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Faster Compressed Suffix Trees for Repetitive Collections
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Recent compressed suffix trees targeted to highly repetitive sequence collections reach excellent compression
performance, but operation times are very high. We design a new suffix tree representation for this scenario
that still achieves very low space usage, only slightly larger than the best previous one, but supports the
operations orders of magnitude faster. Our suffix tree is still orders of magnitude slower than general-
purpose compressed suffix trees, but these use several times more space when the collection is repetitive.
Our main novelty is a practical grammar-compressed tree representation with full navigation functionality,
which is useful in all applications where large trees with repetitive topology must be represented.
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1. INTRODUCTION
Suffix trees [Weiner 1973; McCreight 1976; Ukkonen 1995] are a favorite data struc-
ture in stringology, with a large number of applications in bioinformatics [Apostolico
1985; Gusfield 1997; Ohlebusch 2013], thanks to their versatility. By means of a small
set of query and traversal primitives (see Table I), suffix trees yield efficient solutions
to many complex problems on pattern matching, pattern discovery, string comparisons,
and others. The main problem of suffix trees is their space usage, which can easily
reach 20 bytes per text symbol. On DNA sequences, where each base can be repre-
sented in 2 bits, the suffix tree takes up to 80 times the text size!

A solution to the space problem could be to deploy the suffix trees on secondary
memory [Ferragina and Grossi 1999; Crauser and Ferragina 2002; Kärkkäinen and
Rao 2003; Dementiev et al. 2008; Ferragina et al. 2012; Kärkkäinen and Kempa 2014a;
2014b; Gog et al. 2014]. Unfortunately, most of the complex tasks carried out on suffix
trees need to traverse them across arbitrary access paths, in which case secondary
memory representations perform poorly due to the low locality of reference. The fact
that suffix trees use much space but need to fit in main memory to operate efficiently
restricts their applicability to small sequence collections only; for example, handling
just one human genome requires a machine with 60GB of RAM.
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A number of engineered representations of suffix trees have been proposed to cope
with their space problem [Kurtz 1999; Abouelhoda et al. 2004], but these still take 6
to 10 bytes per symbol. Suffix arrays [Manber and Myers 1993] reduce the space to
about 4 bytes per symbol, but they lose a number of suffix tree functionalities that are
essential in many complex tasks (e.g., suffix links).

The emergence of compressed suffix arrays (CSAs) [Navarro and Mäkinen 2007],
which managed to represent both the sequence and its suffix array within the space of
the compressed sequence, paved the way to radical improvements in the area, by mak-
ing it possible to build compressed suffix trees (CSTs) on top of CSAs. Sadakane [2007]
introduced the first CST representation, which included a succinct representation of
the tree topology and retained full suffix tree functionality. A recent, well engineered
implementation by Gog [2015], requires about 10 bits per symbol (bps), that is, slightly
more than one byte per symbol, on general DNA text (this includes the storage of the
CSA, and thus of the sequence itself), and can perform all the operations in a few
microseconds; the easy ones may need just a few nanoseconds. Fischer et al. [2009]
and Fischer [2010] developed a new CST using even less space. An efficient variant
by Ohlebusch et al. [2010] was shown to use about 8 bps [Gog 2015]. Their main idea
was to avoid the explicit representation of the tree topology. Their operation times, as
a consequence, are higher than Sadakane’s, but still within microseconds. Russo et al.
[2011] introduced an even smaller CST, using about 4 bps, yet raising operation times
to milliseconds.

All these CSTs use space proportional to the empirical entropy of the text collection
[Manzini 2001], which is a measure of statistical compressibility. In most DNA collec-
tions, however, the empirical entropy is also close to 2 bps, that is, DNA is essentially
incompressible with statistical compressors1. Still, CSTs operating within microsec-
onds can be built on a human genome (of about 3 billion bases), for example, and
maintained in a main memory of about 3–4GB.

However, the goal of maintaining one human genome in main memory has quickly
become outdated. The rapid improvements in sequencing technology have driven the
growth of large genome repositories. Modern challenges are to handle repositories of
thousand genomes (e.g., see the 1000-Genomes project, http://www.1000genomes.org).
Further, one would like to efficiently perform complex bioinformatic analyses on those
huge sequence collections, ideally maintaining a suffix tree on them. Even a CST using
1 byte per symbol is problematic when a thousand genomes must be maintained: we
would need 3TB of main memory!

Fortunately, those fast-growing DNA collections are formed by the sequenced
genomes of hundreds or thousands of individuals of the same species. This makes
those collections highly repetitive; for example, an accepted figure is that two human
genomes share 99.5% to 99.9% of their sequences [Jorde and Wooding 2004; Tishkoff
and Kidd 2004].2 Statistical compression does not take proper advantage of repeti-
tiveness [Kreft and Navarro 2013], but other techniques like grammar or Lempel-Ziv
compression do [Navarro 2012].

There have been some indexes aimed at performing pattern matching (i.e., just sim-
ple string searches) on repetitive collections based on those techniques [Claude and
Navarro 2010; Kuruppu et al. 2011; Kreft and Navarro 2013; Claude and Navarro
2012; Do et al. 2012; Gagie et al. 2012]. However, they do not provide the versatile
suffix tree functionality, and they do not seem to yield a way to obtain it. Instead, the
so-called run-length CSA [Mäkinen et al. 2010] (RLCSA), although based in principle

1See, for example, http://pizzachili.dcc.uchile.cl/texts.html.
2This number may be even higher on individuals of the same geographic area, for example. There is always
controversy about this number and on how it is measured, however.
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on weaker compression techniques, yields a data structure that is useful to achieve
CSTs for repetitive collections.

Building on the RLCSA and on the CST of Fischer et al. [2009], Abeliuk and Navarro
[2012] (see also Abeliuk et al. [2013]) introduced the first CST for repetitive collections,
by using grammar-compressed representations of some of their internal components.
On the repetitive biological collections they tested, their CST used around 1–2 bps, well
below the spaces achieved with the general-purpose CSTs. Their operation time was,
however, in the order of milliseconds, which makes the structure far less attractive.

In this paper we introduce a new CST called GCT, for “grammar-compressed topol-
ogy”, that achieves low space on repetitive collections and much better times. The GCT
operates in the order of microseconds, becoming much closer to the times of general-
purpose CSTs [Sadakane 2007; Ohlebusch et al. 2010; Gog 2015], and actually outper-
forming the smallest members of that family [Russo et al. 2011; Cánovas and Navarro
2010; Abeliuk et al. 2013] (which are still significantly larger than the GCT on repet-
itive collections). On synthetic DNA collections with 99.9% similarity, our GCT uses
2 bps, whereas the previous CST for repetitive collections uses 1.5 bps, and their dif-
ference shrinks as the collections become more repetitive. In exchange for this higher
space, the GCT is up to 3 orders of magnitude faster.

To achieve this result, we build on the CST of Sadakane [2007], but use grammar
compression on the tree topology, instead of just a succinct representation. More pre-
cisely, we use string grammar compression on the sequence of parentheses that rep-
resents the suffix tree topology (an idea briefly sketched by Bille et al. [2011] for arbi-
trary trees). A repetitive text collection turns out to have a suffix tree with repetitive
topology, and having the tree represented in this form allows us to speed up many
operations that are very slow to simulate without the explicit topology [Fischer et al.
2009; Russo et al. 2011].

The GCT retains the full functionality of succinct tree representations [Navarro and
Sadakane 2014], but is likely to use much less space when the tree has frequent re-
peated substructures. While we do not prove worst-case results on the GCT repre-
sentation, our experiments show that it performs well in the scenario studied in this
paper. The GCT is likely to be useful in other applications where a tree with repetitive
topology must be represented; we describe a couple of them in the Conclusions. The
theoretical proposal of Bille et al. [2011] does offer some guarantees, but we believe it
would not perform so well in practice due to some space overheads incurred to perform
well in the worst case.

2. BASIC CONCEPTS
2.1. Succinct Tree Representations
Among the many succinct tree representations, we describe the one of Navarro and
Sadakane [2014], on which we build. We choose this representation because it imple-
ments a large number of tree operations on top of a simple representation. The tree
topology is represented using a sequence of parentheses. We traverse the suffix tree
in preorder, writing an opening parenthesis when we first arrive at a node, and a
closing one when we leave its subtree. Thus a tree of t nodes is represented with 2t
parentheses, as a binary sequence P [1, 2t]. Each node is identified with the offset of its
opening parenthesis in P , so we can speak of “node i” to refer to the one represented
by P [i] =′ (′.

We define the excess of a position, E(i), as the number of opening minus closing
parentheses in P [1, i]. Note that E(i) is the depth of node i. Many tree navigation
operations can be carried out with two operations related to the excess: fwd(i, d) is the
smallest j > i such that E(j) = E(i) − d, and bwd(i, d) is the largest j < i such that
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1101110100    1001101101  0011010011   0100110100    0110100101  1011010001     101000

   (e,m)=(2,0)   (2,-1)   (0,-2)    (-2,-2)    (0,-1)    (0,-1)      (-2,-2)

(e,m)=(4,0) (e,m)=(-2,-2) (e,m)=(0,-1) (e,m)=(-2,-2)

(e,m)=(2,0) (e,m)=(-2,-2)

(e,m)=(0,0)

B = 

      1212343432       3212323434     3234343234      3432343432     1232321212       3234343212      323210E = 

Fig. 1: The data structure for the succinct representation of a parentheses sequence
P [1, 2t] (which corresponds to the topology of the suffix tree in Figure 2). It is formed
by bitvector B[1, 2t], which represents P with 1-bits for the ’(’s and 0-bits for the ’)’s,
and the tree of block summaries on top of it. We show in gray the values E(i), which
are not represented explicitly.

