non‑smoker, n = 66. LSCC patients: 
Current reformed smoker, n = 321, current smoker, n = 124, and 
lifelong non‑smoker, n = 17. TML: Total Mutational Load; LUAD: lung 
adenocarcinoma; LSCC: lung squamous cell carcinoma
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Reclassification of patients using cancer spread to lymph 
nodes
As described in Methods, we reclassified the patients 
into two groups, RM0 (n = 880) and RM1 (n = 87), using 
the regional lymph nodes parameter (N), which indi-
cates whether cancer has spread to surrounding lymph 
nodes. Figure  4 shows the results of the reclassification 
across cancer stages. The I, IA, and IB stages do not 
have patients classified as RM1, while IIA, IIB, III, IIIA, 
and IIIB stages have a low proportion of RM1 patients. 
Moreover, most patients in stage IV were recategorised 
to RM1, implying a specific relationship between these 
variables. Despite this reclassification that considers the 
spread of cancer to lymph nodes, there is still a clear class 
imbalance in the dataset.

Classification of patients using RF models
We compared the performance metrics reached by RF 
classification models for the RM0 (localised cancer) and 
RM1 (metastasis) classes. In Fig. 5A, we show all models’ 
Precision and Recall considering the preprocessing and 
validation methods applied. While predictions for RM0 
were accurate, those for RM1 were poor and erratic. We 
used the Precision and Recall metrics to select the best 
model, selecting those with the highest values, i.e., in the 
upper right corner of Fig. 5A.

Models combining clinical variables and TML achieved 
the highest performance metrics. Moreover, these mod-
els applied to datasets without PCA perform better in 
Recall and Precision, except when metrics are substan-
tially low (cf. Figure 5A). Models trained using both TML 
and clinical variables (including tumour stage), without 
using PCA nor resampling, were the best-performing 
ones (Fig. 5A, B) with an F1 value of 0.64 (95%CrI [0.62, 
0.66]). We summarise performance metrics for all other 
models in Table  3. While clinical variables, in general, 
seem to be good predictors of metastasic status, the 
tumour stage is the decisive component to obtain these 
results (Fig. 5C).

Discussion
In this study, we first analysed the association between 
the number of missense mutations, i.e., the Total Muta-
tional Load (TML), and clinical variables in a cohort of 
1144 LUAD and LSCC patients. Then, we used these 
results to understand the metastasis status classification 
models using a benchmarking strategy based on Random 
Forest (RF) models.

Regarding clinical parameters and TML, we found 
that age, smoking history, and cancer type are sig-
nificantly associated with the TML. In other words, 
patients belonging to different categories in these clini-
cal variables had significantly different mean TMLs. 

Fig. 4 Reclassification of the metastatic status of Pan‑Lung cancer patients using cancer spreading to lymph nodes. Distribution of RM0 and RM1 
groups across tumour stages
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Younger patients (≤ 60  years old) showed a higher 
TML than older patients (> 60  years old), while life-
long non-smokers had lower TMLs than current smok-
ers. When having a closer look, we find among LUAD 
patients that young current smokers have higher TMLs 

than old current smokers (cf. Figure  2C, D). Thus, we 
analysed the dataset to assess whether younger patients 
in our cohort were heavier smokers than older ones. 
We found no significant difference between the num-
ber of packs of cigarettes smoked per year between age 
groups in LUAD patients. However, for LSCC patients, 

Fig. 5 Random Forest models assessment. (A) Precision and Recall for 100 realisations of the three RF models, with their 95% confidence intervals 
and medians. Marker shape accounts for the model evaluated (i.e., trained using these features and subsets thereof ), while colours represent the 
resampling method used. Line opacity stands for whether the data was subject to a PCA (dark lines) or not (transparent lines). (B) F1 score for 100 
realisations of the three RF models, with medians and 95% confidence intervals. (C) Differential contribution of TML and clinical features to model’s 
predictive performance (model 1, without PCA or resampling) for the 100 realisations, with medians and 95% confidence intervals

Table 3 F1 score of Random Forest classification models

No PCA PCA

Oversample Undersample No resample Oversample Undersample No resample

Clinical Features + TML 0.59 [0.55, 0.63] 0.32 [0.28, 0.36] 0.64 [0.62, 0.66] 0.55 [0.51, 0.59] 0.32 [0.27, 0.37] 0.61 [0.58, 0.64]

Clinical Features 0.49 [0.45, 0.52] 0.32 [0.27, 0.36] 0.59 [0.56, 0.63] 0.47 [0.44, 0.51] 0.32 [0.28, 0.36] 0.57 [0.52, 0.61]

Clinical Features (excl. tumour stage) + TML 0.07 [0.00, 0.11] 0.12 [0.09, 0.14] 0.00 [0.00, 0.04] 0.03 [0.00, 0.08] 0.12 [0.09, 0.14] 0.04 [0.00, 0.07]

Clinical Features (excl. tumour stage) 0.13 [0.08, 0.16] 0.13 [0.09, 0.16] 0.18 [0.11, 0.21] 0.13 [0.09, 0.17] 0.13 [0.09, 0.16] 0.18 [0.09, 0.23]
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older patients have a higher consumption of cigarettes 
(p = 0.0296) (Additional file 1: Fig. S1). The above sug-
gests that there might be other variables than solely 
smoking habits and the number of cigarettes necessary 
to explain this difference.

