
A Hybrid Indexing Method for
Approximate String Matching

GONZALO NAVARRO1, Dept. of Computer Science, University of
Chile. Blanco Encalada 2120, Santiago, Chile.
gnavarro@dcc.uchile.cl

RICARDO BAEZA-YATES1, Dept. of Computer Science, University
of Chile. Blanco Encalada 2120, Santiago, Chile.
rbaeza@dcc.uchile.cl

ABSTRACT:We present a new indexing method for the approximate string matching problem.
The method is based on a suffix array combined with a partitioning of the pattern. We analyze
the resulting algorithm and show that the average retrievaltime isO(n� log n), for some� > 0
that depends on the error fraction tolerated� and the alphabet size�. It is shown that� < 1
for approximately� < 1 � e=p�, wheree = 2:718:::. The space required is four times the
text size, which is quite moderate for this problem. We experimentally show that this index can
outperform by far all the existing alternatives for indexedapproximate searching. These are
also the first experiments that compare the different existing schemes.

Keywords: Suffix tries, suffix trees, text searching allowing errors,text indexing, computational biology.

1 Introduction

Approximate string matching is a recurrent problem in many branches of computer
science, with applications to text searching, computational biology, pattern recogni-
tion, signal processing, etc.

The problem is: given a long text of lengthn, and a (comparatively short) pattern
of lengthm, retrieve all the text segments (or “occurrences”) whoseedit distance(ed)
to the pattern is at mostk. The edit distancebetween two strings is defined as the
minimum number of character insertions, deletions and replacements needed to make
them equal. We define the “error level” as� = k=m.

In the on-line version of the problem, the pattern can be preprocessed but the text
cannot. The classical solution uses dynamic programming and isO(mn) worst case
time [33]. A number of algorithms improved later this result[26]. The lower bound
of the on-line problem (proved and reached in [10]) isO(n(k + log�m)=m) average
search time, where� is the size of the alphabet�. This is of course
(n) for constantm.

If the text is large even the fastest on-line algorithms are not practical, and prepro-

1This work has been supported in part by Fondecyt grants 1-990627 and 1-000929.

J. of Discrete Algorithms, Vol. 0 No. 0, pp. 1–35, 0000 c
 Hermes Science Publications

2 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

cessing the text becomes necessary. However, just a few years ago, indexing text for
approximate string matching was considered one of the main open problems in this
area [40, 3].

Despite some progress in the last years, the indexing schemes for this problem are
still rather immature. The existing indexes do not perform well in practice. Some of
them, based on suffix trees, are impractically large (12 to 70times the text size), do not
behave well in secondary memory, and suffer from an exponential dependence on the
pattern length or onk in their search time. Others, based on filtration, have reasonable
space requirements but permit only a very low error level� at search time.

We present an index which is practical and can be considered as a hybrid between
the two approaches mentioned above. The main novelty is thatit uses a suffix tree-
like approach but, to avoid the exponential dependence onm or k, the search pattern
is split in smaller subpatterns and their occurrences are later integrated. It is shown
that this is an intermediate option between the extremes represented by the two pre-
vious approaches and that the optimum search time is not on these extremes but in
between. We show analytically that the average search time obtained using the opti-
mal partitioning scheme isO(n� logn), where� < 1 when� < 1 � e=p�, wheree = 2:718:::2.

On the practical side, we replace the suffix tree by a suffix array, which takes only
four times the text size (this idea is not new) and use a novel node processing algo-
rithm. We show experimentally that the search time on the suffix array is in practice
slower than using the suffix tree only in some cases, for very short texts, and by a
small percentage. On longer texts, on the other hand, the suffix array becomes much
superior. We show experimentally that the hybrid partitionscheme is better than the
two extremes. Finally, we compare our index against the other implemented indexes,
showing that it can be much faster than any alternative approach. In particular, an
approach closer to ours is Myers’ index [24], and we show experimentally that each
index is faster than the other in different cases. This constitutes the first experimental
comparison that includes most of the implemented indexes for the problem.

This paper is organized as follows. Section 2 covers relatedwork in more detail
and puts our results in context. Section 3 explains the basictechniques our approach
builds on. Section 4 presents the core of our contribution. In Section 5 we analyze its
average search time. Section 6 presents all the experimental results and Section 7 our
conclusions. This paper is an extended and improved versionof [29].

2 Previous Work and Our Contribution

There are two types of indexing mechanisms for approximate string matching, which
we call “word-retrieving” and “sequence-retrieving”. Word retrieving indexes [23,
8, 2] are more oriented to natural language text and information retrieval. They can
retrieve everyword whose edit distance to the patternword is at mostk. Hence, they
are not able to recover from an error involving a separator, such as recovering the
word "flowers" from the misspelled text"flo wers", if we allow one error.

2All the average case results of this paper assume that the text is random and that the letters are independently and uniformly distributed.

A Hybrid Indexing Method for Approximate String Matching3

These indexes are more mature, but their restriction can be unacceptable in some
applications, especially where there are no words (as in DNA), where the concept
of word is difficult to define (as in oriental languages) or in agglutinating languages
such as Finnish.

Our focus in this paper is sequence retrieving indexes. Among these, we find two
types of approaches.

A first type is based on simulating a sequential algorithm, running it on the suffix
tree [21, 1, 38] or DAWG (directed acyclic word graph) [12, 9]of the text instead
of the text itself. Asuffix trie is a trie where all the suffixes of the text string have
been inserted. Asuffix treeachievesO(n) worst-case space and construction time by
compressing unary paths of the suffix trie. A DAWG is the minimal automaton that
recognizes all the substrings of the text and is obtained by compressing the suffix tree
via identifying all the final states.

Since every different substring in the text is represented by a single node in the
suffix tree or the DAWG, it is possible to avoid redoing the same work when the
text has repetitions. Those indexes takeO(n) space and construction time, but their
construction is not optimized for secondary memory and theyare very inefficient in
this case (see, however, [13]). Moreover, the structure is very inefficient in space
requirements, since it takes 12 to 70 times the text size (see, e.g. [14]).

In [15, 6], a limited depth-first search (DFS) technique on the suffix tree was intro-
duced. Since every substring of the text (that is, every potential pattern occurrence)
can be found by descending from the root of the suffix tree, it is sufficient to explore
every path starting at the root, descending by every branch up to where it can be seen
that that branch does not represent the beginning of an occurrence of the pattern. This
algorithm was analyzed in [6]. With an additionalO(logn) time factor, it also runs on
suffix arrays [22, 16], which take four times the text size instead of (at least) twelve3.

In [20, 37, 11], on the other hand, more sophisticated algorithms were presented
that traverse the least possible nodes in the suffix tree (or in the DAWG). The idea
is to traverse all the different tree nodes that represent “viable prefixes”, which are
minimal text substrings that can be prefixes of an approximate occurrence of the pat-
tern. Compared to the simple DFS approach, this one avoids entering so deep in the
suffix tree, but its node processing is more expensive and cannot be implemented on
the cheaper suffix array.

In all cases the search time of these algorithms is asymptotically independent onn
but exponentially dependent onm or k, e.g.O(min(3m; (2�m)k)) in the average and
worst cases [37].