E(j) = E(i)−d. For example, the parenthesis closing the one that opens at position i is
at fwd(i, 1), so the next sibling of node i is j = fwd(i, 1) + 1 if P [j] =′ (′, else i is the last
child of its parent. Analogously, the previous sibling is bwd(i−1, 0)+1 if P [i−1] =′)′, else
i is the first child of its parent. A node i is a leaf if P [i+ 1] =′)′, otherwise its first child
is i+1. The number of nodes in the subtree rooted at i is (fwd(i, 1)−i+1)/2. Node i is an
ancestor of j if i ≤ j ≤ fwd(i, 1). The parent of node i is bwd(i, 2) + 1 and the h-th level
ancestor is bwd(i, h + 1) + 1. The preorder value of a node, preorder(i), is the number
of opening parentheses in P [1, i]; note that preorder(i) = (E(i) + i)/2. The inverse of
preorder is node(j), which gives the node with preorder j and is solved analogously to
fwd, this time looking for a certain value of i + E(i). A more complex operation is to
find the lowest common ancestor of two nodes, LCA(i, j). Unless one is the ancestor
of the other, computing LCA requires operation RMQ (range minimum query) on the
virtual array of depths: RMQ(i, j) is the position of a minimum in E(i)E(i+ 1) . . . E(j),
and then LCA(i, j) = parent(RMQ(i, j) + 1). Many other operations are available with
the primitives E, fwd, bwd, and RMQ [Navarro and Sadakane 2014].

To implement those primitives, the sequence P [1, 2t] is cut into blocks of b log t paren-
theses, for a parameter b (we use base 2 logarithms by default). For each block k we
store m[k], the minimum excess within the block, and e[k], the total excess within the
block. The blocks are the leaves of a perfect binary tree of higher-level blocks, for which
we also store m[k] and e[k]. See Figure 1 for an example.

In this representation, operation fwd(i, d) can be solved in O(b+log t) time as follows.
Let k be the block where position i belongs. First, we scan P from i + 1 to the end of
the block, to see if the desired excess difference is reached within the block. The block
can be scanned by chunks of (log t)/2 parentheses by using global precomputed tables
of just

√
t entries, which store the total and minimum excess in every possible chunk.

If the answer is not inside the block, let d′ be d plus the accumulated excess between
i+ 1 and the end of the block; then d′ is the new excess difference sought to the right of
block k (recall that we seek for the smallest j > i such that E(j) = E(i) − d′). Now we
move to the parent of block k in the balanced tree. If k is the left child of its parent and
k′ is the right sibling of k, then if d′ > −m[k′], we know that the desired excess is not
reached within block k′, thus we set d′ ← d′ + e[k′] and continue recursively with the
parent node of block k. If, instead, k is the right child of its parent, we simply continue
recursively with its parent.
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This upward traversal continues until we find a right sibling k′ for which d′ ≤ −m[k′],
thus the desired excess difference is reached within block k′. Now we start a downward
traversal. We check whether the difference is reached inside the left child k′′ of k′: if
d′ ≤ −m[k′′], then we descend to k′′; otherwise we set d′ ← d′ + e[k′′] and descend to
the right child of k′. When we finally arrive at a leaf block, we complete the operation
fwd(i, d) by scanning its parentheses from the beginning of the block until we reach
excess difference d′.

Operations bwd and RMQ are solved analogously, and computing E(i) is simpler; see
Navarro and Sadakane [2014] for more details3. By using, for example, b = Θ(log t), one
obtains O(log t) time for all the operations and 2t+o(t) bits to store the the parentheses
plus the balanced tree of m[] and e[] values.4

2.2. Compressed Suffix Trees
Let T [1, n] be a text (or the concatenation of the texts in a collection) over alphabet
Σ = [1, σ]. The character at position i of T is denoted T [i], whereas T [i, j] denotes
T [i]T [i+ 1] . . . T [j], a substring of T . A suffix of T is a substring of the form T [i, n] and a
prefix of T is of the form T [1, i]. The suffix trie of T is the digital tree formed by inserting
all the suffixes of T , so that any substring of T labels the path from the root to a node of
the suffix trie. In particular, any suffix T [i, n] labels the path from the root to a leaf of
the suffix trie; such leaf is marked with the position i. We consider that the character
labels in the suffix trie are on the edges. For each tree node v, we call str(v) the string
obtained by concatenating the labels on the edges between the root and v. The suffix
tree of T [Weiner 1973] (see Figure 2 for an example) is formed by compressing the
unary paths of the suffix trie into a unique edge, labeled with the concatenation of the
labels of the compressed edges. The first characters of the (string) labels of the edges
that lead to the children of any node are distinct, and we assume they are sorted by
increasing value left to right. Table I lists the operations we aim to support on suffix
trees.

The suffix array [Manber and Myers 1993] of T is an array A[1, n] of values in [1, n],
formed by collecting the position marks of the suffix tree in left-to-right order. Alter-
natively, A[1, n] can be seen as the array of all the suffixes of T sorted in lexicographic
order.

2.2.1. Compressed suffix arrays. There are many compressed suffix arrays (CSAs) in
the literature [Navarro and Mäkinen 2007]. The basic functionality they offer is (a)
given a pattern p[1,m], find the suffix array interval A[sp, ep] of the suffixes of T that
start with p (therefore A[sp], A[sp + 1], . . . , A[ep] is the list of occurrences of p in T ), (b)
given a suffix array position i, return A[i], (c) given a text position j, return A−1[j],
that is, the position in A that points to the suffix T [j, n], and (d) given [l, r], obtain
the text substring T [l, r]. Most CSAs achieve times of the form O(m) to O(m log n) for
operation (a), O(polylog n) for (b) and (c), and at most O((l− r) log σ+ polylog n) for (d).
They require space O(n log σ) bits (as opposed to O(n log n) of classical suffix arrays),
and in most cases close to the empirical entropy of T [Manzini 2001] (a measure of
compressibility with statistical compressors). Note that, within this space, CSAs can
reproduce any substring of T , so T does not need to be stored separately.

When T is repetitive (i.e., it can be represented as the concatenation of a few dif-
ferent substrings), then grammar and Lempel-Ziv compression greatly reduce its

3They describe a variant where the e[] and m[] values are absolute, not relative to the block; our description
here is more similar to their dynamic variant. Also, they store a few more values to support other operations
not usually required on suffix trees, and thus not considered in this paper.
4The theoretical proposal of Navarro and Sadakane [2014] obtains constant times, but the practical imple-
mentation [Arroyuelo et al. 2010] reaches logarithmic times.
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Operation Description

root() the root node of the tree
tDepth(v) the tree depth of node v
fChild(v) the alphabetically first child of v
nSibling(v) the alphabetically next sibling of v
pSibling(v) the alphabetically previous sibling of v
isLeaf (v) true if v is a leaf node
ancestor(v, u) true if v is an ancestor of u
subtree(v) number of nodes in the subtree rooted at v
parent(v) the parent of v
tAncestor(v, d) the ancestor of v at depth d
preorder(v) the preorder number of v
LCA(v, u) lowest common ancestor of nodes v and u

sDepth(v) |str(v)|
letter(v, i) str(v)[i]
child(v, a) u such that a ∈ Σ is the first letter on edge (v, u)
sLink(v) u such that str(u) = β in case str(v) = aβ and a ∈ Σ
sAncestor(v, d) the highest ancestor u of v such that |str(u)| ≥ d
textPos(v) i such that str(v) starts at T [i] (for a leaf v)

Table I: Typical operations supported by a suffix tree. The first group is composed
of generic tree operations, whereas the second is specific of suffix trees. By str(v) we
denote the string obtained by concatenating the labels on the edges between the root
and v.

1 133 1511 8 5 17

20

7 12

9 6 18

2 14

104 16

21
a l

__ l

__ bbarar

__ dd

__ dd

$$ __
barbar labarlabar rr

dd__dd__dd__llaa

__ dd

$$
__

19

dd

T =  a  l  a  b  a  r  _  a  _  l  a  _  a  l  a  b  a  r  d  a  $

21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18A = 

barbar

aa

lala rr

    1   2   3    4    5   6   7    8   9  10  11 12  13  14 15 16  17  18  19 20  21

1     2     3     4     5     6     7    8     9    10   11   12   13   14  15   16  17   18   19   20   21

Fig. 2: Suffix tree and suffix array A for the text example T = alabar a la alabarda$.

space. Instead, statistical compression does not profit from repetitiveness [Kreft and
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Navarro 2013], and thus classical CSAs do not compress well repetitive text collections.
Mäkinen et al. [2010] introduced the run-length CSA (RLCSA), which compresses bet-
ter when T is repetitive.

2.2.2. Longest common prefix array. The longest common prefix (LCP) array, LCP[1, n], is
a key component of various suffix tree representations. It stores in LCP[i] the length
of the longest common prefix between the suffixes T [A[i], n] and T [A[i − 1], n] (with
LCP[1] = 0).

Sadakane [2007] showed how to represent LCP using just 2n bits, by representing
PLCP[1, n] instead, where PLCP[j] = LCP[A−1[j]] (or LCP[i] = PLCP[A[i]]), that is,
PLCP is LCP represented in text order, not in suffix array order. The key property is
that PLCP[j + 1] ≥ PLCP[j] − 1, which allows PLCP be represented using a bitvector
H[1, 2n], at the price of having to compute A[i] in order to compute LCP[i].

Fischer et al. [2009] proved that H was in addition compressible when the text was
statistically compressible, but Cánovas and Navarro [2010] found out that the com-
pression was not significant on standard texts. Instead, Abeliuk and Navarro [2012]
showed that the technique proposed to compress H [Fischer et al. 2009] worked very
well on repetitive texts.

