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Given a collection of documents and a query pattern, document retrieval is the problem of obtaining docu-
ments that are relevant to the query. The collection is available beforehand so that a data structure, called
an index, can be built on it to speed up queries. While initially restricted to natural language text collections,
document retrieval problems arise nowadays in applications like bioinformatics, multimedia databases and
Web mining. This requires a more general setup where text and pattern can be general sequences of symbols,
and the classical inverted indexes developed for words cannot be applied. While linear-space time-optimal
solutions have been developed for most interesting queries in this general case, space usage is a serious
problem in practice.

In this article we develop compact data structures that solve various important document retrieval prob-
lems on general text collections. More specifically, we provide practical solutions for listing the documents
where a query pattern appears, together with its frequency in each document, and for listing k documents
where a query pattern appears most frequently. Some of our techniques build on existing theoretical propos-
als, while others are new. In particular, we introduce a novel grammar-based compressed bitmap represen-
tation that may be of independent interest when dealing with repetitive sequences.

Ours are the first practical indexes that use less space when the text collection is compressible. Our exper-
imental results show that, on various real-life text collections, our data structures are significantly smaller
than the most space-efficient previous solutions, using up to half the space without noticeably increasing the
query time. Overall, document listing can be carried out in 10 to 40 milliseconds for patterns that appear
100 to 10,000 times in the collection, whereas top-k retrieval is carried out in k to 10 k milliseconds.

Categories and Subject Descriptors: E.1 [Data structures]; E.2 [Data storage representations]; E.4
[Coding and information theory]: Data compaction and compression; H.3 [Information storage and
retrieval]

General Terms: Algorithms

Additional Key Words and Phrases: Document retrieval, wavelet trees, top-k retrieval, compressed text
databases

1. INTRODUCTION
Enormous repositories of data are arising in almost every area of human activity. Some
examples are Web pages, genomic sequences, multimedia sequences, sensor data, fi-
nancial data, click-through data and query logs, to name a few. Managing and extract-
ing meaningful information from this data requires sophisticated procedures. One of
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the most basic operations required by virtually all the more complex analysis tasks is
that of finding the areas in the data that are relevant to certain patterns.

When the data to be searched is available beforehand, it is useful to preprocess the
data to build an index data structure, to improve the speed and effectiveness with
which later queries can be answered. The fastest index will pre-store the answer to
every possible query. This, however, will be extremely space-inefficient in most cases.
On the other hand, using no index at all will reduce the extra space to zero but the time
to answer the queries will be at best linear in the size of the data (e.g., a sequential
search over the visible Web would take days, while any decent search engine takes less
than a second). The challenge of indexing can be thought of as how to achieve relevant
space-time trade-offs in between those extremes.

In this article we focus on a simple but common scenario. The data is assumed to
be sequences over a certain alphabet and to be cut into documents (e.g., Web pages,
genes, proteins, musical pieces, sensed regions, time periods). Patterns are just short
sequences over the same alphabet (e.g., a DNA motif, a protein of interest, a short
MIDI sequence that implies influence or plagiarism, a telling numeric pattern in stock
behavior, a query that helps analyze user behavior in Web query logs), and relevance
is measured just by the frequency of the pattern in the documents. Then the prob-
lem becomes finding documents where a pattern string appears frequently. These are
generically called document retrieval problems. The rest of this section describes these
problems in more detail, and summarizes our contributions.

1.1. Document Retrieval Challenges
Document listing is probably the most basic document retrieval problem. Given a col-
lection of documents and a query pattern, document listing consists in obtaining all the
documents in which the pattern occurs. This is different from the much better known
full-text search problem, where all the occurrences of a pattern must be listed. Since
there may be thousands of occurrences per document, using full-text searching to solve
document listing can be very inefficient.

When the outcome of the search goes directly to the final user (e.g., in Web search
engines), document listing might still deliver too many results. In those cases, it is
more useful to rank the documents by some relevance criterion. That is, the documents
where the pattern appears are sorted by relevance and only the k most relevant ones
are returned. This is called top-k document retrieval. One of the simplest, yet common,
relevance criteria is the term frequency, which is the number of occurrences of the
pattern in the document.

Document retrieval problems are best known on natural language text collections,
where documents and patterns are sequences of words from a (relatively) small vocab-
ulary. In this restricted case, a good solution (used in all Web search engines) is the
inverted index [Baeza-Yates and Ribeiro-Neto 2011]. This stores, for each vocabulary
word, the list of documents where it appears together with the relevance of the word
in each such document. Hence, the answers to all one-word queries are precomputed,
and more complex queries are handled through list unions and intersections. However,
the inverted index relies on the assumption that the text is tokenizable into querieable
units (words), which is not true in many newer scenarios of interest.

One such scenario is documents in languages with ambiguous word boundaries, such
as Chinese and Korean. Search engines usually treat these texts as sequences of sym-
bols, so that queries can retrieve any substring; inverted indexes cannot precompute
the answer for every text substring. Similarly, retrieving particles of words in aggluti-
nating languages such as Finnish or German is problematic for inverted indexes.

In other scenarios the data to be indexed do not even have a concept of word, yet doc-
ument retrieval problems arise naturally. In biotechnology, huge repositories of DNA
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sequences are arising. Looking for short patterns (motifs) that appear frequently in
those sequences is a critical task in many contexts, like understanding diseases. Sim-
ilarly, protein sequences are searched for short amino acid sequences that may imply
some desired function. In large source code repositories, code analysis requires quickly
finding the functions or modules where a given function, variable, or expression is
used, among more sophisticated problems. Detecting the use of short parts of a musi-
cal piece is useful for tracking author influence, as well as spotting plagiarism. Finding
areas in a time series where a pattern appears frequently is useful for various data
analysis problems, such as the evolution of trade indicators, stock markets, and other
financial data. The same problems arise when analyzing past data coming from sen-
sors of various kinds (meteorological, seismic, weather, and so on). Finally, the analysis
of user behavior in terms of queries or click-through data collected on logs over time is
useful for social mining behavior over regions or time periods.

When the texts to be indexed are not easily tokenized into words, the most successful
solutions for document retrieval are based on suffix arrays [Manber and Myers 1993]
and suffix trees [Weiner 1973]. Those structures support pattern searches over general
texts, meaning that they allow one to search for an arbitrary concatenation of symbols.
A suffix array is an array of all the suffixes of the text stored in lexicographic order.
Two binary searches find the interval containing all the suffixes that begin with a
query pattern. This interval contains all the occurrences of the pattern in the text.
Similarly, suffix trees store the suffixes in a digital tree and find the subtree with the
answers in a single traversal from the root. This functionality comes at the cost of
high space consumption: suffix arrays and trees require 4 to 20 times the size of the
original text. Moreover, these data structures by themselves are not powerful enough
to efficiently solve document retrieval problems; they just support efficient full-text
searches.

In a foundational work, Muthukrishnan [2002] gave the first time-optimal solution
to the document listing problem, as well as efficient solutions to various related doc-
ument retrieval problems. Muthukrishnan’s approach is built on the top of the suffix
tree, therefore the space consumption, although linear, is even higher. Similarly, Hon
et al. [2009] and Navarro and Nekrich [2012] achieved linear-space and optimal-time
solutions for top-k document retrieval, by adding further structures to the suffix tree.

Needless to say, the space requirement of all those solutions sharply limits their ap-
plicability. The new millennium witnessed a rich development of the field of compact
data structures. These aim to provide the same functionality of their classical counter-
parts, or more, using much less space and hopefully not much more time. In particular,
compressed suffix arrays have evolved rapidly, enabling the same functionality of clas-
sical suffix arrays, while requiring as little space as that of the compressed text. They
also allow one to recover any desired text substring, and so, in a sense, replace the
text. For this reason, they are also called self-indexes [Navarro and Mäkinen 2007].

A self-index is a satisfactory data structure in the sense that it uses nearly the min-
imum space in which the text collection could be represented (under various popular
entropy models), and efficiently solves full-text searches within that space. One could
hope to solve document retrieval problems efficiently within the same space. However,
this has been achieved only for the simplest document listing problem, where no doc-
ument relevance information is retrieved. For listing documents with the frequencies
of the pattern in each, or for retrieving the top-k documents, there are solutions using
twice the minimum space, but we will show that their implementation is not practical.
On the other hand, the solutions that are efficient in practice require much more than
the minimum space. In this article we contribute with practical solutions to overcome
this space/time problem.

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

1.2. Our Contributions
We propose novel compact data structures and algorithms for two document retrieval
problems on general sequence collections: document listing with frequencies and top-k
retrieval. A roadmap of the paper, highlighting the main contributions, follows.

— Section 2 gives basic definitions and introduces the fundamental concepts. Then Sec-
tion 3 introduces the document retrieval concepts and reviews existing approaches.
It also describes the document collections we will use in all the experiments.

— In Section 4 we propose a grammar-compressed representation of binary sequences
that answers rank and select queries, which are fundamental for other higher-level
tasks. This is the first bitmap representation that takes advantage of the repetitive-
ness of the bitmap instead of its density or clustering of 1s and 0s, and might be
of independent interest. Even on non-repetitive sequences, the representation uses
space close to alternative structures optimized for bitmap density or clustering. It is
significantly slower to operate, however.

— In Section 5 we use the previous result to develop a grammar-compressed sequence
representation with rank and select functionality. This is useful to represent the doc-
ument array, a basic component of most useful document retrieval solutions, whose
repetitiveness is related to the compressibility of the collection. This makes up the
first compressible representation of the document array, and reduces its space by up
to one half in various real-life collections. While this representation is slower than
classical ones, we design various tradeoffs that retain most of the space gains at a
negligible penalty in time performance for document listing with frequencies.

— In Section 6 we build on the previous representation and add a small data structure
that strengthens it for top-k document retrieval queries. We build on a theoretical
compact structure by Hon et al. [2009] and engineer it in various ways, reaching an
implementation with negligible extra space that speeds up top-k retrieval queries by
a factor of up to 10 compared to using just the plain document array.

— Finally, the Conclusions discuss our contributions and possible future directions.

Our new data structures dominate almost the whole space/time tradeoff map. As a
quick figure of the actual time performance achieved, document listing with frequen-
cies can be carried out in 10 to 40 milliseconds for patterns that appear 100 to 10,000
times in the collection, whereas top-k retrieval is carried out in k to 10 k milliseconds.

2. PRELIMINARIES
2.1. Empirical Entropy
In the last 10 years the empirical entropy has emerged as a powerful means of mea-
suring the compressibility of sequences, and the space efficiency of data structures
that operate on them. Let S[1, n] be a sequence over alphabet Σ = {1, . . . , σ}. For each
c ∈ Σ, let nc denote the number of times c appears in S. The zero-order empirical
entropy [Manzini 2001] of S is

H0(S) =
∑
c∈Σ

nc
n

log
n

nc
= log n− 1

n

∑
c∈Σ

nc log nc. (1)

Now let nw be the number of occurrences of a (sub)string w in S, and let S|w be the sub-
sequence of S consisting of those characters that immediately precede w in S (treating
S as a cyclic string). Then the kth order empirical entropy is

Hk(S) =
∑
w∈Σk

nw
n
H0(S|w) .
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The value nHk(S) above is a lower bound on the number of bits needed to encode S by
any compressor that considers a context of size at most k when encoding a symbol.

2.2. Rank and Select
Two basic operations used in almost every succinct data structure are rank and select.
Given a sequence S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ, and inte-
gers i,j, rank c(S, i) is the number of times that c appears in S[1, i], and selectc(S, j)
is the position of the j-th occurrence of c in S. On binary sequences we assume
rank(S, i) = rank1(S, i) and select(S, j) = select1(S, j).

There is a great variety of techniques to answer these queries, depending on the
nature of the sequence, for example whether or not it will be compressed, the size of
the alphabet, etc.

Given a binary sequence B[1, n], the classic solution [Munro 1996; Clark 1998] is
built upon the plain sequence, requiring o(n) additional bits. More advanced solutions
acheive zero-order compression of B. For example Raman et al. [2007] describe a data
structure (now well-known as RRR) that requires nH0(B) + o(n) bits, and supports
rank and select operations in constant time. Okanohara and Sadakane [2007] describe
another structure, called SDArray, that requires nH0(B) + 2m+ o(m) bits for bitmaps
with m 1s, and can support select in constant time and rank in time O(log(n/m)).

