String Matching with Alphabet Sampling"

Francisco Claude®!, Gonzalo Navarro®?, Hannu Peltola®?, Leena Salmelad:4*,

Jorma Tarhio®3

%David R. Cheriton School of Computer Science
University of Waterloo
b Department of Computer Science
University of Chile
¢Department of Computer Science and Engineering
Aalto University
4 Department of Computer Science
University of Helsinki

Abstract

We introduce a novel alphabet sampling technique for speeding up both online
and indexed string matching. We choose a subset of the alphabet and extract
the corresponding subsequence of the text. Online or indexed searching is then
carried out on the extracted subsequence, and candidate matches are verified
in the full text. We show that this speeds up online searching, especially for
moderate to long patterns, by a factor of up to 5, while using 14 % extra space
in our experiments. For indexed searching we achieve indexes that are as fast
as the classical suffix array, yet occupy less than 50 % extra space (instead of
the usual 400 %). Our experiments show no competitive alternatives exist in a
wide space/time range.

Keywords: Pattern Matching, Semi-Indexes, Alphabet Sampling

1. Introduction

The string matching problem is to find all the occurrences of a given pattern
P =pips...pm inalarge text T = t1ts . . . t,, both being sequences of characters
drawn from an alphabet ¥ of size o. For simplicity, we assume ¥ = [1, o].

U An earlier version of this paper appeared in the Proceedings of SPIRE’08, pp. 87-98.
*Corresponding author at: Department of Computer Science, P.O. Box 68, FI-00014 Uni-
versity of Helsinki, Finland. Tel: 4358 9 1915 1275.

Email addresses: fclaude@cs.uwaterloo.ca (Francisco Claude),
gnavarro@dcc.uchile.cl (Gonzalo Navarro), hpeltola@cs.hut.fi (Hannu Peltola),
leena.salmela@cs.helsinki.fi (Leena Salmela), jorma.tarhioQaalto.fi (Jorma Tarhio)

1Partially funded by Go-Bell Scholarships and David R. Cheriton Scholarships program.

2Partially funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile.

3Supported by Academy of Finland grant 134287 (IASMB).

4Supported by Academy of Finland grant 118653 (ALGODAN).

Preprint submitted to Journal of Discrete Algorithms September 21, 2010

One approach to string matching is online searching, which means the text
is not preprocessed. Thus these algorithms need to scan the text when searching
and their time cost is of the form O(n- f(m)), for some f(m) > 1/(2m—1) even in
the best case. The worst-case complexity of the problem is O(n), first achieved
by the Knuth-Morris-Pratt algorithm [1]. The average complexity of the prob-
lem is ©(n log, m/m) [2], achieved for example by the BDM algorithm [3]. Some
non-optimal algorithms such as the Boyer-Moore-Horspool (BMH) algorithm [4]
are very competitive in practice.

The second approach, indered searching, tries to speed up searching by
preprocessing the text and building a data structure that allows searching in
O(g(m,n) + occ - h(n)) time, where occ is the number of occurrences of the
pattern in the text, g(m,n) > m is the cost per pattern and h(n) > 1 is the
cost per occurrence. Popular solutions to this approach are suffix trees [5] and
suffix arrays [6]. The first gives an O(m + occ) time solution, while the suf-
fix array gives an O(mlogn + occ) time complexity, which can be improved to
O(m +logn + occ) [6] or even O(m + occ) [7], using extra space. The problem
of these approaches is that the space needed is too large for many practical
situations (4-20 times the text size). Recently, a lot of effort has been spent
to compress these indexes [8] obtaining a significant reduction in space, but
requiring considerable implementation effort and a high time per occurrence
reported [9]. An intermediate approach, in space and time, is the sparse suffic
array [10], which indexes every h-th position of the text.

In this work we explore techniques based on sampling the alphabet by se-
lecting a set of characters from the alphabet, and then forming the sampled
text with only the positions that belong to the selected subset. We first apply
a sequential scanning algorithm to this sampled text, obtaining an approach
between online and indexed searching. We call this kind of structure a semi-
index. This is a data structure built on top of a text, which permits searching
faster than any online algorithm, yet not as fast as indexed algorithms. Its
search complexity is still of the form O(n - f(m)), but the f(m) > 1/(2m — 1)
barrier can be broken. To be interesting, a semi-index should in addition be
easy to implement and require little extra space. Several other semi-indexes
exist in the literature, even without using that name. Some examples are block
addressing inverted indexes [11], ¢g-gram indexes [12, 13, 14], directly searchable
compression formats [15, 16], and other sampling approaches.

We also consider indexing the sampled text. We build a suffix array indexing
the sampled positions of the text, and get a sampled suffix array. This approach
is similar to the sparse suffix array [10] as both index a subset of the suffixes,
but the different sampling properties induce rather different search algorithms
and performance characteristics.

A challenge in our method is how to choose the best alphabet subset to
sample. We present analytical results, supported by experiments, that simplify
this process by drastically reducing the number of combinations to try. We
show that it is sufficient in practice to sample the least frequent characters up
to some limit.

In both cases, online and indexed, our sampling technique significantly im-

proves upon the state of the art, especially for relatively long search patterns.
For example, online searching is speeded up by a factor of up to 5 on English
text, while using 1.05 extra bits per symbol (which translates into 14 % extra
space if symbols are stored in bytes). For indexed searching we achieve indexes
that are as fast as the classical suffix array, yet in practice their extra space is
less than 50 % of the text size (instead of the 400 % required by the classical
suffix array).

2. Alphabet Sampling

The main idea of our semi-indexed approach is to choose a subset of the
alphabet to be the sampled alphabet and then to build a subsequence of the
text by omitting all characters not in the sampled alphabet. When searching, we
build the sampled pattern by omitting all pattern characters not in the sampled
alphabet and then search for this sampled pattern in the sampled text. At
regular intervals of the sampled text, we map its positions to their corresponding
positions in the original text. For each candidate returned by the search on the
sampled text, we verify a short range of the original text with the help of the
position mapping.