Regarding smoking status, reformed smokers have 
higher TML than lifelong non-smokers, suggesting 
that cigarette consumption has long-term effects on 
missense mutations. Considering cancer type, LUAD 
patients have a higher TML than LSCC patients. We 
found that smoking is strongly associated with the 
TML in LUAD, consistent with the literature [10]. 
LUAD never-smoker patients have a lower TML than 
those who have actively smoked during their lifetime. 
Therefore, smoking seems to be a relevant factor in 
explaining the increase in mutations in patients with 
this disease. On the contrary, LSCC patients that have 
never smoked have a larger number of missense muta-
tions than never-smoker LUAD patients, indicating 
that other factors contribute most to the development 
of this pathology (cf. Figure  2C, D). Consistently, pre-
vious studies showed that LSCC patients accumulate 
numerous passenger mutations and suggested that 
LSCC is no longer a smoker’s-only disease since 14.7% 
(95% CI, 12.1% –17.4%) of their patients were never-
smokers [22].

Interestingly, the association between TML and smok-
ing status which we found finds support along the lines 
of recent experimental findings linking smoking with an 
increased risk of LC and a higher frequency of somatic 
mutations [23]. This association was also suggested by 
previous preliminar studies [24]. However, given the 
observational nature of our study, our results could also 
be explained by the following confounders. First, we 
found that the TML was higher in younger than older 
patients, which could account for different health-seek-
ing behaviours between age categories. For example, 
as young individuals do not perceive themselves at risk 
of developing cancer, they do not go through screening 
until presenting symptoms—which typically appear in 
advanced stages of cancer. As the TML accounts for how 
much an individual has been exposed to mutagenetic fac-
tors (own and external), it is reasonable to expect specific 
relation between tumours and accumulation of mutations 
(deletion of tumour suppressing genes or incorporation 
of proto-onco genes). However, when combined with the 
explicit label given by clinical categorization, we found 
the TML to add information that was not contained in 
such, confirming the non-redundancy of the variable we 
put forward. Factors as socioeconomic status, access to 
health, and typical comorbidities should also be homoge-
neous across the cohort and could explain potential dif-
ferences with other studies. Given the high costs related 

to tumour typification, economic status and whether the 
governments mediate access to health are determinants 
for correct classification within the cohort and can fur-
ther increase class imbalance in cohorts from countries 
with lower average incomes.

Understandably, there are several ways to quantify the 
effects of mutational processes. In our case, we counted 
all missense mutations in the tumour exome to define 
the TML. Although this modelling choice can be con-
sidered somewhat arbitrary, we do not aim to provide a 
general tool for characterizing mutagenesis nor compare 
alternatives for that, but rather to generate a method that 
answers our research questions. In that way, our study 
opens new research directions to assess whether other 
calculation methodologies for the TML could further 
improve the classification performance of RF models 
trained with it.

Although we have a large cohort of patients, the main 
difficulty in this work (and related works) is the imbal-
ance of classes in the metastatic status. Notwithstanding 
the technical challenges behind dealing with class imbal-
ance, we found that models trained on datasets without 
PCA and no data resampling achieved the best classifica-
tion performance. Regarding the PCA, obtaining models 
with low performance might be due to information losses 
induced by the reduction in dimensionality. Regard-
ing resampling, not performing any led to higher per-
formances, but might also lead to overfitting, especially 
when using low values of k for the k cross-validation. 
Finally, we verified that models trained using clinical var-
iables and TML obtained the best performance metrics. 
The tumour stage, redefined including also early stages as 
described in Methods, is a very relevant variable in the 
classification model. These results indicate that tumour 
stage II and III samples could be reclassified as metastatic 
samples being able to help the pathologist to classify 
samples considering this information. On the other hand, 
TML is also ranked as a highly-informative variable, sug-
gesting that the information contained on it is not redun-
dant with clinical variables.

Altogether, the findings in this work may contribute 
to the development of diagnostic tools able to classify 
metastasis status at an early stage using clinical informa-
tion, such as the cancer type, the smoking history, and 
the age. For example, we knew that smoking has a critical 
relationship with the generation of LC. However, accord-
ing to our results and when combining both variables, 
TML has a more important contribution to predicting 
metastasis in patients with this disease than cigarette 
smoking. Therefore, we remark on the benefits of includ-
ing it as a predictive feature in classification models 
driven by machine learning.
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Conclusions
We demonstrate that using clinical variables, such as can-
cer type, smoking status and frequency, together with 
TML, allows predicting whether a patient with LUAD or 
LSCC will develop metastasis with higher certainty. Alto-
gether, we contribute to developing more effective and 
personalised molecular tools for tumour typification and 
cancer diagnosis. Thereby, we provide practitioners with 
more alternatives to promptly identify the best treatment 
to increase the life expectancy of their patients.
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