2.3. General Sequences: Wavelet Tree
There are many solutions for the rank and select problem on general sequences [Grossi
et al. 2003; Golynski et al. 2006; Ferragina et al. 2007; Barbay et al. 2011; Barbay et al.
2010]. We will focus on one of the most versatile and useful: the wavelet tree [Grossi
et al. 2003]. Let us consider a sequence T = a1a2 . . . an over an alphabet Σ as before.

The wavelet tree of T is a binary balanced tree, where each leaf represents a symbol
of Σ. The root is associated with the complete sequence T . Its left child is associated
with a subsequence obtained by concatenating the symbols ai of T satisfying ai < σ/2.
The right child corresponds to the concatenation of every symbol ai satisfying ai ≥ σ/2.
This relation is maintained recursively up to the leaves, which will be associated with
the repetitions of a unique symbol. At each node we store only a binary sequence of the
same length of the corresponding sequence, using at each position a 0 to indicate that
the corresponding symbol is mapped to the left child, and a 1 to indicate the symbol is
mapped to the right child.

If the bitmaps of the nodes support constant-time rank and select queries, then the
wavelet tree supports fast access, rank and select on T .

Access: In order to obtain the value of ai the algorithm begins at the root, and de-
pending on the value of the root bitmap B at position i, it moves down to the left or to
the right child. If the bitmap value is 0 it goes to the left, and replaces i← rank0(B, i).
If the bitmap value is 1 it goes to the right child and replaces i ← rank1(B, i). When a
leaf is reached, the symbol associated with that leaf is the value of ai.

Rank: To obtain the value of rank c(S, i) the algorithm is similar: it begins at the root,
and goes down updating i as in the previous query, but the path is chosen according to
the bits of c instead of looking at B[i]. When a leaf is reached, the i value is the answer.

Select: The value of selectc(S, j) is computed as follows: The algorithm begins in the
leaf corresponding to the character c, and then moves upwards until reaching the root.
When it moves from a node to its parent, j is updated as j ← select0(B, j) if the node is
a left child, and j ← select1(B, j) otherwise. When the root is reached, the final j value
is the answer.
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Fig. 1. Wavelet tree of the sequence T = 3185718714672727, We show the mapped sequences in the nodes
only for clarity, the wavelet tree only stores the bitmaps.

2.4. Grammar Compression of Sequences: RePair
Grammar compression replaces the original sequence by a context-free grammar that
uniquely produces the original sequence. Compression is achieved by finding a gram-
mar that requires less space to be represented than the original sequence.

The problem of finding the smallest grammar to represent a sequence is known
to be NP-Complete. However, there are very efficient algorithms that asymptotically
achieve the entropy of the sequence, LZ78 [Ziv and Lempel 1978], and RePair [Larsson
and Moffat 2000] among others.

We focus on RePair because it has proven to fit very well in the field of succinct
data structures [González and Navarro 2007]. RePair is an off-line dictionary-based
compressor that achieves high-order compression taking advantage of repetitiveness
and allowing fast random access [Larsson and Moffat 2000; Navarro and Russo 2008].

RePair looks for the most common pair in the original sequence and replaces that
pair with a new symbol, adding the corresponding replacement rule to a dictionary.
The process is repeated until no pair appears twice. More formally, given a sequence T
over an alphabet of size σ, RePair begins with an empty dictionary R and

(1) Identifies the symbols a and b in T , such as ab is the most frequent pair in T . If no
pair appears twice, the algorithm stops.

(2) Creates a new symbol A, adds a new rule to the dictionary,R(A)→ ab, and replaces
every occurrence of ab in T with A.

(3) Repeats from (1).

As a result, the original sequence T is transformed into a new, compressed, sequence
C (including original symbols as well as newly created ones), and a dictionary R. Note
that the new symbols have values larger than σ, thus the compressed sequence alpha-
bet is σ′ = σ + |R|.

To decompress C[j] we evaluate: if C[j] ≤ σ, then it is an original symbol, so we
return C[j]. Otherwise, we expand it using the ruleR(C[j])→ ab and repeat the process
recursively with a and b. In this manner we can expand C[j] in time O(|C[j]|).
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2.5. Succinct Representation of Trees
How to succinctly encode a tree has been subject to a lot of study [Jacobson 1989;
Benoit et al. 2005; Barbay et al. 2011; Sadakane and Navarro 2010; Arroyuelo et al.
2010]. Although there are many proposals that achieve optimal space, that is 2n+o(n)
bits to encode a tree of n nodes, they offer different query times for different queries.
Most solutions are based on Balanced Parentheses [Jacobson 1989; Munro and Raman
2002; Raman et al. 2007; Geary et al. 2006; Sadakane and Navarro 2010], Depth-First
Unary Degree Sequences (DFUDS) [Benoit et al. 2005], or Level-Order Unary Degree
Sequences (LOUDS) [Jacobson 1989].

Arroyuelo et al. [2010] implemented and compared the major current techniques and
showed that, for the functionality it provides, LOUDS is the most promising succinct
representation of trees. The 2n+o(n) bits of space required can, in practice, be as little
as 2.1n and the representation solves many operations in constant time (and fast in
practice). In particular, it allows fast navigation through labeled children.

In LOUDS, the shape of the tree is stored using a single binary sequence, as follows.
Starting with an empty bitstring, every node is visited in level order starting from the
root. A node with c children is encoded by writing its arity in unary, that is, appending
1c0 to the bitstring. Each node is identified with the position in the bitstring where the
encoding of the node begins. If the tree is labeled, then all the labels are put together in
another sequence, and the labels are indexed by the rank of the node in the bitstring.

2.6. Range Minimum Queries
Range minimum queries (RMQ) are useful in the field of succinct data structures [Fis-
cher and Heun 2011; Sadakane 2007]. Given a sequence A[1, n], a range minimum
query from i to j asks for the position of the minimum element in the subsequence
A[i, j]. The RMQ problem consists in building an additional data structure over A that
allows one to answer RMQ queries on-line in an efficient manner. There are two pos-
sible settings: in the so-called systematic setting, the sequence A is available at query
time, whereas in the non-systematic setting A is no longer available during query time.

Sadakane [2007] gave the first known solution for the non-systematic setting, re-
quiring 4n+o(n) bits and answering the queries in O(1) time. Later, Fischer and Heun
[2011] offered a solution requiring the optimal 2n+ o(n) bits, and answering the RMQ
queries in O(1) time.

2.7. Direct Access Codes
There exist several techniques to represent sequences S[1, n] of numbers using
variable-length codes, usually using shorter codes for smaller numbers. Those are use-
ful when most numbers in a sequence are small, but there can also be some large ones.

A recurrent problem in this case is how to directly access the ith number in a se-
quence. Brisaboa et al. [2013] propose a simple and practical technique called Direct
Access Codes (DACs). Given a parameter b, this technique cuts the binary represen-
tation of each number into blocks of b bits, possibly wasting some bits at the end of
the last block. It then stores a sequence S1 with all the first blocks of all the numbers,
a sequence S2 with all the second blocks of all the numbers that have more than one
block, and so on. It also stores bitmaps B`[1, |S`|] such that B`[i] = 1 iff the block stored
at S`[i] is not the last of its number. Then, the first block of number S[i] is S1[i]. If
B1[i] = 1, then there is a second block, which is found at S2[rank(B1, i)], and so on.

With this technique, given a sequence of n numbers whose binary representations
require u bits, we waste at most u/b+ nb bits, and recover any number of t bits in time
O(1 + t/b). Parameter b can be changed at each level (b`), and it is not hard to tune
those b` values to minimize the total space, using dynamic programming.
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Fig. 2. Suffix Tree of the text “alabar a la alabarda$”.

2.8. Suffix Trees
The suffix tree is a classic full-text index introduced by Weiner [1973], providing a
powerful data structure that requires linear space and supports the counting of the
occurrences of an arbitrary pattern P in optimal O(|P |) time, as well as locating these
occ occurrences in O(|P |+ occ) time, which is also optimal.

Let us consider a text T [1, n], with a special end-marker T [n] = $ that is lexicograph-
ically smaller than any other character in T . We define a suffix of T starting at position
i as T [i, n]. The suffix tree is a digital tree containing every suffix of T . The root cor-
responds to the empty string, every internal node corresponds to a proper prefix of (at
least) two suffixes, and every leaf corresponds to a suffix of T . Each unary path is com-
pressed to ensure that the space requirement is O(n log n) bits, and every leaf contains
a pointer to the corresponding position in the text. Figure 2 shows an example.

To find the occurrences of an arbitrary pattern P in T , the algorithm begins at the
root and follows the path corresponding to the characters of P . The search can end in
three possible ways:

(1) At some point there is no edge leaving from the current node that matches the char-
acters that follows in P , which means that P does not occur in T ;

(2) we read all the characters of P and end up at a tree node, called the locus of P (we can
also end in the middle of an edge, in which case the locus of P is the node following
that edge), in which case all the answers are in the subtree of the locus of P ; or

(3) we reach a leaf of the suffix tree without having read the whole P , in which case
there is at most one occurrence of P in T , which must be checked by going to the
suffix pointed to by the leaf and comparing the rest of P with the rest of the suffix.

2.9. Suffix Arrays
The suffix array [Manber and Myers 1993] is also a classic full-text index that allows
us to efficiently count and find the occurrences of an arbitrary pattern in a given text.

The suffix array of T [1, n] = t1t2 . . . tn is an array SA[1, n] of pointers to every suffix
of T , lexicographically sorted. More specifically, SA[i] points to the suffix T [SA[i], n] =
tSA[i]tSA[i]+1 . . . tn, and it holds that T [SA[i], n] < T [SA[i+1], n]. The suffix array requires
ndlog ne bits in addition to the text itself.

To find the occurrences of P using the suffix array, it is important to notice that every
substring is the prefix of a suffix. In the suffix array the suffixes are lexicographically
sorted, so the occurrences of P will be in a contiguous interval of SA, SA[sp, ep], such
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T = a l a b a r a l a a l a b a r d a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18A =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 3. Suffix Array of the text “alabar a la alabarda$”. The shaded interval corresponds to the suffixes
that begin with“la”.

Table I. Summary of some of the main self-indexes, and their (simplified) time and space complexities. The size is
expressed in bits, tSA is the time required to compute either SA[i] or SA−1[i], and search(P ) is the time required
to compute the [sp, ep] interval. Parameter ε is any constant greater than 0.

Index Size tSA search(P )

CSA [Sadakane 2003] 1
ε
n(H0 + 1) + o(n log σ) O(logε n) O(|P | logn)

CSA [Grossi et al. 2003] (1 + 1
ε
)nHk + o(n log σ) O(logε n) O(|P | log σ + polylog(n))

FM-Index [Ferragina et al. 2007] nHk + o(n log σ) O(log1+ε n) O(|P | log σ
log logn

)

that every suffix tSA[i]tSA[i]+1 . . . tn, for every sp ≤ i ≤ ep, contains P as a prefix. This
interval is easily computed using two binary searches, one to find sp and another one
to find ep. It takes O(|P | log n) time to find the interval. Figure 3 shows an example.

2.10. Self-Indexes
A self-index is a data structure built in a preprocessing phase of a text T , that is able
to answer the following queries for an arbitrary pattern P :

— Count(P ): Number of occurrences of pattern P in T .
— Locate(P ): Position of every occurrence of pattern P in T .
— Access(i): Character ti.

The last query means that the self-index provides random access to the text, thus it is
a replacement for the text. If the space requirement of a self-index is proportional to
that of a compressed representation of the text, then the self-index can be thought of
as a compressed representation of T and as a full-text index of T at the same time.

Most self-indexes emulate a suffix array, and these are divided into two main fami-
lies: the FM-Index [Ferragina and Manzini 2005; Ferragina et al. 2007; Mäkinen and
Navarro 2007], and the Compressed Suffix Array [Grossi and Vitter 2006; Grossi et al.
2003; Sadakane 2003].

For some document retrieval applications of self-indexes we will need not only to
answer the queries defined above, but also to efficiently compute SA[i] and its inverse,
SA−1[i]. Table I briefly sketches the space requirement, the time to compute SA[i] or
SA−1[i], called tSA, and the time to compute the interval SA[sp, ep], called search(P ),
for the most prominent self-indexes that emulate suffix arrays. We will refer to any of
those self-indexes as compressed suffix arrays (CSAs).