The second type of sequence-retrieving indexes is based on adapting an on-line fil-
tering algorithm. Filters are fast algorithms that discardlarge parts of the text checking
for a necessary condition (simpler than the matching condition). Most existing filters
are based in finding substrings of the pattern without errors, and checking for poten-
tial occurrences around those matches. The index is used to quickly find those pattern
substrings, and is in most cases based on storing some textq-grams (substrings of

3These figures come from considering that the suffix array needsn log2 n bits, which is limited by4n bytes ifn � 4 Gb. The text
needsn log2 � bits and it is customary to use one byte per character (that is, � � 256). The suffix tree needs at least3n log2 n bits. In
this paper we use the convention that characters take 1 byte and pointers and integers take 4 bytes.

4 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

lengthq) and their positions in the text.
Different filtration indexes [20, 24, 18, 36, 34, 28] differ mostly in how the text

is sampled (distance between consecutive text samples, whether they overlap or not,
etc.), in how the pattern is sampled, in how many matching samples are needed to
verify their neighborhood in the text, their alignment conditions, etc. Depending on
this and onq they achieve different space-time tradeoffs. In general, filtration indexes
needO(n) space but they are much smaller than suffix trees (1 to 10 timesthe text
size), and can also be built in linear time. The price is that they perform badly for
medium and large error level�. Different analyses show that these indexes can achieve
sublinear search time on average only for� = O(1= log� n).

Somewhat outside the previous classification is [24], because it does not reduce the
search to exact but to approximate search of pattern pieces.To search for a pattern of
lengthm � q � k, all the maximal strings with edit distance� k to the pattern are
generated and searched in the set ofq-grams. Later, all the occurrences are merged.
Longer patterns are split in as many pieces as necessary to make them short enough,
the pieces are searched and their occurrences used to assemble the final answers. The
analysis shows that the average search time isO(kn� logn) for � = log�((
+1)=(
�1)) + � log�
 + �, where
 = 1=� +p1 + 1=�2. This is sublinear when� < 1,
which puts an upper bound on� (which can be numerically computed for each�).

In this paper we study more in depth the technique of reducingthe problem to
approximate searching of pattern pieces. We show that this is essentially a hybrid
between the extremes of suffix tree traversal and filtering byfinding exact pattern
pieces. Moreover, we show that the optimal reduction schemeis between both ex-
tremes, namely partitioning the pattern in�(m= log� n) pieces. The goal is to balance
between the cost to search in the suffix tree (which grows withthe size of the subpat-
terns) and the cost to verify the potential occurrences (which grows when shorter pat-
terns are searched). Unlike [24], which fixes the partitioning at indexing time because
of the constraints ofq, we propose an index than can handle any pattern length (con-
ceptually, a suffix tree) and therefore it can select the bestpartition at query time. We
show analytically that the average search time can be madeO(n2(�+H�(�))=(1+�)),
whereH�(�) is the base-� entropy function. This is sublinear for� < 1 � e=p�,
wheree = 2:718:::. On the other hand, the results of [7, 25] show that sublinearity
cannot be achieved for� � 1� e=p�.

We implement the index using a suffix array instead of a suffix tree. The suffix array
takes only 4 times the text size and multiplies the above search cost only byO(logn).
We also use a faster node processing algorithm based on previous work [7] which is
especially well suited for this case.

Ours and Myers’ can be considered as a third class of algorithms, based on reducing
the problem to approximate search of pattern pieces (an intermediate between the
two extremes of pure suffix tree searching and partitioning into exact searching of
pattern pieces). A very recent work in this line is [31], although they show no analysis
and their comparison against previous work shows that our search times are superior
(albeit they need less space).

A Hybrid Indexing Method for Approximate String Matching5

3 Basics

We present in this section the basic algorithms on which our approach builds.

3.1 Computing Edit Distance

We start with the classical algorithm to compute the edit distance (ed) between two
strings and later show how it is extended for online text searching allowing errors [33].

The algorithm is based on dynamic programming. Imagine thatwe need to computeed(x; y). A matrixC0:::jxj;0:::jyj is filled, whereCj;i represents the minimum number
of operations needed to matchx1:::j to y1:::i. This is computed as followsCj;0 = j; C0;i = iCj;i = if (xj = yi) then Cj�1;i�1else 1 +min(Cj�1;i; Cj;i�1; Cj�1;i�1)
where at the endCjxj;jyj = ed(x; y). The rationale of the above formula is as follows.
First,Cj;0 andC0;i represent the edit distance between a string of lengthj or i and
the empty string. Clearlyj (respectivelyi) deletions are needed on the non-empty
string. For two non-empty strings of lengthj andi, we assume inductively that all the
edit distances between shorter strings have already been computed, and try to convertx1:::j into y1:::i.

Consider the last charactersxj and yi. If they are equal, then we do not need
to consider them and we proceed in the best possible way to convert x1:::j�1 intoy1:::i�1. On the other hand, if they are not equal, we must deal with them in some
way. Following the three allowed operations, we can deletexj and convert in the best
wayx1:::j�1 into y1:::i, insertyi at the end ofx1:::j and convert in the best wayx1:::j
into y1:::i�1, or replacexj by yi and convert in the best wayx1:::j�1 into y1:::i�1. In
all cases, the cost is 1 plus the cost for the rest of the process (already computed).
Notice that the insertions in one string are equivalent to deletions in the other. Figure
1 (left) illustrates this algorithm to computeed("survey", "surgery").

s u r g e r y
0 1 2 3 4 5 6 7

s 1 0 1 2 3 4 5 6
u 2 1 0 1 2 3 4 5
r 3 2 1 0 1 2 3 4
v 4 3 2 1 1 2 3 4
e 5 4 3 2 2 1 2 3
y 6 5 4 3 3 2 2 2

s u r g e r y
0 0 0 0 0 0 0 0

s 1 0 1 1 1 1 1 1
u 2 1 0 1 2 2 2 2
r 3 2 1 0 1 2 2 3
v 4 3 2 1 1 2 3 3
e 5 4 3 2 2 1 2 3
y 6 5 4 3 3 2 2 2

FIG. 1: On the left, the dynamic programming algorithm to compute the edit distance
between"survey" and"surgery". The bold entry shows the final result. On
the right, the variation to search"survey" in the text"surgery". Bold entries
indicate matching text positions whenk = 2.

6 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

Therefore, the algorithm isO(jxjjyj) time in the worst and average case. However,
the space required is onlyO(min(jxj; jyj)). This is because, by a column-wise pro-
cessing, only the previous column must be stored in order to compute the new one, and
therefore we just keep one column and update it. We can process the matrix row-wise
or column-wise so that the space requirement is minimized.

We show now how to adapt this algorithm to search a short patternP in a long textT . The algorithm is basically the same, withx = P andy = T (proceeding column-
wise so thatO(m) space is required). The only difference is that we must allowthat
any text position is the potential start of a match. This is achieved by settingC0;i = 0
for all i 2 0 : : : n. That is, the empty pattern matches with zero errors at any text
position (because it matches with a text substring of lengthzero).

The algorithm then initializes its columnC0:::m with the valuesCj = j, and pro-
cesses the text character by character. At each new text characterTi, its column vector
is updated toC 00:::m. The update formula isC 0j = if (Pj = Ti) then Cj�1else 1 +min(C 0j�1; Cj ; Cj�1)
and the text positions whereCm � k are reported.

