
Practical Approaches to Reduce the Space

Requirement of Lempel-Ziv-Based Compressed

Text Indices

DIEGO ARROYUELO

Yahoo! Research Chile

and

GONZALO NAVARRO

University of Chile

Given a text T [1..n] over an alphabet of size σ, the full-text search problem consists in locating
the occ occurrences of a given pattern P [1..m] in T . Compressed full-text self-indices are space-

efficient representations of the text that provide direct access to and indexed search on it.
The LZ-index of Navarro is a compressed full-text self-index based on the LZ78 compression

algorithm. This index requires about 5 times the size of the compressed text (in theory, 4nHk(T)+
o(n log σ) bits of space, where Hk(T) is the k-th order empirical entropy of T). In practice the
average locating complexity of the LZ-index is O(σm logσ n+ occ σm/2), where occ is the number
of occurrences of P . It can extract text substrings of length ℓ in O(ℓ) time. This index outperforms
competing schemes both to locate short patterns and to extract text snippets. However, the LZ-
index can be up to 4 times larger than the smallest existing indices (which use nHk(T)+o(n log σ)
bits in theory), and it does not offer space/time tuning options. This limits its applicability.

In this paper we study practical ways to reduce the space of the LZ-index. We obtain new
LZ-index variants that require 2(1 + ǫ)nHk(T) + o(n log σ) bits of space, for any 0 < ǫ < 1. They
have an average locating time of O(1

ǫ
(m logn+ occ σm/2)), while extracting takes O(ℓ) time.

We perform extensive experimentation and conclude that our schemes are able to reduce the
space of the original LZ-index by a factor of 2/3, that is, around 3 times the compressed text
size. Our schemes are able to extract about 1–2 megabytes of the text per second, being twice as
fast as the most competitive alternatives. Pattern occurrences are located at a rate of up to 1–4
million per second. This constitutes the best space/time trade-off when indices are allowed to use
4 times the size of the compressed text or more.

Categories and Subject Descriptors: E.2 [Data storage representations]: ; E.4 [Coding and

information theory]: Data compaction and compression; H.2.4 [Systems]: Textual databases

General Terms: Algorithms, experimentation

Additional Key Words and Phrases: Lempel-Ziv compression, Compressed data structures, In-
dexed text search

Second author supported in part by Fondecyt Grant 1-080019.
Author’s address: Diego Arroyuelo, Yahoo! Research Chile. Blanco Encalada 2120, Santiago,
Chile. darroyue@dcc.uchile.cl. Gonzalo Navarro, Department of Computer Science, University
of Chile. Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Diego Arroyuelo and Gonzalo Navarro

1. INTRODUCTION

Many modern applications require searching, mining, and analyzing sequences of
diverse kinds. The basic problem of finding the occurrences of string patterns in a
text is fundamental both as a kernel routine of more complex processing and for
final users of text retrieval systems.
Unlike word-based text searching, which is the typical scenario in Information

Retrieval, we wish to find any text substring, not only whole words or phrases.
This has applications in texts where the concept of word is not clearly defined
(e.g., Oriental languages, program code, etc.), or texts where words do not exist
at all (e.g., DNA, protein, MIDI pitch sequences, etc.). It also offers more flexible
searching on natural language text.
Given a sequence of symbols T [1..n] (the text) over an alphabet Σ = {1, . . . , σ},

and given another (short) sequence P [1..m] (the search pattern) over Σ, the full-text
search problem consists in finding all the occ occurrences of P in T . There exist
three typical kinds of queries, which arise in different types of applications:

—Existential queries : Operation exists(P) tells us whether pattern P occurs in
T or not.

—Cardinality queries : Operation count(P) counts the number of occurrences of
pattern P in T .

—Locating queries : Operation locate(P) reports the starting position of the occ
occurrences of pattern P in T .

While locating all the occurrences can be useful for further processing, end users
rarely wish to see more than a few occurrences at once. Partial locate queries
find a fixed number K of occurrences. Different applications might have different
requirements on which occurrences are preferred. In this paper we consider the
simplest case of retrieving K arbitrary occurrences. An example where this turns
out to be natural is on Web search engines, which display pointers to the pages
found plus a short context where the pattern occurs within each such page. This
context is displayed in order to help users decide whether a page is relevant or not
without actually retrieving the page. In this example we must be able to quickly
find just one arbitrary pattern occurrence in the text and display its context.
We assume that the text is large and known in advance to queries, and we need

to perform several queries on it. Therefore, we can preprocess the text to construct
an index on it, which is a data structure allowing efficient access to the pattern
occurrences, yet increasing the space requirement.
Though classical full-text indices, like suffix trees [Apostolico 1985] and suffix

arrays [Manber and Myers 1993], are very efficient at search time, they have the
problem of a high space requirement: they require O(n log n) and n logn bits re-
spectively, which in practice is about 10–20 and 4 times the text size respectively,
apart from the text itself. Thus, we can have large texts which fit into main memory,
but whose corresponding suffix tree (or array) does not. Using secondary storage
for the indices is several orders of magnitude slower, so one looks for ways to reduce
their size, aiming to maintain the indices of relatively large texts entirely in main
memory. The modern trend is to use the compressibility of the text to reduce the
space of the index, focusing on techniques to represent the text and the index using

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 3

little space, yet permitting efficient text searching [Navarro and Mäkinen 2007].

1.1 Compressed Full-Text Self-Indexing

The track of compressed full-text self-indices started a decade ago [Grossi and Vit-
ter 2000; Ferragina and Manzini 2000; Sadakane 2000]. A full-text self-index allows
one to retrieve any part of the text without storing the text itself, and in addi-
tion provides search capabilities on the text. A compressed full-text self-index is
one whose space requirement is proportional to the compressed text size, for ex-
ample O(nHk(T)) bits, where Hk(T) denotes the k-th order empirical entropy of
T [Manzini 2001], a standard measure of compressibility (see Section 2.1 for more
details). Then a compressed full-text self-index replaces the text with a more space-
efficient representation of it, which at the same time provides indexed access to the
text [Navarro and Mäkinen 2007; Ferragina and Manzini 2005]. Thanks to the
advances in this technology, it is quite common nowadays that the indices of large
texts can be accommodated in the main memory of a desktop computer (e.g., an
index for the Human Genome, which has about 3 billion bases, fits comfortably in
a 1 GB desktop PC).
As compressed full-text self-indices replace the text, we are also interested in the

following operations:

—display(P, ℓ), which displays a context of ℓ symbols sorrounding the occ occur-
rences of pattern P in T , and

—extract(i, j), which decompresses the substring T [i..j], for any text positions
i 6 j.

Being able to efficiently extract arbitrary text substrings is one of the most
basic and important problems these indices must solve efficiently, since the text is
not available otherwise.
Similarly, although locate queries are important in classical full-text indexing

(since we have the text at hand to access the occurrences and their contexts),
they are usually not enough for compressed self-indices, since they give just text
positions. In many applications, such as showing snippets of Web pages, the context
surrounding an occurrence is more important than the occurrence position itself.
Indeed, the widely-used Unix search tool grep by default shows the text lines
containing the occurrences. Therefore, in our scenario display queries are usually
more important than locate queries. The latter can be interesting in specific cases,
for example if one wants to take statistics about the positions of the occurrences
for linguistic or data mining applications.
Finally, count and exists queries have much more specific applications, and they

usually form the internal machinery of more complex tasks, such as approximate
pattern matching and text categorization (where a document is assigned a class
or category depending on the frequency of appearance of given keywords). Some
pattern discovery tasks may use the frequency of certain strings to decide that they
are important patterns. Another example is selective dissemination of information,
where user profiles are formed by keywords of interest and the system considers the
presence or absence of those keywords to send or not the document to the user.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Diego Arroyuelo and Gonzalo Navarro

Table I. Practical average complexities achieved by the main families of compressed self-indexes
and our contribution.

Index Space Extraction time Search time Locating time
in bits for ℓ symbols (related to m) per occurrence

CSA nH0(T) + O(n log log σ) O(ℓ + log1+ǫ n) O(m log n) O(log1+ǫ n)

FM-index nHk(T) + o(n log σ) O(ℓ log σ + log1+ǫ n) O(m log σ) O(log1+ǫ n)

LZ-index 4nHk(T) + o(n log σ) O(ℓ) O(σm logσ n) O(σm/2)
Our LZ-index 2(1 + ǫ)nHk(T) + o(n log σ) O(ℓ) O(1

ǫ m logn) O(1

ǫ σm/2)

1

1.2 Families of Compressed Full-Text Self-Indices

The main families of compressed self-indices [Navarro and Mäkinen 2007] are Com-
pressed Suffix Arrays (CSA) [Grossi and Vitter 2005; Sadakane 2003; Grossi et al.
2003], indices based on backward search [Ferragina and Manzini 2005; Mäkinen and
Navarro 2005; Ferragina et al. 2007] (which are alternative ways to compress suf-
fix arrays, and known as the FM-index family), and indices based on Lempel-Ziv
compression [Ziv and Lempel 1977; 1978] (LZ-indices for short) [Kärkkäinen and
Ukkonen 1996; Navarro 2004; Ferragina and Manzini 2005; Arroyuelo et al. 2006;
Russo and Oliveira 2008]. Table I summarizes the average complexities of their
best practical implementations.
In this paper we are interested in LZ-indices since they proved to be effective

in practice, outperforming the other families of compressed indices [Navarro 2004;
2009], for the tasks we consider most important: extracting text, displaying occur-
rence contexts, and locating the occurrences. They are weaker for counting and for
searching for long patterns, instead they are fast on short patterns, as these usually
have many occurrences to locate.
We focus on the LZ-index of Navarro [2004; 2009], a compressed full-text self-

index based on the LZ78 parsing of the text [Ziv and Lempel 1978] (see Section
2.2 for details). The LZ-index takes about 5 times the size of the compressed text
(in theory, 4nHk(T) + o(n log σ) bits, for any k = o(logσ n) [Kosaraju and Manzini
1999; Ferragina and Manzini 2005]), and locates the occ occurrences of a pattern
in average time O(σm logσ n + occ σm/2) in practice. The index also replaces the
text (i.e., it is a self-index): it can display a text context of length ℓ around an
occurrence found (and in fact any sequence of LZ78 phrases) in O(ℓ) time, or obtain
the whole text in time O(n). The index is built in O(n) time.
However, the space requirement of the LZ-index is relatively large compared with

competing schemes: 1.2–1.6 times the text size versus 0.6–0.7 times the text size
achieved by the CSA [Sadakane 2003], and 0.3–0.8 times the text size reached by
the FM-index [Ferragina et al. 2007]. In addition, the LZ-index does not offer
space/time trade-offs, which limits its applicability.

1.3 Our Contribution

In this paper we study how to reduce the space requirement of Navarro’s LZ-index.
We reduce the redundancy among its different data structures, while retaining
fast locating and text extraction. We also provide space/time trade-offs. Our
developments are, in some extent, based on the theoretical ideas of Arroyuelo et al.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 5

Table II. Rough spaces and times achieved by the main compressed self-indexes and ours. Our
ranges include the most typical values obtained, disregarding some extremes. Locating times are
obtained from the data for m = 5. For more precise data see Section 6.

Index Space Million symbols Million occurrences Microseconds to
times nHk(T) extracted per second located per second locate first occ.

CSA 2–6 <0.5 0.2–1.0 40–70
FM-index 2–5 0.8–1.0 0.2–0.5 15–30
LZ-index 5 1.5–2.0 2–4 10–20
Our LZ-index 3–5 1.0–2.0 1–4 5–20

1

[2006], yet in this paper we consider more practical solutions and perform extensive
experimentation. We remark that all the compressed full-text indexes considered
in this paper operate in main memory.
We define several reduced-space alternatives requiring 3nHk(T) + o(n log σ) bits

of space. We also add a space/time tuning parameter to the index, achieving
2(1 + ǫ)nHk(T) + o(n log σ) bits of space, for 0 < ǫ < 1. Our indices do not
provide worst-case guarantees at search time, yet they support locate queries in
O(1ǫ (m logn + occ σm/2)) average time, and extract text substrings in O(ℓ) time.
Table I puts these results in context, highlighting the fact that LZ-indexes are
larger, but faster at extracting/displaying text, and at locating for short patterns.
We implement and test our indices in several real-life scenarios, and conclude

that the space requirement of the original LZ-index can be reduced up to about
2/3, i.e., to about 3 times the size of the compressed text (while replacing it). The
o(n log σ) space redundancy turns out to add 25%–40% in practice, depending on
σ. For the key operations of extract and display, our schemes are able to extract
about 1–2 MB of text per second in a commodity PC, being about twice as fast
as the most competitive space-efficient alternatives. For partial locate queries we
develop a heuristic to get fast access to the first occurrences, avoiding as much as
possible the navigation on the tries that compose the LZ-index; this navigation
becomes expensive if we report only a few occurrences. Our indices outperform
the alternatives particularly when searching for short patterns (say m 6 10), small
alphabets (such as DNA data), and when retrieving a few ocurrences (K 6 5). For
full locate queries, for short patterns of length 5, in most scenarios our schemes
offer the best space/time trade-offs when the indices are allowed to use 4 times
the compressed text size or more. In general, our indices locate up to 1–4 million
occurrences per second. The original LZ-index becomes now just an extreme of
the trade-off we offer. Table II roughly summarizes actual spaces and times (we
emphasize pure locating times by considering the times for short patterns, for longer
patterns our times degrade faster than those of the other indices).
We also demonstrate a very important aspect of our indices: compressed indices

based on suffix arrays store extra non-compressible information to efficiently carry
out the locate and display tasks, whereas the extra data stored by LZ-indices
is largely compressible. Therefore, when the texts are highly compressible, LZ-
indices can be smaller and faster than alternative indices; in other cases they offer
attractive space/time trade-offs.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Diego Arroyuelo and Gonzalo Navarro

2. BASIC CONCEPTS

2.1 Empirical Entropy

Text compression is a technique to represent a text using less space, profiting from
the regularities of non-random texts. A concept related to text compression is that
of the k-th order empirical entropy of a sequence of symbols T over an alphabet of
size σ, denoted byHk(T) [Manzini 2001]. The value nHk(T) provides a lower bound
to the number of bits needed to compress T using any compressor that encodes each
symbol considering only the context of k symbols that precede it in T . It holds
that 0 6 Hk(T) 6 Hk−1(T) 6 · · · 6 H0(T) 6 log σ (log x means ⌈log2 x⌉ in this
paper). Formally, we have

Definition 2.1. Given a text T [1..n] over an alphabet Σ, the zero-order empirical
entropy of T is defined as

H0(T) =
∑

c∈Σ

nc

n
log

n

nc

where nc is the number of occurrences of symbol c in T . The sum includes only
those symbols c that occur in T , so that nc > 0.

Definition 2.2. Given a text T [1..n] over an alphabet Σ, the k-th order empirical
entropy of T is defined as

Hk(T) =
∑

s∈Σk

|T s|
n

H0(T
s)

where T s is the subsequence of T formed by all the symbols that occur preceded
by the context s. Again, we consider only contexts s that do occur in T .

2.2 Ziv-Lempel Compression

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [Ziv and Lem-
pel 1978]) is based on a dictionary of phrases, in which we add every new phrase
computed. At the beginning of the compression, the dictionary contains a single
phrase b0 of length 0 (i.e., the empty string). The current step of the compression
is as follows: If we assume that a prefix T [1..j] of T has been already compressed
into a sequence of phrases Z = b1 . . . br, all of them in the dictionary, then we look
for the longest prefix of the rest of the text T [j + 1..n] which is a phrase of the
dictionary. Once we have found this phrase, say bs of length ℓs, we construct a new
phrase br+1 = (s, T [j + ℓs + 1]), write the pair at the end of the compressed file Z,
i.e. Z = b1 . . . brbr+1, and add the phrase to the dictionary.
We will call Bi the string represented by phrase bi, thus Br+1 = BsT [j+ ℓs +1].