Let T'=t1...t, be the text over the alphabet ¥ and ¥ x C ¥ the sampled
alphabet. The proposed semi-index is composed of the following items:

e The sampled text Tx: Let T'x = t;, ...t;,_ be the sequence of the t;’s
that belong to the sampled alphabet X x. The length of the sampled text
is nx.

e The position mapping M: A table of size |nx/q| such that M[i] = j such
that T[j] corresponds to Tx[q - 7]; we also set M[0] = 0.

Given a pattern P = py...pm,, search on this semi-index is carried out as
follows. Let Px = pj, ...pj,,, be the subsequence of p;’s that belong to the
sampled alphabet X x. The length of the sampled pattern is mx. The sampled
text T'x is then searched for Px, and for every occurrence, the positions to check
in the original text are delimited by the position mapping M. We note that if
the occurrence in T'x includes a mapped position, it suffices to check only one
position of T as we know the exact position of one of the characters of P in the
possible occurrence. Otherwise, if the sampled pattern is found at position 4,
in T'x, the area

T[M[ir/q] + (ir mod q) — j1 + 1... M[i,/q+ 1] — (¢ — (i, mod q)) — j1 + 1]

is checked for possible start positions of real occurrences. If Px becomes empty,
i.e. P contains no sampled characters, we search for P in the original text T
For example, if the text is T' = abaacabdaa, the sampled text built omitting
the a’s (Xx = {b,¢,d}) is Tx = tatstyts = bebd. If we map every other position
in the sampled text, the position mapping M is {5, 8}. To search for the pattern
P = acab we omit the a’s and get Px = pops = cb. We search for Px = ¢b in

‘a‘b‘a‘a‘c‘a‘b‘d‘a‘a‘ Text Hun Pattern

Omitting a’s Omitting a’s
‘ ‘b‘ ‘ ‘c ‘b‘d‘ ‘ ‘ Sampled Text [EE Sampled Pattern
o [[| [s[[[8] [] Mapping

Figure 1: Example of preprocessing

Algorithm 1 — Search (Px,mx, j1)

1: for i +— 1 to o do

2: d[z] — mx

3: for i+ 1tomyx —1do

4: d[PXm]me—i

5: pos «+— 1

6: while pos <nx —mx + 1 do

7 J — mx

8: while j > 1 and Tx[pos+ j — 1] = Px|[j] do

o: je—j—1

10: if 5 =0 then

11: if Occurrence in Ty contains a mapped position then

12: Check the corresponding position in 7" for an occurrence
13: else

14: Check for occurrences starting from M [pos/q] + (pos mod ¢q) — j1 +1

to M[pos/q+ 1] — (¢ — (pos mod q)) —j1+1in T
15: pos < pos + d[Tx [pos + mx — 1]]

Tx = bebd, finding an occurrence at position 2. We note that T'x[2] is mapped
and thus it suffices to verify for an occurrence starting at position 4 and we
find a match. Preprocessing for the text and pattern of the previous example is
shown in Figure 1.

Because the sampled patterns tend to be short, we implemented the search
phase with the BMH algorithm [4], which has been found to be fast in such
settings [17]. Algorithm 1 shows the pseudo code for the search.

Although the above scheme works well for most of the patterns, it is obvious
that there are some bad patterns which would be searched faster in the original
text. We attempt to recognize such patterns as follows. For a given pattern P
and text T we estimate the average shift length S(P,T) in the BMH algorithm

with the help of the d array:®

S(P,T) = > Pr(c,T)-d[d,

ceEX

where Pr(c,T) is the empirical probability of occurrence of the character ¢ in
text T. We further estimate the average number of characters read L(P,T) by
the BMH algorithm in each alignment as

m m

L(P,T) = 1+ Y [[Pr(p;,T).

i=2 j=i

The cost of searching in the BMH algorithm can then be estimated as n -
L(P,T)/S(P,T). We further estimate the verification cost to be

mx
V(Px,Tx) = C-nx - [[Pr(Pxli], Tx),
i=1

where C is a constant. The value C' = 20 gave a reasonably good estimate

in practice. We can then estimate the total cost of searching in the sampling

scheme as

nx - L(Px, Tx)
S(Px,Tx)

If we just search the original pattern in the original text, we can estimate the
cost to be

WX = +V(PX7TX)~ (1)

n-L(P,T)

<o (2)
S(P,T)

If Wx < W, we search the sampled text for the sampled pattern and check the

occurrences. Otherwise we search the original text for the original pattern.

W =

2.1. Optimal Sampling

A question arises from the previous description of our sampling method:
How to form the sampled alphabet ¥ x? We will first analyze how the average
running time of the BMH algorithm changes when we sample the text and then,
based on this, we will develop a method to find the optimal sampled alpha-
bet. Throughout this section we assume that the characters are independently
distributed and analyze the approach for a general pattern not known when
preprocessing the text. If the pattern were known in advance, we could further
optimize the sampling based on the pattern, as done in Egs. (1) and (2) to
choose the text to scan.

5In BMH, d[] is the distance from the last occurrence of c in P towards the end, or m if c
does not appear in P. If ¢ occurs at the end of P we take its next-to-last occurrence. When
it is found that P does not occur in a text window, the window is shifted by d[c] where ¢ is
the last text character of the window.

Let & be defined as the inverse of the probability of two random characters
matching, that is, 1/6 = > s, Pr(c)?, where Pr(c) is the empirical probability
of occurrence of character ¢ in T' (so ¢ = o if all characters are equiprobable,
Pr(c) = 1/o for all ¢). Let us also define

ba = ZPr(c), and
ap = ZPr(c)Q,

where A C ¥. Now the length of the sampled text will be by, - n, the average
length of the sampled pattern by, - m (assuming it distributes similarly to the
text), and the probability of two random characters matching in the sampled
text ax, /0% (this is) oy Pr'(c)?, where Pr'(c) = Pr(c)/bsy is the proba-
bility of character ¢ in Tx). The average complexity of the BMH algorithm is
O(n(1/m+1/5)). Thus the average search cost in the sampled text is

1 asx)\ _ 1 amx
oo (i) - o (i)

When considering the verification cost we assume for simplicity that the
mapping M contains the position of each sampled character in the original text,
that is, ¢ = 1. The probability that a position has to be verified is the sum
of products of the probabilities of having ¢ symbols samples and matching that
i-length string. This corresponds to

Pr(verif) = Y P(|Px|=1i)-P(match given that |Px| = 1)

7

my . m—i ay '
> (7)o ()
1=0 X

= (az"+1—bzx> .
bs

If we assume that each verification costs O(m) then the cost of verification is

I
o

I
NE

n - Pr(verif) - O(m) = n- (ZZX +1-— ng) -O(m).
Ex

The total cost of searching in our scheme is thus

1 as, as, m
N ZEx 49 .
© (n (m * bEX * <b2X * be) "

and hence the optimal sampled alphabet ¥ x minimizes the cost per text char-

acter m

ax

EXyx) = —+ =X =X 4+1-5% -m 3
(Xx) m+ +(bzx+ 2X> , (3)

which can be divided into the search cost in the sampled text 1/m + as, /by
and the verification cost (ay, /bs, +1—bg,)™ -m.