The search time of this algorithm isO(mn) and its space requirement isO(m).
Figure 1 (right) exemplifies.

3.1.1 A Bit-parallel Simulated NFA
An alternative and very useful way to consider the problem isto model the search with
a non-deterministic automaton (NFA) [39, 40, 4, 7].

Consider the NFA fork = 2 errors under edit distance shown in Figure 2. Every row
denotes the number of errors seen (the first row zero, the second row one, etc.). Every
column represents matching a pattern prefix. Horizontal arrows represent matching
a character (i.e. if the pattern and text characters match, we advance in the pattern
and in the text). All the others increment the number of errors (move to the next
row): vertical arrows insert a character in the pattern (we advance in the text but not
in the pattern), solid diagonal arrows replace a character (we advance in the text and
pattern), and dashed diagonal arrows delete a character of the pattern (they are"-
transitions, since we advance in the pattern without advancing in the text). The initial
self-loop allows a match to start anywhere in the text. The automaton signals (the
end of) a match whenever a rightmost state is active. Withoutthe initial self-loop, the
automaton computes edit distance.

It is not hard to see that once a state in the automaton is active, all the states of the
same column and higher rows are active too. Moreover, at a given text position, if
we collect the smallest active rows at each column, we obtainthe vertical vector of
the dynamic programming algorithm (in this casef0; 1; 2; 3; 3; 3; 2g, compare to right
table of Figure 1).

This NFA is implemented in [7] using “bit-parallelism”: thestates of the NFA are
mapped to bits in a computer word, and all the updates required to all the states when

A Hybrid Indexing Method for Approximate String Matching7

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

FIG. 2: An NFA for approximate string matching of the pattern"survey" with two
errors. The shaded states are those active after reading thetext"surgery".

a new text character is read are performed inO(1) operations on the whole machine
word. The simulation needs(m � k)(k + 2) bits for the simulation, since only the
full diagnoals need to be represented. The first full diagonal is furthermore excluded
because the initial self-loop makes it always active. If those bits do not fit in a single
computer word then the cost to update the NFA isO((m � k)(k + 2)=w) per text
character, wherew is the number of bits in the machine word. This yields a total
worst case time ofO(mkn=w), which is very fast for short patterns. The reader is
referred to the original paper for the details of the simulation.

3.2 DFS over Suffix Trees

The number of strings that match a patternP with at mostk errors is finite. This is
immediately clear if we see that the length of any such stringmust be betweenm� k
andm+ k, since otherwise more thank deletions or insertions would be necessary to
convert one into the other. We call this set of strings the “k-neighborhood” ofP , and
denote it Uk(P) = fx 2 ��; ed(x; P) � kg

The idea of this approach is, in essence, to generate all the strings in the neigh-
borhood ofP and search them in the text (without errors). It is clear thatthe answer
is the set of all positions where the strings inUk(P) appear. Each such string can be
found by using an exact search technique, as done in [24], or with a more sophisticated
technique, as explained shortly.

The main problem with this approach is thatUk(P) is quite large. For instance,U1("hello") isf ello; hllo; helo; hell g [[x2�f xello; hxllo; hexlo; helxo; hellx g [

8 J. of Discrete Algorithms, Vol. 0 No. 0, 0000[x2�f xhello; hxello; hexllo; hellxo; hellox g
An analysis in [39] shows that, by considering the number of different sequences

of k edit operations that can be performed overP , the number of different resulting
elements can be upper bounded byjUk(P)j � 125 (m+ 1)k(� + 1)k = O(mk�k)
which shows an exponential growth withk. A slightly more elaborated upper bound is
given in [24], where “maximal” neighborhood elements, i.e.neighborhood elements
that are not prefixes of others, are considered. We call this setU tk(P) � Uk(P). An
upper bound forjU tk(P)j is obtained by working on the recurrence that defines an
approximate occurrence (Section 3.1). The result is shown to bejU tk(P)j �
k+1(
+ 1)m(
� 1)m+1 �k
for any
 > 1, a formula that is minimized for
 � 1=� +p1 + 1=�2 (recall that� = k=m). This is still exponential onk.

Both bounds show that this approach works well for smallm andk values. Other-
wise the number of elements to search makes the problem intractable.

However, searching all the strings one by one is not the smartest choice. A more
clever search strategy is possible if we use the suffix array (or tree) as the data structure
to implement this search [15, 6, 37]. Since every substring of the text (i.e. every
potential occurrence) can be found by traversing the suffix tree from the root, it is
sufficient to explore every path starting at the root, descending by every branch up to
where it can be seen that that branch cannot be the beginning of a string inUk(P).

We explain now the detailed algorithm (on a suffix trie for simplicity), although it is
not hard to adapt it to the suffix tree or array. We choose an algorithm that determines
the edit distance betweenP and any other stringx. The algorithm must be able to:(a) consider the stringx incrementally,(b) determine whened(P; x) � k, and(
)
determine whened(P; xy) > k for any y. The state of the algorithm is initialized
and we start at the root of the tree. Now, we descend recursively by every branch of
the suffix tree. When we descend by a branch labeled by the lettera, the comparison
algorithm addsa to the current stringx. If the algorithm determines thated(P; x) � k,
we report all the leaves of the current subtree as answers. If, on the other hand, the
algorithm determines thated(P; xy) > k for any stringy, we abandon immediately
that branch. Otherwise, we continue recursively descending in the suffix tree.

The algorithm is shown in Figure 3. Recall that each suffix tree nodeN corresponds
to a different text substringx. At each invocationS reflects the result of comparingP
against the text substringx represented byN . The first"if" corresponds to action(b) in the comparison algorithm, while the second corresponds to action(
). The
operationUpdate corresponds to action(a), where the lettera is added to the current
stringx corresponding to stateS. Notice that the algorithm is recursive and a set of
statesS is stacked along the execution. This stack has height at mostm+ k.

A Hybrid Indexing Method for Approximate String Matching9

Search (Suffix Tree Node N, Search State S)
if (S implies a match between P and N)

Report all the leaves below N
else if (S implies that N can be extended to match P)

for each tree edge N ! N 0 labeled a
Search (N 0,Update(S; a))

FIG. 3. The algorithm to find the neighborhood of a pattern using the suffix tree.

In [15, 6] the comparison algorithm used is the dynamic programming algorithm we
have presented in Section 3.1. Each new character ofx corresponds to a new column in
the matrix, and the stateS is simply the last column processed (O(m) space). Adding
a new letter (action(a)) can be done by updating the last columnS, in O(m) time. A
match is detected (action(b)) when the last element of the columnS is� k. Also, it
is known thatx cannot be extended to matchP (action(
)) when all the values of the
last column are> k.

Figure 4 illustrates the process. We show the path that spells out the string"surgery".
The matrix can be seen now as a stack (that grows to the right).With k = 2 the back-
tracking ends indeed after reading"surge" since that string matches the pattern
(action(b)). If we had insteadk = 1 the search would have been pruned (action(
))
after considering"surger", and in the alternative path shown, after considering
"surga", since in both cases no entry of the matrix has a 1 or 0.