3. RELATED WORK
Consider a collection of D documents D = {d1, d2, . . . , dD}, of total length

∑D
i=1 |di| = n,

and call T their concatenation, which is a sequence over an alphabet Σ = [1..σ]. We
assume that every document ends with a special end-marker $, satisfying $ < c,∀c ∈ Σ.
For an arbitrary pattern P over alphabet Σ, the following queries are defined:
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— Document Listing(P ): Return the ndoc documents that contain P .
— Document Listing(P ) with frequencies: Return the ndoc documents that contain P , with

the frequency (number of occurrences) of P in each document d, TFP,d.
— Top(P ,k): Return k documents where P occurs most times.

In this section we cover the existing solutions to handle these queries in the scenario
of general sequences, focusing on reduced-space approaches.

3.1. Non-Compressed Approaches
Muthukrishnan [2002] proposed the first solution to the document listing problem that
is optimal-time and linear-space. He builds on suffix trees (Section 2.8) and introduces
a new data structure for document retrieval problems: the so-called document array.

Muthukrishnan’s solution builds the generalized suffix tree of D, which is a suffix
tree containing the suffixes of every document in D. This is equivalent to the suffix
tree of the concatenated collection, T . This structure requires O(n log n) bits.

To obtain the document array of D, DA[1, n], we consider the suffix array of T , SA[1, n]
(Section 2.9) and, for every position pointed from SA[i], we store in DA[i] the document
corresponding to that position. The document array requires n logD bits.

Up to this point, the query can be answered by looking for the pattern P in the suffix
tree in O(|P |) time, determining the range DA[sp, ep] of the occ occurrences of P in DA,
and then reporting every different document in DA[sp, ep]. That would require at least
O(|P |+occ) time. The problem is that occ = ep−sp+1 can be much bigger than ndoc, the
number of different documents where P occurs. An optimal algorithm would answer
the query in O(|P |+ ndoc) time.

For this purpose, Muthukrishnan defines an array C, which is built from DA, and
that for each document stores the position of the previous occurrence of the same docu-
ment in DA. Thus, C can be seen as a collection of linked lists for every document. More
formally, C is defined as C[i] = max{j < i,DA[i] = DA[j]} or C[i] = −1 if such j does
not exist. C must be enriched to answer range minimum queries (RMQs, Section 2.6).
The space required by the C array and the RMQ structure is O(n log n) bits.

To understand Muthukrishnan’s algorithm it is important to note that, for every
different document present in DA[sp, ep], there exists exactly one position in C point-
ing to a number smaller than sp. Those positions are going to be used to report the
corresponding document. The algorithm works recursively as follows: find the position
j with the smallest value in C[sp, ep] using the RMQ structure. If C[j] ≥ sp, output
nothing and return. If C[j] < sp, return DA[j] and continue the procedure with the in-
tervals DA[sp, j − 1] and DA[j + 1, ep] (looking in both subintervals for positions where
C points to positions smaller than the original sp boundary). This algorithm clearly
reports each distinct document DA[j] in [sp, ep] where C[j] < sp, and no document is
reported more than once. The total space required is O(n log n) bits, which is linear.
The total time is O(|P |+ ndoc), which is optimal.

An optimal solution to top-k document retrieval has required more work. Hon et al.
[2009] achieved linear space and O(|P |+ k log k) time. They enrich the suffix tree of T
with bidirectional pointers that describe the subgraph corresponding to the suffix tree
of each individual document. It is shown that, if P corresponds to the suffix tree node
v, then each distinct document where P appears has a pointer from the subtree of v
to an ancestor of v. Thus they collect the pointers arriving at nodes in the path from
the root to v and extract the k with most occurrences from those candidates. Navarro
and Nekrich [2012] achieve linear-space and optimal time O(|P | + k) by reducing this
search over candidates to a geometric problem where we want the k heaviest points
on a three-sided range over a grid. In both cases, the space is several times that of the
suffix tree, which is already high.
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While O(n log n) bits is called “linear-space”, it is in practice many times the size
of the collection itself, n log σ bits without compression. There have been various ap-
proaches to reduce the space of Muthukrishnan’s and Hon et al.’s solutions. An easy
step is to replace the suffix tree by a self-index. As stated in Section 2.10, we will refer
to any of those indexes as a compressed suffix array (CSA). All the algorithms pre-
sented in this article use a CSA to obtain the interval SA[sp, ep] corresponding to the
suffixes beginning with P , in a time search(P ) that depends on the particular CSA. The
challenging part is to reduce the space of the other data structures, in particular the
document array DA. The rest of this section surveys the main techniques for document
listing and top-k retrieval queries using reduced space.

3.2. Wavelet Tree Based Approaches
Document listing with frequencies. Välimäki and Mäkinen [2007] were the first in

using a wavelet tree (Section 2.3) to represent DA. While the wavelet tree takes es-
sentially the same space of the plain representation, n logD + o(n logD) bits, they
showed that it can be used to emulate the array C using rank and select on DA (Sec-
tion 2.2), with C[i] = selectDA[i](DA, rankDA[i](DA, i)−1). Therefore, C is not needed any-
more. The time for document listing becomes O(search(P ) + ndoc logD). The wavelet
tree also allows them to compute the frequency of P of any document d as TFP,d =
rankd(DA, ep)− rankd(DA, sp− 1), in O(logD) time as well. The RMQ data structure is
still necessary to emulate Muthukrishnan’s algorithm.

Later, Gagie et al. [2009] showed that the wavelet tree was powerful enough to
get rid of the whole Muthukrishnan’s algorithm. They defined a new operation over
wavelet trees, the so-called range quantile query (RQQ). Given the wavelet tree of a
sequence DA, a range quantile query takes a rank k and an interval DA[sp, ep] and re-
turns the kth smallest number in DA[sp, ep]. To answer such query RQQ(DA[sp, ep], k),
they begin in the root of the wavelet tree and compute the number of 0s in the in-
terval corresponding to DA[sp, ep], nz = rank0(Broot, ep) − rank0(Broot, sp − 1), where
Broot is the bitmap associated to the root node. If nz ≥ k, then the target num-
ber will be found in the left subtree of the root. Therefore, the algorithm updates
sp = rank0(Broot, sp − 1) + 1, ep = rank0(Broot, ep), and continue on the left subtree.
If nz < k, the target is in the right subtree, so the algorithm updates k = k − nz,
sp = rank1(Broot, sp−1)+1 and ep = rank1(Broot, ep), and continues on the right. When
a leaf is reached, its corresponding value is the kth smallest in the subinterval.

To solve the document listing problem, Gagie et al. used the wavelet tree of the
document array, and applied successive range quantile queries. The first document is
obtained as d1 = RQQ(DA[sp, ep], 1), the second is d2 = RQQ(DA[sp, ep], 1 + TFP,d1),
and in general dj = RQQ(DA[sp, ep], 1 +

∑
i<j TFP,di). The frequencies are computed

also in O(logD) time, TFP,dj = rankdj (D, ep) − rankdj (D, sp − 1). Each range quantile
query takes O(logD) time, therefore the total time to enumerate all the documents in
DA[sp, ep] is O(ndoc logD).

Culpepper et al. [2010] showed that Gagie et al.’s algorithm could be simplified to
a depth-first search, which improves the performance. They also made a practical im-
provement that obtains the frequencies for free.

The algorithm begins in the root of the wavelet tree and calculates the number of
0s (resp. 1s) in Broot[sp, ep], n0 (resp. n1), using two rank operations. If n0 (resp. n1)
is not zero, the algorithm continues to the left (resp. right) child of the node. When
the algorithm reaches a leaf, the document value encoded in that leaf is reported, and
if the leaf was a left child (resp. right), then the n0 (resp. n1) value calculated in its
parent is reported as the document frequency.
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Fig. 4. Wavelet tree representation of a document array and depth-first search traversal to perform docu-
ment listing with frequencies. Shaded regions show the intervals [sp, ep] mapped in each node.

The DFS traversal visits the same nodes that are visited by the successive range
quantile queries. However, the range quantiles visit some nodes many times (e.g.,
the root is visited ndoc times). Calculation shows that the worst-case complexity is
O(ndoc log(D/ndoc)) [Gagie et al. 2012]. Figure 4 shows an example.

Top-k document retrieval. Culpepper et al. [2010] also explored different heuristics
to solve top-k document retrieval queries using a wavelet tree. Quantile probing is
based on the observation that in a sorted array X, if there exists a d with frequency
larger than f in X, then there exists at least one j such that X[j · f ] = d. Instead of
sorting the document array, Culpepper et al. use range quantile queries to access the
document with a given rank in DA[sp, ep].

The algorithm makes successively more refined passes using the above observation,
and stores candidates in a min-heap of size k. The first pass finds the document with
rank m/2, where m = ep− sp+ 1, computes its frequency, and inserts it into the heap.
In the second pass, the elements probed are those with ranks m/4 and 3m/4, their
frequencies are computed, and each is inserted in the heap, if not already present. If
the heap exceeds the size k, then the smallest element of the heap is removed. Each
pass considers the new quantiles of the form jm/2i. If after the ith pass the heap has
k elements, and its minimum element has a frequency larger than m/2i+1, then the
candidates in the heap are the actual top-k documents and the algorithm terminates.

Greedy traversal was the other top-k heuristic presented by Culpepper et al. [2010],
and it performed best in practice. The key idea is that, if a document d has a high TFP,d
value, then the [sp, ep] intervals on the path to that document leaf in the wavelet tree
should also be long.

By choosing the nodes to inspect in a greedy fashion (i.e., longer [sp, ep] intervals
first) the algorithm will first reach the leaf (and report its corresponding document)
with highest TF value. The next document reported will be the second highest score,
and so on until reporting k documents with highest TF value. The algorithm uses a
max-heap where wavelet tree nodes to traverse are maintained. Initially it contains
only the root node with the associated interval [sp, ep] and key ep − sp + 1. In each
step, the longest interval is extracted from the heap. If it is a leaf, the document is re-
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ported, as explained. Otherwise, the two children of the node, with their corresponding
intervals, are inserted in the heap. In this way, the algorithm can avoid inspecting a
large part of the tree that would be explored in a depth-first search traversal. Although
very good in practice, there are no time guarantees for this algorithm beyond the DFS
worst-case complexity, O(ndoc log(D/ndoc)).

3.3. CSA Based Approaches
Document listing. A parallel development started with Sadakane [2007]. He pro-

posed to store a bitmap B[1, n] marking with a 1 the positions in T where the doc-
uments start. B should be enriched to answer rank and select queries (Section 2.2).
Sadakane used the fact that DA can be easily simulated using a CSA of T and the
bitmap B, computing DA[i] = rank(B, SA[i]), using very little extra space on top of the
CSA: A compressed representation of B requires just D log(n/D) + O(D) + o(n) bits,
supporting rank in constant time [Raman et al. 2007].

To emulate Muthukrishnan’s algorithm, Sadakane showed that C can be discarded
as well, because just RMQ queries on C are needed. He proposed an RMQ structure
using 4n + o(n) bits that does not need to access C (a more recent proposal [Fischer
and Heun 2011] adresses the same problem using just 2n+ o(n) bits, see Section 2.6).
Therefore, the overall space required for document listing was that of the CSA plus
O(n) bits. The time is O(search(P ) + ndoctSA), where tSA is the time required by the
CSA to compute SA[i] (Section 2.9). Both in theory and in practice, this solution is
competitive in time and uses much less space than those based on wavelet trees, yet it
only solves basic document listing queries.

Hon et al. [2009] showed how to reduce the extra space to just o(n) by sparsifying
the RMQ structure, impacting the time with a factor logε n for listing each document,
for some constant 0 < ε < 1. To accomplish this, instead of building the RMQ structure
over C, Hon et al. built the RMQ structure over a sampled version of C, C∗. They
consider chunks of size b = logε n in C, and store in C∗ the smallest value of each
chunk, that is, the leftmost pointer. The queries are solved in a similar way: using the
RMQ data structure they find all the values in C∗[dsp/be, bep/bc] that are smaller than
sp. Each such a value still corresponds to an actual document to be reported, but now
they need to check its complete chunk of size b (as well as the two extremes of [sp, ep],
not convering whole chunks) looking for other values smaller than sp. Therefore, Hon
et al. answer document listing queries using |CSA|+D log(n/D)+O(D)+o(n) bits, and
the total time becomes O(search(P ) + ndoctSA logε n).