The verification cost always increases when a character is removed from X x,
so the search cost in the sampled text must decrease for the combined cost to
have a chance to decrease. If R = ¥\Xx is the set of removed characters, then
bsx +br =1 and ax, + ar = ax, and the function

1 ag—ar—p°
m bsy —p 0m 1—br—p

gives the search cost in the sampled text, per text character, if an additional
character with probability p is removed. The derivative of hr(p) is

(1 —bgr)> — (ax — ar)

N

which has exactly one zero at p, = (1 —br) — /(1 —bg)% — (as — ap) in the
interval [0,1 — bg]. We can see that the function hg(p) is increasing until
p. and decreasing after that, so removing a character can only be beneficial
after hp goes below hr(0) again. Solving the equation hr(pr) = hr(0) we get
pr = (azs —agr)/(1—bgr). So removing a single additional character can decrease
the search cost in the sampled text only if the probability of occurrence for that
character is larger than pg. Otherwise both the search cost in the sampled text
and the verification cost will increase and thus removing the character is not
beneficial.

Suppose now that we have already fixed whether we are going to keep or
remove each character with probability of occurrence higher than Pr(c) and now
we need to decide if we should remove the character c. If Pr(c) > pgr, we will
need to explore both options as removing the character will decrease search cost
in the sampled text and increase verification cost. However, if Pr(c) < pr we
know that if we added only ¢ to R the search time in the sampled text would
also increase and therefore we should not remove ¢. But could it be beneficial to
remove ¢ together with a set of other characters with probabilities of occurrence
less than pr? In fact it cannot be. Suppose that we remove a character ¢ with
probability Pr(c) < pg. Now the new removed set will be R’ = RU {¢} so we
get arr = ap + Pr(c)? and bp: = br + Pr(c). Now the new critical probability

will be
_az—ar _ ax —aR — Pr(c)?

bre = 1—bR/ N 1—bR—PI‘(C) '
We know that hr(Pr(c)) > hr(pr) = hr(0) because Pr(c) < pr. Therefore

1 ax —ag — Pr(c)? 1 ax —apg

m 1—br—Pr(c) - 1—-bp

and so
as —ar — Pr(c)? as — ap

PR T TP 1—bg | PE

Algorithm 2 — Finding the Optimal Sampling

1: R()pt — {}

2: sort ¥ in descending order based on the probabilities of occurrence
3: findOpt(1,{})

4: return R,

findOpt(c, R)
1: if c=0+1 then
if E(X\ R) < E(X\ Ropt) then
Ropt = R
else
PR = al)::b(;R
if Pr(c) > pr then
findOpt(c+ 1, RU {c})
findOpt(c + 1, R)
else
10: findOpt(o + 1, R)

N

Thus even now it is not good to remove a character with probability less than
the critical value pr for the previous set and this will again hold if another char-
acter with a small probability is removed. Therefore we do not need to consider
removing characters with probabilities less than pr. Note however that remov-
ing a character with a higher probability will decrease the critical probability
pr and after this it can be beneficial to remove a previously unbeneficial char-
acter. In fact, if the sampled alphabet contains two characters with different
probabilities of occurrence, the probability of occurrence for the most frequent
character in the sampled alphabet is always larger than pg. Thus it is always
beneficial for searching the sampled text to remove the most frequent character.

The above can be applied to prune the exhaustive search for the optimal set
of removed characters. First we sort the characters of the alphabet in decreasing
order of frequency. We then figure out if it can be beneficial for searching the
sampled text to remove the most frequent character not considered yet. If it
can be, we try both removing and not removing that character and proceed
recursively for both cases. If it cannot, we prune the search here because none
of the remaining characters should be removed. Algorithm 2 gives the pseudo
code.

In practice when using this pruning technique the number of examined sets
drops drastically as compared to the exhaustive search, although the worst case
is still exponential. For example, the number of examined sets drops from 25!
to 2,826 when considering the King James Bible from the Canterbury Corpus
(http://corpus.canterbury.ac.nz/) as the text.

In our experiments, the optimal set of removed characters always contained
the most frequent characters up to some limit depending on the length of the
pattern, as shown in Table 1. Therefore a simpler heuristic is to remove the k

most frequent characters for varying k£ and choose the k that predicts the best
overall time. However, if the verification cost is very high for some reason (e.g.,
going to disk to retrieve the text, or uncompressing part of it, or using a very
sparse sampling) it is possible that the optimal set of removed characters is not
a set of most frequent characters.

2.2. Ezperimental Results

To determine the sampled alphabet, we ran the exact algorithm of Section 2.1
for different pattern lengths to choose the sampled alphabet that produces the
smallest estimated cost E(Xx) (Eq. (3)). For all pattern lengths the algorithm
recommended removing a set of most frequent characters (that is, to use a set
of least frequent characters for the sampling), so we use this simplified method
henceforth.

We tested the semi-index approach by removing the k& most frequent char-
acters from the text for varying k. We used a 2 MB prefix of the King James
Bible as the text, and the patterns are random substrings of the text. For each
pattern length 500 patterns were generated, and the reported running times are
averages over 200 runs with each of the patterns. The most frequent characters
in the decreasing order of frequency were “_ethaonsirdlfum,wycgbp” where _ is
the space character. We note that the distribution of characters is not indepen-
dent in real texts. However, we did not notice any significant changes in the
performance that could be due to the non-independence of nearby characters.