2.2.3. Current compressed suffix trees. Sadakane [2007] showed that a functional com-
pressed suffix tree (CST), that is, a data structure that solves the operations in Table
I, could be represented with three components: (1) a compressed suffix array (CSA),
(2) a compressed LCP array, and (3) a compressed representation of the topology of
the suffix tree. Thus, other elements, like the string labels, were computed from these
components without representing them.

Sadakane used an existing CSA, compressed the LCP array to 2n bits as described
in Section 2.2.2, and represented the tree topology using succinct trees, which take 2n
to 4n bits since the suffix tree has t = n to 2n nodes. A study of such succinct tree
representations [Arroyuelo et al. 2010] shows that the one described in Section 2.1
is well suited for the operations required on a suffix tree. Gog [2015] implemented
Sadakane’s CST, obtaining extremely fast operations.

Fischer et al. [2009] showed that one can operate without explicitly representing the
tree topology, because each suffix tree node corresponds to a distinct suffix array in-
terval. One can operate directly on those intervals, and all the tree operations can be
simulated with three primitives on the intervals: RMQ(i, j) finds the (leftmost) posi-
tion of the smallest value in LCP[i, j], and PSV/NSV(i) finds the position in LCP pre-
ceding/following i with a value smaller than LCP[i]. Cánovas and Navarro [2010] im-
plemented this theoretical proposal, speeding up the operations RMQ and PSV/NSV
by building the balanced tree described in Section 2.1 on top of the LCP array (in-
stead of on array E) and using ideas similar to those used to navigate trees [Navarro
and Sadakane 2014] (albeit the application is quite different). Ohlebusch et al. [2010]
presented a fast alternative implementation that uses 3n bits of space.

Abeliuk and Navarro [2012] proposed the first CST for repetitive text collections.
They built on the representation of Cánovas and Navarro [2010], using the RLCSA
and the compressed version of H to represent LCP, which, as mentioned, became com-
pressible on repetitive texts. The only obstacle was that the balanced tree used to speed
up RMQ and PSV/NSV operations was insensitive to repetitiveness. They overcame
this by using the fact that the differential LCP array (LCP[i]−LCP[i− 1]) is grammar-
compressible, particularly on repetitive text collections. They applied RePair compres-
sion [Larsson and Moffat 2000] to the differential LCP array and used the grammar
tree (whose nodes are the grammar nonterminals) instead of the incompressible bal-
anced tree. That is, they stored the information needed to compute PSV/NSV/RMQ
in the nodes of the grammar tree. As a result, they obtain very low space usage on
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R0       0
R1       1
R2       R1R0

R3       R1R2

R4       R2R0

R5       R3R4

R6       R5R0

R7       R5R5

( R= C = R3 R1 R5 R4 R3 R7 R5 R6 R5 R2 R3 R6 R6 ) ,

1101 1 10100 100 110 110100110100 110100 1101000 110100 10 110 1101000  1101000

R3 R1 R5 R4 R3 R7 R5 R6 R5 R2 R3 R6 R6C = 

B = 

B = 110111010010011011010011010011010011010001101001011011010001101000

Fig. 3: (R,C) is the result of applying RePair to the binary string B of Figure 1.

repetitive texts (from 0.6 to 4 bps, depending on the repetitiveness of the real-life col-
lections used). A drawback is that the operations require milliseconds, instead of the
microseconds required by most CSTs designed for standard text collections [Abeliuk
et al. 2013].

2.3. Grammar Compression of Strings and Trees
Grammar compression of a string S is the task of finding a (context-free) grammar G
that generates (only) S. RePair [Larsson and Moffat 2000] is a compression algorithm
that finds such a grammar in linear time and space. It finds the most frequent pair
ab of characters in S, creates a rule X → ab, replaces all ab in S by X, and iterates
until the most frequent pair appears only once (in subsequent iterations, a and/or b
may be nonterminals). The final product of RePair is a set R of rules of the general
form X → Y Z and a sequence C of terminals and nonterminals corresponding to the
final reduced version of S after all the replacements. For uniformity, we will add an
initial nonterminal X → a for each terminal a, and in all the rules X → Y Z, Y and Z
will always be nonterminals (this is called Chomsky normal form). Similarly, C will be
formed only by nonterminals. Figure 3 shows an example.

To retrieve the string str(X) represented by a nonterminal symbol X, we proceed
recursively: If X → Y Z, then str(X) = str(Y ) ◦ str(Z), where ◦ denotes string con-
catenation. The recursion ends when we arrive at terminals. We can thus expand any
nonterminal X in optimal time O(|str(X)|).

Grammar compression can also be applied to trees, by using grammars that generate
trees instead of strings [Comon et al. 2007]. The simplest grammar is one that replaces
full trees, so the associated grammar compression seeks for the minimal DAG (directed
acyclic graph) equivalent to the tree. More powerful variants allow nonterminals with
variables, with which grammar compression can replace connected subgraphs of the
tree [Maneth and Busatto 2004; Lohrey et al. 2011]. In general, supporting even the
most basic traversal operations on those compressed trees is not trivial, even in the
simplest DAG compression. Bille et al. [2011] sketch a simple idea that retains all the
full power of navigational operations of succinct trees (see Section 2.1). They basically
propose to grammar-compress the string of parentheses P [1, 2t] that represents the
tree, attaching m[] and e[] values (and others, as needed) to the nonterminals in order
to support efficient navigation. They prove that this compression is as powerful as the
simple DAG tree compression, provided some small fixes are applied to the grammar.

Note that this theoretical idea is what was implemented in practice by Abeliuk and
Navarro [2012], as described in Section 2.2.3, for solving queries on the LCP array:
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using the RePair grammar tree instead of a balanced tree for storing m[] and e[] infor-
mation. In this paper we implement the idea on the excess array of an actual tree —
the suffix tree of the text. Unlike Bille et al., we do not alter the grammar given by
RePair, but use it directly.

3. A NEW CST FOR REPETITIVE TEXT COLLECTIONS
We introduce a new CST tailored to repetitive texts, building on the original proposal of
Sadakane [2007]. We use the RLCSA as the suffix array, and the compressed represen-
tation of H [Fischer et al. 2009; Abeliuk and Navarro 2012] for the LCP array. Unlike
the previous CST of Abeliuk and Navarro, we do represent the suffix tree topology, to
avoid the large performance penalty of omitting it. As anticipated, this tree topology
will be grammar-compressed to exploit repetitiveness. As a result, our CST will use
slightly more space than that of Abeliuk and Navarro, but it will be orders of magni-
tude faster. We call it GCT, for “grammar-compressed topology”. The rest of the section
is devoted to describing the GCT.

3.1. GCT Structure
Let R[1, r] be the rules (including initial rules generating the terminals ’(’ and ’)’) and
C[1, c] the final sequence resulting from applying RePair compression to the parenthe-
ses sequence P [1, 2t] (recall Figure 3). We use a version of RePair that yields balanced
grammars (i.e., of height O(log t)) in most cases.5 We describe how we store R and C.

3.1.1. Storing the rules R. A plain storage of the rules R[1, r] requires 2r log r bits, as a
simple array R[k] = (i, j) meaning R[k] → R[i]R[j]. Instead, we will simplify a tech-
nique described by Tabei et al. [2013], which uses only r log r + O(r) bits and permits
extracting the right hand of any rule in time O(log r).

The grammar is seen as a DAG where the nodes are the nonterminals, and each
rule Rk → RiRj induces two arrows, from Rk to Ri and from Rk to Rj . Now all the
arrows from nodes to their left children, seen backward, form a tree TL, and those to
their right children, seen backward, form a tree TR. We represent TL and TR, using
a succinct tree representation, in O(r) bits (recall Section 2.1). The identifiers of the
nonterminals will be their preorder values in TL: rule Rk will refer to the node with
preorder k in TL.

In addition, we need to map between a preorder value of a nonterminal in TL and the
preorder value of the same nonterminal in TR, and back. We use a practical technique
by Munro et al. [2003] that represents a permutation π of {1, 2, . . . , r} using r log r+O(r)
bits. It stores the array π = [π(1), π(2), . . . , π(r)] explicitly (thus π(i) is computed in
constant time), and adds O(r) bits of data that allows computing any π−1(i) in time
O(log r). Figure 4 illustrates this representation.

The main operation carried out on this representation is, given a nonterminal k such
that Rk → RiRj , find i and j. The procedure is as follows:

(1) Compute xL ← node(TL, k), the node of TL that represents Rk.
(2) Find yL ← parent(TL, xL), the parent of xL, which represents Ri in TL.
(3) Compute i← preorder(TL, yL), the identifier of nonterminal Ri.
(4) Map kR ← π(k), the preorder of Rk in TR.
(5) Compute xR ← node(TR, kR), the node of TR that represents Rk.
(6) Find zR ← parent(TR, xR), the parent of xR, which represents Rj in TR.
(7) Compute jR ← preorder(TR, zR), the preorder of zR in TR.
(8) Map back j ← π−1(jR), the identifier of nonterminal Rk.

5From www.dcc.uchile.cl/gnavarro/software. There exist algorithms that ensure balanced grammars
[Sakamoto 2005], but they are more complicated.
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Fig. 4: The grammar R of Figure 3 in DAG form (top left), its representation as two
trees TL and TR (with preorders in slanted gray) plus a permutation mapping pre-
orders (bottom), and the data we store on the nonterminals (top right, node identifiers
correspond to preorders in TL).