In the rest of the paper we assume that the text T has been compressed using the
LZ78 algorithm into d + 1 phrases, T = B0 . . . Bd, such that B0 = ε (the empty
string). We say that i is the phrase identifier corresponding to Bi, for 0 6 i 6 d.

Property 2.3. For all 1 6 t 6 d, there exists ℓ < t and c ∈ Σ such that Bt = Bℓ ·c.
That is, every phrase Bt (except B0) is formed by a previous phrase Bℓ plus a
symbol c at the end. This implies that the set of phrases is prefix closed, mean-
ing that any prefix of a phrase Bt is also an element of the dictionary. There-
fore, a natural way to represent the set of strings B0, . . . , Bd is a trie, which

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 7

a l ab ar _ a_ la _a lab ard a_p ara _ap al abr arl a$
5 6 7 8 9 10 11 12 13 14 15 17161 32 4

Fig. 1. LZ78 phrase decomposition for the running example text
T =“alabar a la alabarda para apalabrarla”, and the corresponding phrase identifiers.

we call LZTrie. In Fig. 1 we show the LZ78 phrase decomposition for the text
T =“alabar a la alabarda para apalabrarla”, which will be our running ex-
ample. We show phrase identifiers above the corresponding phrase in the parsing.
In Fig. 4(a) we show the corresponding LZTrie. Inside each LZTrie node we

show the corresponding phrase identifier.

Property 2.4. Every phrase Bi, 0 6 i < d, represents a different text substring.

This property is used in the LZ-index search algorithm (see Section 3). The only
exception to this property is the last phrase Bd. We deal with the exception by
appending to T a special symbol “$” 6∈ Σ, assumed to be smaller than any other
symbol in the alphabet. The last phrase will contain this symbol and thus will be
unique too.

Definition 2.5. Let br = (r1, c1), br1 = (r2, c2), br2 = (r3, c3), and so on until
rk = 0 be phrases of the LZ78 parsing of T . The sequence of phrase identifiers
r, r1, r2, . . . is called the referencing chain starting at phrase r.

The referencing chain starting at phrase r reproduces the way phrase br is formed
from previous phrases and it is obtained by successively moving to the parent in
the LZTrie. For example, the referencing chain of phrase 9 in Fig. 4(a) is r = 9,
r1 = 7, r2 = 2, and r3 = 0.
The compression algorithm is O(n) time in the worst case and efficient in practice

provided we use the LZTrie, which allows rapid searching of the new text prefix
(for each symbol of T we move once in the trie). The decompression needs to build
the same dictionary (the pair that defines the phrase r is read at the r-th step of
the algorithm).

Property 2.6 [Ziv and Lempel 1978]. It holds that
√
n 6 d 6

n
log

σ
n . Thus,

d logn 6 n logσ always holds.

Lemma 2.7 [Kosaraju and Manzini 1999]. It holds that d log d 6 nHk(T)+
O(n 1+k log σ

log
σ
n) for any k.

In our work we assume k = o(logσ n) (and hence log σ = o(logn) to allow for k > 0);
therefore, in the worst case d log d = nHk(T) + o(n log σ).

2.3 Succinct Representations of Sequences and Permutations

A succinct data structure requires space close to the information-theoretic lower
bound, while supporting the corresponding operations efficiently. In this section
and the next we review some results on succinct data structures, which are necessary
to follow our work.

2.3.1 Data Structures for rank and select. Given a bit vector B[1..n], we define
the operation rank0(B, i) (similarly rank1) as the number of 0s (1s) occurring up

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Diego Arroyuelo and Gonzalo Navarro

to the i-th position of B. The operation select0(B, i) (similarly select1) is defined
as the position of the i-th 0 (i-th 1) in B. We assume that select0(B, 0) always
equals 0 (similarly for select1). These operations can be supported in constant time
and requiring n+ o(n) bits [Munro 1996], or even nH0(B) + o(n) bits (including B

itself) [Raman et al. 2002].
There exist a number of practical data structures supporting rank and select,

like the one by González et al. [2005], Kim et al. [2005], Okanohara and Sadakane
[2007], etc. Among these, the index of González et al. [2005] is very (perhaps the
most) efficient in practice to compute rank, requiring little space on top of the
sequence itself. Select is implemented by binary searching the directory built for
operation rank, and thus without requiring any extra space for that operation (yet,
the time for select becomes O(log n) in the worst case).
Given a sequence S[1..n] over an alphabet Σ, we generalize the above definition

for rankc(S, i) and selectc(S, i) for any c ∈ Σ. If σ = O(polylog(n)), the solution
of Ferragina et al. [2007] allows one to compute both rankc and selectc in constant
time and requiring nH0(S) + o(n) bits of space. Otherwise the time is O(log σ

log log n)

and the space is nH0(S)+o(n log σ) bits. The representation of Golynski et al. [2006]
requires n(log σ+ o(log σ)) = O(n log σ) bits of space [Barbay et al. 2007], allowing
us to compute selectc in O(1) time, and rankc and access to S[i] in O(log log σ)
time.

2.3.2 Succinct Representation of Permutations. The problem here is to repre-
sent a permutation π of {1, . . . , n}, such that we can compute both π(i) and its
inverse π−1(j) in constant time and using as little space as possible. A natural
representation for π is to store the values π(i), i = 1, . . . , n, in an array of n logn
bits. The brute-force solution to the problem computes π−1(j) looking for j se-
quentially in the array representing π. If j is stored at position i, i.e. π(i) = j, then
π−1(j) = i. Although this solution does not require any extra space to compute
π−1, it takes O(n) time in the worst case.
A much more efficient solution is based on the cycle notation of a permutation.

The cycle for the i-th element of π is formed by elements i, π(i), π(π(i)), and so on
until the value i is found again. It is important to note that every element occurs in
one and only one cycle of π. For example, the cycle notation for permutation ids of
Fig. 3(a) is shown in Fig. 2. So, to compute π−1(j), instead of looking sequentially
for j in π, we only need to look for j in its cycle: π−1(j) is just the value “pointing”
to j in the diagram of Fig. 2. To compute ids−1(13) in the previous example, we
start at position 13, then move to position ids(13) = 7, then to position ids(7) = 12,
then to ids(12) = 2, then to ids(2) = 17, and as ids(17) = 13 we conclude that
ids−1(13) = 17. The only problem here is that there are no bounds for the size of
a cycle, hence this algorithm takes also O(n) time in the worst case. However, it
can be improved for a more efficient computation of π−1(j).
Given 0 < ǫ < 1, we create subcycles of size O(1/ǫ) by adding a backward pointer

out of O(1/ǫ) elements in each cycle of π. Dashed arrows in Fig. 2 show backward
pointers for 1/ǫ = 2. To compute ids−1(17), we first move to ids(17) = 13; as
13 has a backward pointer we follow it and hence we move to position 2. Then,
as ids(2) = 17 we conclude that ids−1(17) = 2, in O(1/ǫ) worst-case time. We
store the backward pointers compactly in an array of ǫn logn bits. We mark the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 9

2 17 13 7 12 4 15 5 14 9 16 8 10 6 1131

Fig. 2. Cycle representation of permutation ids of Fig. 3(a). Each solid arrow i → j in the diagram
means ids(i) = j. Dashed arrows represent backward pointers.

elements having a backward pointer by using a bit vector supporting rank queries,
which also help us to find the backward pointer corresponding to a given element
(see the article by Munro et al. [2003] for details). Overall, this solution requires
(1+ ǫ)n logn+n+o(n) bits of storage. In a practical implementation of bit vectors
with rank and select we use, the n + o(n) terms in the space become 1.375n bits
[González et al. 2005].

2.4 Succinct Representation of Trees

Given a tree with n nodes, there exist a number of succinct representations requiring
2n + o(n) bits, which is close to the information-theoretic lower bound of 2n −
Θ(logn) bits. We explain the representations that we will need in our work.

2.4.1 Balanced Parentheses. The problem of representing a sequence of bal-
anced parentheses is highly related to the succinct representation of trees [Munro
and Raman 2001]. Given a sequence par of 2n balanced parentheses, we want to
support the following operations on par:

—findclose(par, i), which given an opening parenthesis at position i, finds the
position of the matching closing parenthesis;

—findopen(par, j), which given a closing parenthesis at position j, finds the posi-
tion of the matching opening parenthesis;

—excess(par, i), which yields the difference between the number of opening and
closing parentheses up to position i in the parentheses sequence; and

—enclose(par, i), which given a parentheses pair whose opening parenthesis is at
position i, yields the position of the opening parenthesis corresponding to the
closest matching parentheses pair enclosing the one at position i.

Munro and Raman [2001] show how to compute all these operations in constant
time and requiring 2n+o(n) bits of space. They also show one of the main applica-
tions of maintaining a sequence of balanced parentheses: the succinct representation
of general trees. Among the practical alternatives, we have the representation of
Geary et al. [2006] and the one by Navarro [2004, Section 6.1]. The latter has shown
to be very effective for representing LZ-indices, and therefore we briefly review it
in which follows.

Navarro’s Practical Representation of Balanced Parentheses. To support the op-
erations we could simply precompute and store all the possible answers, requiring
O(n log n) bits overall. However, in many applications (e.g., the representation of
trees) matching opening and closing parentheses tend to be close to each other.
Profiting from this property, and for instance to support findclose, Navarro uses

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Diego Arroyuelo and Gonzalo Navarro

a brute-force approach for these parentheses, sequentially looking for the closing
parenthesis within the next few, say 32, parentheses. Actually, this search is per-
formed by using precomputed tables to avoid a bit-per-bit scan.
If the answer cannot be found in this way, Navarro searches a hash table storing

the answers for parentheses that are not so close, though not so far away from
each other. Say, for example, matching parentheses with a difference of up to
256 positions (parentheses). Instead of storing absolute positions, the difference
between positions is stored, and thus we can use 8 bits to code these numbers,
which saves space. Finally, if the answer cannot be found in the previous hash
table, another table is searched for matching parentheses that are far away from
each other (here full numbers are stored, but there are hopefully few entries). A
similar approach is used to compute enclose and findopen operations.
The parentheses operations are supported in O(log logn) average time [Navarro

2009]. However, this representation does not provide theoretical worst-case guaran-
tees in the space requirement, since in the worst case almost every opening paren-
thesis has its matching parenthesis far away, so we have to store its information in
the tables. Fortunately these cases are not common in practice.
To compute operation excess(i), we need to support operation rank over the

binary sequence of parentheses, since excess(i) ≡ rank((par, i)− rank)(par, i). We
use the representation of González et al. [2005] to efficiently support rank and
select (which will be needed later) on par.

2.4.2 bp Representation of Trees. The balanced parentheses (bp) representation
of a tree defined by Munro and Raman [2001] is built from a depth-first preorder
traversal of the tree, writing an opening parenthesis when arriving to a node for
the first time, and a closing parenthesis when going up (after traversing the subtree
of the node). In this way, we get a sequence of balanced parentheses, where each
node is represented by a pair of opening and closing parentheses. We identify a tree
node x with its opening parenthesis in the representation. The subtree of x contains
those nodes (parentheses) enclosed between the opening parenthesis representing x
and its matching closing parenthesis.
This representation requires 2n + o(n) bits, and supports operations parent(x)

(which gets the parent of node x), subtreesize(x) (which gets the size of the subtree
of node x, including x itself), depth(x) (which gets the depth of node x in the tree),
nextsibling(x) (which gets the next sibling of node x), and ancestor(x, y) (which
tells us whether node x is an ancestor of node y), all of them in O(1) time, in the
following way (let par be the sequence of balanced parentheses representing the
tree):

parent(x) ≡ enclose(par, x)

subtreesize(x) ≡ (findclose(par, x)− x+ 1)/2

depth(x) ≡ excess(par, x)

nextsibling(x) ≡ findclose(par, x) + 1

ancestor(x, y) ≡ x 6 y 6 findclose(par, x)

Operation child(x, i) (which gets the i-th child of node x) can be computed in O(i)
time by repeatedly applying operation nextsibling. This takes, in the worst case,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: ((() (()) () (() () ()) (())) ((())) ((())))
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a $ b r l r a d l p l a b a p

1

(a) Balanced parentheses representation of LZTrie for the running example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: (((() ((((()) ())) ((()))) ()) () ()) () ())
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a l $ b l r r a d l p a b a p

1

(b) dfuds representation of LZTrie for the running example. The phrase identifiers are stored
in preorder, and the symbols labeling the arcs of the trie are stored according to dfuds.

Fig. 3. Succinct representations of LZTrie for the running example.

linear time on the maximum arity of the tree.
The preorder position of a node can be computed in this representation as the

number of opening parentheses before the one representing the node. That is,
preorder(x) ≡ rank((par, x) − 1. Notice that in this way we assume that the
preorder of the tree root is always 0. Given a preorder position p, the corresponding
node is computed by selectnode(p) ≡ select((par, p+ 1).
In Fig. 3(a) we show the balanced parentheses representation for the LZTrie

of Fig. 4(a), along with the sequence of LZ78 phrase identifiers sequence (ids) in
preorder, and the sequence of symbols labeling the arcs of the trie (letts), also in
preorder. As the identifier corresponding to the LZTrie root is always 0, we do not
store it in ids. The data associated with node x is stored at position preorder(x)
both in ids and letts sequences. Note this information is sufficient to reconstruct
LZTrie.

2.4.3 dfuds Representation of Trees. To get this representation [Benoit et al.
2005] we perform a preorder traversal on the tree, and for every node reached we
write its degree in unary using parentheses. For example, a node of degree 3 reads
‘((()’ under this representation. What we get is almost a balanced parentheses
representation: we only need to add a fictitious ‘(’ at the beginning of the sequence.
A node of degree d is identified by the position of the first of the d+1 parentheses
representing the node.
This representation requires also 2n+o(n) bits, and supports operations parent(x),

subtreesize(x), degree(x) (which gets the degree, i.e., the number of children, of
node x), childrank(x) (which gets the rank of node x within its siblings [Jansson
et al. 2007]), ancestor(x, y), and child(x, i), all in O(1) time in the following way,
assuming that par represents now the dfuds sequence of the tree:

parent(x) ≡ select)(par, rank)(par, findopen(par, x− 1))) + 1

child(x, i) ≡ findclose(par, select)(par, rank)(par, x) + 1)− i) + 1

subtreesize(x) ≡ (findclose(par, enclose(par, x))− x)/2 + 1

degree(x) ≡ select)(par, rank)(par, x) + 1)− x

childrank(x) ≡ select)(par, rank)(par, findopen(par, x− 1)) + 1)

−findopen(par, x− 1)

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Diego Arroyuelo and Gonzalo Navarro

ancestor(x, y) ≡ x 6 y 6 findclose(par, enclose(par, x))

Operation depth(x) can be also computed in constant time on dfuds by using the
approach of Jansson et al. [2007], requiring o(n) extra bits. It is important to
note that, unlike the bp representation, dfuds needs operation findopen on the
parentheses in order to compute operation parent on the tree. In practice, if we
build on Navarro’s parentheses data structure, this implies that dfuds needs more
space than bp since we need additional hash tables to support findopen.
Given a node in this representation, say at position i, its preorder position can

be computed by counting the number of closing parentheses before position i; in
other words, preorder(x) ≡ rank)(par, x − 1). Given a preorder position p, the
corresponding node is computed by selectnode(p) ≡ select)(par, p) + 1.