The tests in this section were run on a 2.6 GHz AMD Athlon dual core
processor with 2 GB of memory, 64kB L1 cache and 512kB L2 cache, running
Linux 2.6.31. The code is in C and compiled with gcc using -03 optimization.

We implemented the following versions of our approach:

Basic We always search the sampled text unless the length of the sampled
pattern is zero.

Estimated Best Text We estimate the cost of searching using the sampled
text (Wx, Eq. (1)) or the original text (W, Eq. (2)). We choose the text
with smaller estimated cost.

Optimal Text For each pattern we search both the sampled and the original
text, and pick the smaller runtime. This version only serves to give a lower
bound to the performance of the previous estimation method, given the
alphabet partition.

Figure 2 shows the runtime of the three above versions using the mapping
array M where every 8th or 32nd sampled character is mapped to its position
in the original text. The results for zero removed characters correspond to the
original BMH algorithm. The figure shows that making the mapping sparser
increases the runtime as more characters are removed because verification is
more costly and a larger amount of verification is needed. The effect is less
noticeable for longer patterns, where the sampling method is up to 5 times
faster than sequentially scanning the original text.

m=10 m=20

1.2 0.8
0.7 9
1r]
0.6 9
08]
0.5 F 9
Py Py
E 06 — E o4rf 1
= =]
5 5
o~ 2
03 9
04 1
02 F 9
—— Basic q=32 —— Basic =32
02 L —* Basicg=8] %= Basic q=8
----x--- Estimated q=32 o1k Estimated g=32]
—--a—— Estimated q=8 . —--a—— Estimated q=8
&~ Optimal q=32 a-- Optimal q=32
o L o Optimal g=8)) o o Optimal g=8))
0 5 10 15 20 0 5 10 15 20
Number of different characters removed Number of different characters removed
m=50 m=100
0.6 T T 0.6 T T
Basic q=32 —— Basic q=32 ——
Basic q=8 Basic q=8 -
Estimated q=32 ------- Estimated q=32 -
Estimated qg=8 —-2-— Estimated q=8 —-2-—
05 Optimal q=32 &]| 05 - Optimal g=32 @
Optimal q=8 - Optimal g=8 -~
04 1 04 -
Y Py
£ 03¢f — £ o03¢f
= =]
5 5
&~ &
02 1 0.2+
0.1 i 01
0 0
0 5 10 15 20 0 5 10 15 20
Number of different characters removed Number of different characters removed

Figure 2: The running time of the sampling approach for pattern lengths 10, 20, 50, and 100.

Table 1: Predicted and observed optimal number of removed characters for the King James

Bible. The predicted optima are computed with the algorithm suggested by the analysis,

which in our experiments always returned a set of most frequent characters.

‘ m 10 20 30 40 50 60 70 80 90 100
Predicted optimal number of removed characters| 3 7 9 11 12 13 14 15 16 16
Observed optimal number of removed characters| 3 8 12 12 14 15 16 17 18 18

10

Figure 2 also shows that choosing the text with lower estimated cost dras-
tically improves upon the performance of the basic method, especially as more
characters are removed. We further see that the difference between our im-
proved method and optimally choosing the text to search is extremely small
(basically indistinguishable in the plots).

Furthermore, we notice that the optimal number of removed characters (in
both the optimal or our improved method) grows slowly with m. Table 1 com-
pares these optimal values with those given by the analysis. The observed
optimal values are given for the basic version with mapping density ¢ = 8. As
we can see, the analysis gives reasonably good results although it recommends
removing slightly fewer characters, because we estimated the verification time
quite pessimistically: When more characters are removed it is unlikely that we
would need to scan m characters for each verified position (as verifications can
stop as soon as the first mismatch is encountered). We tried more sophisticated
ways of estimating the cost of a single verification but these were not much
better.

Nevertheless, the effect of this error is negligible: The curves are sufficiently
smooth so that using a value close to the optimal one makes little difference.
This is good also because we have to make this decision at text preprocessing
time, for all future pattern lengths. For example, by choosing to remove the 13
most frequent characters, the estimated best text version would do reasonably
well for all pattern lengths using just 0.18 times the original text size to store
the sampled text. To this we have to add one integer each ¢ symbols for the
mapping, and ¢ bits to describe Y.

3. Succinct Alphabet Sampling

An alternative to storing a mapping M is to use a bitmap B of length n,
where we mark with a one every position in 7" where the symbol belongs to
Y x. We index this bitmap in order to support select queries in constant time
and o(n) extra bits [18, 19]: select (b, j) finds the position where the j-th bit
b occurs in B. In practice we use an implementation [20] requiring just 5% of
extra space over the bare bitmap to compute select .

This bitmap is used for verification as follows. Suppose that we have found
the sampled pattern Px in the sampled text T'x at position k. The position
of the character T'x [k] in the original text is now ¢ = selectg(1, k). If j; is the
position of Px[1] in the original pattern P, we verify the position i — j; + 1 in
the original text for an occurrence of the whole pattern.

Bitmap B requires 1.05 bits per text symbol, which is 14 % extra space when
symbols are stored in bytes. This is close to the space required by mapping M
for ¢ = 4. However, it turns out that this bitmap gives us sufficient information
to reduce space and become a much succincter alternative than using M for any
q: Up to now we store T and T’x is redundant. With bitmap B we can instead
store two texts T'x and Ty, containing the charactersin Y x and ¥y = ¥—¥x, so
that bitmap B is the only redundant information (which suffices to reconstruct
T from Tx and Ty; this would not be possible with table M unless ¢ = 1).

11

So this 14 % extra space is already less than the 18 % extra that was used for
storing Tx under the well-chosen alphabet size |Xx| = 13.

In a more formal statement, consider two sets X x, Xy, such that X xNXy = 0
and X x UXy = X. We represent both ¥ x and ¥y with a single bitmap of length
o. Now given text T of length n, drawn from alphabet ¥ = [1,0], we define
bitmap B, of length n, such that B[i] = 1 iff T'[i] € ¥x. We index B for selectp
queries. We also create T'x = t;,t;, ...t and Ty = t;,t;,...t;, , where the
ixs correspond to the increasing positions where B[ix] = 1 and similarly the jgs
for positions where B[j;] = 0.