Yet other even more sophisticated traversal techniques arepossible [37, 11] but, as
we show later, they are not better in practice.

3.3 Filtration Techniques

Each approximate match of a pattern contains some pattern substrings that match with-
out errors. This means that it is possible to derive sufficient conditions for an approxi-
mate match based on exact matching of one or more carefully selected pattern pieces.
The text can be scanned for the exact occurrences of the pattern pieces selected, and
the text areas surrounding those occurrences can be verifiedfor an approximate oc-
currence of the complete pattern. This has been well known for a long time in on-line
algorithms, giving rise to the so-called “filtration” techniques [26].

The application of the idea to indexed searching is as follows: some kind of index
is used to help locate quickly theexactoccurrences of the selected pattern pieces, and
once their positions in the text are known, a classical on-line algorithm is run on the
candidate text areas to check for real occurrences of the pattern. A general limitation
of all those methods (on-line and indexed) is due to the nature of the problem: there is
always a maximum error ratio� up to where they are useful, as for larger error levels
the text areas to verify cover almost all the text.

A general lemma can be used to abstract from the many existingvariants of exact
partitioning.

10 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

5
4
3
2
2
2
2

s

u

r

g

e

r

y

a

s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2
FIG. 4: The dynamic programming algorithm run over the suffix tree. We show just
one path and one additional link.

LEMMA 3.1
LetA andB be two strings such thated(A;B) � k. LetA = A1x1A2x2:::xk+s�1Ak+s,
for stringsAi andxi and for anys � 1. Then, at leasts stringsAi1 : : : Ais appear inB. Moreover, their relative distances insideB cannot differ from those inA by more
thank.

That is, we can selectk + s non-overlapping pieces fromA, and at leasts of them
must appear unaltered inB. This is clear if we consider the sequence of at mostk
edit operations that convertA intoB. As each edit operation can affect at most one of
theAi’s, at leasts of them must remain unaltered. The extra requirement on relative
distances follows by considering thatk edit operations cannot produce misalignments
larger thank. Figure 5 illustrates the lemma.

The lemma can be used in different ways. In particular, two main branches of
algorithms based on it exist, differing essentially in where (pattern or text) are the
errors assumed to occur. That is, the branch explored in [34,28] considerP = A
andT 0 = B (whereT 0 is an occurrence ofP in T), while the branch explored in
[20, 18, 36] considerT 0 = A andP = B. A very simple application of the lemma
[30] is to split the pattern ink + 1 pieces and check the text area surrounding each
exact occurrence of a piece in the text.

However, Lemma 3.1 can be relaxed to permit the presence of some errors in the
pieces:

A Hybrid Indexing Method for Approximate String Matching11

A

B

A1

A1

A2

A2’

A3 A4 A5

A5A4’A3

x1 x2 x3 x4

FIG. 5: An example of Lemma 3.1 withk = 3 ands = 2. At least 2 of theA0is
survive unaltered. They are actually 3 such segments in thisexample because one of
the errors appeared inx2. Another possible reason could have been more than one
error occurring in a singleAi.
LEMMA 3.2
LetA andB be two strings such thated(A;B) � k. LetA = A1x1A2x2:::xj�1Aj ,
for stringsAi andxi and for anyj � 1. Then, at least one stringAi appears inB with
at mostbk=j
 errors.

The proof is similar to that of Lemma 3.1: since at mostk errors are performed onA to convert it intoB, at least one of theAi’s get no more thanbk=j
 of them. Note
that Lemmas 3.1 and 3.2 have a common point atj = k + 1 ands = 1. Figure 6
illustrates.

A

B

A2 A3x2x1A1

A3’A2’A1’

FIG. 6: Illustration of Lemma 3.2, wherek = 5 andj = 3. At least one of theAi’s
has at most one error (in this caseA1).

It is worthwhile to note that it is possible thatjbk=j
 < k, so we are not only
“distributing” the errors across pieces but also “removing” some of them.

In this case, the idea is to partition the pattern in less thank+1 pieces, so one cannot
guarantee that there are pieces free of errors. However, onecan reduce the number of
errors that may appear in at least one of the pieces. There exist filtration approaches
based on different interpretations forA andB [24, 31]. The one we use in this paper
corresponds toP = A, xi = " andB = T 0, whereT 0 is an occurrence ofP in T . The
patternP is split in j pieces and these are searched allowingbk=j
 errors in the text.
Only the text areas surrounding those occurrences can contain a complete occurrence
of P .

4 Combining Suffix Trees/Arrays and Pattern Partitioning

We present now our proposal. The general idea is to partitionthe pattern in pieces,
search each piece in the suffix tree in the classical way, and check all the positions
found for a complete match. We first consider how to search a piece in the suffix

12 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

tree, then we address the pattern partitioning issue, and finally discuss a suffix array
implementation.

4.1 DFS Using the NFA

We combine the DFS over suffix trees (Section 3.2) with our NFAsimulation (Sec-
tion 3.1.1). Recall that the former consists of a limited depth-first search on the suffix
tree, starting at the root and stopping when it can be seen that the current text substring
cannot start an approximate pattern occurrence. No text occurrence can be missed be-
cause every text substring can be found starting from the root.

The reason to combine DFS with our NFA as its node processing algorithm is as
follows. According to [26], the NFA simulation [7] is the fastest algorithm for short
patterns. This is precisely the type of patterns that we are going to search with this
method, since longer patterns will be split in many subpatterns. As the next section
makes clear, if the pattern is long enough to make another node processing algorithm
better, it is because the pattern pieces are so long that the exponential nature of the
search cost on suffix trees will make the whole approach useless. On the other hand,
there exist (filtering) algorithms that for low error levelsare faster than our choice,
e.g. [30], but those algorithms need to skip over the text, which is not possible in this
setup.

The use of the NFA node processing algorithm is only possiblebecause of the sim-
plicity of the DFS traversal. For instance, the idea does notwork on the more complex
setup of [37, 11], since these need some adaptations of the dynamic programming al-
gorithm that are not easy to parallelize. The tradeoff is: wecan explore less nodes
at higher cost per node or more nodes at less cost per node. We show later experi-
mentally that this last alternative is much faster when the NFA is used to process the
nodes.

The NFA is modified as follows. We remove the initial self-loop of the automaton,
so that it forces the whole string read to match the pattern. Initially, the active states at
row i are at the columns from 0 toi, to represent the deletion of the firsti characters of
the pattern. Hence, we start the automaton with its first fulldiagonal active. The other
states in the lower left triangle represent initial insertions in the pattern and hence need
not be represented, since if a substring matches with initial insertions we will find (in
other branch of the suffix tree) a suffix of it which does not need the insertions4.

Relating this to Section 3.2, we have that the three actions needed are(a) add a
new letter to the text, which is accomplished by changing theactive states of the NFA;(b) recognize a match, which is signaled by the fact that the lower-right state of the
automaton is active;(
) determine that the current string cannot be extended to match
the pattern, which is determined when the NFA runs out of active states.

On the other hand, unlike for the online algorithm [7], we need to represent the first
full diagonal of the NFA, since now it will not be always active. The simulation of
this automaton needs(m � k + 1)(k + 2) bits. If we callw the number of bits in the
computer word, then when the previous number is� w we can put all the states in a

4If, after traversing a text substrings, a 1 finally exits from the lower-left triangle, then a suffix of s will do the same without entering into
the triangle.