Representing σ-ary Trees with dfuds. For cardinal trees (i.e., trees where each
node has at most σ children, each child labeled by a symbol in the set {1, . . . , σ}) we
use the dfuds sequence par plus an array letts[1..n] storing the labels according to
a dfuds traversal of the tree: we traverse the tree in depth-first preorder, and every
time we reach a node x we write the symbols labeling the children of x. In this way,
the labels of the children of a given node are all stored contiguously in letts, which
will allow us to compute operation child(x, α) (which gets the child of node x with
label α ∈ {1, . . . , σ}) efficiently. In Fig. 3(b) we show the dfuds representation of
LZTrie for our running example. Notice the inverse relation between the d opening
parentheses defining x and the symbols of the children of x: the label of the i-th
child is at position i within the symbols of the children of x, while the corresponding
opening parenthesis is at position (d− i+ 1) within the definition of x. This shall
mean extra work when retrieving the symbol by which a given node descends from
its parent.
We support operation child(x, α) as follows. Suppose that node x has position

p within the dfuds sequence par, and let p′ = rank((par, p) − 1 be the position
in letts for the symbol of the first child of x. Let nα = rankα(letts, p

′ − 1) be
the number of αs up to position p′ − 1 in letts, and let i = selectα(letts, nα + 1)
be the position of the (nα + 1)-th α in letts. If i lies within positions p′ and
p′+ degree(x)− 1, then the child we are looking for is child(x, i− p′+1), which, as
we said before, is computed in constant time over par; otherwise x has not a child
labeled α. We can also retrieve the symbol by which x descends from its parent
with letts[rank((par, parent(x))−1+childrank(x)−1], where the first term stands
for the position in letts corresponding to the first symbol of the parent of node x.
The second term, childrank(x), comes from the inverse relation between symbols
and opening parentheses representing a node.
Thus, the time for operation child(x, α) depends on the representation we use

for rankα and selectα queries. Notice that child(x, α) could be supported in a
straightforward way by binary searching the labels of the children of x, in O(log σ)
worst-case time and not needing any extra space on top of array letts. The access
to letts[·] takes constant time.
Alternatively, we can represent letts with the data structure of Ferragina et al.

[2007], which requires n log σ + o(n log σ) bits of space, and allows us to compute
child(x, α) in O(1 + log σ

log logn) time. The access to letts[·] also takes O(1 + log σ
log log n)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 13

time. These times are O(1) whenever σ = O(polylog(n)) holds. On the other hand,
we can use the data structure of Golynski et al. [2006], requiring O(n log σ) bits
of space, yet allowing us to compute child(x, α) in O(log log σ) time, and access to
letts[·] also in O(log log σ) time. We will prefer the representation of Ferragina et
al., since it is able to improve its time complexity to O(1) for smaller alphabets.
The scheme we have presented to represent letts is slightly different to the orig-

inal one [Benoit et al. 2005], which achieves O(1) time for child(x, α) for any σ.
However, ours is simpler and allows us to efficiently access letts[·], which will be
very important in our indices to extract text substrings.

3. THE LZ-INDEX DATA STRUCTURE

Assume that the text T [1..n] has been compressed using the LZ78 algorithm into
d+1 phrases T = B0 . . . Bd, as explained in Section 2.2. As we are mainly interested
in practical performance in this paper, we describe next a practical representation
of the LZ-index and its corresponding search algorithm [Navarro 2009, Section 9].
Hereafter, given a string S = s1 . . . si, we will use Sr = si . . . s1 to denote its

reverse. Also, Sr[i..j] will mean (S[i..j])r.

3.1 Original LZ-index Components

The following data structures conform the practical version of LZ-index [Navarro
2004; 2009]:

(1) LZTrie: is the trie formed by all the phrases B0, . . . , Bd. Given the properties
of LZ78 compression, this trie has exactly d+1 nodes, each one corresponding
to a phrase.

(2) RevTrie: is the trie formed by all the reverse strings Br
0 , . . . , B

r
d. In this trie

there could be internal nodes not representing any phrase. We call these nodes
“empty”. Empty unary paths are compressed.

(3) Node: is a mapping from phrase identifiers to their node in LZTrie.

(4) RNode: is a mapping from phrase identifiers to their node in RevTrie.

Fig. 4 shows the LZTrie, RevTrie, Node, and RNode data structures correspond-
ing to our running example. We show preorder numbers, both in LZTrie and
RevTrie (in the latter case only counting non-empty nodes), outside each trie node.
In the case of RevTrie, empty nodes are shown in light gray.

3.2 Succinct Representation of the LZ-index Components

In the original work [Navarro 2004; 2009], each of the four structures described
requires d log d+ o(n log σ) bits of space if they are represented succinctly.

—LZTrie is represented using the balanced parentheses representation [Munro and
Raman 2001] requiring 2d+ o(d) bits; plus the sequence letts of symbols labeling
each trie edge, requiring d log σ bits; and the sequence ids of d log d bits storing
the LZ78 phrase identifiers. Both letts and ids are stored in preorder, so we use
preorder(x) to index them. See Fig. 3(a) for an illustration.

—For RevTrie, balanced parentheses are also used to represent the Patricia tree
[Morrison 1968] structure of the trie, compressing empty unary nodes and so

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Diego Arroyuelo and Gonzalo Navarro

0
0

1
1

17
2

$

3
3

15
4

r

b

14
5

l

4
6

12
7

a

10
8

d

16
9
l

r

6
10

11
11

p

a

2
12

7
13

9
14

b

a

l

5
15

8
16

13
17

p

a

1

(a) Lempel-Ziv Trie (LZTrie) for the running example.

0
0

1

17
1

a

$

1
2

7
3

l

1

12
4
a

r

8
5

a

1

3
6

9
7
l

a

b

1

1

10
8

a

r

d

2
9

14
10

a

1

16
11

a

r

l

1

1

13
12

a

1

11
13

a

p

1

4
14

a

1

15
15

a

b

r

5
16

6
17

a

1

(b) RevTrie data structure.

0 5 10 15 20 25 30 35 39

par: (() (() () ()) (()) () (() ()) (() ()) (() ()) (()))
B: 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1

rletts: $ a l r b l d l a r p a r a b a
rids: 0 17 1 7 12 8 3 9 10 2 14 16 13 11 4 15 5 6

(c) Balanced parentheses representation of RevTrie, compressing empty unary paths. The
bitmap B marks with a 0 the empty non-unary nodes. Notice that array rids stores phrase
identifiers only for non-empty nodes.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node[i] 0 1 23 4 10 29 18 24 30 25 13 19 11 31 8 5 15 2

(d) Node data structure, assuming that the parentheses se-
quence starts from position zero.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RNode[i] 0 3 17 11 30 35 36 4 8 12 15 26 6 24 18 32 20 1

(e) RNode data structure, assuming that the parentheses
sequence starts from position zero.

Fig. 4. LZ-index components for the running example.

ensuring d′ 6 2d nodes. This requires at most 4d + o(d) bits. The RevTrie-
preorder sequence of identifiers (rids) is stored in d log d bits (i.e., we only store
the identifiers for non-empty nodes). Non-empty nodes are marked with bit
vector B[1..d′], such that B[j] = 0 iff node x with preorder j is empty. Thus,
the phrase identifier for node x is rids[rank1(B, j)]. The symbols labeling the
arcs of the trie and the Patricia-tree skips are not stored in this representation,
since they can be retrieved by using the connection with LZTrie. Therefore, the
navigation on RevTrie is more expensive than that on LZTrie.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 15

—Node is just a sequence of d pointers to LZTrie nodes. As LZTrie is implemented
using balanced parentheses, Node[i] stores the position within the sequence for
the opening parenthesis representing the node corresponding to phrase i. As
there are 2d such positions, we need d log 2d = d log d + d bits of storage. See
Fig. 4(d) for an illustration.

—Finally, RNode is also represented as a sequence of d pointers to RevTrie nodes.
As RevTrie has d′ 6 2d nodes and since we use balanced parentheses for this trie,
we need d log 4d = d log d+ 2d bits of space. See Fig. 4(e) for an illustration.

According to Lemma 2.7, the final size of the LZ-index is 4nHk(T)+ o(n log σ) bits
for k = o(logσ n) (and hence log σ = o(log n) if we want to allow for k > 0).
In theory, the succinct trie representations used [Navarro 2004] implement (among

others) operations parent(x) and child(x, α), both in O(log σ) time for LZTrie, and
O(log σ) and O(h log σ) time respectively for RevTrie, where h is the depth of node
x in RevTrie (the h in the cost comes from the fact that we must access LZTrie to
get the label of a RevTrie edge). The operation ancestor(x, y) is implemented in
O(1) time both in LZTrie and RevTrie.
In practice, however, the bp representation [Munro and Raman 2001] for general

trees is used. Despite that under this representation operation child(x, α) is imple-
mented by using operation child(x, i) in O(σ) worst-case time, this has shown to
be very effective in practice [Navarro 2004; 2009]. Operation parent is supported
in O(1) time under this representation.

3.3 LZ-index Search Algorithm

Let us consider now the search algorithm for a pattern P [1..m] [Navarro 2004;
2009]. For locate queries, pattern occurrences are originally reported in the format
Dt, offsetT, where t is the phrase where the occurrence starts, and offset is the
distance between the beginning of the occurrence and the end of the phrase. Later,
in Section 5.2, we will show how to map these two values into a simple text position.
As we deal with an implicit representation of the text (the LZTrie), and not the
text itself, we distinguish three types of occurrences of P in T , depending on the
phrase layout.

3.3.1 Occurrences of Type 1. The occurrence lies inside a single phrase (there
are occ1 occurrences of this type). Given the properties of LZ78, every phrase Bt

containing P is formed by a shorter phrase Bℓ concatenated to a symbol c (Property
2.3). If P does not occur at the end of Bt, then Bℓ contains P as well. We want
to find the shortest possible phrase Bi in the LZ78 referencing chain for Bt that
contains the occurrence of P , that is, P is a suffix of Bi. But then P r is a prefix of
Br

i , and it can be easily found by searching for P r in RevTrie. Say we arrive at node
vr. Any node v′r descending from vr in RevTrie (including vr itself) corresponds to
a phrase terminated with P . For each such v′r, we traverse and report the subtree
of the corresponding LZTrie node vlz (found using rids and Node). For any node
v′lz in the subtree of vlz , we report an occurrence Dt,m+(depth(v′lz)−depth(vlz))T,
where t is the phrase identifier (ids) of node v′lz. Occurrences of type 1 are located
in constant time each. For count queries we just need to compute the subtree size
of each vlz in LZTrie.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Diego Arroyuelo and Gonzalo Navarro

3.3.2 Occurrences of Type 2. The occurrence spans two consecutive phrases, Bt

and Bt+1, such that a prefix P [1..i] matches a suffix of Bt and the suffix P [i+1..m]
matches a prefix of Bt+1 (there are occ2 occurrences of this type). P can be split
at any position, so we have to try them all. For every possible split, we search for
the reverse pattern prefix P r[1..i] in RevTrie (getting node vr) and for the pattern
suffix P [i+ 1 . . .m] in LZTrie (getting node vlz). The RevTrie node vr for P r[1..i]
is stored in array Cr[i], since it shall be needed later. As in a trie all the strings
represented in a subtree form a preorder interval, we have two preorder intervals:
one in the space of reversed phrases (phrases finishing with P [1..i]) and one in that
of the normal phrases (phrases starting with P [i + 1..m]), and need to find the
phrase pairs (t, t + 1) such that t is in the RevTrie interval and t + 1 is in the
LZTrie interval. Then, we check each phrase t in the subtree of vr and report it
if Node[t+ 1] descends from vlz . Each such check takes constant time. Yet, if the
subtree of vlz has fewer elements, one does the opposite: check phrases from vlz in
vr, using RNode[t− 1]. For every pair of consecutive phrases that passes this test,
we report an occurrence Dt, iT.
The time to solve occurrences of type 2 is proportional to the smallest subtree size

among vr and vlz , which can be arbitrarily larger than the number of occurrences
reported. That is, we have no worst-case guarantees at search time1. However, the
average number of candidates per occurrence of type 2 is O(σm/2) [Navarro 2009]2.

3.3.3 Occurrences of Type 3. The occurrence spans three or more phrases, Bt−1,
. . . , Bℓ+1, such that P [i..j] = Bt . . . Bℓ, P [1..i − 1] matches a suffix of Bt−1 and
P [j + 1..m] matches a prefix of Bℓ+1 (there are occ3 occurrences of this type).
Since the LZ78 algorithm guarantees that every phrase represents a different string
(Property 2.4), there is at most one phrase matching P [i..j] for each choice of i and
j. Therefore, if we partition P into more than two consecutive substrings, there
is at most one pattern occurrence for such partition, which severely limits occ3 to
O(m2), the number of different partitions of P .
Let us define matrix Clz [1..m, 1..m] and arrays Ai, for 1 6 i 6 m, which store

information about the search. We first identify the only possible phrase matching
each substring P [i..j] by performing a single trie search for each i and increasing j.
We record in Clz [i, j] the LZTrie node corresponding to P [i..j], and store the pair
(id, j) at the end ofAi, such that id is the phrase identifier of the node corresponding
to P [i..j]. Note that since we search for P [i..j] for increasing j, we get the values
of id in increasing order, as the phrase identifier of a node is always larger than
that of the parent node. Therefore, the corresponding pairs in Ai are stored by
increasing value of id.
Then we find the O(m2) maximal concatenations of successive phrases that match

contiguous pattern substrings. For 1 6 i 6 j 6 m, for increasing j, we try to extend
the match of P [i..j] to the right. If id is the phrase identifier for node Clz [i, j], then
we have to search for (id + 1, r) in array Aj+1, for some r. Array Aj+1 can be
binary searched because it is sorted. If we find (id + 1, r) in Aj+1, this means
that Bid = P [i..j] and Bid+1 = P [j + 1..r], i.e. the concatenation BidBid+1 equals

1The theoretical version [Navarro 2004] uses different structures which do offer such guarantees.
2Navarro [2009] chooses to express this as O(

√

n/occ).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 17

P [i..r]. We repeat the process from j = r, and stop when the pair (id + 1, r) is
not found in the corresponding array (this means that the current concatenation
is maximal). In practice, the binary search is replaced by closed hashing schemes,
taking constant time on average per search [Navarro 2004, Section 6.5].

Once P [i..j] = Bt . . . Bℓ is a maximal concatenation, we check whether phrase
Bℓ+1 starts with P [j+1..m] by using operation ancestor(Clz [j+1,m], Node[ℓ+1]),
in constant time per maximal concatenation. Finally we check whether phrase Bt−1

ends with P [1..i− 1] by checking whether ancestor(Cr [i− 1], RNode[t− 1]) holds in
RevTrie, in constant time per maximal concatenation. If all these conditions hold,
we report an occurrence Dt− 1, i− 1T.

3.3.4 The Search Algorithm in Practice. In practice, the search algorithm pro-
ceeds as follows. We first search for every pattern substring P [i..j] in LZTrie, and
store the corresponding node in Clz [i, j]. The search proceeds looking first for P [1],
then for P [1..2], then for P [1..3], and so on until we cannot find P [1..j], for some j,
or until j = m. Then we do the same starting from P [2], and so on. We also store
a matrix Cid[1..m, 1..m], where Cid[i, j] is the LZ78 phrase identifier for phrase
P [i..j]; if P [i..j] does not exist as an LZ78 phrase, then we store a null value.

The second step consists of searching for every prefix of the reversed pattern
P r[1..j] in RevTrie. Recall that we need this for occurrences of type 1 and type 2.
Recall also that searching in RevTrie is much slower that searching in LZTrie, so
we try to reduce this work as much as possible. The results already obtained in
Cid are useful. If we search for P r[1..j] in RevTrie, and P [1..j] exists as a phrase in
LZTrie, then RNode[Cid[1, j]] is the RevTrie node we are looking for. Otherwise,
P r[1..j] corresponds to an empty node in RevTrie, or to a position in a label between
two nodes, and cannot be found with the LZTrie. Yet, we can reduce the cost as
follows. Let i be the minimum value such that Clz [i, j] is defined, i.e. P [i..j] exists as
a phrase in LZTrie (and hence P r[i..j] exists as a reverse phrase in RevTrie). Then,
we map to RevTrie with RNode[Cid[i, j]], which corresponds to string P r[i..j], and
from this node try to descend with the string P r[1..i − 1]. This final search has
to be done using operation child on RevTrie. The RevTrie node corresponding to
P r[1..i] is stored in Cr[i].