It is clear that the sequences B,Tx,Ty suffice for representing T. Let
rankp (b,) be the number of occurrences of bit b in B[1,i], that is, a kind
of inverse of selectp that can also be computed in constant time within the
same space and time of selectg. Then it holds

a4 Tx[rankp(1,4)] if B[{]] =1,
T = { Ti[ranki(o,i)] otherwise

in

which allows reconstructing any desired substring of 7" in optimal time.

Since nx +ny = n, the extra space for our representation is only o +n-+o(n)
bits. Note that, unlike the scheme based on M, the extra space is independent
of how we partition the alphabet and of any sampling density.

We now search for a pattern P of length m as follows. First, we partition P
into Px and Py, and create a bitmap Bp of length m such that Bp[i] = 1 iff
P[i] € ¥x. Then we choose whether to search for Px in Tx or for Py in Ty,
using the estimation Wy of Eq. (1) and its analogous version Wy . Finally, we
verify every match in Tx or Ty as follows. Suppose that we have a candidate
match in Tx at position k. The position of Tx[k] in the original text is i =
select g(1, k) and thus the potential match starts at position ¢ — j; + 1 where j;
is the position of the first character of Px in P. We then verify that B[i — j; +
1...i— j1 +m] matches bitmap Bp[l,m|. If the bits match, we further verify
that Py occurs in Ty at position ¢ — j; + 2 — k. The process is analogous if we
search Ty, now using select5(0, k) to map to T.

3.1. Experimental Results

The same experimental setting as for alphabet sampling was used to test
succinct alphabet sampling. We implemented two versions of succinct alphabet
sampling:

Estimated Best Text We estimate the cost of searching in Tx and Ty. We
choose the text with smaller estimated cost.

Optimal Text We search for each pattern in text Tx and in text Ty . We pick
the smaller runtime for each pattern. This version only serves to give a
lower bound to the performance of the previous estimation method.

Figure 3 shows a comparison of alphabet sampling and succinct alphabet
sampling. The figure also contains a version of alphabet sampling where bit

12

vector B is used instead of M, but still the scheme of storing and searching
Tx and/or T is maintained. We see that the alphabet sampling approach with
mapping M is somewhat slower than the other approaches for short patterns,
which require more verifications to be performed. Alphabet sampling using bit
vector B is as fast as succinct alphabet sampling.

Figure 4 (left) shows the memory usage for the various approaches. We can
see that succinct alphabet sampling uses less memory than alphabet sampling
in most cases. Only when 18 or more characters are removed, alphabet sam-
pling using mapping M is slightly more space-efficient, but removing that many
characters is time-efficient only for long patterns (m = 100). On the right, the
figure shows the runtime of the versions that search the best estimated text as
a function of the pattern length when 13 most frequent characters are removed
from the alphabet to form the sampled alphabet.

To test our method on data where the distribution of characters is more uni-
form than in natural language texts, we ran experiments on a 2 MB prefix of the
protein data from PizzaChili site, http://pizzachili.dcc.uchile.cl. Again
we generated 500 patterns and report the averages of 200 runs with each of the
patterns. This protein file has an alphabet of size 23 including 20 characters for
the various amino acids, X’ denoting any amino acid, 'Z’ denoting either glu-
tamine or glutamic acid, and newline for separating the different proteins. The
most frequent characters were “LSAGEPVTRKQDIFNYHMCW?” in decreasing
order of frequency. Figure 5 shows the results of these experiments. We see
that in this case the speedup of our method is smaller than for English data:
For patterns of length 100 we are up to two times faster than when sequentially
scanning the text, while for English data we were five times faster. We notice
that choosing which text to search based on estimating the cost does not work
as well as with English data as for pattern lengths 50 and 100 the basic version
performs better than alphabet sampling choosing the text based on estimated
cost.

It is interesting that succinct alphabet sampling actually reduces the search
times by up to 40 % even on truly random data, as shown in Figure 6. We also
note that choosing the best text to search for based on the estimated cost works
even worse than for protein data, as the basic version outperforms the estimated
version for alphabet sampling on long patterns. Still succinct alphabet sampling
performs better.

4. Sampled Suffix Array

To turn the sampling approach into an index, we use a suffix array to index
the sampled positions of the text.When constructing the suffix array, only suf-
fixes starting with a sampled character will be considered, but the sorting will
still be done considering the full suffixes. The resulting sampled suffix array is
like the suffix array of the original text where suffixes starting with unsampled
characters have been omitted.

The construction of the sampled suffix array can be done in O(n) time using
O(nx) words of space if we apply the construction technique of the word suffix

13

0.8

0.6

Runtime (s)

0.4

0.2

0.4

0.3

Runtime (s)

0.2

0.1

Figure 3: The running time of alphabet sampling and succinct alphabet sampling for pattern

m=10

*--- Estimated, mapping q=8
--—»--- Estimated, bitmap
—— Estimated, succinct

@~ Optimal, mapping q=8
---o-- Optimal, bitmap

e Ol?limal, sucqincl

0 5 10 15 20
Number of different characters removed

m=50

Eslim‘ated, mappi‘ng q=8 - ‘*
Estimated, bitma

Estimated, succinct —+—
Optimal, mapping q=8 &

Optimal, bitmap -~

Optimal, succinct —-a-~

0 5 10 15 20
Number of different characters removed

lengths 10, 20, 50, and 100.