In practice, the structure described in Section 2.1 is too powerful for the few oper-
ations we need on TL and TR. We use instead the so-called LOUDS representation
[Jacobson 1989], which supports operation parent and an equivalent to operations
preorder and its inverse node (that is, it assigns a distinct number in [1, r] to each
node, although it is not its preorder value). The LOUDS representation is smaller and
faster than the one described in Section 2.1 [Arroyuelo et al. 2010], albeit it supports
fewer operations.

3.1.2. Storing information on the rules. We enrich the grammar R with additional infor-
mation on the nonterminals, to allow for fast operations on the represented tree. For
each nonterminal Rk, we store the following arrays (see Figure 4).

(1) m[k], the minimum excess of ‘(’s in str(Rk). It holds m[k] ≤ 0 because the excess of
the empty prefix of the string is always 0.

(2) e[k], the total excess of str(Rk).
(3) s[k] = |str(Rk)|, the length of the string Rk generates.
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(4) l[k], the number of leaf nodes represented inside str(Rk), that is, the number of
substrings of the form ‘()’ (or ‘10’, in bits) present in str(Rk).

(5) pl[k] and pr[k], the leftmost and rightmost parentheses (bits) in str(Rk).

Since e[k] can be positive or negative, we rather store e[k] − m[k] ≥ 0. On the
other hand, m[k] is stored as −m[k] ≥ 0. Since s[k] ≥ 2l[k] − m[k], we represent
s[k] − 2l[k] + m[k] ≥ 0 to induce smaller numbers. Many values in these arrays are
expected to be small (and even smaller after these transformations), so we store them
using a variable-length representation that uses fewer bits for smaller numbers. The
representation we choose, called directly addressable codes (DACs) [Brisaboa et al.
2013], allows direct access to any cell value (we use the DAC variant that uses mini-
mum space). Of course, the arrays pl and pr are stored using one bit per cell.

To further save space, only some nonterminals k will store this information. Let
Rk → RiRj . Then, it holds m[k] = min(m[i], e[i] +m[j]), e[k] = e[i] + e[j], s[k] = s[i] + s[j],
l[k] = l[i] + l[j] + [1 if pr[i] =′ (′ ∧ pl[j] =′)′], pl[k] = pl[i], and pr[k] = pr[j]. These
recurrences allow us computing the desired values for nonterminals Rk that do not
store them. We use a technique [Navarro et al. 2011] that, given a parameter y, chooses
a set of nonterminals that will store the array values, guaranteeing that we will never
recursively expand more than y nonterminals in order to obtain any such value.

3.1.3. Storing the array C. Sequence C[1, c] is stored as an array of nonterminals, that is,
the corresponding preorder values in TL, using c log r bits. In addition, the parentheses
sequence P will be sampled every z positions. For the sth sample (s ≥ 0), we store the
following values.

(1) Cp[s], the position in C whose expansion contains P [zs + 1], that is, Cp[s] =
min{w,

∑w
v=1 |str(C[v])| > zs}.

(2) Co[s], the distance from zs + 1 to the beginning of C[Cp[s]], that is, Co[s] = zs −∑Cp[s]−1
v=1 |str(C[v])|.

(3) Ce[s] =
∑Cp[s]−1

v=1 e[C[v]], the cumulative excess up to the beginning of block C[Cp[s]].
(4) Cl[s], the number of leaves (occurrences of ‘10’) up to the beginning of C[Cp[s]], that

is, Cl[s] = l[C[1]]+
∑Cp[s]−1

v=2 (l[C[v]]+[1 if pr[C[v−1]] =′ (′ ∧ pl[C[v]] =′)′]) if Cp[s] > 1,
and Cl[s] = 0 otherwise.

On top of this array of samples, we form a balanced binary tree, where each node
stores the minimum excess reached within the range of C it covers (the sth leaf covers
the range P [z(s − 1) + 1, zs]). This excess is represented in absolute form, not relative
to the range of blocks. Figure 5 illustrates the representation of C.

This sampled data adds O((t log t)/z) bits to the c log r bits used to store sequence C.
If we choose z = Θ((t log t)/c) and y large enough for the marked blocks be O(r/ log t),
then the space of our grammar representation is (r + c) log r + O(r + c), which is
asymptotically equal to the space of a plain grammar-compressed representation the
sequence P [1, 2t]. Since the c nonterminals in C expand to 2t characters, we will be
able to scan the cells of C between two samples in O(log t) time on average6. We cannot
bound the value of y required to haveO(r/ log t) samples, however, but our experiments
will show that reasonable space/time tradeoffs are achieved.

6This can be made worst-case by regularly sampling C[1, c] instead of P [1, 2t], but this entails a binary
search to find the sample corresponding to a position in P , and turns out to be slower than the sampling we
chose, for the same space usage.
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Fig. 5: Tree structure built on top of the C array of Figure 3, for a sampling step of
z = 10. The positions of B in bold show where is the minimum excess reached, within
each block.

3.2. Basic operations
We start by describing some basic operations on the GCT. The following procedure
computes E(p), the excess in P [1, p], which is needed to compute tDepth(p) = E(p) and
preorder(p) = (p+ E(p))/2.

(1) We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u] starts in
P after position q ← sz − Co[s], and the excess up to q is e← Ce[s].

(2) We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k] and
e ← e + e[k], where we remind that s[k] and e[k] are the total length and excess,
respectively, of str(Rk). We stop at the position C[v] where q would exceed p if we
processed v.

(3) Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj (i
and j are found with the method described in Section 3.1.1). If q + s[i] ≤ p, then
we add q ← q + s[i] and e ← e + e[i], and continue recursively with Rj ; otherwise
we continue recursively with Ri. When we finally reach a terminal, we know the
excess e up to position q = p. Then we return E(p) = e.

If we store e[] and m[] values for all the nonterminals, then the sequential traversal
in point 2 requires on average O(log t) time, as discussed at the end of Section 3.1.3.
Point 3 takes time O(log2 t), because the grammar is balanced and thus has height
O(log t), and each time we expand Rk → RiRj in the downward traversal we take time
O(log t) to find i and j with the representation of Section 3.1.1. Thus the total time
is O(log2 t). Instead, if we sample the values e[] and m[] with parameter y, then each
computation of those values requires O(y) symbol expansions, each of which still costs
O(log t) time. This raises the total time to O(y log2 t).

Another basic operation is to find the value of P [p]. This is necessary for isLeaf and
fChild, and also participates in operations nSibling and pSibling. The recursion de-
scribed for operation E(p) ends up at a terminal in point 3, which is P [p+1]. Therefore,
the following variation returns P [p].

(1) We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u] starts in
P after position q ← sz − Co[s].
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sample. Sampled blocks have thick borders. Grayed blocks are nonterminals that be-
come partially expanded; dashed ones are skipped after considering their e[] and m[]
values. The middle tree is that of Figure 5.

(2) We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k]. We
stop at the position C[v] where q would reach p if we processed v.

(3) Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj . If
q + s[i] < p, then we add q ← q + s[i] and continue recursively with Rj ; otherwise
we continue recursively with Ri. When we finally reach a terminal, it is at position
q = p in P , so we return it.

3.3. Operations fwd and bwd
These are the two most important operations on the GCT, needed to implement parent,
nSibling, pSibling, ancestor, subtree, and tAncestor. They also participate in operations
LCA, sLink, sAncestor, sDepth, sAncestor, and child. We describe how to solve opera-
tion fwd(p, d), where p is a position in P . This follows the same spirit of the description
of the operation on a balanced tree, recall Section 2.1. The scheme of the algorithm,
with the corresponding steps, is depicted in Figure 6. Operation bwd(p, d) is analogous.

(1) We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u] starts in
P after position q ← sz − Co[s], and the excess up to q is e← Ce[s].

(2) We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k] and
e← e+ e[k]. We stop at the position C[v] where q would exceed p if we processed v.

(3) Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj . If
q+ s[i] ≤ p, then we add q ← q+ s[i] and e← e+ e[i], and continue recursively with
Rj ; otherwise we continue recursively with Ri. When we finally reach a terminal,
we have the excess e up to position p = q. Now we start looking for a negative
difference d of excess to the right of position q.

(4) We traverse back (returning from recursion) the path in the grammar followed in
point 3. If we went towards the right child Rj of a rule Rk → RiRj , we just return.
If, instead, we went towardsRi, then we check whether d ≤ −m[j]. If so, the answer
is within Rj , otherwise we add q ← q+s[j] and d← d+e[j], and return to the parent
in the recursion.
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(5) If in the previous point we have established that the answer is within a nonter-
minal Rj , we traverse the expansion of Rj → RlRm. If d > −m[l], then we add
q ← q + s[l] and d ← d + e[l], and continue recursively with Rm; else we continue
recursively with Rl. When we reach a leaf, the answer is q.

(6) If in point 4 we return from the recursion up to the root symbol C[v] without yet
finding the desired excess difference d, we update e ← e + e[C[v]] and scan the
nonterminals C[v+a] for a = 1, 2, . . ., increasing q ← q+s[C[v+a]], e← e+e[C[v+a]],
and d← d+ e[C[v + a]], until finding an a such that d ≤ −m[C[v + a]]. At this point
we look for the final answer within the nonterminal C[v + a] just as in point 5.

(7) If we reach the next sampled position, q ≥ sz, without yet finding the answer, we
jump to the bq/zcth leaf of the balanced tree we built on the samples of C (the
leftmost leaf is the 0th), and traverse it upwards until the current node has a right
sibling whose (absolute) minimum value m satisfies e − d ≥ m. Then we descend
from that right sibling. If its left child’s minimum value ml satisfies e− d ≥ ml, we
descend to the left child, otherwise to the right child.