Then we use these results to search for occurrences of type 1, type 2, and type 3
respectively. The overall time is shown to be O(σm logσ n + occ σm/2) on average
[Navarro 2009].

3.3.5 Displaying Occurrence Contexts. To display a context of length ℓ sur-
rounding any occurrence reported, if an occurrence starts at phrase i, then we fol-
low the upward path from Node[i] up to the LZTrie root, outputting the symbols
labeling the upward path. Then we perform the same procedure but now starting
from Node[i + 1] (alternatively Node[i − 1]) in LZTrie, and so on until we display
the ℓ desired symbols, taking overall O(ℓ log σ) time, because operation parent is
supported in O(log σ) time in theory [Navarro 2004]. In practice, and using the bp
representation for the tries, the time is O(ℓ). Finally, we can uncompress the whole
text T in O(n log σ) time using the same idea, starting the procedure from the first
LZ78 phrase (the time is O(n) in practice).

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Diego Arroyuelo and Gonzalo Navarro

4. THE LZ-INDEX AS A NAVIGATION SCHEME

4.1 The Original Navigation Scheme

The LZ-index structure can be regarded as a navigation scheme that permits us
moving back and forth from trie nodes to the corresponding preorder positions, both
in LZTrie and RevTrie. The phrase identifiers are common to both tries (arrays ids
and rids) and permit moving from one trie to the other by using Node and RNode
mappings.
Fig. 5 shows the navigation scheme, where solid arrows represent the main data

structures of the index. Dashed arrows are asymptotically “for free” in terms of
space requirement, since they are followed by applying preorder on the correspond-
ing parentheses structure (see Section 2.4). From now on we use the subscript “lz”
for the operations on LZTrie, and subscript “r” for RevTrie. The four solid arrows
in the diagram are in fact the four main components in the space usage of the
LZ-index: array of phrase identifiers in LZTrie (ids) and in RevTrie (rids), and
mapping from phrase identifiers to tree nodes in LZTrie (Node) and in RevTrie
(RNode). The structure is symmetric and we can move from any point to any
other.

LZTrie

node

LZTrie

preorder

RevTrie

node

RevTrie

preorder

phrase
identifier

preorderlzselectnodelz preorderr selectnoder

ids

Node RNode

rids

Fig. 5. The original LZ-index navigation structures over index components.

The structure, however, is redundant in the sense that the number of arrows
is not minimal. Given a graph with t nodes (in our case t index components), t
arrows are sufficient to connect them in both directions (actually forming a ring
structure). Since nodes and preorder positions in the tries are “connected” using
operations preorder and selectnode over the trie representations (see Section 2.4),
we can think that there are only three main index components to connect: LZTrie
(either nodes or preorder positions), phrase identifiers, and RevTrie (either nodes
or preorder positions). Next we define more space-efficient representations for LZ-
index, trying to reduce the number of arrows in the scheme. Note that, because
of Lemma 2.7, we are interested in reducing the number of the index components
that require d log d = nHk(T) + o(n log σ) bits of storage.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 19

4.2 Schemes Requiring 3nHk + o(n log σ) bits

In this section we present schemes requiring only three solid arrows to connect
the LZ-index components, thus forming a ring structure that still allows the same
navigation as in the original LZ-index. Different choices yield different efficiencies
depending on how often is each type of navigation used during the search.

4.2.1 Scheme 1. The following data structures conform this version of LZ-index:

(1) LZTrie: The Lempel-Ziv trie, which is implemented with the following data
structures
—par[0..2d − 1]: The tree shape of LZTrie represented either with balanced
parentheses [Munro and Raman 2001] or with dfuds [Benoit et al. 2005],
requiring in any case 2d+ o(d) bits.

—letts[1..d]: The array of symbols labeling the arcs of LZTrie, represented as
explained in Section 2.3, depending on the representation used for par.

—ids[1..d]: The array of LZ78 phrase identifiers in preorder. Since ids[0] = 0,
we do not store this value. Note that ids is a permutation of {1, . . . , d}. The
space requirement is d log d bits.

(2) RevTrie: The Patricia tree [Morrison 1968] of the reversed LZ78 phrases, which
is implemented with the following data structures
—rpar[0..2d′ − 1]: The RevTrie structure, represented either with bp or with
dfuds, compressing empty unary paths and thus ensuring d′ 6 2d nodes,
because empty non-unary nodes still exist. Thus, the space requirement is
2d′ + o(d′) bits.

—rletts[1..d′]: the array storing the first symbol of each edge label in RevTrie,
represented as for LZTrie and requiring d′ log σ + o(d′) bits of space.

—skips[1..d′]: the Patricia tree skips of the nodes in preorder, using log logn
bits per node and inserting empty unary nodes when the skip exceeds logn.
In this way, one out of logn empty unary nodes could be explicitly rep-
resented. In the worst case there are O(n) empty unary nodes, of which
O(n/ logn) are explicitly represented. This adds O(n/ log n) nodes to d′,
which translates into O((d′ + n

logn)(3 + log σ + log logn)) = o(n log σ) bits
overall for the RevTrie nodes, symbols, and skips.

—B[1..d′]: A bit vector supporting rank and select queries, and requiring
d′(1+o(1)) bits of space [Munro 1996]. This bit vector marks the non-empty
nodes: The j-th bit of B is 1 iff the node with preorder position j in rpar
is not empty, otherwise the bit is 0. Given a position i in rpar correspond-
ing to a RevTrie node, the corresponding bit in B is B[preorderr(i)]. The
preorder of a node p counting only non-empty nodes can be computed as
rank1(B, preorderr(i)).

(3) RNode[1..d]: The mapping from phrase identifiers to the corresponding Rev-
Trie node. Since we represent nodes as the positions of opening parentheses,
and since there are 2d′ 6 4d such positions in RevTrie, this mapping needs
d log 4d = d log d+ 2d bits. We only store pointers to non-empty nodes.

(4) Rev [1..d]: A mapping from a RevTrie preorder position to the correspond-
ing LZTrie node, defined as Rev[i] = Node[rids[i]]. Given a position i in
rpar corresponding to a non-empty RevTrie node, the corresponding Rev value

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Diego Arroyuelo and Gonzalo Navarro

(i.e., LZTrie node) is Rev[rank1(B, preorderr(i))]. The space requirement is
d log d+ d bits.

The resulting navigation scheme is shown in Fig. 6(a). The search algorithm
remains the same since we can map preorder positions to nodes in the tries and
vice versa (see Section 2.3), and also we can simulate the missing arrays rids(i) ≡
ids[preorderlz(Rev[i])] and Node(i) ≡ Rev[rank1(B, preorderr(RNode[i]))], all of
which take constant time.
We have reduced the space requirement to 3d log d+3d logσ+2d log logn+11d+

o(n) = 3d log d + o(n log σ) bits if log σ = o(logn), which according to Lemma 2.7
is 3nHk(T) + o(n log σ) bits, for any k = o(logσ n).
The child operation on RevTrie can now be computed in O(1) time if we use

dfuds, and because we store rletts and the skips. Compare to the O(h log σ) time
of the original LZ-index [Navarro 2004]. Now, because RevTrie is a Patricia tree
and the underlying strings are not readily available, it is not obvious how to traverse
it. The next lemma addresses this issue.

Lemma 4.1. Given a string s ∈ Σ∗, we can determine whether it is represented
in RevTrie or not (finding the corresponding node in the affirmative case) in O(|s|)
time.

Proof. To find the node corresponding to string s we descend from the RevTrie
root, using operation child(x, α) on the first symbol of each edge label, which is
stored in rletts, and using the skips to compute the next symbol of s to use in the
descent. If s cannot be consumed while descending, then we determine that it is
not represented in RevTrie in O(|s|) time. Otherwise, assume that after consuming
string s in this way we arrive at node vr with preorder j in RevTrie (counting
only non-empty nodes). The string labeling the root-to-vr path in RevTrie can be
computed by accessing the node vlz = Rev[j] in LZTrie, and then extracting the
string labeling the vlz-to-root path in LZTrie. Then we compare that string against
s to verify that the node we arrived at corresponds to s, or otherwise that s does
not occur in RevTrie.
In case node vr in RevTrie is empty, Rev[j] is undefined. Notice, however, that

there must be at least one non-empty node descending from this empty node, since
leaves in RevTrie cannot be empty as they always correspond to an LZ78 phrase.
Given that the string represented by every non-empty node in the subtree of node
vr has the string s as a prefix, the corresponding strings in LZTrie have sr as a
suffix. So we can use any Rev value within the subtree of node vr in order to map to
the LZTrie and then extract the string it represents. We can use, for example, the
value Rev[rank1(B, j) + 1], which corresponds to the next non-empty node within
the subtree of node vr. We know when to stop extracting, since we know the length
of the string we are looking for.
The overall cost for the descending process is therefore O(|s|).
Operations child and parent on LZTrie can be also computed in O(1) time if

we use dfuds on this trie, versus the O(log σ) time (in theory) of the original
LZ-index. In practice we use binary search on the children, so our child time is
O(log σ) (versus the O(σ) time in practice of the original LZ-index). Hence, the
original practical LZ-index complexities [Navarro 2009] become O((log σ)m logσ n+

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 21

occ σm/2) = O(m logn+occ σm/2). We have shown elsewhere how to achieve worst-
case guarantees with reduced schemes of the LZ-index [Arroyuelo et al. 2006], but
we are focusing in practical performance here.

Practical Issues. On the practical side, the access from RevTrie nodes to the
corresponding LZTrie node is faster under this scheme, since the direct link Rev
is faster than the composition of rids and Node of the original scheme. This is
good, for example, for finding occurrences of type 1, which can be dominant for
short patterns, as there is a high probability that an occurrence is contained in a
single phrase. However, sometimes we must follow longer navigation paths in the
search process: for example, when finding occurrences of type 2, we can choose to
traverse the subtree in RevTrie, and for each phrase identifier id in such subtree
apply Node(id + 1) to check whether it descends from the appropriate subtree in
LZTrie. As now we have to simulate Node, this is more expensive (in practice, even
if not asymptotically) than in the original scheme. Even worse, since array rids
is not stored in RevTrie, we must simulate rids(i) to get the phrase identifier id.
Therefore, the search time could be increased in practice, depending on the number
of each type of occurrence.
Let us study occurrences of type 2 in more detail, since they seem to be critical

under this scheme. Suppose that for a given partition P [1..i] and P [i + 1..m] of
P we get nodes vlz and vr in LZTrie and RevTrie respectively. If we choose to
traverse the subtree of vr in RevTrie, then for each node v′r in this subtree we
get the corresponding phrase identifier id = ids[preorderlz(Rev[pr])], where pr is
set initially as pr = rank1(B, preorderr(vr)), and it is incremented by one with
each node in a preorder traversal of the subtree. We then check whether the node
Rev[rank1(B, preorderr(RNode[id + 1]))] descends from vlz in LZTrie. If, on the
other hand, we choose to traverse the subtree of vlz in LZTrie, then for each node
v′lz in this subtree we get the phrase identifier as id = ids[plz], where plz is set
initially as plz = preorderlz(vlz), and it is incremented by one with each node in a
preorder traversal. We then check whether the node RNode[id− 1] descends from
vr in RevTrie. Empirically, a check from RevTrie to LZTrie is about 3 times as
expensive as in the opposite direction, and thus we choose to traverse the subtree
of vr whenever its size is less than 1/3 the size of the subtree of vlz .

4.2.2 Scheme 2. This scheme tries to reduce the space requirement while also
reducing the average path length in the navigation scheme:

(1) LZTrie The Lempel-Ziv trie, defined just as for Scheme 1.

(2) RevTrie: The Patricia tree of the reversed LZ78 phrases, defined just as for
Scheme 1, but now we add
—rids−1[1..d]: The explicit representation of the inverse of permutation rids
of the original LZ-index definition, requiring d log d bits.

(3) R[1..d]: A mapping from RevTrie preorder positions to LZTrie preorder posi-
tions defined as R[i] = ids−1(rids[i]) and requiring d log d bits. Given a posi-
tion i in rpar corresponding to a non-empty RevTrie node, the corresponding R
value (i.e., preorder in LZTrie) can be computed as R[rank1(B, preorderr(i))].

The resulting navigation scheme is shown in Fig. 6(b). We can compute rids(i) ≡
ids[R[i]], RNode(i) ≡ selectnoder(rids

−1[i]), and Node(i) ≡ selectnodelz(R[rids−1

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Diego Arroyuelo and Gonzalo Navarro

LZTrie

node

LZTrie

preorder

RevTrie

node

RevTrie

preorder

phrase
identifier

preorderlz

ids

RNode

Rev

preorderr

1

(a) Scheme 1.

LZTrie

node

LZTrie

preorder

RevTrie

node

RevTrie

preorder

phrase
identifier

preorderlzselectnodelz preorderr selectnoder

ids rids−1

R

(b) Scheme 2.

Fig. 6. Reduced navigation schemes over LZ-index components, requiring 3uHk + o(u log σ) bits.

[i]]), all in constant time.
The space requirement is 3d log d+3d log σ+2d log logn+8d+ o(n) = 3d log d+

o(n log σ) bits if log σ = o(logn), which according to Lemma 2.7 is 3nHk(T) +
o(n log σ) bits, for any k = o(logσ n).
If we use dfuds to represent both LZTrie and RevTrie, then we can locate the

occ occurrences of pattern P in O(m log n+ occ σm/2) average time.

Practical Issues. It is interesting to note that the average path length of this
scheme is shorter than that of Scheme 1, which can translate into a more efficient
navigation among index components. In this scheme, for occurrences of type 1
we have direct access to a LZTrie preorder by using R, and then we have to ap-
ply selectnode to get the node whose subtree contains the pattern occurrences.
This can be slightly slower than for Scheme 1, where we have direct access to the
corresponding node.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 23

However, for occurrences of type 2 we have to follow shorter paths than for
Scheme 1. Suppose that for a given partition P [1..i] and P [i + 1..m] of P we get
nodes vlz and vr in LZTrie and RevTrie respectively. If we choose to traverse the
subtree of vr in RevTrie, for each node in this subtree we get the corresponding
phrase identifier id by using both the R mapping and then ids. Then we use
R[rids−1[id + 1]] to get the corresponding LZTrie preorder, and then we check
whether this preorder lies within the subtree of vlz . If, on the other hand, we
choose to traverse the subtree of vlz in LZTrie, for every node in this subtree we
get the corresponding phrase identifier id using ids, and then we check whether the
preorder rids−1[id− 1] lies within the subtree of vr in RevTrie. Thus, a check from
RevTrie to LZTrie is twice as expensive as in the opposite direction, and thus we
choose to traverse the subtree of vr whenever its size is less than half the size of
the subtree of vlz .
Fortunately, the checks of type 2 can be carried out directly on the preorders of

both tries, avoiding the use of (the usually expensive) selectnode to get the corre-
sponding trie node: if we choose to traverse the subtree of vr, for example, we com-
pute the preorder interval for the subtree of vlz as [preorderlz(vlz)..preorderlz(vlz)+
subtreesizelz(vlz) − 1] (recall that preorder is computed by means of rank), and
then we check whether the LZTrie preorders we get from the nodes in the subtree
of vr lie within the preorder interval of vlz . In this way, we compute just one rank
per partition to get the interval, and then we check the LZTrie preorder of the
candidates by using just this interval, rather than computing selectnode for every
possible candidate in that partition. This introduces very important savings in the
practical search time.

There are many other possible schemes that achieve 3nHk(T)+ o(n log σ) bits of
space. We have focused on the two most promising ones. For example, consider a
scheme where we only replace the R mapping of Scheme 2 by the Rev mapping of
Scheme 1. We have again direct access for occurrences of type 1, but occurrences
of type 2 now introduce the computation of rank in LZTrie for every possible
candidate, which is expensive.