Document listing with frequencies. Sadakane [2007] also proposed a method to cal-
culate the frequency of each document: He stores an individual CSA, CSAd, for each
document d of the collection. By computing SA and SA−1 a constant number of times
over the global CSA and that of document d, it is possible to compute frequencies on
document d. The idea is to determine the positions [spd, epd] in SAd corresponding to
the suffixes beginning with P in document d, and then report TFP,d = epd − spd + 1.
The naive approach is, after solving the document listing problem, for each document
d in the output compute its frequency by searching for the pattern in CSAd. This would
take O(ndoc(search(P ) + tSA)) time.

Sadakane improves that time by finding the leftmost and rightmost occurrences of
each document d in DA[sp, ep], and then mapping the extremes to SAd[spd, epd]. He
defines an array C ′ that is analogous to C. The array C is regarded as a set of linked
lists for each document. C ′ represents the linked lists in the opposite direction, that
is C ′[i] = min{j > i,DA[j] = DA[i]} or D + 1 if no such j exists. Then, a procedure
analogous to that on C, but using range maximum queries on C ′, enumerates the
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rightmost indices j of all the distinct values in DA[sp, ep]. As for C, C ′ is not stored but
only the RMQ structure over it.

After matching the documents in both lists, Sadakane has the leftmost ld and the
rightmost rd indices in [sp, ep] where DA[ld] = DA[rd] = d, for each document d. It is
now possible to map these values to the corresponding positions [spd, epd] in SAd with
the following calculation: let x = SA[ld] and y = SA[rd] be the corresponding positions in
the text T . Those are calculated in time O(tSA) using the global CSA. We then obtain
the position z in T that corresponds to the beginning of the document d in constant
time using z = select(B, d). Then x′ = x − z and y′ = y − z are the positions in the
document d that correspond to x and y. Finally, spd = SA−1

d [x′] and epd = SA−1
d [y′] are

computed using CSAd in time O(tSA) .
Thus, Sadakane solved the document listing with frequencies problem in

O(search(P ) + ndoc(tSA + log log ndoc)) time (using a sorting algorithm by Andersson
et al. [1995]). The space needed is 2|CSA|+O(n) bits.

Top-k document retrieval. Hon et al. [2009] proposed a new data structure with
worst-case guarantees to answer top-k queries. Their proposal is essentially a sam-
pling of the suffix tree of T storing some extra data and being sparse enough to require
just o(n) extra bits.

Hon et al. consider a fixed value of k and a parameter g as the “group size”. They
traverse the leaves of the suffix tree from left to right, forming groups of size g, and
marking the lowest common ancestor (lca) of the leftmost and rightmost leaves of each
group: lca(l1, lg), lca(lg+1, l2g), and so on. Then, they do further marking to ensure that
the set of marked nodes is closed under the lca operation, so that the total number of
marked nodes becomes at most 2n/g. At each marked node v, they store a list called
F-list with the k documents where the string represented by v appears most often, to-
gether with the actual frequencies in those k documents. They also store the intervals
of leaves associated with the node, [spv, epv]. With all the marked nodes they form the
so-called τk tree, which requires O((n/g)k log n) bits. Fixing g = Θ(k log2+ε n), for an
arbitrary ε > 0, the space of the τk tree is O(n/ log1+ε n). Adding the space required by
the τk trees for k = 1, 2, 4, 8, 16, . . ., the total amount of space is O(n/ logε n) = o(n) bits.

To answer a top-k query they first look for the pattern using the CSA, finding the
interval [sp, ep]. Now, they take k′ as the power of two next to k, k′ = 2dlog ke, and tra-
verse τk′ looking for the node with the largest interval contained in [sp, ep], namely
[L,R]. The k′ most frequent documents in [L,R] are stored in the F-list of the node,
so attention is placed on the documents not covered by the F-list. They examine each
suffix array position sp, sp + 1, . . . , L − 1, R + 1, R + 2, . . . , ep, and find out their cor-
responding document d in O(tSA) time per position (using d = rank1(B, SA[i])). These
documents may potentially be the top-k most frequent, so the next step is to calculate
the frequency of each of those documents d, in the range [sp, ep].

To obtain the frequencies efficiently, they consider each first occurrence of a docu-
ment d = DA[ld], for ld ∈ [sp, L − 1], and map SA[ld] to SAd[spd] as before. Since the
suffixes are in the same relative order in SA and SAd, they carry out an exponen-
tial search for the last value epd such that SAd[epd] still maps within SA[sp, ep], using
SA−1[z + SAd[epd]] at each step, with z = select(B, d) as before. The total time to com-
pute spd and epd is O(tSA log n). Finally, they return epd − spd + 1 as the frequency of
document d in range [sp, ep]. The procedure is analogous for the last occurrence of each
distinct document in rd ∈ [R+ 1, ep], now exponentially searching for spd to the left.

This procedure is repeated at most 2g times because, by construction of τ , both
[sp, L−1] and [R+1, ep] are at most of length g. They find the frequencies of these docu-
ments, each costingO(tSA log n) time, so the total time taken by this isO(tSA k log3+ε n).
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Once they have this set of frequencies (those calculated and those they got from the
F-list of v), they report the top-k among them using the standard linear-time selection
algorithm (in O(2g + k) time), followed by a sorting (in O(k log k) time).

Summarizing, Hon et al. [2009] data structure requires 2|CSA|+D log(n/D)+O(D)+
o(n) bits and retrieves the k most frequent documents in O(search(P ) + k tSA log3+ε n)
time, for any ε > 0.

3.4. Hybrid Approach for top-k Document Retrieval
In a more theoretical work, Gagie et al. [2013] pointed out that Hon et al.’s sparsifi-
cation technique can run on any other data structure able to (1) tell which document
corresponds to a given value of the suffix array, SA[i], and (2) count how many times
the same document appears in any interval SA[sp, ep].

A structure that is suitable for this task is the document array DA[1, n], however
there is no efficient method for task (2). A natural alternative is the wavelet tree rep-
resentation of DA. It uses n logD + o(n logD) bits and not only computes any DA[i] in
O(logD) time, but it can also compute operation rankd(DA, j) in the same time. This
solves operation (2) as rankDA[i](DA, ep) − rankDA[i](DA, sp − 1). With the obvious dis-
advantage of the considerable extra space to represent DA, this solution improves the
time of Hon et al. [2009], replacing tSA log n by logD in the query time. Gagie et al.
show many other combinations that solve (1) and (2). One of the fastest uses Golynski
et al. [2006] representation on DA, which within the same n logD + o(n logD) bits re-
duces tSA log n to log logD in the time of Hon et al.’s solution. Very recently, Hon et al.
[2012] presented new combinations in the line of Gagie et al., using also faster CSAs.
Their least space-consuming variant requires n logD+ o(n logD) bits of extra space on
top of the CSA of T , and improves the time to O(search(P ) + k(log k + (log log n)2+ε)).
Although promising, this structure has not yet been implemented.

3.5. Monotone Minimal Perfect Hash Functions
Belazzougui et al. [2012] recently presented a new approach to document retrieval
based on monotone minimal perfect hash functions (mmphf) [Belazzougui et al. 2009a;
2009b]. Instead of using individual CSAs or the document array DA to compute fre-
quencies, they use a weaker data structure that takes O(n log logD) bits of space.

A mmphf over a bitmap B[1, n] is a data structure able to answer rank1 queries over
B, but only for those positions i where B[i] = 1. Whenever B[j] = 0 the result of
rank1(B, j) is an arbitrary value. This means that the mmphf is unable to tell whether
B[i] = 1 or 0. As it cannot reconstruct B, the mmphf can be represented within less
space than the lower bounds stated in Section 2.2. One variant of mmphfs is able to
answer the limited rank query in constant time and requires O(m log log(n/m)) bits,
where m is the number of bits set in B. Another variant uses O(m log log log(n/m)) bits,
and the query time increases to O(log log(n/m)) [Belazzougui et al. 2009a].

Belazzougui et al.’s approach for document listing with frequencies is similar to the
method of Sadakane [2007] (Section 3.3). They use the CSA of the whole collection and
the RMQ structures over arrays C and C ′, but instead of the individual CSAs, they
make use of mmphfs. For each document d they mark in a mmphf fd the positions i
such that DA[i] = d (i.e., fd(i) = rankd(DA, i) if DA[i] = d). Let nd be the frequency
of document d in DA (which is actually the length of document d), then this structure
occupies

∑
dO(nd log log(n/nd)) = O(n log logD) bits.

In order to answer the queries, they proceed in the same way of Sadakane [2007],
first computing the interval SA[sp, ep] using the global CSA, and then using the RMQ
structures to find the leftmost and rightmost occurrences of each different document
in DA[sp, ep]. Then, the frequency of each document d with leftmost and rightmost
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Table II. Collections

Collection Documents (D) Characters (n) Avg. doc. length (n/D) |CSA|/ log σ
ClueChin 23 2,294,691 99,769 5.34/7.99 = 0.68
ClueWiki 3,334 137,622,191 41,298 4.74/6.98 = 0.68

KGS 18,838 26,351,161 1,399 4.48/6.93 = 0.65
Proteins 143,244 59,103,058 413 6.02/6.57 = 0.92

occurrences ld and rd is computed as TFP,d = fd(rd)− fd(ld) + 1 in constant time. This
solution yields |CSA| + O(n log logD) bits of space and O(search(P ) + ndoctSA) time for
document listing with frequencies. Their other variant uses O(n log log logD) bits and
carries out the last computation in O(log logD) time, yielding |CSA|+O(n log log logD)
bits of total space and O(search(P ) + ndoc(tSA + log logD)) overall time. This solution is
practical and has been implemented.

Belazzougui et al. also offer a solution for top-k document retrieval. Gagie et al.
[2013] (Section 3.4) showed that Hon et al.’s solution may run on top of other data
structures, but mmphfs are not able to compute arbitrary frequencies. Their solution
enriches the τk trees of Hon et al. so that they store enough information to answer the
top-k queries using mmphfs instead of the individuals CSAs. Their main result is a
data structure that requires |CSA| + O(n log log logD) bits and answers top-k queries
in time O(search(P ) + tSAk log k log1+ε n) for any ε > 0. They also make several other
improvements over previous work, yet these are mostly theoretical.

3.6. Experimental Setup
We conclude this section by presenting the experimental setup that is going to be used
for the rest of the article. We will test the different techniques over four collections of
different nature, such as English, Chinese, biological, and symbolic sequences.

ClueChin. A sample of ClueWeb09 containing a collection of Chinese Web pages
(http://boston.lti.cs.cmu.edu/Data/clueweb09).
ClueWiki. A sample of ClueWeb09 formed by Web pages extracted from the English
Wikipedia. It is seen as a sequence of characters, ignoring word structure.
KGS. A collection of sgf-formatted Go game records from year 2009
(http://www.u-go.net/gamerecords).
Proteins. A collection formed by sequences of Human and Mouse proteins
(http://www.ebi.ac.uk/swissprot).

Table II lists the main properties of each collection. To give an idea of the compress-
ibility ratio, we show the bits per cell (bpc) usage of their global CSA divided by log σ.

For the implementation of the basic compact data structures, like bitmaps, wavelet
trees, etc. we resort to library libcds, available at http://libcds.recoded.cl.

For grammar compression, we use our RePair implementation (http://
www.dcc.uchile.cl/gnavarro/software), in particular the “balanced” variant. This
variant implements a heuristic that does not guarantee balancedness, but always pro-
duced grammars of small height in our experiments.

For the implementation of RMQ data structures we resort to library sdsl, available at
http://www.uni-ulm.de/in/theo/research/sdsl. As the structure is fast but its space
is far from the optimal 2n bits, and it is used only by previous work, we conservatively
assume it uses 2n bits, to account for possible future improvements.

We chose a very competitive CSA implementation, namely the WT-FM-Index avail-
able at PizzaChili (http://pizzachili.dcc.uchile.cl/indexes/SSA). The space and
time of the global CSA is ignored in the experiments, as it is the same for all the solu-
tions, but our choice is relevant for the CSAd structures, where the chosen CSA poses
a low constant-space overhead.
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0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1B

P (3,2,1) (6,1,4)

C Z X Z 1 Z Y Y

rule string ` r
X → 00 00 2 0
Y → X1 001 3 1
Z → XY 00001 5 1

Fig. 5. An example of our RePair representation of bitmaps with sampling period s = 10.

Our tests were run on an 4-core 8-processors Intel Xeon, 2GHz each, with 16GB RAM
and 2MB cache. The operating system is Ubuntu 10.04.4, kernel version 2.6.32−39. Our
code was compiled using GNU g++ version 4.4.3 with optimization -O3.