A Hybrid Indexing Method for Approximate String Matching13

single computer word and workO(1) per traversed node of the suffix tree, using the
bit-parallel simulation algorithm depicted in [7]. For longer patterns, the automaton
is split in many computer words, at a cost ofO(k(m � k)=w). For moderate-size
patterns this improves over dynamic programming, which costsO(m) per suffix tree
node.

An additional twist is possible: every approximate occurrence of the pattern in the
text must start with one of the firstk + 1 pattern characters, since otherwise a match
is not possible. Hence, in the first level of the tree we need toenter only into those (at
most)k + 1 different characters.

4.2 Partitioning the Pattern

As seen in the Introduction and Section 3.2, the search cost using the suffix tree grows
exponentially withm andk, no matter which of the two techniques we use (DFS or
optimal traversal). Hence, we prefer thatm andk are small numbers. We present in
this section a new technique based in partitioning the pattern, so that the pattern is
split in many sub-patterns which are searched in the suffix tree, and their occurrences
are directly verified in the text for a complete match.

This method is based on the pattern partitioning technique of Section 3.3. The core
of the idea is that, if a pattern of lengthm occurs withk errors and we split the pattern
in j parts, then at least one part will appear withbk=j
 errors inside the occurrence.

The new algorithm follows. We evenly divide the pattern inj pieces (j is unspec-
ified by now). Then we search in the suffix tree thej pieces withbk=j
 errors using
the algorithm of Section 4.1. For each match found ending at text positioni we check
the text area[i�m� k::i+m+ k℄.

The reason why this idea works better than a simple suffix treetraversal with the
complete pattern is that, since the search cost on the suffix tree is exponential inm
andk, it may be better to performj searches of patterns of lengthm=j andk=j errors.
However, the largerj, the more text positions have to be verified, and therefore the
optimum is in between. In Section 5 we find analytically the optimum j and the
complexity of the search. Figure 7 illustrates the idea.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

FiltrationSuffix tree Hybrid

verifysearch

FIG. 7. Illustration of the tradeoff between indexing techniques.

One of the closest approaches to this idea is Myers’ index [24], which collects all

14 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

the textq-grams (that is, prunes the suffix tree at depthq), and given the pattern it
generatesall the strings at distance at mostk from it, searches them in the index and
merges the results. This is the same work of a suffix tree provided that we do not enter
too deep (that is,m + k � q). If m + k > q, Myers’ approach splits the pattern
and searches the subpatterns in the index, checking all the potential occurrences. The
main difference with our proposed approach is that Myers’ index generates all the
strings at a given edit distance to the pattern and searches them, instead of traversing
the structure to see which of them actually exist. This makesthat approach degrade
on biased texts, where most of the generatedq-grams do not exist (in the experimental
section we show that it works well on DNA but quite bad on English). Moreover,
we split the pattern to optimize the search cost, while the splitting in Myers’ index is
forced by indexing constraints (that is,q) and cannot be adapted at query time.

4.3 A Suffix Array Implementation

As discussed, the suffix tree poses very high space requirements, so high that the data
structure becomes impractical for many applications. We show now how our search
algorithms can be implemented on a suffix array [22]. This wasalready done in [15, 6],
so we explain the idea again and give some optimization details.

The basic idea is to simulate over the suffix array the algorithm designed for the
suffix tree. Nodes of the suffix tree correspond to intervals in the suffix array. Specif-
ically, the interval is that of all the leaves of the subtree rooted by the node. So each
time the suffix tree algorithm is at a given node, its suffix array simulation is at a given
interval. When the backtracking algorithm is at a given node, it either (1) stops and
prunes the search in that branch, (2) stops and reports all the subtree leaves as oc-
currences, or (3) enters recursively into all its children.The first two cases are easily
handled in the suffix array (reporting the leaves is particularly easy because they form
precisely the current interval).

For the third case, we need to find all the subintervals of the current interval that
correspond to the children of the current suffix tree node. A first choice is to binary
search the children in alphabetical order (that is, left to right). We prefer to start by
searching the child whose interval contains the middle position of the current interval,
and proceed recursively with the two halves left. The net effect is the same, but we
search in smaller intervals on average. Additionally, we switch to sequential traversal
when the intervals are too short.

Finally, to speed up the first level of the search we precompute a supraindex that
gives direct access to the suffix array with the first letter. This needs onlyO(�) ex-
tra space, and is particularly helpful to start the search entering only in the intervals
corresponding to the firstk + 1 characters of the pattern.

Our prototype uses a very simple construction algorithm: then suffixes are pointed
to and then quicksorted. There are many other more efficient construction algorithms
[22, 32, 19]. The last reference shows to be about 8 times faster than using quicksort.
However, we concentrate on the search algorithm in this work, as the data structure is
well known.

A Hybrid Indexing Method for Approximate String Matching15

5 Analysis

In which follows we analyze the query time complexity of our hybrid algorithm over
suffix trees. The analysis over suffix arrays yields the same results for the optimal
partitioning (up to lower order terms), but the final complexities over suffix arrays
have to be multiplied byO(logn).
5.1 Searching One Piece

An asymptotic analysis on the performance of a depth-first search over suffix trees
is immediate if we consider that we cannot go deeper than level m + k since past
that point the edit distance between the path and our patternis larger thank and we
abandon the search. Therefore, we can spend at mostO(�m+k) time, which is inde-
pendent onn and henceO(1). Another way to see this is to use the analysis of [5],
where the problem of searching an arbitrary automaton over asuffix trie is considered.
Their result for this case indicates constant time (that is,depending on the size of the
automaton only) because the automaton of Figure 2 has no cycles.

However, we are interested in a more detailed average analysis, especially the case
wheren is not so large in comparison to�m+k. We start by analyzing which is the
average number of nodes at level` in the suffix tree of the text, for small̀. Since
almost all suffixes of the text are longer than` (that is, all except the last̀), we have
nearlyn suffixes that reach that level. The total number of nodes at level ` is the
number of different suffixes once they are pruned at` characters. This is the same as
the number of different̀-grams in the text. If the text is random, then we can use a
model wheren balls are thrown into�` urns, to find out that the average number of
filled urns (that is, suffix tree nodes at level`) is�` �1� �1� 1=�`�n� = �` �1� e��(n=�`)� = � �min �n; �`��
which shows that the average case is close to the worst case: up to levellog� n all the
possible�` nodes exist, while for deeper levels all then nodes exist.

We also need the probability of processing a given node at depth ` in the suffix tree.
In the Appendix we prove that the probability is very high for� = k=` � 1�
=p�
(Eq. (A.3)), and otherwise it isO(
(�)`), where
(�) < 1. The constant
 can be
proven to be smaller thane = 2:718:::, and is empirically known to be close to 1. The
(x) function (Eq. (A.1)) is1=(�1�xx2x(1� x)2(1�x)), which goes from1=� to 1 asx goes from 0 to1�
=p�.

Therefore, we pessimistically consider that in levels` � L(k) = k1�
=p� = O(k)
all the nodes in the suffix tree are visited, while nodes at level ` > L(k) are visited
with probabilityO(
(k=`)`), where
(k=`) < 1. Finally, we never work past levelm+ k. We are left with three disjoint cases to analyze, illustrated in Figure 8.