4.3 Schemes Requiring 2(1 + ǫ)nHk + o(n log σ) bits

In Section 4.2 we have used the minimal number of arrows to connect the three
main components of LZ-index, forming a ring structure. It seems that we cannot
reduce the space requirement of the index further by using our navigation-scheme
approach. However, many of the data structures of the LZ-index are just permu-
tations, and so the corresponding arrows can be made bidirectional by means of
the data structure for permutations [Munro et al. 2003] described in Section 2.3,
using just (1 + ǫ)d log d + d + o(d) bits for both arrows. This opens several new
possibilities.

4.3.1 Scheme 3. This scheme represents the following data:

(1) LZTrie: The Lempel-Ziv trie, defined as for Scheme 1, except that now we
use the representation of Munro et al. [2003] for ids such that the inverse
permutation ids−1 can be computed in O(1/ǫ) time, requiring (1 + ǫ)d log d+
d+ o(d) bits for any 0 < ǫ < 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Diego Arroyuelo and Gonzalo Navarro

(2) RevTrie: The Patricia tree of the reversed LZ78 phrases, defined as in Scheme
1, but now we add the array rids represented using [Munro et al. 2003], so as
to be able to compute rids−1 efficiently.

The resulting navigation scheme is shown in Fig. 7(a). We can simulate the miss-
ing arraysNode(i) ≡ selectnodelz(ids

−1(i)) andRNode(i) ≡ selectnoder(rids
−1(i)),

all in O(1/ǫ) time.
The space requirement is 2(1 + ǫ)d log d + 3d log σ + 2d log logn + 10d+ o(n) =

2(1+ ǫ)d log d+ o(n log σ) bits, which according to Lemma 2.7 is 2(1+ ǫ)nHk(T)+
o(n log σ) bits, for any k = o(logσ n).
Each occurrence of type 1 can be located in O(1/ǫ) time, because we must use

ids−1 to access to LZTrie; each candidate check for occurrences of type 2 requires
time O(1/ǫ) because we must use inverse permutations to move between tries;
and each candidate check for occurrences of type 3 requires O(1/ǫ) time, since we
need to use Node and RNode. Thus, the occ occurrences of P can be located in
O(1ǫ (m logn+ occ σm/2)) average time, for 0 < ǫ < 1.

Practical Issues. This scheme stores the phrase identifiers for both tries which, as
we have seen for the previous schemes, is very convenient for occurrences of type 2:
recall that when traversing the RevTrie subtree we have to get the phrase identifier
of each node in the subtree; if we do not store the RevTrie identifiers, we have to
access LZTrie to get them (as is the case of Schemes 1 and 2) and then we have
to access LZTrie again to perform the check. This is not the case for Scheme 3.
However, now we have paths including inverse permutations, which introduce an
extra time overhead in practice.
Notice also that this scheme is symmetric in the sense that the checks for occur-

rences of type 2 cost the same in any direction we choose.

4.3.2 Scheme 4. This scheme represents the following data:

(1) LZTrie: The Lempel-Ziv trie, defined just as in Scheme 3.

(2) RevTrie: The Patricia tree of the reversed LZ78 phrases, defined just as in
Scheme 1.

(3) R[1..d]: The mapping from RevTrie preorder positions to LZTrie preorder
positions, as defined in Scheme 2. This time R is implemented using the succinct
data structure for permutations of Munro et al. [2003], requiring (1+ǫ)d logd+
d+ o(d) bits to represent R and compute R−1 in O(1/ǫ) worst-case time.

In Fig. 7(b) we draw the navigation scheme. We can simulate the missing ar-
rays rids(i) ≡ ids[R[i]], RNode(i) ≡ selectnoder(R

−1(ids−1(i))), and Node(i) ≡
selectnodelz(ids

−1(i)), all of which take O(1/ǫ) time.
The space requirement is 2(1 + ǫ)d log d + 3d log σ + 2d log logn + 10d+ o(n) =

2(1+ ǫ)d log d+ o(n log σ) bits, which according to Lemma 2.7 is 2(1+ ǫ)nHk(T)+
o(n log σ) bits, for any k = o(logσ n). Just as for the previous scheme, the occ
occurrences of P can be located in O(1ǫ (m logn + occ σm/2)) average time, for
0 < ǫ < 1.

Practical Issues. This scheme has more efficient access between tries than Scheme
3, as we have to use R in the RevTrie-to-LZTrie direction, and R−1 in the opposite

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 25

LZTrie

node

LZTrie

preorder

RevTrie

node

RevTrie

preorder

phrase
identifier

preorderlzselectnodelz

ids
ids−1

preorderr selectnoder

rids
rids−1

1

(a) Scheme 3.

LZTrie

node

LZTrie

preorder

RevTrie

node

RevTrie

preorder

phrase
identifier

preorderlzselectnodelz

ids
ids−1

preorderr selectnoder

R

R−1

(b) Scheme 4.

Fig. 7. Reduced navigation schemes over LZ-index components, requiring 2(1+ ǫ)uHk +o(u log σ)
bits.

way. However, since we store the phrase identifiers only in LZTrie, retrieving the
identifier of a RevTrie node requires to access two arrays. For occurrences of type 2,
the checks from RevTrie to LZTrie require to access R, then ids, and finally ids−1,
while in the opposite way we need to use ids, then ids−1, and finally R−1. The latter
case can be more expensive since we have to compute two inverse permutations.
Note also that ids−1 is used in both directions for occurrences of type 2, which
means that this inverse permutation is the most used at search time. Hence, given
an amount of space we are able to use, we should use a denser sampling for ids−1

than for R−1.

Again, we have focused on the most promising schemes requiring 2(1+ǫ)nHk(T)+
o(n log σ) bits, although there are many other choices.

5. SOME IMPLEMENTATION DETAILS

We describe in this section the most important details in the implementation of our
indices. We followed the API interface specification provided in the Pizza&Chili

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Diego Arroyuelo and Gonzalo Navarro

Corpus [Ferragina and Navarro 2005], and made the source code available at http://
pizzachili.dcc.uchile.cl/indexes/LZ-index/.

5.1 Representing the Tries

We defined our indices in Section 4 in such a way that we can use almost any
suitable representation for the tries that compose the indices. We just need to define
accordingly the preorder and selectnode operations for the chosen representation.
Having this into account, we implement our reduced LZ-indices in two different
ways:

(1) Using the bp representation [Munro and Raman 2001] for both LZTrie and
RevTrie;

(2) using the dfuds representation [Benoit et al. 2005] for LZTrie, and the bp
representation for RevTrie.

Note we do not use dfuds for RevTrie, as it requires more space. Moreover, just as
for the original LZ-index, we do not store the symbols labeling the RevTrie edges
(i.e., the first symbol of each string labeling an edge) nor the Patricia-tree skips.
This is in order to save space in practice, since these can be computed by using
the connection with the LZTrie: previous experiments [Navarro 2004; 2009] showed
that this is sufficient for RevTrie as most navigations on it are supported by using
the LZTrie (and those that are not are usually deep in the trie, where the arity is
very low and the attractive of dfuds vanishes). We needed to use these arrays in
theory in order to guarantee the average-time complexity of our data structures.
We describe these implementations in which follows.

5.1.1 Using bp Representation. We implemented the trie operations on top of
the data structure for balanced parentheses of Navarro [2004, Section 6.1]. The
trie operations are supported as explained in Section 2.3. Recall that in order
to support the operations on bp we must support operations findclose, excess,
and enclose on the sequence of balanced parentheses. Therefore, we do not store
information to support findopen, thus saving space. Moreover, we do not need
to support operation parent on RevTrie, and thus we do not store information to
support enclose on the parentheses representing this trie.
Operation child(x, α) is supported by using child(x, i), for i = 1, 2, . . ., until

finding the child labeled α. This is because the symbols labeling the children of
x are scattered throughout array letts and must be found one by one using the
operations on the parentheses. Whenever we need to support rank and select
queries (this is, on top of the parenthesis sequences, to represent bitmap B in
RevTrie, and for the permutation data structures), we use the data structure of
González et al. [2005].

5.1.2 Using dfuds Representation. The main idea of using the dfuds represen-
tation for LZTrie is to reduce the time overhead for computing operation child(x, α)
incurred by bp.
As done for bp, we represent the dfuds sequence of LZTrie on top of the data

structure for balanced parentheses of Navarro [2004]. Note that the dfuds rep-
resentation of a trie tends to have far matching parentheses, since every node is
formed by a number of opening parentheses (indicating the degree of the node),

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: (((() ((((()) ())) ((()))) ()) () ()) () ())
letts: l a r l b $ r l d a p a b a p

1

Fig. 8. Illustration of our practical representation of array letts for the dfuds representation.
Notice that the labels of the children of a given node are stored in reverse order.

and only a few of these parentheses have the corresponding closing parentheses
close enough so as not to be stored in the hash tables. Thus the hash tables tend
to require more space under dfuds. We also use the data structure of González
et al. [2005] to support rank and select queries.
We study the way in which the trie operations are used by the LZ-index search

algorithm in order to make this representation more efficient. For example, dfuds
introduces a heavier use of rank and select in its operations (see Section 2.4),
according to the original definitions [Benoit et al. 2005]. However, many of these are
redundant in the LZ-index (sometimes they are repeated twice in a given sequence
of operations, as we will see below), and many others can be replaced by sequential
scans over par, since the dfuds position we are looking for should be not so far
away from the current position. A list with the most important implementation
details follows:

Supporting Operation findopen. Unlike the representation of LZ-index based
exclusively in bp, with dfuds we need to provide operation findopen over the
parentheses sequence. This is necessary, for example, to compute operation parent
[Benoit et al. 2005] (recall also Section 2.4). Therefore, we need to add a second
data structure, like the one used by Navarro [2004] (i.e., a hash table) to support
findopen and enclose operations. This adds extra space to dfuds.

A Practical Representation of letts. Recall from Section 2.4 that the symbol
by which a node x descends from its parent can be computed as letts[rank((par,
parent(x))− 1+ childrank(x)− 1], which involves computing several rank, select,
and parentheses operations. Although these can be computed in constant time in
theory, we look for a more practical variant in practice.
This problem comes from the fact that there is an inverse relationship between

the symbol labeling the i-th child of node x′ of degree s (this symbol is originally
stored at position i within the labels of children of x′) and the opening parenthesis
used to compute the dfuds position of the i-th child of x′ (recall that we use the
(s− i+ 1)-th opening parenthesis within the representation of x′).
Therefore, we propose to represent letts by traversing the LZTrie in preorder and,

for every node x reached, writing contiguously the symbols labeling the children of
x, this time in reverse order. This means that the label of the last child appears in
the first place, the label of the first child appears in the last place, and so on. See
Fig. 8 for an illustration.
In this way there is a direct relationship between each of the opening parentheses

defining a given node x′ (which are used to find the children of x′) and the labels
of the children of x′. Thus, the label by which a given node x descends from its
parent can be computed as letts[rank((par, findopen(par, x−1))], avoiding the use
of operation childrank(x) as in Section 2.3, which involves more rank and select

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Diego Arroyuelo and Gonzalo Navarro

operations [Jansson et al. 2007].
Moreover, in many cases we can reuse the operation findopen computed to get

the symbol. For example, in the LZ-index, most of the times that we need to know
the symbol of a given node, we also need to go to the parent node, as for instance
when computing extract and display operations, and when we use the LZTrie
to descend in RevTrie. Then, after computing the corresponding symbol, we retain
the position given by operation findopen in order to search for the parent of the
current node, avoiding to repeat the same operation findopen when computing
operation parent.
Since the labels of the children of node x are stored contiguously and sorted

(yet in reversed order, according to our representation), array letts is stored in a
plain way, without using any rank and select data structure, thus saving space.
Operation child(x, α) is implemented by binary searching the list of labels of x.
When the list is small (say, less than 10 elements) we perform a sequential scan
on the symbols. This saves time compared with the bp representation, where we
have to repeatedly use operation findclose on the parentheses in order to find the
child we are looking for. With dfuds, on the other hand, this work is done on the
symbols, and then we map again to the dfuds sequence to find the corresponding
child (this involves only one findclose operation).

Avoiding Operation depth on dfuds. The original dfuds representation [Benoit
et al. 2005] does not provide operation depth, which is latter supported by Jansson
et al. [2007] in O(1) time and requiring o(d) extra bits of space. However, in the
LZ-index we need to use depth in a very limited way, which helps us implement
this operation simply and efficiently. We choose not to store any extra depth
information, an thus we save space. The depth of a node could be computed by
brute force, by successively going to the parent in LZTrie up to reaching the trie
root. Therefore, we seek to avoid the computation of depth in the LZ-index search
algorithm.
In the LZ-index search algorithm, we only need to use operation depth when

locating occurrences of type 1 (see Section 3.3.1). Recall that in order to find
occurrences of type 1 we must first search for P r in RevTrie, getting node vr.
Then, for each node in the subtree of vr we map to the corresponding node vlz
in LZTrie, and then we traverse the subtree of vlz to report occurrences of type
1. The problem here is how to compute the offset of every occurrence within the
corresponding phrase (in Section 3.3.1 we use operation depth to do that). However,
note that the offset for node vlz is m, since the phrase ends with P . Note also that
the offset for the children of vlz is m+1, and in general the offset of node v′lz within
the subtree of vlz is m+ r, where r is the difference of depths between vlz and v′lz .
So, instead of computing the depth of the nodes within the subtree of vlz , which is

expensive in our representation, we compute the offset of the nodes. This problem
can be solved in a straightforward way in bp, since we perform a preorder traversal
from vlz , with initial offset m. We then increment the offset every time we enter
a new subtree (which is indicated by ‘(’ in bp), and decrement it when leaving a
subtree (which is marked by ‘)’ in bp). The preorder traversal is carried out by
sequentially traversing the bp sequence and array ids, and not by using operation
child on LZTrie. However, this is not so easy in dfuds, since, for example, there

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 29

is no clear marker of the end of a subtree (i.e., in a sequential scan on dfuds there
is no direct way to know whether a node is the last one in a given subtree).
Therefore, in the dfuds representation we start a preorder traversal from node

vlz , and store the degree (number of children) of vlz and its offset m in an initially
empty stack. We then continue with the next node in preorder. At every step, the
offset for the current node is computed as the offset of the parent node (which is
the one at the top of the stack) plus one. Every time the degree stored in the top
is (or becomes) 0 (leaves are a particular case), we pop it, and then decrement the
degree of the node in the top, indicating that a new child of this node has been
fully processed (this can eventually produce more pops when all of the children of
the top node have been processed). As it can be seen, we are using the stack to
know when the subtree of a node has been completely processed. This procedure
ends when the stack becomes empty.
As in the case of bp, the preorder traversal is performed by a sequential scan on

the dfuds sequence, and the degree of every node x is computed by counting the
number of opening parentheses in the representation of x.
This procedure could be also used to compute the depth of all nodes within the

subtree of vlz , by initializing the stack with the depth of vlz , instead of storing the
initial offset m. Note also we do not need to explicitly store depths or offsets, as
they correspond to the stack height plus a constant.

Implementation of Operation degree. In our implementation we do not use the
original definition for operation degree, which is based on operation select in order
to find the next closing parenthesis which finishes the definition of the node. This
allows us to count the number of opening parentheses defining the current node. In
practice, in most cases this closing parenthesis is not so far away from the current
position in dfuds, except perhaps for the trie root. This is because in practice the
tries tend to have high degrees only in the first levels. Thus, we explicitly store the
degree of the root node, and for the rest of the nodes we perform a sequential scan
on the dfuds sequence. To avoid looking at every parenthesis in the process, we
advance by machine words (in our experiments this shall mean 32 bits), until finding
the first word containing a closing parenthesis. We represent opening parentheses
with a 0, and closing ones with a 1. Thus, we advance while the corresponding
word represents a 0, i.e. it stores only opening parentheses. However, in the case of
very large alphabets the original definition of degree could be better, or we could
replace the sequential search by an exponential search using the rank subdirectory.