We note that preliminary versions of our techniques have already been compared
to the mmphf based techniques for document listing with frequencies [Belazzougui
et al. 2012]. Their results show that even those early versions dominate the mmphf
based solutions in space and time, except on collection Proteins, which is incompress-
ible and thus our techniques do not apply. To avoid repeating experiments we omit
comparing that solution in this paper, as the conclusion does not change with our im-
proved variants: The mmphf based solutions are better in the worst case, but worse on
compressible collections.

4. GRAMMAR COMPRESSION OF BITMAPS
Our first contribution is a compressed representation of bitmaps with support for rank
and select queries, that takes advantage of repetitiveness. There are many representa-
tions of bitmaps with support for rank and select queries [Jacobson 1989; Munro 1996;
Clark 1998]. Some of those use less space when the bitmap has few 1s [Okanohara
and Sadakane 2007], and some when the bitmap has few or many 1s, or they are un-
evenly distributed [Raman et al. 2007]. However, none of them uses less space when
the bitmap is repetitive. Although our motivation is to compress the document array
in Section 5, this type of compression might also have independent interest.

We will use RePair compression (Section 2.4) to factor out the repetitions in the
bitmap, thus our goal is to achieve efficient support for rank and select queries on a
RePair compressed sequence.

4.1. RePair Compressed Bitmaps
Let us consider a bitmap B[1, n], and its RePair representation: the compressed se-
quence C (containing both terminal and nonterminal symbols) and its dictionary R.
Let us consider a variant that generates a balanced grammar [Maruyama et al. 2012],
of height O(log n). We define two functions, namely ` and r, to compute the length
and the number of 1s of the string of terminals obtained when we expand a nonter-
minal. Let `(c) = 1 for terminals c, and for nonterminals let `(Z) = `(X) + `(Y ) if
Z → XY ∈ R. Likewise, let r(1) = 1, r(0) = 0 and for non-terminals Z → XY ∈ R let
r(Z) = r(X) + r(Y ). For each nonterminal X added to the dictionary we store also the
length `(X) and the number of 1s, r(X), of the string of terminals it expands to.

Additionally, we sample B at regular intervals s. Let L(i) = 1 +
∑i−1
j=1 `(C[j]) be the

starting position in B of the symbol C[i] when expanded. For each position B[i · s] we
store P [i] = (p, o, r), where p is the position in C of the symbol whose expansion will
contain B[i · s], that is, p = max{j, L(j) ≤ i · s}. The second component is the offset
within that symbol, o = i · s − L(p), and the third is the rank up to that symbol,
r = rank1(B,L(p)− 1). Figure 5 shows an example.
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Rank(i)

j ← bi/sc;
r ← P [j].r;
p′ ← P [j].p;
l← i− P [j].o;
while p′ ≤ |C| do

Z ← C[p′];
if l + l(Z) < i then

p′ ← p′ + 1;
r ← r + r(Z);
l← l + l(Z);

else
return Expand(Z, l, r)

Expand(Z, l, r)

if l = i then
return r

XY ← R[Z];
if l + l(X) ≥ i then

return Expand(X);
else

r ← r + r(X);
l← l + l(X);
return Expand(Y );

Algorithm 1: Computing rank1(B, i) = Rank(i) with our grammar compressed
bitmap. Expand completes the computation within the nonterminal Z.

4.2. Solving Rank and Select queries
To answer rank1(B, i), we compute i′ = bi/sc and P [i′] = (p, o, r). We then start from
C[p] with position l = L(p) = i − o and rank r. From position p we advance in C as
long as l ≤ i. Each symbol of C can be processed in constant time while l and r are
updated, since we know `(Z) and r(Z) for any symbol Z = C[p′] Finally we arrive at
a position p′ ≥ p so that l = L(p′) ≤ i < L(p′ + 1) = l + `(C[p′]). At this point we
complete our computation by recursively expanding C[p′] = Z. Let Z → XY ∈ R, then
if l+ `(X) ≤ i we expand X; otherwise we increase l by `(X), r by r(X), and expand Y .
See Algorithm 1. As the grammar is balanced, the total time is O(s+ log n).

For select1(B, j) we can obtain the same complexity. We first perform a binary search
over the r values of P to find the interval that contains j. That is, we look for position
t in P such as r < j ≤ r′, where P [t] = (p, o, r) and P [t + 1| = (p′, o′, r′). Then we
sequentially traverse the block until exceeding the desired number of 1s, and finally
expanding the last accessed symbol of C.

4.3. Space Requirement
Let R = |R| be the number of rules in the grammar and C = |C| the length of the
final array. Then a simple RePair compressor would require (2R + C) logR bits. Our
representation requires O(R log n + C logR + (n/s) log n) bits, and the time for the op-
erations is O(s+ log n). The minimum interesting value for s is log n, where the space
is O((R + C) log n + n) bits and the time per operation is O(log n). We can reduce the
O(n) extra space to o(n) by increasing s, which makes query times superlogarithmic.

However, we must remember that the original RePair algorithm stops when no pair
appears twice, so that with each new rule there is a gain of (at least) one integer. This
is true because for each non terminal the original algorithm stores two values (the left
and the right side of the rule). On the other hand, our algorithm stores four values for
each nonterminal, which leads us to stop replacements at an earlier stage.

4.4. In Practice
There are several ways to represent the dictionary R in compressed form. We choose
one [González and Navarro 2007] that allows for random access to the rules. It regards
R as a directed acyclic graph (DAG), where internal nodes are nonterminals and leaves
are terminals, and each nonterminal points to the two nodes it rewrites as. The repre-
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sentation corresponds to a DFS traversal of the DAG, so that the first time a node is
found, it is expanded, but the next times we just write a reference to the place where it
was first found. The representation consists of a sequence SR and a bitmap SB . A node
is identified as a position in SB , where a 1 denotes an internal node that is expanded.
The two children of SB [i] = 1 are written next to i, thus we obtain all the subtree by
traversing SB [i . . .] until we have seen more 0s than 1s. The 0s in SB are either ter-
minals or nonterminals that are found not for the first time. Those nonterminals are
represented as positions in SB , which must then be recursively expanded at decoding
time. The identities associated to the positions SB [i] = 0 are written in SR, at the posi-
tions SR[rank0(SB , i)]. This DAG representation takes, in good cases, as little as 50% of
the space required by a plain array representation of R [González and Navarro 2007].

To reduce the O(R log n) space required to store ` and r, we will store `(Z) and r(Z)
only for certain sampled nonterminals Z. When we need to calculate `(Z ′) or r(Z ′)
for a nonterminal that is not sampled we simply expand it recursively until finding a
sampled nonterminal (or a terminal). We studied two sampling policies:

Max Depth (MD). Given a parameter δ, we guarantee that no nonterminal in C will
require expanding at depth more than δ to determine its length and number of 1s.
That is, we expand each C[i] until depth δ or until reaching an already sampled
nonterminal. Those nonterminals at depth δ are then sampled. We set up a bitmap
Bδ[1, R] where each sampled nonterminal has a 1, and store `(Z) and r(Z) of marked
nonterminal Z at an array E[rank1(Bδ, Z)].
Short Terminals (ST). We fix a maximum number of bits ml that we are going to
spend for storing each nonterminal length and number of 1s. For every nonterminal
whose length and number of 1s are in the interval [0, 2ml − 2] we store them, and
for those with greater values we use 2ml − 1 as an escape value. With this heuristic
we decide beforehand the exact extra space used to store the r(Z) and `(Z) values.
To answer the queries we expand those nonterminals that are not sampled until we
reach one that is sampled.

4.5. Experimental Results
We now analyze the behavior of our grammar compression technique over random
bitmaps of various densities, that is, fraction of 1s (repetitive bitmaps will be consid-
ered in Section 5). For this sake we generate 1, 000 random and uniformly distributed
bitmaps of length n = 108 with densities ranging from 1% to 15%. We compare our
compression ratio with other compressed representations supporting rank and select,
namely RRR [Raman et al. 2007], and SDArray [Okanohara and Sadakane 2007]. In
this first experiment we intend to compare the compression techniques, independently
of how much extra space we can use to speed up rank and select queries. Therefore, for
now we do not use any extra space for the samplings. In particular, we store no `(·) nor
r(·) data in our technique, and set s = ∞. We also include a theoretical line with the
zero-order entropy of the sequence (H0) as a reference.

Figure 6 shows the results. In these random bitmaps there is no expected repeti-
tiveness, which is what our technique is designed to exploit. However, the space usage
of our technique is competitive with the state of the art. The reason is that RePair
reaches the high-order entropy [Navarro and Russo 2008], which in this case is the
same as the zero-order entropy, just like the other two schemes.

In more detail, RRR requires nH0 + o(n) bits, and the o(n) overhead is more signif-
icant where the density is smaller, therefore this technique becomes more appealing
when the density is not that small. Instead, SDArray uses nH0 + O(#1s) bits, which
is closer to the entropy when the density is small. This is exactly the domain where
this technique dominates. Finally, even though Navarro and Russo [2008] only gave
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Fig. 6. Space usage, in bits per bit (bpb), of RRR, SDArray and RePair compressors for bitmaps with differ-
ent densities. We disregard the space required for the samplings, as these can be decreased at will.

a bound of 2nHk for the space usage of RePair, we can see in practice that RePair’s
overhead over the entropy is comparable with the overhead of the other techniques.

We now consider time to answer queries. Our RePair techniques can improve the
time either by decreasing the sampling period (s), or by using more space to store
the lengths and number of 1s of the rules. Because the sampling period s is orthog-
onal to our two approaches MD and ST (Section 4.4), we fixed different s values
(1024, 256, 128, 64) and for each such value we changed the parameters of techniques
MD and ST. For MD, δ value was set to 0,1, 2,4,8, . . ., h, where h is the height of the
grammar. For ST, ml was set to 0,2,4,6, . . ., b, where b is the number of bits required
to store the longest rule. For both techniques we plot the extreme scenarios where
no rule is sampled, and where we sample all the rules. Figure 7 shows the different
space-time trade-offs we obtained to answer access (i.e., compute B[i]), rank and select
queries. We also include RRR (with sampling values 32, 64, and 128) and SDArray.

We note that whether or not a technique will dominate the other depends on how
much space we are willing to spend on the samples. If we aim for the least space
usage, then Max Depth offers the best time performance. If, instead, we are willing to
spend more than the minimum space, then ST offers the best times for the same space.
Note also that, in all cases, it is more effective to spend as much space as possible in
sampling the rules rather than increasing the sampling parameter s. In particular, it
is interesting to use ST and sample all the rules, because in this case the bitmap Bδ
does not need to be stored, and the rank operation on it is also avoided.

We also note that the times for answering access and rank queries are fairly similar.
This is because the number of expansions needed for computing a rank query is exactly
the same to compute access, but during a rank computation we also keep count of the
number of 1s. Operation select is only slightly slower. Note that, in any case, structures
RRR and SDArray are one order of magnitude faster than our RePair compressed
bitmaps. In the next sections we will consider this handicap and use RePair only when
it impacts space the most and impacts time the least.
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Fig. 7. Tradeoffs obtained for our different techniques to solve access, rank and select queries over random
bitmaps with density 5% and 10%.
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5. GRAMMAR COMPRESSION OF WAVELET TREES AND DOCUMENT ARRAYS
In this section we introduce new compressed representations of repetitive sequences
with support for rank and select queries, and with applications to document retrieval.
In particular, we use this data structure to represent the document array (Section 3.1).

Various studies have shown the practicality for document retrieval of representing
the document array with a wavelet tree [Välimäki and Mäkinen 2007; Gagie et al.
2009; Culpepper et al. 2010]. The major drawback of these approaches is the space
usage of the document array, which the wavelet tree does not help reduce. The exist-
ing compressed representations of wavelet trees reach the zero-order entropy of the
sequence represented, or at best adapt to the distribution or runs of symbols [Navarro
2012]. In the case of the document array this yields little compression, because its
zero-order entropy corresponds to the distribution of document lengths, and there are
no known particularities in the symbol distribution.

5.1. RePair-Compressed Document Arrays
Gagie et al. [2013] showed that using wavelet trees to represent the document array is
not strictly necessary: a representation that supports access and rank on the sequence
is sufficient. This opens the door to using compressed sequence representations that
exploit some specific regularities of document arrays. They described one such regu-
larity (and the only known up to date).