(8) We eventually reach the s′th leaf of the tree, thus we know that the desired answer
can be found from position v ← Cp[s′] in C. Note that C[v] starts after position q ←
s′z−Co[s′] in P , and the excess up to q is Ce[s

′]. Thus we recompute d← d+Ce[s
′]−e

and e ← Ce[s
′], and continue traversing the cells C[v + a] sequentially, for a ≥ 0,

just as in point 6 (and eventually finishing as in point 5).

The complexity of this procedure is the same as for the simpler operations. The only
new cost is O(log t) to traverse the balanced tree, which is not significant.

3.4. Operation RMQ
This operation is key for the important LCA and sLink suffix tree operations. To solve
RMQ(p, p′) we traverse all the O(log t) grammar nodes between positions p and p′ and
locate the point where the minimum excess occurs.

(1) We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u] starts in
P after position q ← sz − Co[s], and the excess up to q is e← Ce[s].

(2) We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k] and
e← e+ e[k]. We stop at the position C[v] where q would reach p if we processed v.

(3) Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj . If
q+ s[i] < p, then we add q ← q+ s[i] and e← e+ e[i], and continue recursively with
Rj ; otherwise we continue recursively with Ri. When we finally reach a terminal,
we are at position p and initialize min← e. Now we update e← e+1 if the terminal
is a ’(’ or e← e− 1 if the terminal is a ’)’. Finally, we update min← min(min, e) and
q ← q + 1.

(4) We traverse back (returning from recursion) the path in the grammar followed in
point 3. If we went towards the right child Rj of a rule Rk → RiRj , we just return.
If, instead, we went towards Ri, then we check whether q + s[j] > p′. If so, position
p′ is within Rj , otherwise we update min ← min(min, e + m[j]), q ← q + s[j], and
e← e+ e[j], and return to the parent in the recursion.

(5) If in the previous point we have established that p′ is within a nonterminal Rj ,
we traverse the expansion of Rj → RlRm. If q + s[l] ≤ p′, then we update min ←
min(min, e+m[l]), q ← q + s[l], and e← e+ e[l], and continue recursively with Rm;
else we continue recursively with Rl. When we reach a leaf, we have q = p′ and the
minimum excess is min.

(6) If in point 4 we return from the recursion up to the root symbol C[v] without yet
reaching position p′, we scan the nonterminals C[v + a] for a = 1, 2, . . ., updating
min ← min(min, e + m[C[v + a]]), q ← q + s[C[v + a]], and e ← e + e[C[v + a]], until
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finding an a such that q+ s[C[v+ a]] > p′. At this point we complete the calculation
of min within the nonterminal C[v + a] just as in point 5.

(7) If we reach the next sampled position, q ≥ sz, without yet reaching position p′,
we jump to the bq/zcth leaf of the balanced tree we built on the samples of C,
and traverse it upwards until the the current node has a right sibling that covers
position p′. Along the upward traversal, for each right sibling (that does not yet
cover p′) with minimum value mr, we set min← min(min,mr). Once we find a right
sibling that covers p′ we descend from it. If its left child covers p′, we just descend
to the left, else we descend to the right and set min ← min(min,ml), where ml is
the minimum value stored at the left child.

(8) We eventually reach the s′th leaf of the tree, thus we know that p′ can be found
from position v ← Cp[s′] in C. Note that C[v] starts after position q ← s′z − Co[s′]
in P , and the excess up to q is e ← Ce[s

′]. Thus we continue traversing the cells
C[v + a] sequentially, for a ≥ 0, just as in point 6.

(9) We finally have the min value, but not the position where it was reached. If min
was set at a node of the balanced tree, we descend by its left or right children,
whichever matches the minimum value of its parent, until reaching a leaf s′′. Then
we scan k ← C[Cp[s′′], . . .], starting with q ← s′′z − Co[s′′], e ← Ce[s

′′] and m ← 0,
updating q ← q + s[k], m ← min(m, e + m[k]) and e ← e + e[k], until we reach the
value e+m = min for some k (before q reaches the next sampled block).

(10) Either because we computed it in point 9, or because min was reached within a
nonterminal Rk starting after position q, we proceed as follows. If Rk → RiRj ,
then if m[k] = m[i], we continue recursively with Ri; otherwise we set q ← q +
s[i] and continue recursively with Rj . When we reach a terminal, the answer is
RMQ(p, p′) = q.

3.5. Mapping with the CSA
The second group of operations of Table I requires the interaction with the CSA; see
Sadakane [2007] for the details. From the GCT, what is missing is the ability to count
the number of leaves up to some position P [p], and to find the lth leaf in P . The storage
of l[k], pl[k] and pr[k] serves this purpose. We first show how to compute the number of
leaves up to position p.

(1) We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u] starts
in P after position q ← sz − Co[s], and the number of leaves up to that position is
l← Cl[u]. We set pr ← pr[C[u− 1]] (if u > 0, otherwise pr ←′)′).

(2) We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k],
l ← l + l[k] + [1 if pr =′ (′ ∧ pl[k] =′)′], and pr ← pr[k]. We stop at the position C[v]
where q would exceed p if we processed v.

(3) Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj . If
q + s[i] ≤ p, then we add q ← q + s[i], l ← l + l[i] + [1 if pr =′ (′ ∧ pl[i] =′)′], and
pr ← pr[i], and continue recursively with Rj ; otherwise we continue recursively
with Ri. When we finally reach a terminal, we know the number of leaves l up to
position p. Then we return l.

Finding the lth leaf is the inverse of the above operation.

(1) We binary search Cl to find the largest s such that Cl[s] < l. This points to position
u ← Cs[s] in C, which starts after q ← sz − Co[s] in P . The number of leaves up to
position q is l′ ← Cl[s], and we set pr ← pr[C[u− 1]] (if u > 0, otherwise pr ←′)′).

(2) We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k],
l′ ← l′+ l[k] + [1 if pr =′ (′ ∧ pl[k] =′)′], and pr ← pr[k]. We stop at the position C[v]
where l′ would reach l if we processed v.
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(3) Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj . If
l′+ l[i]+ [1 if pr =′ (′ ∧ pl[i] =′)′] < l, then we set l′ to this value, update q ← q+s[i],
set pr ← pr[i], and continue recursively with Rj ; otherwise we continue recursively
with Ri. When we finally reach a terminal, we know the number of leaves up to
position q is l′ < l and that their number reaches l at position q+1. Then we return
q, the starting position of the opening parenthesis that starts the lth leaf.

4. EXPERIMENTAL RESULTS AND DISCUSSION
We use various DNA collections from the Repetitive Corpus of Pizza&Chili7. On one
hand, to study precisely the effect of repetitiveness in the performance of the suffix
trees, we generate four synthetic collections of about 100MB: DNA 1%, DNA 0.1%, DNA
0.01%, and DNA 0.001%. Each DNA p% text is generated starting from 1MB of real DNA
text, which is copied 100 times, and each copied base is changed to some other value
with probability p/100. This simulates a genome database with different variability
between the genomes.

On the other hand, we evaluate the performance of the suffix trees on a set of real
repetitive DNA collections. This is important because repetitiveness may arise in other
forms than just simple mutations on a copy of the sequence; for example it may in-
volve block rearrangements. The least repetitive of our real collections is Escherichia
(23 sequences adding up to 108MB, compressible by p7zip8 to 4.72% of its original
size), then Para (36 sequences adding up to 410MB, compressible by p7zip to 1.46%) is
more repetitive, and Influenza (78,041 sequences adding up to 148MB, compressible
by p7zip to 1.35%) is even more repetitive. We add a fourth collection that is the most
repetitive, albeit it is not DNA but a versioned German Wikipedia article, Einstein
(89MB, compressible by p7zip to 0.11%).

4.1. Space Usage
Figure 7 gives a space breakdown of our GCT representation for the 8 collections, in
bps. The breakdown has five parts: (1) the RLCSA, which is built with parameters
blockSize = 32 and sample = 128 to provide reasonable time performance; (2) the LCP
representation; (3) the representation of the rules R of the GCT; (4) the representa-
tion of sequence C of the GCT; (5) the extra data we store for R and C associated
to samples. For this last part, we tested various values of y ∈ {20, 21, 22, 24, 28} and
z ∈ {28, 210, 212, 214}. Obviously, this is the only part of the space that changes with
y and z. We used the balanced version of RePair, which consistently gave us better
results.

In the synthetic DNA collections, the space decreases as repetitiveness increases.
The fixed part of the structures (without the sampling data on R and C) goes from
about 0.85 bps on the most repetitive collection to about 4.7 bps when the mutation
rate reaches 1%. Note that, from this space, about 0.6 bps from the RLCSA are fixed
and insensitive to repetitiveness; this is the space used by the RLCSA samples. Com-
ponents LCP, R and C decrease monotonically with repetitiveness.

The space for the R and C samplings varies significantly with parameter z, but not
so much for y. This suggests that the rule sampling does not decrease the space signif-
icantly, whereas it does increase the time. Our best space/time combinations generally
store the rule data for all the nonterminals, and use z to obtain space/time tradeoffs.

On the real data, the situation is more or less the same. Using reasonable values for
z, the space is about 7 bps for Escherichia, the least repetitive collection. However,

7http://pizzachili.dcc.uchile.cl/repcorpus
8An LZ77-like compressor with a huge buffer, thus it captures most of the actual repetitiveness of the
sequence, see http://www.7-zip.org.
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Fig. 7: Space breakdown of our GCT representation for the different collections and
combinations of parameters y (rule sampling) and z (sampling of C).

it decreases to about 3.3 bps on Para and to 2.3 on Influenza, which is much more
repetitive. On Einstein, the most repetitive collection, this space is below 0.7 bps.
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4.2. Space-Time Performance of Operations
We compare space and time performance of our GCT with previous CSTs, for a number
of suffix tree operations. The CSTs considered are the following.