5.2 Computing Text Positions

We add to our indices a data structure in order to transform pattern occurrences
in the format Dt, offsetT into real text positions. We define array TPos storing
the absolute starting position (in the text) for the LZ78 phrases with identifier
i · b, for i > 0, for a total of d

b logn bits. We also define array Offset, storing
in Offset[i · b + j], for j > 0, the offset (in number of text symbols) of phrase
i · b + j with respect to phrase i · b, requiring d logM extra bits of space, where
M is the maximum number of text positions between two consecutive sampled
phrases. If LZTrie has height h = O(log d) (which is true in practice with high
probability [Knessl and Szpankowski 2000]), then M = O(b log d), and thus array

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Diego Arroyuelo and Gonzalo Navarro

Offset requires O(d(log b + log log d)) bits. By choosing b = logn the total space
requirement for both arrays is d+O(d log logn) = o(n log σ) bits.
Given an occurrence Dt, offsetT, the real text position for that occurrence can

be computed in constant time as TPos[⌊(t+1)/b⌋]+Offset[t+1]− offset. In our
experiments, we choose b = 32 (in a 32-bit machine) such that the division by b and
taking the floor can be carried out efficiently by using shifts on machine words. For
extract queries, we are given a text position from where to extract and we want to
know the corresponding LZTrie node from where to start uncompressing the text.
Therefore, given a text position pos we can obtain the phrase containing pos by
first binary searching TPos, finding the greatest phrase i · b such that its position
TPos[i] is smaller or equal to pos. Then, we sequentially look in the corresponding
segment of Offset[i · b..(i+ 1) · b] for the greatest phrase t whose starting position
does not exceed pos. Thus, the text position pos belongs to phrase t. The time for
this operation is O(log n), because of the binary search on TPos and the sequential
search in the segment of Offset.
In Section 6.2 we will show the experimental space requirement of this data

structure for a set of real-life texts we have used.

5.3 Supporting Partial locate Queries

In many applications it is quite common that we do not need to find all of the pat-
tern occurrences, but just a few (arbitrary) of them. For this kind of applications,
we design an algorithm to answer partial locate queries, where we are interested in
locating just K arbitrary pattern occurrences. Our algorithm, which profits from
the properties of the LZ-index in order to support fast searches, is as follows:

(1) Given a search pattern P , notice that a particular occurrence of it can be found
by searching for P in LZTrie. In other words, P equals an LZ78 phrase, which is
a particular case of occurrence of type 1, and can be found very fast in practice
since this is better than using the slower RevTrie [Navarro 2009]. If P exists
as a phrase, say corresponding to node vlz in LZTrie, then all of the nodes
descending from vlz in the trie also correspond to occurrences of P , and can be
used to answer the query. Thus, we traverse the subtree of vlz and report every
node found, as done for occurrences of type 1 (see Section 3.3.1). We stop the
procedure as soon as we find K pattern occurrences.

(2) If the previous step was not enough to answer the query, and in case that P
exists in LZTrie, then we map to the node corresponding to P r in RevTrie
(which exist for sure since P is an LZ78 phrase), and go on to locate the rest
of occurrences of type 1 as usual. Otherwise, we delay occurrences of type 1
for a further step and go to the next step.

(3) In case P does not exist as an LZ78 phrase, we proceed with occurrences of
type 2, trying to reuse as much as possible the work already done in step (1).
We are thus delaying occurrences of type 1 for a further step. Let P [1..i] be
the longest proper prefix of the pattern that exists as an LZ78 phrase. Hence,
P r[1..i] exists as a reverse phrase in RevTrie. Because of Property 2.3, every
prefix of P [1..i] also exists as a phrase in LZ78 (and the corresponding reverses
exist in RevTrie). Then, to reuse the work already done when searching for P
in LZTrie, we map to the RevTrie node corresponding to P r[1..i], which gives

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 31

us node vr, and then search for P [i + 1..m] in LZTrie, to get node vlz . We
then search for occurrences of type 2 corresponding to the partition P [1..i] and
P [i+ 1..m], using the nodes vlz and vr, in the usual way and stopping as soon
as we find K occurrences. Note that by choosing the longest prefix P [1..i] that
exists in LZTrie, we are reducing as much as possible the length of the suffix
P [i + 1..m] to be searched in LZTrie. If this was not enough to answer the
query, we repeat the process for the occurrences of P [1..i− 1] and P [i..m], in a
similar way, and so on.

(4) We search for the remaining occurrences of type 2 (i.e., using those partitions
of the pattern that were not tried in the previous step)

(5) Then, we continue with occurrences of type 1, as usual and just if P does not
exist in LZTrie (i.e., these were not tried before).

(6) Finally we try occurrences of type 3.

We call level 0 of the search to the step of searching for P in LZTrie, level 1
the search for occurrences of type 1 (either at steps (2) and (5)), level 2 the search
for occurrences of type 2 (either at steps (3) and (4)), and level 3 the search for
occurrences of type 3 (step (6)). As it can be seen, we try to get fast access to
the pattern occurrences, avoiding as much as we can the trie navigations, which
become more expensive if we want to locate just a few occurrences. We shall use
this approach also to support efficient exists queries (similar to K = 1).

6. EXPERIMENTAL RESULTS

We have now a number of practical reduced schemes for LZ-index, each one requir-
ing a different amount of space. Hence given an amount of available storage, it
is interesting to know which alternative is the best for that space. We hope that
alternatives with more space are faster in practice, whereas the ones with less space
will still be competitive against the best existing indices.

6.1 Experimental Setup

For the experiments of this section we used an Intel(R) Pentium(R) 4 processor at
3 GHz, about 4 gigabytes of main memory and 1024 kilobytes of cache, running
version 2.6.13-gentoo of Linux kernel. We compiled our algorithms with gcc

3.3.6 using full optimization.

6.1.1 Text Collections. We test our indices in different practical scenarios, using
the texts provided in the Pizza&Chili Corpus [Ferragina and Navarro 2005]:

—English Texts: although in many cases natural-language texts are searched for
whole words or phrases, there are many other cases where a more powerful full-
text search is needed. For the experiments with English text we use the file
http://pizzachili.dcc.uchile.cl/texts/nlang/english.200MB.gz of 200
megabytes.

—DNA Sequences: nowadays, one of the main applications of full-text indexing is
that of computational biology, in particular indexing DNA sequences. We test
with the file http://pizzachili.dcc.uchile.cl/texts/dna/dna.200MB.gz, of
200 megabytes.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Diego Arroyuelo and Gonzalo Navarro

—MIDI Pitch Sequences: a very interesting application that has appeared in recent
years is that of processing MIDI pitch sequences. In this case we test with the
file of about 53 megabytes downloadable from http://pizzachili.dcc.uchile.

cl/texts/music/pitches.gz.

—XML Texts: since XML is becoming the standard to represent semi-structured
text databases as well as in many other applications, there exists the need of
managing a huge amount of texts of this kind. We test with the XML file of
200 megabytes downloadable from http://pizzachili.dcc.uchile.cl/texts/

xml/dblp.xml.200MB.gz.

—Proteins: another interesting application of text-indexing tools in biology is that
of indexing and searching proteins. We use the file http://pizzachili.dcc.

uchile.cl/texts/protein/proteins.200MB.gz, of 200 megabytes.

—Source Code: to test our indices in applications like software development, we use
the source-code file http://pizzachili.dcc.uchile.cl/texts/code/sources.
200MB.gz, of 200 megabytes.

6.1.2 Comparison against Other Indices. We compare our indices against the
most efficient indices we are aware of, most of them available in Pizza&Chili :

Sadakane’s Compressed Suffix Array (CSA). This index [Sadakane 2003] is a
representative of the family of compressed suffix arrays [Grossi and Vitter 2005;
Grossi et al. 2003; Sadakane 2003]. In practice it requires nH0(T) +O(n log log σ)
bits of space, a counting time of O(m logn), a locating time of O(log1+ǫ n) per
occurrence reported, and an extracting time O(ℓ+ log1+ǫ n) for any text substring
of length ℓ, where 0 < ǫ 6 1 is a constant parameter. We use the code provided at
http://pizzachili.dcc.uchile.cl/indexes/Compressed Suffix Array/sada

csa.tgz. We have two parameters to set up for this index. The first one is the sam-
ple rate of suffix array positions (this information is used to speed up the locating
and extracting operations), and the second one is the sample rate of the Ψ function.
For exists and count queries we do not store any suffix array position, but only
Ψ values. For locate queries, we used values of 4, 8, 16, 32, and 64 for suffix array
positions, and the value 128 to sample the Ψ function (as this has shown to be the
most efficient alternative [Ferragina et al. 2009]).

Alphabet Friendly FM-index (AF-FMI). This index [Ferragina et al. 2007] is
based on the backward-search concept [Ferragina and Manzini 2005]. It has a space
requirement of nHk(T)+ o(n logσ) bits, a practical counting time O(m log σ), a lo-
cating time O(log1+ǫ n) per occurrence reported, and an extracting time O(ℓ log σ+
log1+ǫ n), for any constant ǫ > 0, and any k 6 α logσ n, where 0 < α < 1 is
any constant. We use the code provided at http://pizzachili.dcc.uchile.cl/
indexes/Alphabet-Friendly FM-Index/af-index v2.tgz. We have only one pa-
rameter to set up in the code, which is the sample rate of suffix array positions. We
have used sample rates of one suffix array position stored out of 4, 8, 16, 32, and
64 text positions. For exists and count queries we do not store any suffix array
position.

Succinct Suffix Array (SSA). This index [Mäkinen and Navarro 2005] is also
based on backward search, but uses only one wavelet tree [Grossi et al. 2003],

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 33

achieving nH0(T)+o(n log σ) bits of space. The time complexities of this index are
just as for the AF-FMI. We use the code provided at http://pizzachili.dcc.

uchile.cl/indexes/Succinct Suffix Array/SSA v2.tgz. We use the same pa-
rameters as for the AF-FMI.

Inverted LZ-index (ILZI). This index [Russo and Oliveira 2008] is based on
Lempel-Ziv compression, using a variant of the LZ78 parsing called maximal pars-
ing, which has many interesting properties. The ILZI requires at most (5+ǫ)nHk(T)
+ o(n log σ) bits of space, and has a locating complexity of O((m+ occ) log n). We
use the implementation by Luis Russo, which does not conform the Pizza&Chili
API as the other indices. In particular, pattern occurrences are reported in the
format Dt, offsetT, just like for the original LZ-index. The index does not include
the data structure to transform those occurrences into real text positions, as our
implementations do. To be fair, we sum the space of the described data structure
for text positions to the space of this index. We also sum the average time to
transform occurrences into real text positions for locate queries. According to our
experiments, this is 1.3 microseconds per occurrence. As an additional consequence,
this index does not provide extract queries, but only display queries. So, we are
not able to extract arbitrary text substrings.
It is important to note also that the current implementation of the ILZI does

not return to the invoking application an array with the pattern occurrences, as
required by the Pizza&Chili API. This implementation just prints the number of
phrases containing the starting position of the occurrences. We get rid of the print
operation in the code, and thus there is no any reporting operation (we just find
the occurrences). In particular, we are not accounting for the overhead of managing
the occurrence array, which grows dynamically as more occurrences are found.
Russo and Oliveira [2008] define a practical variant of LZ78 parsing, the so-called

LZ78 maximal parsing with quorum l. The idea is that for every phrase Bi = Bj · c,
Bj is the longest prefix of the rest of the text that appears at least l + 1 times in
B0 . . . Bi−1. Note that by using l = 0 we get the original LZ78 parsing. In this
way, by using larger quorum values we can reduce the number of phrases in the
LZ78 maximal parsing, hence reducing the number of nodes in the trie representing
those phrases, and thus reducing the space of the index. We use quorum values
l = 0, 1, 2, 4, 8, and 16 to get different space/time trade-offs, though this is not
actually a trade-off parameter, but an optimization parameter, as we shall see in
our experiments. Smaller values of l do not yielded a significant reduction in the
space requirement.

6.2 Comparison of Space Requirement and Construction Time

In Table III we show the construction time and final space requirement for the
indices we have tested. For the permutation data structures used in Schemes 3
and 4, we use 1/ǫ = 1, 2, 3, 4, 5, 10, and 15. As it can be seen, we have reduced
the space of the original LZ-index, and in the case of Schemes 3 and 4 we offer a
space/time trade-off. Note that the maximum space requirement of Scheme 3 (and
also Scheme 4) is about the same as that of the original LZ-index, and that the
minimum space requirement we achieve is in all cases around 66% the space of the
original LZ-index. In many cases, such as for XML documents and DNA data, we

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Diego Arroyuelo and Gonzalo Navarro

are able to provide indexing capabilities with a representation that is smaller than
the original text.
In Table IV we show the breakdown of the space requirement of the data struc-

tures that form the LZ-index and their associated o(·) terms. Components ids and
rids make up the 2(1+ ǫ)nHk term of the space complexity, for ǫ going from 0 to 1.
The other components correspond to the o(n log σ) term, which in practice adds up
to 25%–40% of the total space. This shows, once more, that those asymptotically
vanishing terms are important in practice.
We also conclude that our indices are much faster to build than competing

schemes. As a comparison between LZ-based schemes, the construction time of
the ILZI (which is in most cases the slowest index to build) ranges from about 3
times slower than our schemes (in the case of DNA text), to about 9 times slower
(in the case of English text). One reason for this is that our indices are constructed
by performing only one pass over the text, while the ILZI needs two passes [Russo
and Oliveira 2008]. Recall that the ILZI does not construct any text-position data
structure, which would further increase its construction time.
It can be argued that construction time is not so important in indexed text

searching, where one constructs the index once and queries it several times, so
construction time is amortized over a number of queries. However, in the cases in
which we deal with large texts (because we would use a classical index otherwise),
construction time is not irrelevant.

6.3 Comparison of Search Time

Next we experimentally test whether the trade-offs we provide are competitive for
compressed text searching. In our experiments, we call S2 dfuds the version of
Scheme 2 implemented on dfuds, and S3 dfuds the dfuds version of Scheme 3.
We do not include Scheme 1 based on dfuds, since it is outperformed by S2 dfuds,
both of them requiring about the same space. We no dot include Scheme 4 in our
plots, since Scheme 3 outperforms it in most cases (though they require almost the
same space). However, Scheme 4 is interesting by itself since it can be reduced to
(1+ ǫ)uHk(T)+ o(u log σ) bits of space [Arroyuelo et al. 2006; 2010], which cannot
be achieved by other schemes.

6.3.1 Extract Queries. We extract 10,000 random snippets, each of length 100.
We measure the time per symbol extracted, so we average over a total of 1 million
extracted symbols.
In Fig. 9 we show the experimental results. In most cases we are able to extract

about 1 to 2 million symbols per second, being about twice as fast as the most
competitive alternatives. In the particular case of DNA text, the SSA excels, since
it extracts each symbol in time O(log σ). However, we outperform the SSA as soon
as we are able to maintain Scheme 1 in main memory (which in the case of DNA
requires about 1.03 times the space of the uncompressed text).
This shows the superiority of our LZ-indices in this important aspect. Also, we

can see that our approach to reduce the space of the LZ-index is effective in this
case, since we are able to reduce the space while still maintaining a good extracting
performance.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 35

Table III. Space requirement and construction time for the different indices we have tested. The
space is shown as a fraction of text size. Indexing time is shown in megabytes per second.