A quasi-repetition in the suffix array SA[1, n] of T is an area SA[i..i + `] such that
there is another area SA[i′..i′ + `] such that SA[i+ k] = SA[i′ + k] + 1 for 0 ≤ k ≤ `. Let
τ be the minimum number of quasi-repetitions in which SA can be partitioned. It is
known that τ ≤ nHk(T ) + σk for any k [Mäkinen and Navarro 2005] (the upper bound
is useful only when Hk(T ) < 1).

González and Navarro [2007] proved that, if one differentially encodes the suffix
array SA (so that the quasi-repetitions on SA become true repetitions on the differen-
tial version), and applies RePair compression on the differential version, the resulting
grammar has size R+ C = O(τ log(n/τ)).

Gagie et al. [2013] noted that the document array contains almost the same repeti-
tions of the differential suffix array. If SA[i] = SA[i′]+1, then DA[i] = DA[i′], except when
SA[i] points to the last symbol of document DA[i]. As this occurs at most D times, they
concluded that a RePair compression of DA achieves R+C = O((τ +D) log(n/(τ +D)).
The formula suggests that the compressed representation of DA is smaller when the
text is more compressible.

To use it for document retrieval, Gagie et al. [2013] proposed to compress DA[1, n] us-
ing RePair and add an extra index of size o(n logD) that answers rank queries on DA
given only access to any DA[i] [Grossi et al. 2010, Thm. 5(a)]. While following that idea
literally is unlikely to yield a good result in practice (in part because the o(n logD)-
bit component is only slightly sublinear and does not decrease as repetitiveness in-
creases), we study a different alternative: we get back to using a wavelet tree for DA,
but now using the representation of Section 4 for the node bitmaps. We show next that
the repetitiveness of DA translates, at least partly, to the wavelet tree bitmaps. Thus
we exploit repetitiveness while retaining the support for rank queries on DA.

5.2. RePair-Compressed Wavelet Trees
Given a (repetitive) sequence S[1, n] over alphabet [1, D], we build the wavelet tree of S
and represent its bitmaps using the compressed format of Section 4. This yields access,
rank and select support on S. We analyze next the resulting time and space.

Consider a RePair representation (R, C) of S, where the sizes of the components is
R and C as before. Now take the top-level bitmap B of the wavelet tree. Bitmap B
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can be regarded as the result of mapping the alphabet of S onto two symbols, 0 and 1.
Thus, a grammar (R′, C′) where the terminals are mapped accordingly, generates B.
Since the number of rules in R′ is still R and that of C′ is C, the representation of B
requires O(R log n+C logR+ (n/s) log n) bits (this is of course pessimistic; many more
repetitions could arise after the mapping).

The bitmaps stored at the left and right children of the root correspond to a partition
of S into two subsequences S1 and S2. Given the grammar that represents S, we can
obtain one that represents S1, and another for S2, by removing all the terminals in
the right sides that do not belong to the proper subalphabet, and removing rules with
right hands of length 0 or 1. Thus, at worst, the left and right side bitmaps can also
be represented within O(R log n + C logR) bits each, plus O((n/s) log n) for the whole
level. Added over the D wavelet tree nodes, the overall space is no more than D times
that of the RePair compression of S. Indeed, no rule of R can survive into both left and
right children, which makes its total space O(R log n), but sequence C may keep the
same length in both children, adding up to O(DC log n) in the worst case. The time for
the operations, on the other hand, raises to O((s+ log n) logD).

Although this result is very pessimistic, and cannot distinguish the solution from us-
ing D bitmaps Bc[1, n], where Bc[i] = 1 iff S[i] = c, it points out to the important practi-
cal fact that the repetitions exploited by RePair get cut by half as we descend one level
of the wavelet tree, so that after descending some levels, no repetition structure can be
identified. At this point RePair compression becomes ineffective. On the other hand,
since RePair over a bitmap B uses O(|B|H0(B)) bits [Navarro and Russo 2008], the
space required for the complete wavelet tree of S is no worse than O(nH0(S)) [Grossi
et al. 2003].

5.3. In Practice
As D is likely to be large, we use a wavelet tree design without pointers, that concate-
nates all the bitmaps of the same wavelet tree level [Claude and Navarro 2008]. We
apply the RePair representation from Section 4 to each of those logD levels. Therefore,
we use one set of rules R per level.

As the repetitions that could be present in S get shorter when we move deeper in
the wavelet tree, we evaluate at each level whether our RePair-based compression
is actually better than an entropy-compressed representation [Raman et al. 2007] or
even a plain one, and choose the one with the smallest space. The experiments in
Section 4.5 show that computing access and rank on RePair-compressed bitmaps is in
practice much slower than on alternative representations. Considering this, we use a
space-time tradeoff parameter 0 < α ≤ 1, so that we prefer RePair compression only
when its size is α times that of the alternatives, or less.

Note that the algorithms that use wavelet trees on DA (Section 3.2) traverse many
more nodes at deeper levels. Therefore, we have the fortunate effect that using RePair
on the higher levels impacts much on the space, as repetitiveness is still high, and
little on the time, as even when operations on RePair-compressed bitmaps are much
slower, there are also much fewer operations on those bitmaps.

5.4. Experimental Results
Our experimental results will focus on our intended application, that is, the compres-
sion of the document array. Thus we use the collections described in Section 3.6

5.4.1. Compressing the Wavelet Tree. Considering our finding that repetitions degrade
on deeper levels of the wavelet tree, we start by analyzing how the different bitmap
compression techniques compared in Section 4.5 perform on successive levels of the
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Fig. 8. Bits per bit achieved by the different bitmap compression methods at successive levels of the wavelet
tree representation of the document arrays.

wavelet tree of DA. Figure 8 shows the space achieved. Again, we are not including
any sampling information.

As expected, RePair dominates on the higher levels and degrades as the repetitions
are broken, in the lower levels. Note also that no technique achieves much compres-
sion on Proteins, with the exception of RePair on the two first levels. This is also
expected, since the entropy of this collection is very high (recall Table II). From now
on we disregard technique SDArray, which does not perform well in this scenario.

5.4.2. Choosing the sampling technique for RePair. In Section 4.5 we compared techniques
MD and ST to support rank and select queries on RePair-compressed bitmaps. We
studied their performance over random bitmaps. We now repeat the experiments on
the wavelet tree bitmaps, considering only operation access (document retrieval algo-
rithms use only access and rank operations, and both perform similarly in these struc-
tures). Figure 9 shows the results on some levels: for each collection we choose the root
bitmap and some deeper bitmap where RePair still achieves interesting space.

First, we note that our RePair-compressed bitmaps provide significant space advan-
tages on various wavelet tree levels. Second, as on random bitmaps, technique MD
yields the best results when using minimum space. When using more space, ST is
faster for the same space.

5.4.3. Wavelet Trees for Document Listing with Frequencies. We now compare our wavelet
tree representation of the document array with previous work: plain and statistical
encoding of the wavelet tree, and Sadakane [2007] method based on individual CSAs
(Section 3.3). As explained, alternative solutions [Sadakane 2007; Hon et al. 2009] for
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Fig. 9. Tradeoffs obtained for our different techniques to support access, over some wavelet tree levels of
the document arrays of the collections.
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the basic document listing problem are hardly improvable. They require very little
extra space and are likely to perform similarly to wavelet trees in time. Therefore, our
experiments focus on document listing with frequencies.

As the CSA search for P is common to all the approaches, we do not consider the
time for this search nor the space for that global CSA, but only the extra space/time to
support document retrieval once [sp, ep] has been determined. We give the space usage
in bits per text character (bpc).

Section 3.6 describes the CSA used to implement Sadakane’s representation using
one CSA per document. We encode the bitmap B using a plain representation because
it is the fastest one, as well as an efficient RMQ data structure. Again, Section 3.6
describes those choices in more detail. We recall in particular that we charge only 2n
bits to the RMQ data structure, to account for possible improvements. Similarly, we
charge zero space for B, as it is sparse and could be compressed significantly. All those
decisions play in favor of our implementation of Sadakane [2007].

Previous work by Culpepper et al. [2010] has demonstrated that the quantile ap-
proach [Gagie et al. 2009] is clearly preferable, in space and time, over previous ones
based on wavelet trees [Välimäki and Mäkinen 2007]. They also showed that the quan-
tile approach is in turn superseded by a DFS traversal, which avoids some redundant
computations. (Section 3.2). Therefore, we carry out the DFS algorithm over a plain
wavelet tree representation (WT-Plain), over one where the bitmaps are statistically
compressed [Raman et al. 2007] (WT-RRR), and over our RePair-compressed ones.

As explained, our grammar compressed wavelet trees offer a space/time tradeoff de-
pending on the α value (recall Section 5.3), which can be the same for all levels, or
decreasing for the deeper levels (where one visits more nodes and thus being slower
has a higher impact). Another space/time tradeoff is obtained with the sampling pa-
rameter s on each bitmap. Additionally, when deciding to increment the sampling val-
ues, they can be varied freely on each level, and one can expect that the impact on the
query times may be more significant when the effort is done in the lower levels. For
those reasons we plot a cloud of points with a number of combinations of α values and
sampling parameters in order to determine our best scheme. We chose 10,000 random
intervals of the form [sp, ep], for interval sizes ep−sp+1 from 100 to 100,000, and listed
the distinct documents in the interval, with their frequencies.

Figure 10 shows the clouds of points obtained for interval sizes of 100 and 10,000.
Among all the combinations we plotted, we highlight the points that dominate the
space-time map. Among those dominating configurations we have selected four points
that we are going to use for our combination called WT-Alpha in the following experi-
ments. We will also include the variant using α = 1, called WT-RP.

Figure 11 compares our variants with Sadakane [2007] (SADA) on collections
ClueChin and ClueWiki. Even on ClueChin, with just 23 relatively large documents,
the space overhead of indexing them separately makes SADA impractical (even with
the generous assumptions on free bitmaps and cheap RMQs). It is also significantly
slower. Considering this result, we have not attempted to implement the variant of
Hon et al. [2009], which achieves |CSA|+ o(n) extra space but is even slower. Its reduc-
tion in space (by, at best, 4n bits), would be insufficient to make it competitive.

Figure 12 compares the techniques on the other collections. To facilitate a visual
comparison, we do not plot SADA on these, as it is still significantly slower and it re-
quires more than 60 bpc on KGS and more than 90 bpc on Proteins, well out of bounds.

The results vary depending on the collection, but in general our compressed rep-
resentation is able to reduce the space of the plain wavelet tree by a wide margin.
The compressed size is 40% to 75% of the original wavelet tree size. The exception is
Proteins, where the text is mostly incompressible and this translates into the incom-
pressibility of the document array.
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Fig. 10. Clouds of space-time tradeoffs for document listing with our techniques on document array inter-
vals of length 100 and 10,000.
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Fig. 11. Experiments on document listing with term frequencies, on ranges of lengths 100 to 100,000 on
collection ClueChin (left) and ClueWiki (right).
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While WT-RP is significantly slower than WT-Plain (up to 20 times slower in the
most extreme case), the WT-Alpha versions provide useful tradeoffs. They achieve com-
pression ratios of 50% to 80% and significantly reduce time gaps, to 7 times slower in
the most extreme case. The answer time over the interval [sp, ep] of length 10,000 is
around 10-20 milliseconds. We note that our slowest version is still 10 times faster
than SADA.

6. SPARSIFIED SUFFIX TREES AND TOP-K RETRIEVAL
In the previous section we have shown that the technique of Sadakane [2007], based
on individual CSAs to obtain the frequency of individual documents, is not effective in
practice, at least using existing CSA implementations. Hon et al. [2009] data structure
for top-k document retrieval is built on the top of Sadakane’s approach, therefore a
straightforward implementation will suffer from the same lack of practicality.

In this section we propose various practical versions of Hon et al.’s o(n)-bit data
structure for top-k queries, as well as efficient algorithms to use them on top of a
wavelet tree representation of the document array instead of the original scheme,
which uses individual CSAs. We carried out exhaustive experiments among them to
find the best combination.

Our top-k algorithms combine the sparsified technique of Hon et al. [2009] with
various of the techniques of Culpepper et al. [2010] to explore the remaining areas
of the document array. We can regard the combination as either method boosting the
other. Culpepper et al. boost Hon et al.’s method, while retaining its good worst-case
complexities, as they find the extra occurrences more cleverly than by enumerating
them all. Hon et al. boost plain Culpepper et al.’s method by having precomputed a
large part of the range, and thus ensuring that only small intervals have to be handled.