GCT. Our new suffix tree representation. We used various combinations of param-
eters y and z, obtained a cloud of points, and chose the dominant ones. In most
cases, this implies leaving y at sampling every nonterminal and using z to reduce
the space. The RLCSA parameters are fixed to 32 for the sampling of Ψ and 128
for the text sampling (the one that affects the computation of suffix array entries).
Sada. Sadakane’s CST [Sadakane 2007] adapted to repetitiveness but without in-
cluding our new grammar-compressed tree topology (the actual index is too large
to be of interest in this comparison). That is, we use the RLCSA as the suffix array,
the compressed-bitvector H for the LCP, and the plain representation that uses 2
bits per node [Navarro and Sadakane 2014; Arroyuelo et al. 2010] for the topology.
This allows us to measure the effect of our grammar-compressed topology in time
and space. We use sampling 32 for Ψ and 64, 128, and 256 for the text sampling.
SCT3. The fastest CST for general collections among those that use reasonable
space [Ohlebusch et al. 2010]. It is also the most compact CST implemented in
the SDSL library [Gog 2015] (called cst sct3 in SDSL). For the CSA it uses an
FM-index on Huffman-shaped wavelet trees [Ferragina et al. 2007], which makes
it small and fast on DNA. It uses a non-compressed bitvector H to represent the
LCP, and a structure of 3n bits to solve PSV/NSV operations. The tree topology is
not represented. The bitvector samplings is set to 63, the sampling to extract text
to 63, and the text sampling to 32, 64, and 128. For the rest, it was compiled with
the default configuration of SDSL.
NPR-Repet. The only previous CST designed for repetitive collections [Abeliuk and
Navarro 2012; Abeliuk et al. 2013]. We choose the best point between using bal-
anced or unbalanced RePair in each case. They run over the RLCSA, with sampling
32 for Ψ and 64, 128, 256, and 512 for the text.
NPR. The smallest CST for general collections that achieves times within mi-
croseconds [Cánovas and Navarro 2010; Abeliuk et al. 2013]. Among their many
variants, we use the so-called FMN-RRR, which uses the least space. To make it
more space-competitive in this scenario, we change its suffix array to the RLCSA,
with the same sampling choices of NPR-Repet.
FCST. The smallest CST for general collections [Russo et al. 2011]. The FCST is
much slower than NPR; its times are in the range of the milliseconds, close to those
of NPR-Repet. The FCST also uses an FM-index on wavelet trees [Ferragina et al.
2007] as its suffix array.

We exclude the faster and larger variants of NPR [Cánovas and Navarro 2010;
Abeliuk et al. 2013], as they represent LCP values directly and these become very
large on repetitive collections (≈ 27 bps only the LCPs!). Other larger variants imple-
mented in SDSL are also disregarded in this comparison.

We note that not all the previous CSTs implement all the operations, so they may
not appear in some plots. In addition, we were unable to build NPR-Repet on the most
repetitive dataset, DNA 0.001%, because its grammar-compression algorithm on the dif-
ferential LCP array crashed.

We ran the experiments in an isolated Intel(R) Core(TM) i7-3820 running at 3.60GHz
with 62GB of RAM memory. The operating system is GNU/Linux, Ubuntu 12.04, with
kernel 3.2.0-68-generic.x86 64. All our implementations use a single thread and all of
them but FCST are coded in C++ (FCST is in C). The compiler is gcc version 4.6.3, with
-O9 optimization flag set (except SCT3, which uses its own set of optimization flags).
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We averaged each data point over 10,000 random queries, following for each distinct
operation the methodology described in previous work [Navarro and Sadakane 2014;
Abeliuk et al. 2013] to choose the suffix tree nodes on which operations are carried out.

4.2.1. Space. Let us use Figure 8 to discuss the space usage of the indexes. The
general-purpose indexes are mostly insensitive to repetitiveness (except because in
some of those we used the RLCSA as the suffix array). Even with the sparsest sam-
plings used, Sada takes up to 10 bps on the least repetitive collections and then de-
creases to 7 bps on the most repetitive ones. SCT3 (which does not use the RLCSA)
always uses about 5.5–7 bps. NPR (which uses an RLCSA) goes from 6.5 bps on the
least repetitive collections and to 4.5 bps on the most repetitive ones. Finally, the FCST
(which also does not use an RLCSA) is the only one that increases space with repeti-
tiveness, rarely exceeding 4 bps but reaching 5.3 bps on Einstein. The reason is that
repetitive collections induce deeper suffix trees. Since the FCST samples nodes at reg-
ular intervals across sLink paths, a deeper suffix tree entails longer paths and thus
more samples (up to some maximum guaranteed limit).

The repetitiveness-oriented CSTs use significantly less space, NPR-Repet being al-
ways smaller than GCT. The GCT becomes, in broad terms, more competitive with
NPR-Repet as repetitiveness increases. While, on the least repetitive DNA 1%, NPR-
Repet can use as little as 2.8 bps, which is about 60% of the GCT space, the ratio
raises to 80% already for DNA 0.01%. On the real texts, instead, the ratio stays around
60%, but for the most repetitive Einstein both indexes use basically the same space.

Note that, on the least repetitive collections, the repetitiveness-oriented CSTs are
not interesting anymore: On DNA 1% and Escherischia, the FCST is already smaller
than the GCT (albeit much slower), and uses about the same space and time of NPR-
Repet.

The comparison between GCT and Sada shows that compressing the parentheses
reduces the space by 2–6 bps, the impact being larger on the more repetitive collections.
On those, this difference dominates the total space of the structures, for example Sada
is about 7 times larger than the GCT on DNA 0.001% and on Einstein.

The impact on the times is analyzed next. For the GCT, we will comment about the
choice of parameter that reaches its “sweet point”, which is roughly the left-to-right
point where the time ceases to decrease abruptly and stabilizes. This is still a choice of
good space usage.

4.2.2. Direct tree operations. Figures 8 to 12 show the time-space performance for oper-
ations fChild (requiring just an access to the parentheses), tDepth (requiring simple
parenthesis operations), nSibling, parent and tAncestor (requiring the more complex
fwd and bwd operations on the parentheses). For tAncestor we test with a random
depth between 1 and the tree node depth.

Direct tree operations are particularly fast when the topology is represented with
parentheses. This is the case of Sada and the GCT. In the first case the operation times
goes from one nanosecond (ns) to at most one microsecond (µs). The faster ones, run-
ning in at most 10 ns, are fChild, tDepth, and parent. Instead, nSibling and tAncestor
are slower, requiring 0.5–1 µs.

The GCT is not so fast because it compresses the topology, but still it performs well.
It solves fChild, tDepth and parent in 5–10 µs, tAncestor in 10–30 µs, and nSibling 20–
50 µs. That is 1–3 orders of magnitude slower than a plain parentheses representation.

Instead, the operations are 2–3 orders of magnitude slower on NPR, which uses
much more space than GCT but does not store the tree topology. NPR requires 100–
700 µs for operations fChild, nSibling, and parent, except on Influenza and Einstein,
where for unclear reasons the times drop to 10–80 µs.
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Lacking an explicit topology, tDepth and tAncestor can only be solved via successive
parent operations until reaching the root or the desired depth difference. This makes
these two operations way slower on the other indexes. For tDepth the time of NPR
reaches 0.7–5 ms, and for tAncestor it reaches 2–50 ms (and 50–300 µs on the two
collections where it is faster).

If we consider NPR-Repet, which does not store the tree topology and in addition
is optimized for repetitiveness (reaching less space than the GCT), the times jump
one or two orders of magnitude further: fChild, nSibling, and parent require 0.6–10
ms (0.3 ms on Einstein), tDepth takes 50–300 ms (10 ms on Einstein), and tAncestor
uses 7–500 ms. Therefore, the only previous index that is smaller than the GCT on
repetitive collections is 2–4 orders of magnitude slower than it. The choice of including
the parentheses, even if highly compressed and slow to use, definitely pays off.

SCT3 does not represent the topology, but uses 3n bits to speed up the operations
PSV/NSV on the LCP values. As a consequence, it uses more space than NPR, but it
performs significantly faster. For fChild, nSibling and parent, it takes 0.2–2 µs, which
is 1–2 orders of magnitude faster than GCT (but still way slower than Sada, which uses
plain parentheses). However, it is also 1–2 orders of magnitude slower than GCT for
tDepth and tAncestor, where it takes 10–40 µs and 0.2–2 ms, respectively (for unclear
reasons, SCT3 is much slower on Para).

Finally, the FCST takes 0.6–7 µs on operations fChild, nSibling and parent, and 2–
50 ms on tDepth and tAncestor. This is also several orders of magnitude slower than
the GCT.

4.2.3. Operation LCA. This is the most complex among the operations that only need
the topology of the suffix tree. Figure 13 shows that the GCT uses 30–100 µs to solve
it. NPR requires 0.3–1 ms in most cases, and 30–200 µs on Influenza and Einstein.
On the other hand, NPR-Repet requires 0.7–10 ms.

The heaviest part of this operation is a RMQ. Both SCT3 and Sada have explicit
structures to carry out this operation, thus they solve it fast, in 4–5 µs. The FCST
is also particularly fast on this operation: 5–20 µs. The reason is that LCA is a core
operation for the FCST, so it is solved most efficiently and is the base for the other
operations.