14

Runtime (s)

Runtime (s)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.6

0.5

0.4

0.2

0.1

m=20

*---- Estimated, mapping q=8
--—%--- Estimated, bitmap
r —+— Estimated, succinct 1
- Optimal, mapping q=8
-~ Optimal, bitmap
——+—— Optimal, succinct

.
0 5 10 15 20
Number of different characters removed

m=100

T T
Estimated, mapping q=8 -
Estimated, bitmap
Estimated, succinct
Optimal, mapping g=8 &
Optimal, bitmap -~
Optimal, succinct —-a-~

0 5 10 15 20
Number of different characters removed

w

2.5

1 T T T T T

A]p‘habct samp‘ling, mappi‘ng q=8 — ‘ BMI‘-[—
Alphabet sampling, mapping q=32 ---- 0.9 Alphabet sampling, q=8 --- 7
2 L Alphabet sampling, bitmap % | 08 Succinct alphabet sampling -
Succinct alphabet sampling &
o 0.7
=) —~
B 1.5 1 < 06
=1 o
z £ 05
g E
g 1+ 1 2 0.4
03) 1
05 1 02 F
0.1 [
0L 0
0 5 10 15 20 10 20 30 40 50 60 70 80 90 100
Number of different characters removed m

Figure 4: On the left, memory usage for the various semi-indexes, reported as size of the index
(including the text) divided by the size of the text. On the right, the running time of the
original BMH algorithm and alphabet sampling as a function of the pattern length when the
13 most frequent characters are removed to form the sampled alphabet.

m=10 m=20
1 0.6
0.8] 0.5 4
- ~ 04} 9
2 2
T 06 1 b
£ £ o3} 1
=]
g 2 o2t g
0.2 - —— Basic, bitmap 1 0.1 | — Basic, bitmap i
- Estimated, bitmap . - - Estimated, bitmap
o L *oo Estimated, succiqct) o R Eslimated, succinf:t)
0 5 10 15 20 0 5 10 15 20
Number of different characters removed Number of different characters removed
m=50 m=100
0.6 0.6
05 1 0.5 F 9
2 04 1 2 04 9
Py Py
£ o3¢ — £ o3} 1
1= =}
= =
202t — %02t 1
ol —— Basic, bitmap B N Basic, bitmap i
. ----x--- Estimated, bitmap . ----%--- Estimated, bitmap
0 e Estimated, succiqct) o TR Eslirpated, succiqct)
0 5 10 15 20 0 5 10 15 20
Number of different characters removed Number of different characters removed

Figure 5: The running time of alphabet sampling and succinct alphabet sampling for protein
data with pattern lengths 10, 20, 50, and 100.

15

0.8 T 0.5
0.7 g) o B
TR Ky e et Ko NN 04 TR s KKK
0.6 i
Z 051] Z 03t 1
Q o
E o4t] £
] E
g 03t 1 g 02r]
02 L 1 I
—+— Basic, bitmap 0.1 - —+— Basic, bitmap 1
0.1 -—---- Estimated, bitmap q ----x--- Estimated, bitmap
0 [*- Bstimated, succinct) o L *-— Bstimated, succinct)
0 5 10 15 20 0 5 10 15 20
Number of different characters removed Number of different characters removed
m=50 m=100
0.5 — T T T 0.5 T T T T
- R i
04 S VI 4 04 S NI
03} fal S s 2 | <03t ,
£ £
g o2p — s o2 1
0.1 - —+— Basic, bitmap 1 0.1 - —— Basic, bitmap 1
----x--- Estimated, bitmap ----%--- Estimated, bitmap
0 R Estimalcd, succinpl) o R Estimalcd, succiqcl)
0 5 10 15 20 0 5 10 15 20
Number of different characters removed Number of different characters removed

Figure 6: The running time of alphabet sampling and succinct alphabet sampling for random
data of alphabet size 26 with pattern lengths 10, 20, 50, and 100.

array [21]. The sampled suffix array for the text T = abaacabdaa is shown in
Fig. 7, where the sampled alphabet is Xx = {b, ¢, d}.

Search on the sampled suffix array is carried out as follows. Given a pattern
P =p;...p, we first find the first sampled character of the pattern. Let this
be at index j. The pattern is now divided into the unsampled prefix p; ...p;—1
and the suffix starting with the first sampled character p;...p,. We search
the sampled suffix array for this suffix of the pattern like in an ordinary suffix
array. Each candidate match returned by this search will then be verified by
comparing the unsampled prefix against the text.

We could also construct the suffix array directly for Ty, and search for
Px, but this would entail more verifications as the unsampled characters of the
pattern suffix would not be required to match. We would also need to store the
sampled text, or to skip the unsampled characters in the original text each time
we read a suffix. For the same reasons using a scheme splitting into T'x and Ty
does not make sense in this scenario.

The sampled suffix array resembles a sparse suffix array [10], which indexes
regularly sampled text positions. However, we only need to make one search on
the sampled suffix array, while using a sparse suffix array one needs to make ¢
searches if the sparse suffix array indexes every gth position. On the other hand,
the sampled suffix array can only be used for patterns that contain at least one
sampled character, whereas the sparse suffix array can be used if the pattern
length is at least ¢q. The variance of the search time when using the sampled

16

Sampled SA

baacabdaa
T= abaacabdaa
12345678910

Figure 7: The sampled suffix array for the text T" = abaacabdaa with the sampled alphabet
Yx = {b,c,d}. The sorted suffixes are only shown for convenience. They are not part of the
structure.

suffix array is also larger than when using a sparse suffix array because in the
sampled suffix array we have much less control over the length of the string that
is used in the suffix array search.

4.1. Optimal Sampling

Suppose that we have enough space to create the sampled suffix array for
b - n suffixes where 0 < b < 1. How should we now choose the sampled alphabet
Y x so that the search time would be optimal? Obviously by, ~ b, but we still
have a number of possible sampled alphabets to choose from. The search on
the suffix array will compare the suffix of the pattern starting with the first
sampled character against a text string O(logn) times. The comparison time is
minimized when the probability of matching for the first sampled character is
minimized (the fate of the rest of the comparison is independent of the choice of
Y x). Thus the sampled alphabet ¥ x should be a set of least frequent characters.

Let us then consider the verification. The probability that two random
characters are unsampled and match is ar = ax — ax,, where R is the set of
removed characters. Thus the average cost of a single verification is 1/(1 —ag +
agx).

The probability that the suffix of the pattern starting with the first sampled
character matches a random string of equal length is

Pr(1st char of string is sampled)
- Pr(1st char matches given that it is sampled)

- Pr(rest matches)

ay 5 me—1 as x me—1
= byy -5 (ax)™ " = —(ax)™
* b%X bEx

where my is the length of the suffix starting with the first sampled character.
This is also the probability of verification per character in the original text. The
average cost of verification per text character is then

)ms—l

.17a2+agx o 170,24’&2)(ng

azx(

)ms—l 1 ay) (CLZ
bs

Because we attempt to determine the optimal sampled alphabet such that by, =
b, bs:, and the distribution of m, do not depend on which characters we remove.