16 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

σ
����������������������

����������������������

����������������������������

��������������
��������������
��������������
��������������

log n

σ

����������������������

��������������������������

��������������������������

����������������������������

σlog nlog n

all nodes

some nodes
m+k

L(k)

b)

c)a)

no node

FIG. 8: The upper left figure shows the visited parts of the tree. The rest shows the
three disjoint cases in which the analysis is split.(a) L(k) � log� n, that is,n � �L(k), or “smalln”

In this case, since on average we work on all the nodes up to level log� n, the total
work isn, that is, the amount of work is proportional to the text size.This shows
that the index simply does not work for very small texts, being an on-line search
preferable as expected.(b) m+ k < log� n, that is,n > �m+k or “largen”
In this case we traverse all the nodes up to levelL(k), and from there on we work
at level` with probability
(k=`)`, until ` = m+ k. Under case(b), there are�`
nodes at level̀. Hence the total number of nodes traversed isL(k)X̀=0 �` + m+kX`=L(k)+1
(k=`)`�`
where the first term isO(�L(k)). For the second term, we see that
(x) > 1=�,
and hence(
(k=`)�)` > 1. More precisely,(
(k=`)�)` = �k`2`k2k(`� k)2(`�k)
which grows as a function of̀. Since(
(k=`)�)` > 1, we have that even if it
were constant with̀ , the last term would dominate the summation. Hence, the

A Hybrid Indexing Method for Approximate String Matching17

total cost in case(b) is �L(k) + �k(1 + �)2(m+k)�2k
which is independent ofn.(
) L(k) < log� n � m+ k, that is, “intermediaten”
In this case, we work on all nodes up toL(k) and on some nodes up tom+k. The
formula for the number of visited nodes isL(k)X̀=0 �` + log�(n)�1X`=L(k)+1
(k=`)`�` + m+kX`=log� n
(k=`)`n
The first sum isO(�L(k)). For the second sum, we know already that the last term
dominates the complexity (see case(b)). Finally, for the third sum we have that
(k=`) decreases as̀grows, and therefore the first term dominates the rest (which
would happen even for a constant
).
Hence, the casè= log� n dominates the last two sums. This term isn
(k= log� n)log� n = �k(log� n)2 log� nk2k(log�(n)� k)2(log�(n)�k) = �k(log� n)2kk2k (1+o(1))
(this can be bounded by(�(1 + 1=�)2)k by noticing that we are inside case(
),
but we are interested in hown affects the growth of the cost).

The search time is then sublinear forlog� n > min(L(k);m + k), or which is the
same,� < max(log�(n)=m (1�
=p�); log�(n)=m� 1). Figure 9 illustrates.

log� nmp�=
p�
 �1� 1
FIG. 9. Area of sublinearity for suffix tree traversal.

5.2 Pattern Partitioning

When pattern partitioning is applied, we performj searches of the same kind of Sec-
tion 4.1, this time with patterns of lengthm=j andk=j errors. We also need to verify
all the possible matches.

18 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

As shown in [7], the matching probability for a text positionis O(
(�)m), where
(�) is that of Eq. (A.1). From now on we use
 =
(�). Using dynamic program-
ming, a verification costsO(m2) 5. Hence, our total search cost isj � suffix tree traversal(m=j; k=j) + j �
m=jm2n
and we want the optimumj. First, notice that if
 = 1 (that is,� � 1 �
=p�), the
verification cost is as high as an on-line search and therefore pattern partitioning is
useless. In this case it may be better to use plain DFS. In the analysis that follows, we
assume that
 < 1 and hence� < 1�
=p�.

According to Section 5.1, we divide the analysis in three cases. Notice that now we
can adjustj to select the best case for us.(a) �L(k=j) � n, or j log� n � k=(1�
=p�)

In this case the search cost is
(n) and the index is of no use.(b) �(m+k)=j < n, or j log� n > m+ k
In this case the total search cost isj ��L(k=j) + �k=j(1 + �)2(m+k)=j�2k=j +
m=jm2n�
where the first two terms decrease and the last one increases with j. Sincea+ b =�(max(a; b)), the minimum order is achieved when increasing and decreasing
terms meet. When equating the first and third terms we obtain that the optimumj
is j1 = mlog�(m2n) � �1�
=p� + log�(1=
)�
and the complexity (only consideringn) isO �n�=(�+(1�
=p�) log�(1=
))�.

On the other hand, if we equate the second and third term, the bestj isj2 = mlog�(m2n) (1 + 2((1 + �) log�(1 + �) + (1� �) log�(1� �)))
and the complexity isO �n1�log�(1=
)=(1+2((1+�) log�(1+�)+(1��) log�(1��)))�.
In any case, we are able to achieve a sublinear complexity ofO(n�), where� = max(��+(1�
=p�) log�(1=
) ; 1� log�(1=
)1+2((1+�) log�(1+�)+(1��) log�(1��)))
Which of the two complexities dominates yields a rather complex condition that
depends on the error level�, but in both cases� < 1 if � < 1 �
=p�. If �
is large enough (� � 24 for
 = e), the complexity corresponding toj2 always
dominates. However, it is possible thatj1 or j2 are outside the bounds of case(b) (that is, they are too small). In this case we would use the minimum possiblej = (m + k)= log� n, and the third term would dominate the cost, for an overall
complexity ofO(n1�log�(1=
)=(1+�)). This complexity is also sublinear if� <1�
=p�.

5It can be done inO((m=j)2) time [24, 27], but this does not affect the result here.

A Hybrid Indexing Method for Approximate String Matching19(
) �L(k=j) < n � �(m+k)=j , or k=(1�
=p�) < j log� n � m+ k
The search cost in this intermediate case isj ��L(k=j) + �k=j(log� n)2k=j(k=j)2k=j +
m=jm2n�
where the first two terms decrease withj and the last one increases. Repeating the
same process as before, we find that the first and third term meet again atj = j1
with the same complexity. We could not solve exactly where the second and third
term meet. We foundj3 = m(�+ 2� log� log� n+ log� 1
 � 2� log� mj3)log�(m2n) � m(�+ log� 1
)log�(m2n)
and since the solution is approximate, the terms are not exactly equal atj3. The
second term isO �n�(1+2 log�(1=
))=(�+log�(1=
))�, slightly higher than the third.
Again, it is possible thatj3 is out of the bounds of case(
) and we have to use the
same limiting value as before.

The conclusion is that, despite that the exact formulation is complex, we have sub-
linear complexity for� < 1 �
=p�, as well as formulas for the optimumj to use,
which is�(m= log� n) with a complicated constant.

For larger� values the pattern partitioning method gives linear complexity and we
need to resort to the traditional suffix tree traversal (j = 1). As shown in [7, 25], it is
very unlikely that this limit of1 �
=p� can be improved, since there are too many
real approximate occurrences in the text.

A simplified technique that gives a reasonable result in mostcases is to selectj =(m+ k)= log� n, for a complexity ofO �n1� log�(1=
)1+� � = O �n 2(�+H�(�))1+� �
whereH�(�) = �� log� � � (1 � �) log�(1 � �) is the base-� entropy function.
This is the complexity that we claim in the beginning of this work, despite that it is
not necessarily the best that can be obtained.