4.2.4. Operation sLink. The suffix link operation is the first we study that is specific
of suffix trees, and can be considered as the one that distinguishes suffix trees from
other digital trees. Operation sLink requires several tree operations and interacting
with the RLCSA. For the GCT and Sada, it requires mapping the node to its suffix
array interval (which involves fwd and counting leaf nodes up to a position in P ), then
computing the native function Ψ of the RLCSA [Mäkinen et al. 2010] (or the inverse
of LF in the FM-index [Ferragina et al. 2007]) for both extremes of the interval, then
maping them back to suffix tree leaves (which requires finding the lth leaf in the tree),
and finally computing an LCA operation. The GCT requires 60–300 µs for operation
sLink, whereas Sada needs only 2–5 µs, profiting from its faster tree operations.

On the structures that do not use explicit tree topologies, the node identifier is di-
rectly the suffix array interval, and thus all what is needed is to compute Ψ on both
extremes of the interval and then an LCA operation on the resulting positions. In
the case of NPR-Repet and NPR, the time for LCA dominates the others: 0.6–40 ms
and 0.2–1 ms (40–100 µs on Influenza and Einstein), respectively. In the case of the
FCST, operation LCA is fast but the other operations are not so much, driving the time
to 0.2–1.5 ms. SCT3 takes 2–5 µs, being only slower than Sada.

4.2.5. Operation sDepth. This operation computes the string depth of a node, and is
crucial for other suffix tree operations. In the GCT and Sada it requires mapping the
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Fig. 8: Space-time tradeoffs for operation fChild.
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Fig. 9: Space-time tradeoffs for operation tDepth.
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Fig. 10: Space-time tradeoffs for operation nSibling.
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Fig. 11: Space-time tradeoffs for operation parent.
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Fig. 12: Space-time tradeoffs for operation tAncestor.
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Fig. 13: Space-time tradeoffs for operation LCA.
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Fig. 14: Space-time tradeoffs for operation sLink.
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second child of the node to the CSA (and thus it involves the corresponding fwd and
leaf counting operation), whereas in NPR, NPR-Repet and SCT3 it requires a RMQ
operation. Then, both kinds of structures must accesses the LCP data, which implies
using the bitvectorH plus the locating functionality of the RLCSA or FM-index. There-
fore, this is the first operation where the text sampling of the suffix array plays a role
in the time performance, actually dominating the overall time in various cases. The
FCST, instead, implements sDepth as a core operation.

The operation takes 50–100 µs on the GCT, 60–1000 µs on NPR-Repet, and 60–100
µs on NPR (6–10 µs on Influenza and Einstein). Sada and SCT3 require 10–100 µs,
the tradeoff being also dominated by the text sampling. The FCST takes 0.7–3 ms.

4.2.6. Operation sAncestor. This finds the ancestor of the node with the given string
depth (we test with a depth chosen at random between 1 and the node string depth).
On GCT and Sada, which can compute tAncestor fast, this operation can be carried out
via a binary search on sDepth using tAncestor. Thus it is computed in 250–700 µs on
the GCT, and in 50–300 µs on Sada.

On the SCT3 and FCST, the operation must be computed via successive parent op-
eration and measuring sDepth at each node. Therefore, it is more expensive: 0.3–3 ms
on SCT3 and 75–300 ms on FCST.

Instead, this operation is almost native on NPR and NPR-Repet [Abeliuk et al. 2013],
since they use on the LCP array a structure similar to the one we use on the excess of
the parentheses. However, it still needs to compute some sDepth values on unsampled
blocks of the LCP array, and this cost dominates. NPR takes 250–1000 µs (except 40–
200 on Influenza and Einstein) and NPR-Repet takes 1–10 ms.

4.2.7. Operation letter. This is a simple operation exclusive of suffix trees. It gives the
ith letter of the string represented by a node (we test i = 4). On the GCT and Sada, it
requires mapping to the suffix array and computing Ψi−1 on the RLCSA or LF−i on the
FM-index (this is usually faster than computing a suffix array cell). The GCT solves it
in 4–10 µs and Sada in 0.75–1 µs.

The other CSTs use direct suffix array ranges, and thus do not need the mapping
step. As a result, their time depends only on the CSA they use, and are faster than the
GCT, and even than Sada: NPR-Repet uses 2–4 µs, NPR uses 0.3–1 µs, and FCST takes
4 µs. The operation is not implemented in SCT3, but as it depends on the FM-index
used, it should be close to 1–4 µs as well.

4.2.8. Operation child. Finally, the most complex operation is child, which descends to
a child by an edge labeled with a given letter. It must first compute sDepth and then
traverse linearly the children of the node, computing letter for each until finding the
desired one.

The operation takes 0.3–1 ms on the GCT, 1–10 ms on NPR (but 0.3–1 ms on
Influenza and Einstein), 2.5–6 ms on FCST, 2–30 ms on NPR-Repet, 70–1000 µs on
Sada, and 30–200 µson SCT3 (with the exception of DNA 0.001%, where it reaches al-
most 3 ms). Only SCT3, which has a fast implementation of NSV to find the successive
children, and Sada, are faster than GCT.

4.2.9. Other operations. We have left out other less important operations from the ex-
periments: root is trivial in all implementations; preorder is similar to tDepth for the
GCT, and not possible to implement in the other schemes, which do not maintain the
tree topology; pSibling is similar to nSibling; isLeaf costs the same as fChild on the
GCT and is instantaneous on the others (as they use suffix array intervals as suffix
tree node identifiers, and thus leaves correspond to intervals of length 1); ancestor is
similar to nSibling and is instantaneous on the others (as it involves checking con-
tainment of intervals); subtree is also similar to nSibling and cannot be implemented
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Fig. 15: Space-time tradeoffs for operation sDepth.
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Fig. 16: Space-time tradeoffs for operation sAncestor.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.



Faster Compressed Suffix Trees for Repetitive Text Collections A:31

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

DNA 1%, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

DNA 0.1%, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 0  2  4  6  8  10

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

DNA 0.01%, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 0  2  4  6  8  10

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

DNA 0.001%, letter(i), i=4

GCT
Sada
NPR

FCST

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

escherichia, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

para, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

influenza, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 0  2  4  6  8  10

Ti
m

e 
pe

r o
pe

ra
tio

n 
(m

ic
ro

se
co

nd
s)

bps

einstein, letter(i), i=4

GCT
Sada

NPR-Repet
NPR

FCST

Fig. 17: Space-time tradeoffs for operation letter.
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Fig. 18: Space-time tradeoffs for operation child.
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Operation Time (µs) NPR-Repet FCST NPR SCT3 Sada

fChild 3–10 2–3 2–3 2 (1) (2–3)
tDepth 5–10 2–4 3–4 2–4 0–1 (2)
nSibling 10–50 2 2 1 (1–2) (1–2)
parent 10–40 2 2 1 (1) (3–4)
tAncestor 10–30 3–4 3–4 2–3 1–2 (1–2)
LCA 30–100 1–2 (1) 1 (1) (1)

sLink 60–300 1–2 0–1 0–1 (1–2) (1–2)
sDepth 50–100 0–1 1 0 0 0
sAncestor 250–700 0–1 2–3 0 0–1 0
letter 4–10 0 0 (1) 1
child 300–1000 1–2 1 0–1 (0–2) (0–1)

Table II: Operation time ranges for the GCT and orders of magnitude of difference with
alternative CSTs (the other structure is slower by that order, unless the number is in
parentheses, in which case it is faster by that order). The space increases left to right,
in general terms.

without the explicit topology; and textPos depends exclusively on the performance of
the underlying CSA (albeit the GCT requires also counting leaves). Essentially, the
cost of sDepth is that of a nSibling plus a textPos operation.

4.3. Discussion
4.3.1. Operation times. Table II shows the ranges of the operation times of the GCT

over all the collections tested, and how many orders of magnitude are those times
lower or higher than the competitor structures9.

The differences are particularly striking on the operations that directly refer to the
tree topology: even when the GCT significantly compresses the topology, which entails
a time cost of 1–4 orders of magnitude compared to less compressed representations
(Sada), this is still 1–4 orders of magnitude faster than alternative schemes, which use
the topology in implicit form (an exception is the LCA operation on the FCST, which
is very fast). On SCT3, which uses speedup structures that are alternatives to the
topology, the differences in speed are up to 2 orders of magnitude in either direction,
depending on the operation.

The difference decreases to 0–2 orders of magnitude on the operations that involve
interaction with the CSA, as this usage is common to all the CSTs and encompasses
a significant part of the total time. The general trend, within these lower gaps, is
maintained: the GCT is faster than NPR-Repet, FCST and NPR, the comparison is
mixed with SCT3, and Sada is faster. Exceptions are tAncestor on FCST, which is 2–3
orders of magnitude slower than GCT, and letter, which is faster on NPR than on GCT,
and slower on Sada than on GCT.

The effect can also be seen on the absolute operation times. While the GCT uses
5–50 µs on direct tree operations (except on the LCA, which is by far the most com-
plex one), the times raise to the range 50–1000 µs on the more complex operations
that interact with the CSA. Incidentally, the LCA is the only operation where another
structure within a competitive space range, the FCST, is faster than the GCT (other
less important ones would be isLeafand ancestor).

9For the sake of generalization, we omitted the 10-times faster times of NPR on Influenza and Einstein,
and a couple of excessively high times of SCT3.
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4.3.2. Times on a complex process. While the operation-wise comparison gives us a fine-
grained picture of the performance differences, it may be difficult to determine how
will the time differences look along a whole process formed by various operations of
different kinds. To give a significant example of the differences between GCT and its
fastest competitor, Sada, on a real-life problem, we choose a paradigmatic example of
suffix tree functionality: find the maximal substrings of a new string S[1,m] that are
also substrings of T .