17

Thus we should minimize f(as,) = as,/(1 — ax + as,). The derivative of
f(aEX) is 1

/ — ay

f (ClEX) = (1 —as +CLZX)2 >0

so the verification cost increases when ay, increases. (Thus the best in terms
of time is to use the original suffix array, with by, = ax, = 0; we are fixing
by, at a threshold b with the aim of reducing space, not time.) To minimize
ax, with fixed by, the sampled alphabet ¥ x should be a set of least frequent
characters. This also minimizes the total cost because also the suffix array
search cost is minimized by this choice. Interestingly, this corresponds to the
simplified heuristic we proposed in Section 2.1.

4.2. Experimental Results

Figure 8 shows the results obtained by comparing our sampled suffix array
against our implementation of the sparse suffix array [10] and the locally com-
pressed suffix array (LCSA) [22], an index that compresses the differential suffix
array using grammar-based compression. Note that when the space usage of the
sampled or sparse suffix array is maximal (3.25 times the text) both of them
index all suffixes and behave exactly like a normal suffix array.

The experiments in this section were run on a Pentium IV 2.0 GHz processor
with 2GB of RAM running SuSE Linux with kernel 2.4.31. The code was
compiled using gcc version 3.3.6 with -09 optimization. We used 50 MB English,
protein, and XML texts from the PizzaChili site.

Our approach performs very well for moderate to long patterns. It is super-
seded by the sparse suffix array up to m = 50, from where it starts to dominate
the other alternatives. For m = 100 the sampled suffix array behaves almost
like a suffix array (and much faster than the other methods), even when using
less than 0.5 times the text size (plus text).

The novel compressed self-indexes [9, 8] are designed to use much less space
(e.g., 0.8 times the text size including the text) but take much more time at
reporting the occurrences, and thus are inappropriate for this comparison. We
chose the LCSA as an alternative that compresses less but is much faster than
the other self-indexes [22]. Its compression performance varies widely with the
text type, and is not particularly good on English and proteins. On XML it
requires extra space equal to the size of the text, yet its times are much higher
and fall well outside the plot (and this is still much faster than the other self-
indexes!). The LCSA, on the other hand, would perform better on shorter
patterns, where our index is not competitive.

5. Conclusions

We have presented two approaches to speed up string matching with mod-
erate to long patterns. Both are based on creating a sample of the text by
choosing some characters of the alphabet. A first approach is a semi-index

18

m=20 m=20

3 T 0.1
i ' | ' ' ' Sparse ‘SA XML —-—4--- ' Sbarse SA‘ English J—
X ! Sampled SA XML ---8--- [a] Sparse SA Proteins -+
25 | kY i 4 Sampled SA English —&—
— \ o8 ~ 008 Sampled SA Proteins &
E N \ a_>; LCSA English —e—
3> s \ 4 > LCSA Proteins o
=3 N T
] * g & 006 [g
a X a
1 \ 123
g 15F *, 1 $
2 N 2
= . = 004 q
E L] E
o o
£ E
05 L | 002 | R
0 L L L L L L 0 L L L L L L
1 1.5 2 25 3 35 4 4.5 1 1.5 2 25 3 35 4 4.5
space (fraction of the text) space (fraction of the text)
m=50 m=100
0.1 T T T 0.1 T T T T
Sparse SA XML ---+--- Sparse SA XML --—---
Sparse SA English —+— Sparse SA English —+—
Sparse SA Proteins -+ Sparse SA Proteins -+
~ 008 Sampled SA XML ---&--- _ 008G Sampled SA XML ---=---
g Sampled SA English —&— g Sampled SA English —=—
=] Sampled SA Proteins & S Sampled SA Proteins &
N L¢ nglish —e— 4 LCSA English —e—
g 006 LCSA Proteins e~ g 006 LCSA Proteins e~
8 3
o 1]
2 3
= 004 | Bl = 0.04 B
£ E
o o
£ E
<002 002 B
0 0
1 15 2 25 3 35 4 45 1 15 2 25 3 35 4 45
space (fraction of the text) space (fraction of the text)

Figure 8: Search times for the sampled and sparse suffix arrays and LCSA for XML, English
and protein data. LCSA uses little space for XML data but it is much slower than the other
approaches, so these results are not shown. The top figures show results for pattern length 20
and the bottom figures show the results for pattern lengths 50 and 100. The space fraction

includes that of the text, so it is of the form 1 + “;dexJ
ext size

where the search in the sampled text is sequential. The second approach builds
a suffix array on the sampled text.

The semi-index profits from nonuniform character distribution to gain a
speedup of up to 5 times over online searching, at the price of 1.05 extra bits
per symbol, that is, around 14 % extra space. The sampled suffix array works
also with a uniform distribution, and matches the performance of the full suffix
array while using just 1/8 of its space, that is, 50 % of space overhead over the
text size.

It is worth noting that in the semi-index approach the text to search is an
internal structure of the semi-index so any transform, like compression or code
splitting [16], could be applied to it.

In particular, we could easily compress the text of the sampled suffix array in
order to reduce the total space and make it more competitive with compressed
self-indexes. Consider applying Hu-Tucker (or Garsia-Wachs) compression to
the text [23]. This is similar to Huffman coding but it preserves the lexico-
graphic order of the code, and therefore the comparisons carried for searching
on the suffix array can be made directly between the compressed pattern and

19

the compressed text [24]. This compression achieves at worst one bit over the
file size achieved by Huffman compression. Using Hu-Tucker, we would even
improve our search times (as there are fewer bytes to compare on average to
decide each comparison®), and still compress the text to its zero-order entropy
plus at most 2 bits. On our 50MB English file, we would compress the text to
4.8 bits per character. As now the suffix array points to bit offsets, pointers use
two more bits (28 instead of 26) in our example. Considering a sampled suffix
array using 1/8 of the pointers, which was rather efficient in our experiments,
the overall space is 8.3 bits per character, that is, almost the same size of the
original file. Note this size includes the compressed text and its sampled suffix
array.