5.3 The Limits of the Method

Let us pay some attention to the limits of our hybrid method (Figure 10).
Usingj = (m + k)= log� n, the bestj becomes 1 (that is, no pattern partitioning)

whenn > �m+k (this is because the cost of verifications dominates over suffix tree
traversal). The bestj is � k + 1 for n < �1+1=�. Since in this case we search the
pieces with zero errors (that is,bk=(k + 1)
 = 0, recall Section 4.2), the search in
the suffix tree costsO(m), and later we have to verify all their occurrences. This is
basically what theq-gram index of [28] does, except because it prunes the suffix tree
at depthq.

Finally, the only case where the index is not useful is whenn is very small. We
can increasej to be more resistant to small texts, but the limit isj = k + 1, and

20 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

using thatj the index ceases to be useful forn < � 11�
=p� � �1=�. We have also
to keep sublinear the cost of verifications, that is,n
1=� = o(1), which happens for� < 1= log1=
 n. This requires, in particular, thatm =
(logn).(hybrid index)intermediate j no partit.j=1� 11�
=p� �1+1=� �m+kusefulnothing maximalj=k+1 n

FIG. 10. Thej values to be used according ton.

This last consideration helps also to understand how is it possible to have a sublinear-
time index based on filtering when there is a fixed matching probability per text posi-
tion (
m), and therefore the verification cost must be
(n). The trick is that in fact we
assumem =
(logn), that is, we have to search longer patterns as the text grows.As
we can tunej, we softly move toj = 1 (then eliminating verification costs) whenn
becomes large with respect tom. This “trick” is also present in the sublinearity result
of Myers’ index [24], and implicit in similar results on natural language texts [8, 25].

Finally, it is interesting to compare the limit error level� for which our index re-
mains sublinear in its average search time against that of Myers’ [24] and typical
filtration indexes. As explained in Section 4.2, ours and Myers’ index should share
a single analysis, as the idealized method turns out to be thesame (the differences in
practice are explained in Section 4.2 and made apparent in the next section on exper-
imental results). Since our analysis and that of [24] differ, we show in Figure 11 the
numerical solution of� = 1 in both cases. As can be seen, each analysis is tighter
than the other for different� values (on thex axis): Myers’ is tighter for� � 30 and
ours is tighter for larger�. We note that the curves are the exact numerical solutions
to the equation� = 1, while our gross conservative bound� � 1� e=p� approaches
both curves from below and reaches Myers’ for� = 60.

Despite that Myers’ limit error level for sublinearity has to be numerically com-
puted, it is interesting to mention it can be fairly well approximated by the model� = 1 � 1:78=(1:09 + ln�), with a percentual error close to 1% for� � 200. This
shows a deeper difference in models: Myers’ solution is of the type1� a=(b+ ln �)
while ours is of the type1 � a=p�. As shown in [26], this last is the theoretically
correct one asymptotically, which explains that our model becomes better than Myers’
from some� value on.

To give an idea of how much these indexes improve over the maximum� tolerated
by typical filtration indexes, we plot one of them [28] (as explained, all of them have
similar limits on the error level). The limit for this index is� � 1=(3 log�m+log� n).
Assuming very moderate valuesm = 10 andn = 1 Mb yields the third curve of the
figure.

6 Experimental Results

We present in this section a number of experimental results to test the performance of
our algorithm and to compare it against others. We first compare the existing algo-

A Hybrid Indexing Method for Approximate String Matching21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

m
ax

im
um

 e
rr

or
 le

ve
l f

or
 s

ub
lin

ea
r

tim
e

alphabet size

Myers’ index
Our index

Typical filtration index

FIG. 11: The maximum� values for which different indexes have sublinear average
search time, according to the analyses in the source papers.

rithms on suffix trees and arrays, showing that our implementation on suffix arrays is
the best choice. We then show the behavior of our hybrid search algorithm. Finally,
we compare our algorithm against the others.

We have tested short (m = 10) and medium-size (m = 20) patterns, searching
with 1, 2 and 3 errors the short ones and with 2, 4 and 6 the medium ones. We used
two types of text: English and DNA. The specific texts used vary because we are
severely limited in the text sizes that can be handled with suffix trees (little more than
1 megabyte in our machine), while we use texts of up to 10 megabytes in the rest of
the experiments. In all cases, we selected 1000 random patterns from each text file
and used the same set for all thek values of that length, and for all the indexes.

Our machine is a Sun UltraSparc-1 of 167 MHz and 64 Mb of RAM, running So-
laris.

6.1 Suffix Trees vs Suffix Arrays

Our first experiment aims at determining the most convenienttraversal strategy over
suffix trees and suffix arrays. We used two different texts:� DNA text (“h.influenzae”), a 1.34 Mb file. This file is calledDNA in our tests, and

H-DNA is the first half megabyte of it. In this case� = 4.� English literary text (from B. Franklin), filtered to lower-case and the separators
converted into a single space. This text has 1.26 Mb, and is called FRA in the
experiments.H-FRA is the first half megabyte ofFRA. Given that the character
distribution is not uniform, the best choice is to consider the alphabet size as the
inverse probability of two random letters being equal, which gives� around 13.

22 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

On the other hand, three indexes are compared:

Cobbs’: The index proposed by Cobbs [11], which minimizes the numberof suffix
tree nodes traversed. We use the implementation of the author, not optimized for
space (and actually implemented over a DAWG instead of a suffix tree). The code
is restricted to work on an alphabet of size 4 or less, so it is only built on DNA.

Dfs(ST): The depth-first search technique of Gonnet [15, 6] run over a suffix tree and
using our bit-parallel NFA simulation to process the nodes.The code is ours6.

Dfs(SA): The same depth-first search technique run over a suffix array and using our
bit-parallel NFA simulation to process the nodes. The code is ours.

Table 1 shows the construction cost and space requirements of the indexes. While
Cobbs’ implementation requires about 65 times the text sizeand our suffix tree needs
35 to 39 times the text size, the suffix array requires only 4 times the text size. Its
construction time is close to that of suffix trees, despite that we have not used the
fastest algorithms for suffix array construction but just a simple quicksort of pointers
(as shown in [19], this means that the construction could be 8times faster). In partic-
ular, note that suffix arrays are built faster than suffix trees when the capacity of the
RAM memory is reached by the size of the data structure and paging comes into play.

Index DNA H-DNA FRA H-FRA

Cobbs’ 108.70u/532.81s 30.50u/76.06s n/a
65.67X 65.85X

Dfs(ST) 30.89u/104.17s 6.48u/0.42s 28.46u/76.86s 6.43u/0.61s
38.99X 39.10X 35.45X 35.32X

Dfs(SA) 31.19u/0.04s 9.27u/0.021s 24.95u/0.05s 7.57u/0.02s
4.00X 4.00X 4.00X 4.00X

TABLE 1: Times (in seconds) to build the suffix tree and array indexes and their space
overhead. The time is separated in theCPUpart (“u”) and theI /O part (“s”). The space
is expressed in terms of the ratio index/text:rX means that the index takesr times the
text size.

Table 2 shows query time for short and medium length patternssearched with an
error level of 10% to 30%.