As explained in Section 3.4, Gagie et al. [2013] showed that Hon et al.’s scheme can
run on top of any document array representation able to compute access and rank, and
the sequence representation by Golynski et al. [2006] is the fastest practical choice.
We have also implemented this scheme and study its practicality.

6.1. Implementing Hon et al.’s Structure
The structure of Hon et al. [2009] is a sparse generalized suffix tree of T (SGST; “gener-
alized” means it indexes D strings). It can be seen as a sampling of the suffix tree, with
a sampling parameter g, which is sparse enough to make the sampled suffix tree re-
quire only o(n) bits, but at the same time it guarantees that, for each possible interval
SA[sp, ep], there exists a node whose corresponding interval spans inside the interval
[sp, ep] leaving at most 2g uncovered positions. For each sampled node they precom-
pute a list with top-k most frequent documents and their frequencies. To answer top-k
queries, they look for P in their sample, and then they compute the frequency of O(g)
uncovered documents using a technique inspired in Sadakane [2007].

This subsection focuses on practical implementations of this idea. In the next sub-
section we present new algorithms for top-k document retrieval.

6.1.1. Sparsified Generalized Suffix Trees (SGST). We call li = SA[i] the i-th suffix tree leaf.
Given a value of k we define g = k·g′, for a space/time tradeoff parameter g′, and sample
n/g leaves l1, lg+1, l2g+1, . . ., instead of sampling 2n/g leaves as in the theoretical pro-
posal [Hon et al. 2009]. We mark internal SGST nodes lca(l1, lg+1), lca(lg+1, l2g+1), . . .
The following lemma shows that this marking is lca-closed.

LEMMA 6.1. Any v = lca(lig+1, ljg+1) is also v = lca(lrg+1, l(r+1)g+1) for some r.

PROOF. We use induction on j − i. Let us consider nodes v1 = lca(lig+1, l(i+1)g+1)
and v2 = lca(l(i+1)g+1, l(i+2)g+1). Then it holds v12 = lca(v1, v2) = lca(lig+1, l(i+2)g+1): v12
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Fig. 12. Experiments on document listing with term frequencies, on ranges of lengths 100 to 100,000 on
collection KGS (left) and Proteins (right).
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is ancestor of both extremes, and if a node v∗ is ancestor of both extremes, then it is
also ancestor of l(i+1)g+1, thus it is also ancestor of v1 and v2 and hence of v12. Now,
because both v1 and v2 are ancestors of l(i+1)g, it follows that v12 is either v1 or v2. In
general, consider v1 = lca(lig+1, l(j−1)g+1) and v2 = lca(l(j−1)g+1, ljg+1). Then, similarily,
v = lca(v1, v2) = lca(lig+1,jg+1) is either v1 or v2 as both are ancestors of l(j−1)g+1. By
the inductive hypothesis, v1 is lca(lrg+1, l(r+1)g+1) for some i ≤ r ≤ j − 1, whereas v2 is
also the lca of two consecutive samples.

Therefore, those n/g marked nodes are sufficient. The required lca operations can be
computed in O(n/g) time [Bender and Farach-Colton 2000].

6.1.2. Redundancy among SGSTs. Gagie et al. [2013] point out that we need only logD
sparsified trees τk, not log n. What is less obvious is that there is also a great deal of
redundancy among the τk trees, since the nodes of τ2k are included in those of τk, and
the 2k candidates stored in the nodes of τ2k contain those in the corresponding nodes of
τk. To factor out some of this redundancy we store only one tree τ , whose nodes are the
same of τ1, and record the class c(v) of each node v ∈ τ . This is c(v) = max{k, v ∈ τk},
and can be stored in log logD bits. Each node v ∈ τ stores the top-c(v) candidates
corresponding to its interval, using c(v) logD bits, and their frequencies, using c(v) log n
bits. All the canidates and frequencies of all the nodes are stored in a unique table, to
which each node v stores a pointer. Each node v also stores its interval [spv, epv], using
2 log n bits. Note that the class does not necessarily decrease monotonically in a root-
to-leaf path of τ , thus we store the topologies of all the τk trees independently, to allow
for their efficient traversal, for k > 1. Apart from topology information, each node of
such τk trees contains just a pointer to the corresponding node in τ , using log |τ | bits.
All the information on intervals and candidates is thus factored in τ , saving space.

In our basic data structure, the topology of the trees τ and τk is represented using
pointers of log |τ | and log |τk| bits, respectively. Those pointers are offsets in an array
that stores the nodes.

To answer top-k queries, we find the range SA[sp, ep] using a CSA. Now we use
the closest higher power of two of k, k′ = 2dlog ke. Then we find the locus in the ap-
propriate tree τk′ top-down, binary searching the intervals [spv, epv] of the children
v of the current node, and extracting those intervals using the pointers to τ . By the
properties of the sampling [Hon et al. 2009] it follows that we will traverse, in this
descent, nodes u ∈ τk′ such that [sp, ep] ⊆ [spu, epu], until reaching a node v where
[spv, epv] = [sp′, ep′] ⊆ [sp, ep] ⊆ [sp′ − g, ep′ + g] (or reaching a leaf u ∈ τk such that
[sp, ep] ⊆ [spu, epu], in which case ep − sp + 1 < 2g). This v is the locus of P in τk′ , and
we find it in time O(|P | log σ).

In practice, we can further reduce the space in exchange for possibly higher times.
For example, the sequence of all precomputed top-k candidates can be Huffman-
compressed, as there is much repetition in the sets, and values [spv, epv] can be stored
as [spv, epv − spv], using DACs for the second components [Brisaboa et al. 2013], as
many such differences will be small. Finally, as Gagie et al. [2013] pointed out, a major
space reduction can be achieved by storing only the identifiers of the candidates, as
their frequencies can be computed on the fly using rank on the wavelet tree of DA. All
these variants are analyzed in Section 6.3.

6.1.3. Compressing Tree Topologies. The SGST uses sparsification to reach o(n) bits, but
the tree topology is still stored explicitly. More precisely, they store O(n/ log2 n) nodes,
with their respective F-list, spv, epv values and pointers to the children.

We will study a variant called Succinct SGST (SSGST), which uses a pointerless
representation of the tree topologies. Although the tree operations are slightly slower
than on a pointer-based representation, this slowdown occurs on a not too significant
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part of the search process, and a succinct representation allows one to spend more
space on structures with higher impact (e.g., reducing the sampling parameter g).

Arroyuelo et al. [2010] showed that, for the functionality it provides, the most
promising succinct representation of trees is the so-called Level-Order Unary Degree
Sequence (LOUDS) [Jacobson 1989]. As mentioned in Section 2.5, the theoretical space
requirement of 2n+o(n) bits of space can be in practice as low as 2.1n bits to represent
a tree of n nodes. LOUDS solves many operations in constant time (less than a mi-
crosecond in practice). In particular it allows fast navigation through labeled children.

We resort to their labeled tree implementation [Arroyuelo et al. 2010]. We encode
the values spv and epv, pointers to τ (in τk), and pointers to the candidates in τ in
a separate array, indexed by the LOUDS rank of the node v, managing them just as
Arroyuelo et al. manage labels.

6.2. New Top-k Algorithms
Once the search for the locus of P is done, Hon et al.’s algorithm requires a brute-
force scan of the uncovered leaves to obtain their frequencies (using individuals CSAs).
When Gagie et al. [2013] showed that Hon et al.’s SGST may run on top of different
structures, they also keep using this brute-force scanning. Instead, we run a combina-
tion of the algorithm by Hon et al. [2009] and those of Culpepper et al. [2010], over a
wavelet tree representation of the document array DA[1, n]. Culpepper et al. introduce,
among others, a document listing method (DFS) and a Greedy top-k heuristic (recall
Section 3.2). We adapt these to our particular top-k subproblem.

If the search for the locus of P ends at a leaf u that still contains the interval [sp, ep],
Hon et al. simply scan SA[sp, ep] by brute force and accumulate frequencies. We use in-
stead Culpepper et al.’s Greedy algorithm, which is faster than a brute-force scanning.

When, instead, the locus of P is a node v where [spv, epv] = [sp′, ep′] ⊆ [sp, ep], we start
with the precomputed answer of the k ≤ k′ most frequent documents in [sp′, ep′], and
update it to consider the subintervals [sp, sp′−1] and [ep′+1, ep]. We use the wavelet tree
of DA to solve the following problem: Given an interval DA[l, r], and two subintervals
[l1, r1] and [l2, r2], enumerate all the distinct values in [l1, r1]∪ [l2, r2] together with their
frequencies in [l, r]. We propose two solutions, which can be seen as generalizations of
heuristics proposed by Culpepper et al. [2010].

6.2.1. Restricted Depth-First Search. Our restricted DFS algorithm begins at the root of
the wavelet tree and tracks down the intervals [l, r] = [sp, ep], [l1, r1] = [sp, sp′−1], and
[l2, r2] = [ep′+1, ep]. More precisely, we count the number of 0s and 1s in B in ranges
[l1, r1] ∪ [l2, r2], as well as in [l, r], using a constant number of rank operations on B. If
there are any 0s in [l1, r1]∪[l2, r2], we map all the intervals onto the left child of the node
and proceed recursively from this node. Similarly, if there are any 1s in [l1, r1]∪ [l2, r2],
we continue on the right child of the node. When we reach a wavelet tree leaf we report
the corresponding document, and the frequency is the length of the interval [l, r] at the
leaf. Figure 13 shows an example where we arrive at the leaves of documents 1, 2, 5
and 7, reporting frequencies 2, 2, 1 and 4, respectively.

When solving the problem in the context of top-k retrieval, we can prune some recur-
sive calls. If, at some node, the size of the local interval [l, r] is smaller than our current
kth candidate to the answer, we stop exploring its subtree since it cannot contain com-
petitive documents. In the worst case, the algorithm needs to reach the bottom of the
wavelet tree for each distinct document, so the time required to obtain the frequencies
is O(g log(D/g)).

6.2.2. Restricted Greedy. Following the idea described by Culpepper et al. [2010], we
can not only stop the traversal when [l, r] is too small, but also prioritize the traversal
of the nodes by their [l, r] value. This may allow us to stop sooner.
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Fig. 13. Restricted DFS to obtain the frequencies of documents not covered by τk. Shaded regions show the
interval [sp, ep] = [4, 14] mapped to each wavelet tree node. Dark shaded intervals are the projections of the
leaves not covered by [sp′, ep′] = [7, 11].

We keep a priority queue where we store the wavelet tree nodes yet to process, and
their intervals [l, r], [l1, r1], and [l2, r2]. The priority queue begins with one element, the
root. Iteratively, we remove the element with highest r−l+1 value from the queue. If it
is a leaf, we report it. If it is not, we project the intervals into its left and right children,
and insert each such children containing nonempty intervals [l1, r1] or [l2, r2] into the
queue. As soon as the r−l+1 value of the element we extract from the queue is not
larger than the kth frequency known at the moment, we can stop the whole process.

In the worst case this heuristic requires O(g(log(D/g) + log g)) = O(g logD) time.

6.2.3. Heaps for the k Most Frequent Candidates. Our two algorithms solve the query as-
suming that we can easily find, at any given moment, which is the kth best candidate
known up to now. We use a min-heap data structure for this purpose. It is loaded with
the top-k precomputed candidates corresponding to the interval [sp′, ep′] stored in the
F-List. At each point, the top of the heap gives the kth known frequency in O(1) time.

Each time the DFS or Greedy algorithms report a new element, we must check
whether its frequency is larger than that of the kth current candidate. If it is, the
top of the min-heap is replaced with the new frequency and the heap is reordered. If
the heap does not yet contain k elements, the new frequency is simply inserted in it.
Since the heap is always of size at most k, each reported candidate costsO(log k), which
is dominated by the O(logD) time incurred by the Greedy method (DFS can be slightly
better). There are also steps in both algorithms that do not yield any candidate, but
O(g logD) is still an upper bound for all the costs.

A remaining issue is that we could find again, in our DFS or Greedy traversal, a
document that was in the original top-k list, and thus possibly in the heap. This means
that the document had been inserted with its frequency in DA[sp′, ep′], but since it
appears further times in DA[sp, ep], we must now update its frequency, that is, increase
it and restore the min-heap invariant. It is not hard to maintain a hash table with
forward and backward pointers to the heap so that we can track the current candidate
positions and replace their values. However, it is more practical to let those duplicate
values coexist in the heap (which should then be of size 2k to avoid losing relevant
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candidates) and at the end remove duplicates with lower frequencies. This adds just
O(g + k log k) to the time complexity.