The algorithm is as follows: We descend by the suffix tree with the symbols of S[1, i]
until descending further is not possible. Then S[1, i] is a maximal substring. Then we
take the suffix link, corresponding to S[2, i], and try to descend further. If this is still
not possible, we keep traversing suffix links until we reach a node representing S[j, i]
from where it is possible to descend, until the node representing S[j, i′]. Then S[j, i′] is
the second maximal substring, and so on. The total process requires O(m) operations
child and sLink, which are among the most important ones on suffix trees.

The process, however, is complicated by the fact that the involved suffix tree nodes
may not be explicit. Those virtual nodes are written as (v, `), meaning the `th child
along the unary path that descends from v in the suffix trie (` = 0 for explicit nodes).
To take the suffix link of a virtual node, we can take the suffix link v′ = sLink(v) and
descend up to ` times from v′ (as there may be some intermediate explicit nodes below
v′ before reaching the suffix link of (v, `)). This amortizes to O(m) operations, but it
makes repeated use of child, which is one of the slowest operation for all CSTs (around
1 ms in the GCT and Sada). Instead, we take advantage of the faster sAncestor opera-
tion (around 300 µs in both CSTs) and proceed otherwise: we take the explicit descen-
dant u of (v, `), compute u′ = sLink(u), and finally the desired node is sAncestor(u′, d),
where d = sDepth(u)−sDepth(v)−` (operation sDepth(u) takes less than 100 µs in both
CSTs, whereas sDepth(v) is known from the previous operation). This of course takes
also O(m) operations, which require less than half the time of the classical alternative.

Overall, the operations child, sLink, sAncestor and sDepth are involved. These in
turn make use of the primitives fwd, counting leaves up to a position, computing Ψ,
finding a given leaf, LCA, computing LCP values (and thus locating a suffix array
position, which depends on the sampling, and accessing bitvector H), binary searching
on tAncestor (which makes use of bwd), traverse the children of a node, and computing
letter (which again applies fwd and Ψ). Therefore the test on the suffix tree operations
is rather comprehensive.

We take Influenza as our text collection. For the string S, we take other Influenza
sequences10. We take one sequence of 3000 base pairs, so the process simulates finding
zones of the collection that are highly similar to a new gene. The resulting maximal
intervals have lengths around 100. To consider a longer string S, we also concatenate
2 MB of those sequences (removing separators), which is the approximate length of a
genome in our collection. For GCT, we take the sweet point at y = 1 and z = 210, and
use the RLCSA samples of 32 for Ψ and 64, 128, and 256 for the text sampling. The
RLCSA sampling used for Sada is the same.

Figure 19 shows the results. The differences between GCT and Sada are more notice-
able as the RLCSA sampling is denser, since the other operations take more relevance.
However, for reasonable sampling values, the differences in time are below a factor
of 3. More importantly, the GCT can reach the same time performance of Sada while
using much less space. For example, for the short string S, the GCT speeds up to 300
µs per symbol while using around 3 bps, so the whole process takes less than a sec-
ond. If allowed to use that time, however, Sada still cannot use less than 7 bps. The

10From www.cs.helsinki.fi/group/suds/rlcsa/data/influenza.gz
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Fig. 19: Space-time tradeoffs for finding the maximal substrings of S[1,m] that appear
in the collection. On the left, m = 3000, on the right, m = 2MB.

differences are higher on the longer S, where the GCT can process the whole genome
in around 15 minutes using 3 bps.

4.3.3. Evolution of space usage. The times obtained on larger CSTs are, of course, lower.
For example, the large NPR structure [Abeliuk et al. 2013] reaches 1 µs in most op-
erations (except 10 µs on LCA and 100 µs on child). However, as explained, it would
be particularly large on repetitive collections. Other structures implemented in SDSL
[Gog 2015] are larger than SCT3 and faster. In particular, the original structure by
Sadakane [2007], as implemented in SDSL, should use around 9–10 bps with a sam-
pling sufficiently dense to solve all the operations in 1–10 µs (and the direct tree oper-
ations in nanoseconds, as shown in our experiments).

Those general-purpose suffix trees will maintain their bps value approximately sta-
ble as the collection grows, whereas those oriented to repetitiveness like NPR-Repet
and GCT are likely to keep reducing their bps. Figure 20 shows how the space of the
CSTs considered evolves as repetitiveness increases on the synthetic DNA collections
(where repetitiveness can be precisely measured). As discussed, the FCST is the only
one that worsens with repetitiveness. With mutation rates of 1% the GCT uses less
than 6 bps. Although NPR-Repet and FCST use less space, the GCT is orders of mag-
nitude faster than them. When the mutation rate drops to 0.1%, the GCT becomes
smaller and way faster than NPR and FCST, and the difference widens as the mu-
tation rate drops. Only NPR-Repet stays more space-efficient than the GCT, but the
difference decreases fast with repetitiveness (it would probably almost disappear at
0.001%). Still, the GCT is several orders of magnitude faster than NPR-Repet. SCT3
and Sada are faster than GCT for many operations, but already for a mutation rate of
0.1% they use more than 3 times the space of GCT. This raises to more than 5 times
for the mutation rate 0.01%.

4.3.4. Construction. Finally, let us consider construction times. Figure 21 shows the
cost to build the GCT separated by collections (with the average at the end) and by
subprocess in the construction: from bottom to top, the construction of the RLCSA, the
construction of the LCP (bitvector H), the generation of the parentheses topology, and
finally its Repair-compression. This last step takes a significant portion of the total
construction time, and renders the GCT 2–5 times slower to build than the classical
CSTs (except the FCST, which builds more than 10 times slower). Analogously, the
RePair-compression of the differential LCP array is what makes NPR-Repet equally
slow to build. Still, the construction of the GCT for a human genome should take less
than 2.5 hours, which seems acceptable.
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5. CONCLUSIONS
We have introduced the grammar compressed tree (GCT) a representation of arbitrary
tree topologies that exploits repetitiveness, that is, identical subtrees, in a way that
full navigation functionality is retained. In fact, any operation that can be solved on
the sequence of parentheses [Navarro and Sadakane 2014] can also be solved on the
GCT.
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We have shown, in particular, that the GCT allows representing explicitly the topol-
ogy of compressed suffix trees within very little space on repetitive sequence collec-
tions, using less than 2 bits per symbol (bps) for synthetic mutation rates under 0.1%,
and within 2–3 bps on actual repetitive DNA sequence collections. Thanks to the ex-
plicit representation of the topology, the GCT is fast, solving the query and navigation
operations in the range of the microseconds. This is generally several orders of magni-
tude faster than alternative representations that achieve competitive space [Abeliuk
and Navarro 2012] (and not so competitive [Russo et al. 2011; Cánovas and Navarro
2010]) by managing the topology in implicit form. From those alternatives, only one
[Abeliuk and Navarro 2012; Abeliuk et al. 2013] is actually smaller than the GCT
(with the difference shrinking as repetitiveness increases), but its operation times are
in the range of milliseconds. Only larger CSTs [Sadakane 2007; Ohlebusch et al. 2010;
Cánovas and Navarro 2010; Gog 2015], which on these collections would use 3–7 times
the space of the GCT, operate within microseconds and can be faster than the GCT
(sometimes orders of magnitude faster) for most operations.

Needless to say, the GCT has broader interest than representing suffix tree topolo-
gies. After its conference publication [Navarro and Ordóñez 2014a], we have succeeded
in using the GCT to represent the structure of versioned XML repositories [Navarro
and Ordóñez 2014b]. As shown in the example of Einstein’s Wikipedia article in this
paper, versioned document collections may be much more repetitive than biological se-
quence databases. Another possible use is the representation of versioned structured
software repositories.

Three important challenges remain open:

(1) Very large collections must reside on disk before they are compressed to fit in main
memory. The main obstacle to handle them with our techniques is that the com-
pression itself is not yet engineered to run on secondary memory. For example,
RePair compression performs well only in main memory (but it can be replaced
by other grammar compressors). This is an important future challenge in order to
address massive repetitive text collections.

(2) We have been so successful in compressing the various components of the suffix
tree, that the sampling of the RLCSA [Mäkinen et al. 2010], which is not com-
pressed, starts to dominate. For example, on DNA with 0.001% of mutations, the
whole GCT uses 0.9 bps, from where 0.6 bps owe to the RLCSA sampling. Find-
ing ways to compress this sampling when the collection is repetitive is becoming
a pressing issue. Some recent and promising results in this aspect point to new
research directions [Na et al. 2013].

(3) Lempel-Ziv compression, especially the LZ77 variant, is more powerful than gram-
mar compression, but more difficult to manipulate [Navarro 2012]. Further space
reductions could be achieved by applying LZ77 compression, instead of RePair, to
the tree topology, as long as we are able to perform the navigation operations. There
is no obvious way to do it, however.
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DEMENTIEV, R., KÄRKKÄINEN, J., MEHNERT, J., AND SANDERS, P. 2008. Better external memory suffix
array construction. ACM Journal of Experimental Algorithmics 12, article 3.4.

DO, H.-H., JANSSON, J., SADAKANE, K., AND SUNG, W.-K. 2012. Fast relative Lempel-Ziv self-index for
similar sequences. In Proc. Joint International Conference on Frontiers in Algorithmics and Algorithmic
Aspects in Information and Management (FAW-AAIM). LNCS 7285. Springer, 291–302.

FERRAGINA, P., GAGIE, T., AND MANZINI, G. 2012. Lightweight data indexing and compression in external
memory. Algorithmica 63, 3, 707–730.

FERRAGINA, P. AND GROSSI, R. 1999. The string b-tree: A new data structure for string search in external
memory and its applications. Journal of the ACM 46, 2, 236–280.
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NAVARRO, G. AND MÄKINEN, V. 2007. Compressed full-text indexes. ACM Computing Surveys 39, 1, article
2.
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