The current approach is not applicable to small alphabets. To extend the
approach to that case we could use g-grams. In the semi-index approach we
would then define a sampled alphabet for each (¢ — 1)-long context and the
sampled text would contain those characters that are sampled in the context
where they occur. When searching for a pattern, we must always discard the
first ¢g—1 characters of the pattern as their context is not known. Using g-grams
with the sampled suffix array is simpler. The sampled suffix array would just
index all suffixes starting with a sampled ¢-gram.

Another case where our method does not apply is that of short patterns.
For the sampled semi-index one can use any pattern matching algorithm well
suited for this task [17, 25], directly on T'. For the succinct alphabet sampling,
where the text is partitioned into Tx and Ty, we could sequentially search the
bitmap B that describes the partitioning of the text, for the bitmap Bp that
describes the partitioning of the pattern, and both Tx and Ty would be used
for verification (via rank queries on B to find the proper locations). The use
of a binary alphabet would make it possible to search for short and moderate
patterns quite efficiently. For example, one can preprocess every w = log%—long
bitmap so that one can run a KMP-like [1] algorithm on B, yet advancing by
chunks of w bits: We build a table of \/n - m entries, within O(m/n) time.
Each entry corresponds to a w-bit chunk and a KMP state, and tells the new
KMP state at the end of the chunk, listing also the occurrences found within
the chunk.

Another interesting direction of future work for the succinct semi-index is
to partition the alphabet into more than two partitions. We would then keep a
text for each alphabet partition and replace the bitmap by a sequence indicating
the partition of each character in the text. When searching we could scan any
of the texts and use the sequence and other texts for verification.

6The compressed pattern must be padded to the next byte boundary by adding zero bits
when searching for the left suffix array interval, and one bits when searching for the right
interval.

20

References

[1] D. E. Knuth, J. H. Morris, V. R. Pratt, Fast pattern matching in strings,
SIAM J. Comput. 6 (2) (1977) 323-350.

[2] A. C. Yao, The complexity of pattern matching for a random string, STAM
J. Comput. 8 (3) (1979) 368-387.

[3] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, W. Rytter, Speeding up two string-matching algorithms,
Algorithmica 12 (4) (1994) 247-267.

[4] R. N. Horspool, Practical fast searching in strings, Software — Practice &
Experience 10 (6) (1980) 501-506.

[5] A. Apostolico, The myriad virtues of suffix trees, in: A. Apostolico, Z. Galil
(Eds.), Combinatorial Algorithms on Words, Vol. 12 of NATO Advanced
Science Institutes, Series F, Springer-Verlag, 1985, pp. 85-96.

[6] U. Manber, G. Myers, Suffix arrays: A new method for online string
searches, SIAM J. Comput. 22 (5) (1993) 935-948.

[7] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing suffix trees with
enhanced suffix arrays, J. Discrete Algorithms 2 (1) (2004) 53-86.

[8] G. Navarro, V. Mékinen, Compressed full-text indexes., ACM Comput.
Surv. 39 (1) (2007) 1-61.

[9] P. Ferragina, R. Gonzélez, G. Navarro, R. Venturini, Compressed text in-
dexes: From theory to practice, ACM J. Exp. Algorithmics 13 (2009) article
12, 30 pages.

[10] J. Kéarkkiinen, E. Ukkonen, Sparse suffix trees, in: Proc. 2nd Annual Inter-
national Conference on Computing and Combinatorics (COCOON), LNCS
1090, 1996, pp. 219-230.

[11] U. Manber, S. Wu, GLIMPSE: A tool to search through entire file systems,
in: Proc. USENIX Technical Conference, USENIX Association, Berkeley,
CA, USA, Winter 1994, pp. 23-32.

[12] G. Navarro, R. Baeza-Yates, E. Sutinen, J. Tarhio, Indexing methods
for approximate string matching, IEEE Data Engineering Bulletin 24 (4)
(2001) 19-27.

[13] S. Puglisi, W. Smyth, A. Turpin, Inverted files versus suffix arrays for locat-
ing patterns in primary memory, in: Proc. 13th International Conference on
String Processing and Information Retrieval (SPIRE), LNCS 4029, 2006,
pp. 122-133.

[14] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local
alignment search tool, J. Mol. Biol. 215 (3) (1990) 403-410.

21

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

E. Moura, G. Navarro, N. Ziviani, R. Baeza-Yates, Fast and flexible word
searching on compressed text, ACM T. Inform. Syst. 18 (2) (2000) 113-139.

J. Rautio, J. Tanninen, J. Tarhio, String matching with stopper encoding
and code splitting, in: Proc. 13th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 2373, 2002, pp. 45-52.

G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings — Practical
on-line search algorithms for texts and biological sequences, Cambridge
University Press, 2002.

D. Clark, Compact pat trees, Ph.D. thesis, University of Waterloo (1996).

I. Munro., Tables, in: Proc. 16th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), LNCS 1180,
1996, pp. 37-42.

R. Gonzalez, S. Grabowski, V. Mékinen, G. Navarro, Practical implemen-
tation of rank and select queries, in: Poster Proc. 4th Workshop on Efficient
and Experimental Algorithms (WEA), 2005, pp. 27-38.

P. Ferragina, J. Fischer, Suffix arrays on words, in: Proc. 18th Annual
Symposium on Combinatorial Pattern Matching (CPM), LNCS 4580, 2007,
pp. 328-339.

R. Gonzalez, G. Navarro, Compressed text indexes with fast locate, in:
Proc. 18th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 4580, 2007, pp. 216-227.

D. E. Knuth, The Art of Computer Programming: Sorting and Searching,
2nd Edition, Vol. 3, Addison-Wesley, 1998.

E. Moura, G. Navarro, N. Ziviani, Indexing compressed text, in: Proc. 4th
South American Workshop on String Processing (WSP), Carleton Univer-
sity Press, 1997, pp. 95-111.

K. Fredriksson, S. Grabowski, Practical and optimal string matching, in:
12th International Conference on String Processing and Information Re-
trieval (SPIRE), LNCS 3772, 2005, pp. 376-387.

22