6.3. Experimental Results
We have run exhaustive experiments to determine the best alternatives. First we com-
pare the different algorithms to answer top-k queries. Once we choose the best al-
gorithm, we turn to study the performance of our different data structure variants.
Finally, we compare our best choice with the related work. We extracted sets of 10,000
random substrings from each collection, of length 3 and 8, to act as search patterns.
The time and space needed to perform the CSA search is orthogonal to all of the meth-
ods we present (and also the time is negligible, being at most 20 microseconds per
query), thus we only consider the space and time to retrieve the top-k documents.

6.3.1. Evaluation of our Algorithms. We tested the different algorithms to find the top-k
answers among the precomputed candidates and uncovered leaves (see Section 6.2):

Greedy. Our modified greedy algorithm.
DFS. Our modified depth-first-search algorithm.
Select. The brute-force selection procedure of the original proposal [Hon et al. 2009].

Because in this case the algorithms are orthogonal to the data structures for the
sparsified trees, we run all the algorithms only on top of the straightforward imple-
mentation of Hon et al., which we will call Ptrs. For all the algorithms we use the best
wavelet tree of Section 5, that is, the variant WT-Alpha, showing the four chosen points
per curve. We consider three sampling steps, g′ = 200, 400 and 800.

Figures 14 to 16 show the results. As expected, method Greedy is almost always
better than Select (up to 80% better) and never worse than DFS (and up to 50% better),
which confirms intuition. From here on we will use only the Greedy algorithm. Note,
however, that if we wanted to compute top-k considering metrics more complicated
than term frequency, then Greedy would not apply anymore (nor would DFS). In such
a case we could still use method Select, whose times would remain similar.

6.3.2. Evaluation of our Data Structures. In this round of top-k experiments we compare
our different implementations of SSGSTs (i.e., the trees τk, see Section 6.1) over a
single implementation of wavelet tree (WT-Alpha), and using always method Greedy.
We test the following variants:

Ptrs. Straightforward implementation of the original proposal [Hon et al. 2009].
LOUDS. Like Ptrs but using a LOUDS representation of the tree topologies.
LIGHT. Like LOUDS but storing the information of the nodes in a unique tree τ .
XLIGHT. Like LIGHT but not storing the frequencies of the top-k candidates.
HUFF. Like LIGHT but Huffman-compressing the candidate identifiers and encod-
ing the [spv, epv] intervals succinctly using DACs.

Figures 17 to 19 show the results. Using LOUDS representation instead of Ptr had
almost no impact on the time, except on ClueChin, where all the methods are very fast
anyway. This is because the time needed to find the locus is usually negligible com-
pared with that to explore the uncovered leaves. Further costless space gains are ob-
tained with variant LIGHT, which reduces the space significantly, especially for small
g′. Variant XLIGHT, instead, slightly reduces the space of LIGHT at a noticeable cost
in time that makes it not so interesting, except on Proteins. Time is impacted because
k additional rank operations on the wavelet tree are needed. Space, instead, is reduced
but it affects a low-overhead structure, so it does not impact much. Variant HUFF,
instead, gains a little more space over LIGHT without a noticeable time penalty, and
it dominates the space-time tradeoff map in almost all cases.
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Fig. 14. Our different algorithms for top-10 queries. On the left for |P | = 3, on the right for |P | = 8.
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Fig. 15. Our different algorithms for top-10 queries. On the left for |P | = 3, on the right for |P | = 8.
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Fig. 16. Our different algorithms for top-100 queries. On the left for |P | = 3, on the right for |P | = 8.

It is interesting that the variant that does not include any structure on top of the
wavelet tree, WT-Alpha, is much slower for small k, but it becomes competitive when
k increases (more specifically, when the ratio between k and ep− sp grows). This shows
that, for less specific top-k queries, just running the Greedy algorithm without any
extra structure may be the best option.

To compare with other techniques, we will use variant HUFF.

6.3.3. Comparison with Previous Work. Finally, we study the performance of our best so-
lution compared with previous work to solve top-k queries.

The Greedy heuristic of Culpepper et al. [2010] is run over the different wavelet tree
representations of the document array from Section 5: a plain one (WT-Plain, as in
the original proposal [Culpepper et al. 2010]), an entropy-compressed one (WT-RRR), a
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Fig. 17. Our different data structures for top-1 queries. On the left for |P | = 3, on the right for |P | = 8.
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Fig. 18. Our different data structures for top-10 queries. On the left for |P | = 3, on the right for |P | = 8.
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Fig. 19. Our different data structures for top-100 queries. On the left for |P | = 3, on the right for |P | = 8.

RePair-compressed one (WT-RP), and the hybrid that at each wavelet tree level chooses
between plain, RePair, or entropy-based compression of the bitmaps (WT-Alpha).

We also combine WT-Alpha representation with our best implementation of Hon
et al.’s structure (WT-Alpha + HUFF g′). Finally, we consider variant Goly +
HUFF [Gagie et al. 2013; Hon et al. 2012], which runs the rank-based method (Se-
lect) on top of the fastest rank-capable sequence representation of the document ar-
ray [Golynski et al. 2006]. This representation is faster than wavelet trees to compute
rank, but does not support our more sophisticated traversal algorithms. It is not shown
on ClueChin because its space is well out of bounds.

Figures 20 to 22 show the results. Our new structures dominate most of the space-
time tradeoff map. WT-Alpha + HUFF is only dominated in space (in most cases only
slightly) by WT-RP, which is however orders of magnitude slower. Only on Proteins,
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Fig. 20. Comparison with previous work for top-1 queries. On the left for |P | = 3, on the right for |P | = 8.
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Fig. 21. Comparison with previous work for top-10 queries. On the left for |P | = 3, on the right for |P | = 8.
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Fig. 22. Comparison with previous work for top-100 queries. On the left for |P | = 3, on the right for |P | = 8.

where compression does not work, our structures are in some cases dominated by pre-
vious work, WT-Plain and WT-RRR, especially for large k or small ep−sp. Goly + HUFF
requires much space and is usually much slower than WT-Plain, which uses a slower
sequence representation (the wavelet tree) but a smarter algorithm to traverse the
block (our modified Greedy). We remind that, on Proteins, a structure not tested here
performs much better [Belazzougui et al. 2012], whereas it is far from competitive on
the compressible collections.

7. CONCLUSIONS AND FUTURE WORK
We have proposed the first compressed representation of the document array, a funda-
mental data structure to answer various general document retrieval queries, such as
document listing with frequencies and top-k document retrieval. For this sake, we de-
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veloped two novel compact data structures that achieve compression on generic repeti-
tive sequences and might be of independent interest: (1) a grammar-compressed repre-
sentation of bitmaps supporting rank and select queries, and (2) a compressed wavelet
tree that extends the bitmap representation to sequences over general alphabets. We
have shown that our technique reduces the space of a plain wavelet tree by up to half
on real-life document arrays. Although our representation is significantly slower than
a plain wavelet tree, we have engineered it to reach very competitive times on docu-
ment retrieval queries while giving away just a small part of the space improvements.

We have also strengthened the performance of the document array for top-k queries
by engineering the theoretical proposal of Hon et al. [2009]. We show that in practice
this technique does not perform well if implemented on individual compressed suf-
fix arrays (CSAs) as they propose (at least using current CSAs), but that it performs
well over a wavelet tree representation of the document array. Our implementation
removes various sources of redundancy and inefficiency of the original proposal (which
are neglectable in an asymptotic analysis but relevant in practice), and involves vari-
ous improvements in algorithmic and data structure design. This boosts the practical
performance of the technique without giving up on its theoretical space and time guar-
antees. By combining it with our new compressed wavelet tree representations of the
document array, queries are sped up by up to 10-fold for almost no extra space.

Our new techniques dominate the space-time tradeoff map of general document re-
trieval data structures, being outperformed by alternative techniques [Culpepper et al.
2010; Belazzougui et al. 2012] only on incompressible text collections, where the docu-
ment array does not exhibit repetitiveness.

Various challenges remain, of course. Although we have managed to cut the space
by half, our data structure still occupies at least 8–18 bits per text character (bpc), ex-
cluding our smallest collection, which uses less. This is in addition to the CSA, which
using 5–6 bpc can already reproduce the text and thus contains sufficient information
to answer any query. That is, the space of our structures is pure redundancy. Whether
it is possible to find structures similar to CSAs, that use space close to that of the com-
pressed text collection and in addition support document retrieval queries, is probably
the most interesting open problem. We believe that more attention should be paid to
the relation between text compressibility and the regularities manifest in data struc-
tures used for document retrieval. Advances on practical data structures that use less
space and time in the worst case [Belazzougui et al. 2012; Hon et al. 2012] are also
important. It is also interesting to design practical variants of optimal uncompressed
data structures for top-k retrieval [Hon et al. 2009; Navarro and Nekrich 2012]. Some
preliminary results [Konow and Navarro 2013] show that those solutions take some
more space but can be orders of magnitude faster.1

Other recent advances can directly impact on the performance of our data structures.
Claude and Navarro [2012] recently introduced the “wavelet matrix”, which reorders
the bitmaps of the wavelet tree so that fewer rank/select operations on the bitmaps
are necessary to traverse it. This is very relevant for our RePair-compressed bitmaps,
where those operations are very slow. We estimate that our times could be sped up by
a factor of 2–3 with this technique. On the other hand, the impact of the reordering in
the compressibility of the bitmaps is not yet well understood.

Another important challenge is to answer more powerful document retrieval queries.
For example, we have used frequency as a simple relevance measure. In Information
Retrieval, more sophisticated ones like tf-idf and BM25 are used. Their formulas in-
volve parameters like the document size and the document frequency (number of dis-

1A mistake in measuring space was made in that article, so the real space is about 50% higher, but their
result is nevertheless relevant in proving the concept.
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tinct documents in which the pattern appears). Techniques like Culpepper et al. [2010]
do not immediately apply in such cases, but that of Hon et al. [2009] does, as it sim-
ply stores the precomputed top-k answers according to whatever relevance measure is
used, and uses brute-force scanning of the uncovered cells. Similarly, our implementa-
tion of Hon et al.’s structure, using algorithm Select (instead of the more sophisticated
ones derived from Culpepper et al. [2010]), could be used in a general scenario, with-
out time penalties. More sophisticated “bag-of-word” queries involve several patterns,
and the scores of the documents are added over the patterns that appear in them.
There are many algorithms to handle bag-of-word queries in natural language scenar-
ios [Baeza-Yates and Ribeiro-Neto 2011], many of which assume they have access to
an inverted list of the documents where each word appears, in decreasing relevance or-
der. Structures like those we have explored in this paper are able to emulate such lists
for any arbitrary pattern (by solving the appropriate top-k query for that single pat-
tern), and thus enable the implementation of any top-k algorithm for multiple words
designed for inverted list structures, on general text collections. However, it is possible
that data structures specifically designed for general text collections support better
techniques natively, without emulating algorithms designed for other data structures.

Finally, scenarios where the collection undergoes changes over time and the struc-
tures must be updated, or where the structures must reside on disk, have received
little attention and are useful and challenging.
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MÄKINEN, V. AND NAVARRO, G. 2007. Implicit compression boosting with applications to self-indexing. In
Proc. 14th International Symposium on String Processing and Information Retrieval (SPIRE). LNCS
4726. 214–226.

MANBER, U. AND MYERS, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM Journal
on Computing 22, 5, 935–948.

MANZINI, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3, 407–430.
MARUYAMA, S., SAKAMOTO, H., AND TAKEDA, M. 2012. An online algorithm for lightweight grammar-

based compression. Algorithms 5, 2, 214–235.
MUNRO, I. 1996. Tables. In Proc. 15th Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS). LNCS 1180. 37–42.
MUNRO, I. AND RAMAN, V. 2002. Succinct representation of balanced parentheses and static trees. SIAM

Journal on Computing 31, 3, 762–776.
MUTHUKRISHNAN, S. 2002. Efficient algorithms for document retrieval problems. In Proc. 13th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA). 657–666.
NAVARRO, G. 2012. Wavelet trees for all. In Proc. 23rd Annual Symposium on Combinatorial Pattern Match-

ing (CPM). LNCS 7354. 2–26.
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