Text Index Space requirement Indexing speed
(fract. of text size) (MB per second)

English CSA 0.43 – 1.50 0.45 – 0.44
SSA 0.87 – 2.87 0.93 – 0.90
AF-FMI 0.65 – 2.65 0.26
ILZI 1.23 0.15
Original LZ-index 1.69 1.47
Scheme 1 1.39 1.30
Scheme 2 1.38 1.27
Scheme 3 1.13 – 1.69 0.91 – 1.33
Scheme 4 1.13 – 1.69 0.71 – 1.31

DNA CSA 0.46 – 1.53 0.51
SSA 0.50 – 2.50 1.33 – 1.28
AF-FMI 0.48 – 2.48 0.43
ILZI 0.95 0.66
Original LZ-index 1.24 2.35
Scheme 1 1.03 2.02
Scheme 2 1.01 1.99
Scheme 3 0.83 – 1.24 1.36 – 2.12
Scheme 4 0.83 – 1.24 1.03 – 2.06

MIDI Pitches CSA 0.62 – 1.68 0.94 – 0.92
SSA 1.04 – 3.04 1.80 – 1.71
AF-FMI 0.93 – 2.94 0.36
ILZI 1.86 0.24
Original LZ-index 2.58 1.76
Scheme 1 2.16 1.49
Scheme 2 2.12 1.47
Scheme 3 1.76 – 2.58 0.88 – 1.58
Scheme 4 1.76 – 2.58 0.62 – 1.56

XML CSA 0.29 – 1.35 0.68
SSA 0.98 – 2.98 1.34 – 1.29
AF-FMI 0.54 – 2.54 0.44 – 0.43
ILZI 0.61 0.34
Original LZ-index 0.93 2.38
Scheme 1 0.77 2.15
Scheme 2 0.76 2.15
Scheme 3 0.63 – 0.93 1.57 – 2.23
Scheme 4 0.63 – 0.93 1.24 – 2.17

Proteins CSA 0.67 – 1.73 0.57 – 0.56
SSA 0.82 – 2.82 0.97 – 0.95
AF-FMI 0.82 – 2.82 0.38 – 0.37
ILZI 1.73 0.24
Original LZ-index 2.40 1.55
Scheme 1 1.99 1.29
Scheme 2 1.96 1.25
Scheme 3 1.62 – 2.40 0.79 – 1.35
Scheme 4 1.62 – 2.40 0.58 – 1.30

Sources CSA 0.38 – 1.44 0.76 – 0.75
SSA 1.01 – 3.01 1.37 – 1.32
AF-FMI 0.73 – 2.73 0.30
ILZI 1.15 0.17
Original LZ-index 1.67 1.73
Scheme 1 1.39 1.54
Scheme 2 1.37 1.51
Scheme 3 1.13 – 1.67 1.04 – 1.59
Scheme 4 1.13 – 1.67 0.79 – 1.54

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Diego Arroyuelo and Gonzalo Navarro

Table IV. Space overhead introduced by the different data structures that form our Scheme 4, in
bits per symbol.

Text Data structure Total space Space overhead (o(·) term)

English par 0.107 0.081
letts 0.102 –
ids 0.358–0.638 0.005
rpar 0.049 0.023
B 0.018 0.005
rids 0.358–0.638 0.005
TPos 0.140 –

DNA par 0.067 0.048
letts 0.078 –
ids 0.263–0.468 0.004
rpar 0.041 0.021
B 0.014 0.004
rids 0.263–0.468 0.004
TPos 0.110 –

MIDI Pitches par 0.190 0.158
letts 0.160 –
ids 0.512–0.909 0.007
rpar 0.069 0.028
B 0.028 0.007
rids 0.512–0.909 0.007
TPos 0.270 –

XML par 0.062 0.047
letts 0.056 –
ids 0.189–0.337 0.003
rpar 0.046 0.031
B 0.010 0.003
rids 0.189–0.337 0.003
TPos 0.090 –

Proteins par 0.171 0.135

letts 0.143 –
ids 0.503–0.896 0.007
rpar 0.063 0.027
B 0.025 0.007
rids 0.503–0.896 0.007
TPos 0.220 –

Sources par 0.126 0.101
letts 0.098 –
ids 0.344–0.613 0.005
rpar 0.048 0.023
B 0.017 0.005
rids 0.344–0.613 0.005
TPos 0.160 –

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5

E
xt

ra
ct

in
g

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Extract English text

Scheme 1
Scheme 2
Scheme 3

DFUDS S2
DFUDS S3

AF-FMI
SSA

SAD-CSA
LZ-index

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

E
xt

ra
ct

in
g

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Extract DNA text

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

E
xt

ra
ct

in
g

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Extract MIDI Pitches

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5

E
xt

ra
ct

in
g

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Extract XML text

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

E
xt

ra
ct

in
g

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Extract Proteins

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5

E
xt

ra
ct

in
g

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Extract Source Code

Fig. 9. Experimental extracting time, for random snippets of length ℓ = 100. Times are measured
in microseconds per symbol extracted. Missing values are outside the plot range.

6.3.2 Display Queries. We search for 5 million pattern occurrences and then
show a context of 50 symbols surrounding every occurrence, for patterns of length
10 (in other words, we display 110 symbols per occurrence).
In most indices, display(P, ℓ) queries can be thought of as a locate(P) query (in

order to find the pattern occurrences) followed by an extract(i, j) query (where
i and j are computed by means of the positions obtained with locate and the
context length ℓ). In our LZ-indices, however, we originally get the occurrences in
the format Dt, offsetT, to finally transform t and offset into a text position (by
means of the data structure described in Section 5.2). This text position must be
transformed by extract again into an LZ78 phrase (recall that this involves binary
searching the text-position data structures), from where we start the extraction of
text in LZTrie. To avoid repeating this work, we do not transform the occurrences

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Diego Arroyuelo and Gonzalo Navarro

into text positions when performing display queries. We rather display text with
a simplified version of extract that works on LZ78 phrases rather than on text
positions.
In Fig. 10 we show the experimental results. The current implementation of the

ILZI shows only a context preceding the pattern occurrences, and not surrounding
the occurrences as other schemes do. For our LZ-indices, showing a context sur-
rounding the occurrences (which is usually required) introduces the use of extra
operations which are not needed when showing a context preceding an occurrence.
As it can be seen, just like for extract queries, our indices are among the most
competitive schemes for displaying text, in many cases outperforming the ILZI.

6.3.3 Locate Queries. We search for 10,000 patterns extracted at random posi-
tions from the text, with length 5, 10, and 15. For short patterns, we limit the total
number of occurrences found to 5 million. We measure the time in microseconds
per occurrence found.

Partial locate Queries. This is a challenging problem for our LZ-indices since,
for example, the indices based on suffix arrays are very efficient to find the suffix-
array interval containing the occurrences, and hence they are rapidly ready to start
locating the occurrences. The ILZI has also a very fast O(m) trie navigation before
starting the locating procedure.
We test here our algorithm defined in Section 5.3 (recall that we divide the search

process into four levels, level 0 up to 3). In Table V we show the percentage of
occurrences that are found in each level of search, for K = 1 and for the different
text collections. Notice that the search of level 0 (i.e., searching for P as a whole
phrase in LZTrie) is very effective for patterns of length 5 to 10 (in the case of DNA,
for example, almost 100% of the queries can be answered at level 0). Notice also that
the percentage found at level 1 is relatively small compared to the corresponding
percentage of level 0. Recall that with the search of level 0 we look for a particular
case of occurrences of type 1. This means that most of the times a pattern exists
as an occurrence of type 1, this can be found at level 0 of the search. For longer
patterns, m = 15, there is a smaller probability of finding the occurrence contained
in a single phrase, and thus the percentage found at level 0 is smaller.
In Figs. 11 up to 14 we show the experimental result for values K = 1 and 5, and

for m = 5 and 10. We do not show the results for m = 15 since they are poorer, as
predicted by the results of Table V.

For m = 5 and K = 1, the most interesting results are obtained in the cases of
English text, DNA, XML, and proteins, though in the latter case our indices do
not obtain good compression. For DNA, S3 dfuds is unbeatable since, as we have
seen in Table V, 100% of the occurrences are found at level 0 of the search. Notice
that for MIDI pitches our performance is not so competitive (except perhaps for
S2 dfuds), as it was also predicted by Table V: only 73% of the occurrences are
found at level 0, and thus we need more trie navigations.
Except for MIDI pitches, in all other cases the best alternatives are the indices

based on Lempel-Ziv compression: ours and the ILZI (the best in each case depends
on the space usage, as it can be seen). This shows that Lempel-Ziv-based indexing is
a very competitive choice in general, despite that suffix-array-based indices basically

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 39

0

0.5

1.0

1.5

2.0

0 0.5 1 1.5 2 2.5

D
is

pl
ay

 ti
m

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Display English text

Scheme 1
Scheme 2
Scheme 3

S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA

LZ-index
ILZI

0

0.5

1.0

1.5

2.0

2.5

0 0.5 1 1.5 2 2.5

D
is

pl
ay

 ti
m

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Display DNA text

0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5

D
is

pl
ay

 ti
m

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Display MIDI Pitches

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5

D
is

pl
ay

 ti
m

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Display XML text

0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5

D
is

pl
ay

 ti
m

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Display Proteins

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2 2.5

D
is

pl
ay

 ti
m

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Display Source Code

Fig. 10. Experimental display time, for snippets of length ℓ = 110 around every pattern occurrence.
Times are measured in microseconds per symbol extracted.

compute the suffix-array interval containing the occurrences, and then ask the index
to obtain just one of these occurrences. As we shall see later with count queries,
these indices are very efficient to find the suffix-array interval; however, asking them
to obtain just one occurrence makes them significantly less competitive.
Notice also that our indices based on dfuds outperform (in most cases by far)

our indices based on bp. This is because the fast navigation on the tries becomes a
fundamental aspect, since we are reporting just a few occurrences. For this reason,
and in order to make our plots clearer, we do not show the results for Scheme 1,
Scheme 2, and the original LZ-index.
As we increase the number of occurrences to locate, in principle the trie navi-

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Diego Arroyuelo and Gonzalo Navarro

Table V. Percentage of patterns found at each level of search, for partial locate queries with
K = 1 and for different pattern lengths. Level 0: P is found as an LZ78 phrase in LZTrie; Level
1: P is found as occurrence of type 1, but not as a whole phrase; Level 2: P is found as occurrence
of type 2; Level 3: P is found as occurrence of type 3.

Text Level Percentage per level

m = 5 m = 10 m = 15

English 0 98.64 55.86 7.80
1 0.54 6.27 1.83
2 0.82 34.97 63.14
3 0.0 2.90 27.23

DNA 0 100.0 99.26 11.63
1 0.0 0.33 1.06
2 0.0 0.41 78.74
3 0.0 0.0 8.57

MIDI Pitches 0 72.28 20.01 9.69
1 3.69 2.10 1.38
2 23.82 42.66 19.67
3 0.21 35.23 69.26

XML 0 95.41 65.61 37.56
1 2.59 11.53 15.53
2 1.99 19.55 32.13
3 0.01 3.31 14.78

Proteins 0 98.96 13.29 8.51
1 0.71 1.41 1.29
2 0.33 63.87 11.23
3 0.0 21.43 78.97

Sources 0 94.31 48.40 21.41
1 2.73 9.34 6.01
2 2.94 37.15 44.11
3 0.02 5.11 28.47

gations are amortized by reporting more occurrences. However, our indices may
need to go on more levels of the search, which means more navigations on the
tries. Therefore, the total cost depends on the number of occurrences found in each
search level. In general, as K grows, it becomes more difficult to compete since
occurrences at higher levels are more expensive to obtain. Yet, we still provide
some interesting cases for K = 5 and K = 10 (the latter case is not shown; results
are close to those for K = 5).
The trie traversals also raise when we increase the pattern length, as it can be

seen for m = 10.
Thus, we conclude that our technique for solving partial locate queries of Section

5.3 is relevant, and more efficient when the probability of finding the occurrences
at level 0 of the search is high, as for example when we search for short patterns,
the alphabet is small, or we look for very few occurrences (e.g., K = 1).

Full locate Queries. We test here locate queries without limiting the number
of occurrences. In Fig. 15 we show the experimental results for patterns of length
m = 5. As we can see, there is no clear winner in all cases, but the performance

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 41

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate English text, m=5, K=1

Scheme 3
S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA
ILZI

0

5

10

15

20

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate DNA text, m=5, K=1

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate MIDI Pitches, m=5, K=1

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate XML text, m=5, K=1

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Proteins, m=5, K=1

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Source Code, m=5, K=1

Fig. 11. Experimental time for partial locate queries, for patterns of length m = 5 and retrieving
just K = 1 occurrence. We measure the time in microseconds per occurrence reported.

depends on the available space. However, we can see some clear performance pat-
terns: in most cases our schemes outperform all competing schemes (including the
very competitive ILZI) as soon as we have space available to store, at least, Scheme
2. When we reduce the space usage of the index, however, the ILZI outperforms
Scheme 3, yet the latter is still competitive (in most cases outperforming the com-
petitive CSA). In general, for locate queries with short patterns the superiority of
Lempel-Ziv-based indices is clear.
Notice also that, in most cases, Scheme 2 outperforms Scheme 1, both requiring

about the same space. This means that the shorter average path length of Scheme
2 is better than having direct access from RevTrie to LZTrie nodes as in Scheme

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Diego Arroyuelo and Gonzalo Navarro

0

5

10

15

20

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate English text, m=5, K=5

Scheme 3
S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA
ILZI

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate DNA text, m=5, K=5

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate MIDI Pitches, m=5, K=5

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate XML text, m=5, K=5

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Proteins, m=5, K=5

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Source Code, m=5, K=5

Fig. 12. Experimental time for partial locate queries, for patterns of length m = 5 and retrieving
just K = 5 occurrences. We measure the time in microseconds per occurrence reported.

1, which is good only for occurrences of type 1. As we said before, occurrences of
type 2 are more costly in Scheme 1. It is also important to note that the dfuds
versions of LZ-index have a performance which is similar to the LZ-index based on
bp. Notice, however, that dfuds requires more space than bp, as it was predicted
in Section 5.1.2.
In the particular case of XML text, we can see a very important aspect that

distinguishes LZ-indices from indices based on suffix arrays. The latter need to
store extra non-compressible information (the sampled suffix array positions) to
efficiently carry out locate and extract queries. The extra data stored by LZ-
indices, on the other hand, is largely compressible, for example the size of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 43

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate English text, m=10, K=1

Scheme 3
S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA
ILZI

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate DNA text, m=10, K=1

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate MIDI Pitches, m=10, K=1

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate XML text, m=10, K=1

0

50

100

150

200

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Proteins, m=10, K=1

0

50

100

150

200

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Source Code, m=10, K=1

Fig. 13. Experimental time for partial locate queries, for patterns of length m = 10 and retrieving
just K = 1 occurrence. We measure the time in microseconds per occurrence reported.

arrays for which we sample the inverse-permutation information depends on n, the
number of LZ78 phrases of T . Therefore, when the texts are highly compressible,
the LZ-indices can be smaller and faster than alternative indices.
For proteins, as an opposite case, our LZ-indices are larger and slower. They are

large since the text is not as compressible as others, which can be also noted in the
size of competing schemes. Our LZ-indices are in addition slower in this case, since
each search retrieves on average only a few patterns, and therefore the work on the
tries is not amortized by reporting many occurrences.
We show the results for patterns of length m = 10 in Fig. 16. As we can see,

our indices are still competitive, yet not as significantly as in the previous case

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · Diego Arroyuelo and Gonzalo Navarro

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate English text, m=10, K=5

Scheme 3
S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA
ILZI

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate DNA text, m=10, K=5

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate MIDI Pitches, m=10, K=5

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate XML text, m=10, K=5

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Proteins, m=10, K=5

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Partial Locate Source Code, m=10, K=5

Fig. 14. Experimental time for partial locate queries, for patterns of length m = 10 and retrieving
just K = 5 occurrences. We measure the time in microseconds per occurrence reported.

where m = 5. The dfuds implementation of LZ-index outperforms bp in all cases,
except for MIDI pitches, XML text, and source code, where these have about the
same performance. In particular for proteins and English text, where the number
of occurrences per pattern is relatively small, the difference is greater for dfuds,
since the cost of navigating the tries becomes predominant. It is important to note
also that Scheme 2 (both for bp and dfuds implementations) is interesting (in
some cases the best) alternative, for the memory space it requires. For patterns
of length m = 15 (figure omitted), the behavior of the indices is similar to that of
length m = 10.
Our results indicate that our LZ-indices, usually offer the best space-time trade-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 45

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate English text, m=5

Scheme 1
Scheme 2
Scheme 3

S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA

LZ-index
ILZI

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate DNA text, m=5

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5 3

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate MIDI Pitches, m=5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate XML text, m=5

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate Proteins, m=5

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate Source Code, m=5

Fig. 15. Experimental locating time, for patterns of length m = 5. We measure the time in
microseconds per occurrence reported.

off when the space required by Scheme 2 can be accomodated in main memory. In
particular, our LZ-indices excel for full locatewhen the total number of occurrences
to report is high. For long patterns, the number of occurrences becomes smaller, and
therefore the time of searching for the pattern substrings in the tries dominates.
The reduced trie navigation time offered by the dfuds implementation becomes
relevant in this case. Yet dfuds requires more space.

6.3.4 Count Queries. We search for patterns of length 20 extracted at random
positions from the text. We measure the times per symbol of the pattern. As
competing schemes based on suffix arrays do not store suffix-array sampling in-

ACM Journal Name, Vol. V, No. N, Month 20YY.

46 · Diego Arroyuelo and Gonzalo Navarro

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate English text, m=10

Scheme 1
Scheme 2
Scheme 3

S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA

LZ-index
ILZI

0

5

10

15

20

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate DNA text, m=10

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5 3

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate MIDI Pitches, m=10

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate XML text, m=10

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.5 1 1.5 2 2.5 3

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate Proteins, m=10

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5

Lo
ca

tin
g

tim
e

(m
ic

ro
se

cs
 p

er
 o

cc
ur

re
nc

e)

Index size, as a fraction of text size

Locate Source Code, m=10

Fig. 16. Experimental locating time, for patterns of length m = 10. We measure the time in
microseconds per occurrence reported.

formation in order to count (and thus are able to support efficiently only count

queries), to be fair in this case we do not store the data structure for text positions
in our LZ-indices. Yet, note that, within this space, we are still able to support fast
locate queries (though without reporting text positions), and display queries.
The experimental results for count queries are shown in Fig. 17. As we can see,

our schemes can implement this query, yet they cannot compete against the indices
based on suffix arrays, since the counting complexity of these indices is related to
the pattern length, and not to the number of pattern occurrences. Our schemes
basically need to locate the pattern occurrences in order to count them. We can
also see that the dfuds implementation of LZ-index outperforms in all cases the bp

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 47

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
ou

nt
in

g
tim

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Count English text, m=20

Scheme 1
Scheme 2
Scheme 3

S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA

LZ-index
ILZI

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
ou

nt
in

g
tim

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Count DNA text, m=20

0

2

4

6

8

10

12

0 0.5 1 1.5 2

C
ou

nt
in

g
tim

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Count MIDI Pitches, m=20

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
ou

nt
in

g
tim

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Count XML text, m=20

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2

C
ou

nt
in

g
tim

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Count Proteins, m=20

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
ou

nt
in

g
tim

e
(m

ic
ro

se
cs

 p
er

 s
ym

bo
l)

Index size, as a fraction of text size

Count Source Code, m=20

Fig. 17. Experimental counting time, for patterns of length m = 20. We measure the time in
microseconds per symbol of the pattern.

implementation, yet the former requires slightly more space. This is mainly because
we are searching for long patterns, and dfuds provides more efficient descent in
the LZTrie.

6.3.5 Exists Queries. For this kind of queries, indices based on suffix arrays
basically need to count the number of occurrences, since they first search for the
pattern, and then check whether the suffix-array interval they get is empty or not.
Despite that our LZ-indices are not competitive for count queries, we show here
that they are much more efficient for finding the first occurrence of a pattern,
which is useful to support exists queries (indeed, this has been already shown in

ACM Journal Name, Vol. V, No. N, Month 20YY.

48 · Diego Arroyuelo and Gonzalo Navarro

the experiment with partial locate queries). The key is that we do not necessarily
need to count the occurrences, but just to find the first pattern occurrence as fast
as we can. We test with patterns of length 5, 10, and 15, and search for 10,000
patterns that exist in the text. We implement existential queries in our indices
using the idea of partial locate queries, explained in Section 5.3.
In Fig. 18 we show the experimental results for exists queries, for patterns of

length 5. Excluded plots for patterns of length m = 10 produced similar results,
while those for patterns of length m = 15 gave worse results (this is because, as
predicted in Table V, the heuristic of level 0 is not so effective for longer patterns).
As it can be seen, our indices are much more competitive than for count queries,
showing that our approach of first looking for P in LZTrie is effective in practice.
Our indices achieve the same times (though not the same space) in many cases.
As in the case of count queries, our indices are larger than competing schemes,
yet ours are able to support more than just count and exists queries within this
space.

7. CONCLUSIONS

We have introduced practical approaches to reduce the space requirement of the
LZ-index of Navarro [2004; 2009]. Given a text T [1..n] over an alphabet of size
σ, with k-th order empirical entropy Hk(T) [Manzini 2001], the original LZ-index
of Navarro [2004] requires 4nHk(T) + o(n log σ) bits of space (in practice, 5 times
the size of the compressed text). In this paper we define several new versions of
the LZ-index, requiring 3nHk(T) + o(n log σ) and 2(1 + ǫ)nHk(T) + o(n log σ) bits
of space, for 0 < ǫ < 1. The latter ones allow us to partially overcome one of
the drawbacks of the original LZ-index: the lack of space/time tuning parameters.
Although our schemes do not provide worst-case guarantees at search time, they
ensure O(1ǫ (m logn+occ σm/2)) average time for locating the occurrences of pattern
P [1..m] in T .
We implemented and extensively tested our indices in many practical scenarios,

which cover an interesting range of applications, comparing against the best alter-
native compressed full-text self-indices. From those experiments we conclude that
we can effectively reduce the space requirement of the original LZ-index, by a factor
of about 2/3. This means in practice about 3 times the size of the compressed text,
and about 2.5 times the size of the smallest alternative compressed index. We also
noted that our indices are the fastest to build, which is important when we deal
with large texts.
When comparing the search performance, we concluded that our indices offer an

interesting alternative in practice, for different types of queries: our indices are in
most cases the best alternatives for extract and display queries, which we argue
are the most basic queries in the scenario of compressed full-text self-indices, where
the text is not available otherwise3. For instance, in most cases we are able to
extract about 1–2 megabytes of the text per second, being about twice as fast as
the most competitive alternatives. Thus, we can reduce the space, still maintaining

3In the literature [Navarro and Mäkinen 2007] the count operation is taken as the most basic one,
but this is probably biased towards suffix-array-based indices, more than to considering typical
applications.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 49

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Exists English text, m=5

Scheme 2
Scheme 3

S2 DFUDS
S3 DFUDS

AF-FMI
SSA
CSA

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Exists DNA text, m=5

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Exists MIDI Pitches, m=5

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

tim
e

(m
ic

ro
se

cs
 p

er
 p

at
te

rn
)

Index size, as a fraction of text size

Exists XML text, m=5

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Exists Proteins, m=5

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

tim
e

(m
ic

ro
se

cs
 p

er
 s

ym
bo

l)

Index size, as a fraction of text size

Exists Source Code, m=5

Fig. 18. Experimental time for exists queries, for patterns of length m = 5. We measure the
time in microseconds per pattern.

the competitiveness of the original LZ-index in this respect.
For locate queries we tested two alternatives: partial locate queries (where a

fixed number of occurrences is located) and full locate queries. Our experiments
show that our technique for solving partial locate queries is efficient when searching
for short patterns (m 6 10), of texts with small alphabets (as on DNA), or when
we want to locate a few occurrences (up to 5).
For full locate queries, we showed that our indices are more effective when the

search pattern is not too long (m 6 10), or there are many occurrences to report.
In other cases, the navigation time on the tries is predominant, and thus our per-
formance degrades. For example, for short patterns of length 5, in most scenarios

ACM Journal Name, Vol. V, No. N, Month 20YY.

50 · Diego Arroyuelo and Gonzalo Navarro

our schemes are the best alternative if we can spend at least 4 times the com-
pressed text size. In general, our indices locate up to 1–4 million occurrences per
second. When less memory space is available, our indices are outperformed by the
very competitive Inverted LZ-index (ILZI) [Russo and Oliveira 2008], which is yet
another variant of the Lempel-Ziv-based index family. In this case, however, our in-
dices are still competitive with all suffix-array-based schemes (e.g., the competitive
Compressed Suffix Array of Sadakane [2003]).
We also exhibit an important difference between LZ-indices and those based

on suffix arrays: the latter need to store extra non-compressible information (the
suffix-array samples) in order to carry out extract, display, and locate queries,
whereas most of the information stored by our LZ-indices is compressible. Thus,
when the text is highly compressible, we get small LZ-indices, which are still fast.
Indices based on suffix arrays, on the other hand, cannot use a denser suffix-array
sampling (because otherwise they become larger), and henceforth their performance
is poor. Thus, our indices are also a good option for highly compressible texts.
We believe that our indices offer an extremely relevant alternative considering

their overall performance across the multiple tasks of interest in many real text-
search applications.
We made the code of our indices available in the Pizza&Chili site, at http://

pizzachili.dcc.uchile.cl/indexes/LZ-index.
We do not consider in this paper the space-efficient construction of our indices,

which is an important issue in practice, since many times a small index requires a
large amount of memory space to be build. We plan to adapt the space-efficient
algorithm by Arroyuelo and Navarro [2005] for the original LZ-index, so as to con-
struct our LZ-index variants space-efficiently. Currently, our indices are constructed
in an uncompressed way, needing about the same space used to build suffix-array-
based compressed self-indices. The space-efficient construction of the latter is still
at a theoretical stage [Mäkinen and Navarro 2008], or still does not achieve higher-
order entropy-bounded space [Hon et al. 2007].
All the compressed self-indexes considered in this paper operate in main memory.

Designing data layouts that perform efficiently on secondary memory is becoming
an active area of research. In general one must use more space in order to gain
locality of reference. For example, a secondary memory variant of the LZ-index
requires about twice the space of the original (main-memory) LZ-index [Arroyuelo
and Navarro 2007]. We are working on improving the space of this secondary
memory variant as well.

REFERENCES

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words. NATO ISI Series. Springer-Verlag, 85–96.

Arroyuelo, D. and Navarro, G. 2005. Space-efficient construction of LZ-index. In Proc.

16th Annual International Symposium on Algorithms and Computation (ISAAC). LNCS 3827.
1143–1152.

Arroyuelo, D. and Navarro, G. 2007. A Lempel-Ziv text index on secondary storage. In Proc.
CPM. LNCS 4580. 83–94.

Arroyuelo, D., Navarro, G., and Sadakane, K. 2006. Reducing the space requirement of LZ-
index. In Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM). LNCS
4009. 319–330.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Practical Approaches to Reduce the Space of LZ-indices · 51

Arroyuelo, D., Navarro, G., and Sadakane, K. 2010. Stronger Lempel-Ziv based com-

pressed text indexing. To appear in Algorithmica, DOI 10.1007/s00453-010-9443-8. See also
http://www.dcc.uchile.cl/∼darroyue/papers/algor2010.pdf.

Barbay, J., He, M., Munro, J. I., and Rao, S. S. 2007. Succinct indexes for strings, binary
relations and multi-labeled trees. In Proc. 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 680–689.

Benoit, D., Demaine, E., Munro, I., Raman, R., Raman, V., and Rao, S. S. 2005. Representing
trees of higher degree. Algorithmica 43, 4, 275–292.

Ferragina, P., González, R., Navarro, G., and Venturini, R. 2009. Compressed text indexes:
From theory to practice. ACM Journal of Experimental Algorithmics (JEA) 13, article 12. 30
pages.

Ferragina, P. and Manzini, G. 2000. Opportunistic data structures with applications. In Proc.
41st Annual Symposium on Foundations of Computer Science (FOCS). 390–398.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the ACM 54, 4,
552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3, 2, article 20.

Ferragina, P. and Navarro, G. 2005. Pizza&Chili Corpus — Compressed indexes and their
testbeds. http://pizzachili.dcc.uchile.cl.

Geary, R., Rahman, N., Raman, R., and Raman, V. 2006. A simple optimal representation for
balanced parentheses. Theoretical Computer Science 368, 3, 231–246.

Golynski, A., Munro, J. I., and Rao, S. S. 2006. Rank/select operations on large alphabets: A
tool for text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 368–373.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. 2005. Practical implementa-
tion of rank and select queries. In Poster Proc. 4th International Workshop on Efficient and
Experimental Algorithms (WEA). CTI Press and Ellinika Grammata, 27–38.

Grossi, R., Gupta, A., and Vitter, J. S. 2003. High-order entropy-compressed text indexes. In
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

Grossi, R. and Vitter, J. S. 2000. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. 32nd Annual ACM Symposium on Theory of
Computing (STOC). 397–406.

Grossi, R. and Vitter, J. S. 2005. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35, 2, 378–407.

Hon, W. K., Lam, T. W., Sadakane, K., Sung, W.-K., and Yiu, M. 2007. A space and time
efficient algorithm for constructing compressed suffix arrays. Algorithmica 48, 1, 23–36.

Jansson, J., Sadakane, K., and Sung, W.-K. 2007. Ultra-succinct representation of ordered

trees. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 575–584.

Kärkkäinen, J. and Ukkonen, E. 1996. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In Proc. 3rd South American Workshop on String Processing (WSP).
Carleton University Press, 141–155.

Kim, D., Na, J., Kim, J., and Park, K. 2005. Efficient implementation of rank and select
functions for succinct representation. In Proc. 4th International Workshop on Efficient and
Experimental Algorithms (WEA). LNCS 3503, 315–327.

Knessl, C. and Szpankowski, W. 2000. Height in a digital search tree and the longest phrase of
the Lempel-Ziv scheme. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 187–196.

Kosaraju, R. and Manzini, G. 1999. Compression of low-entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing 29, 3, 893–911.

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing 12, 1, 40–66.

Mäkinen, V. and Navarro, G. 2008. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms (TALG) 4, 3, article 32. 38 pages.

ACM Journal Name, Vol. V, No. N, Month 20YY.

52 · Diego Arroyuelo and Gonzalo Navarro

Manber, U. and Myers, G. 1993. Suffix arrays: A new method for on-line string searches. SIAM

Journal on Computing 22, 5, 935–948.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3,
407–430.

Morrison, D. R. 1968. Patricia – practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM 15, 4, 514–534.

Munro, J. I. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). LNCS 1180. 37–42.

Munro, J. I., Raman, R., Raman, V., and Rao, S. S. 2003. Succinct representations of permu-
tations. In Proc. 30th International Colloquium on Automata, Languages and Programming
(ICALP). LNCS 2719. 345–356.

Munro, J. I. and Raman, V. 2001. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31, 3, 762–776.

Navarro, G. 2004. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms
(JDA) 2, 1, 87–114.

Navarro, G. 2009. Implementing the LZ-index: Theory versus practice. ACM Journal of Exper-
imental Algorithmics (JEA) 13, article 2. 49 pages.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-
veys 39, 1, article 2.

Okanohara, D. and Sadakane, K. 2007. Practical entropy-compressed rank/select dictionary.
In Proc. Workshop on Algorithm Engineering and Experiments (ALENEX). 60–70.

Raman, R., Raman, V., and Rao, S. S. 2002. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In Proc. 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 233–242.

Russo, L. and Oliveira, A. 2008. A compressed self-index using a Ziv-Lempel dictionary. In-
formation Retrieval 11, 4, 359–388.

Sadakane, K. 2000. Compressed text databases with efficient query algorithms based on the
Compressed Suffix Array. In Proc. 11th Annual International Symposium on Algorithms and
Computation (ISAAC). LNCS 1969. 410–421.

Sadakane, K. 2003. New Text Indexing Functionalities of the Compressed Suffix Arrays. Journal
of Algorithms 48, 2, 294–313.

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE
Trans. Inform. Theory 23, 3, 337–343.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inform. Theory 24, 5, 530–536.

ACM Journal Name, Vol. V, No. N, Month 20YY.