Three conclusions are clear from this comparison:� Suffix trees are not practical except when the text size to handle is so small that
the suffix tree fits in main memory. In the experiments we coulduse texts of little
more than one megabyte only, because in our machine of 64 Mb ofRAM larger
texts were unmanageable. Even for these small texts, it tookup to 12 hours to
build Cobb’s index.� Even when the suffix trees fit in main memory, the suffix array isa better alter-
native (despite its theoretically worse complexity). In our experiments the suffix

6The implementation of the suffix tree is from Erkki Sutinen.

A Hybrid Indexing Method for Approximate String Matching23

Short patterns (m = 10)
Index k DNA H-DNA FRA H-FRA

1 110.0u/192.5s 101.8u/156.0s
Cobbs’ 2 588.1u/1989s 377.0u/1113s n/a

3 3370u/14291s 1835u/6060s
1 6.81u/15.45s 2.59u/0.25s 6.11u/13.01s 2.12u/0.17s

Dfs(ST) 2 134.4u/337.2s 48.55u/0.91s 42.82u/87.50s 13.71u/0.27s
3 1044u/2482s 446.4u/5.25s 215.2u/500.1s 51.38u/0.33s
1 5.90u/0.31s 2.83u/0.22s 4.74u/0.15s 2.27u/0.19s

Dfs(SA) 2 77.32u/1.58s 33.86u/0.75s 25.91u/0.23s 12.74u/0.22s
3 615.8u/12.42s 240.6u/4.83s 90.32u/0.50s 42.14u/0.32s

Medium patterns (m = 20)
Index k DNA H-DNA FRA H-FRA

2 726.1u/1700s 496.3u/974.0s
Cobbs’ 4 *** 8060u/14447s n/a

6 *** ***
2 56.80u/189.5s 18.60u/0.31s 35.98u/80.30s 12.93u/0.31s

Dfs(ST) 4 1989u/8269s 432.6u/0.22s 482.9u/1488s 125.6u/0.36s
6 11341u/40604s 2185u/0.20s 2204u/7286s 516.2u/0.20s
2 35.26u/0.22s 18.81u/0.21s 23.59u/0.31s 11.94u/0.22s

Dfs(SA) 4 713.4u/0.31s 336.3u/0.42s 202.5u/0.20s 96.12u/0.23s
6 4005u/0.44s 1751u/0.45s 806.8u/0.20s 382.1u/0.27s

*** One single query took more than 2 hours of elapsed time.

TABLE 2: Times (in milliseconds) to search approximate patterns in suffix tree/array
indexes. They are separated inCPU time (“u”) and I /O time (“s”).

array beats the suffix tree even for 0.5 Mb texts. Where the suffix array does not
beat the suffix tree, it gets very close. This is probably due to better locality of
reference, which translates into more efficient cache usage.� Among suffix tree algorithms, the idea of a more complex node processing al-
gorithm in exchange for traversing less nodes does not pay off. In practice, the
simpler depth-first search strategy performs better. The experiments show that
Cobbs’ index is 20 to 30 times slower than the suffix array implementation.

Therefore, in which follows we keep only our traversal algorithm on suffix array,
and discard suffix tree implementations. This gives us the best representative of these
methods and allows us to use much larger texts in the rest of the experiments that
follow. As the data structures that remain fit in main memory,we do not consider the
I /O time anymore.

24 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

6.2 The Performance of the Hybrid Index

Our aim in this section is to show how our hybrid algorithm behaves under different
choices ofj, as well as to show its sublinear behavior. From now on, we usea different
set of texts:� English natural language text (articles from The Wall Street Journal taken from

the TREC collection [17]), filtered to lower-case and the separators converted into
a single space. We use 10 megabytes of the collection and callit WSJ in the
experiments. Again,� can be considered to be around 13.� DNA-like text, which consists of 10 megabytes of text randomly generated with
a uniform distribution over a 4-letter alphabet. This file iscalledDNA in the tests
that follow. We made this choice because we did not have a realDNA text of that
size.

Figure 12 shows the result of different choices forj when using our hybrid algo-
rithm on theWSJtext. We present only thej values that are interesting (the others give
very bad results). First considerm = 10. Although for one and two errors the simple
backtracking algorithm is the best, we can see that a partition in j = 2 pieces is better
for 3 errors for 2 Mb of text or less. This matches with the analysis in the sense that,
the largerj, the worse the complexity with respect ton, so asn grows the optimalj
is reduced (recall that the optimalj is�(m= log� n)).

The same phenomenon can be observed form = 20 andk = 2. In this case the
best choice in the range ofn values tested isj = 3, that is,j = k + 1. However, it
is clear that soon aftern = 10 Mb the situation will change andj = 2 will dominate
(since the complexity in terms ofn is better than withj = 3). Much laterj = 1 would
become the best choice.

A case where an intermediate1 < j � k is the best choice appears form = 20
andk = 4. The bestj is disputed between 2 and 3, becoming 2 the best choice forn = 3 Mb or more. This plot shows nicely how the optimalj is in between, as the
two extremes (j = 1 and 4) are much more expensive. The same happens with the
combinationm = 20 andk = 6.

Figure 13 shows the same experiments onDNA. In this casej = 1 is the only
reasonable option form = 10, and an intermediatej = 2 becomes the best choice form = 20 and all the differentk values.

In the sections that follow, we use the bestj when comparing our index against
others. It should be noted, however, that despite that our big-O analysis predicts
correctly the growth rates, it does not predict well the exact j values that should be
used.

6.3 Comparison Against Others

We compare our index with the other existing proposals. However, as the task to
program an index is rather heavy, we have only considered theother indexes that are
already implemented. These are

Myers’: The index proposed by Myers [24]. We use the implementation of the author,

A Hybrid Indexing Method for Approximate String Matching25

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 10]

k=1, j=1
k=2, j=1
k=3, j=1
k=3, j=2

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [WSJ, m = 20, k = 2]

j = 1
j = 2
j = 3

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 20, k = 4]

j = 1
j = 2
j = 3
j = 4

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [WSJ, m = 20, k = 6]

j = 1
j = 2
j = 3

FIG. 12: Different alternatives for our hybrid index on Englishtext and for increasingn. In reading order, the casesm = 10; m = 20 with k = 2; m = 20 with k = 4; andm = 20 with k = 6.

which is a prototype that works only for somem values that depend on� andn
(the algorithm is generic but the implementation is not). Inparticular, the range
of n values that fit our pattern lengths inWSJ goes from 2 Mb to 6 Mb. OnDNA

we have usedm = 11 andm = 22 (instead of 10 and 20) for this index, which
allowed us to use it from 2 Mb to 10 Mb. However, we also limitedDNA to 6 Mb
because the time becomes unmanageable as soon as the index ceases to fit in main
memory.

Exact(q): The index based onq-grams presented in [28]. This is quite similar to
partition ink+1 pieces, except that the index stores onlyq-grams and some extra
work may be necessary when the length of the pattern pieces isnot q. We show
the results forq = 4 and 5 onWSJandq = 5 and 6 onDNA.

Dfs: Our suffix array implementation of the depth-first search traversal [15, 6].

Hybrid: Our new index based on suffix arrays and pattern partitioning, using optimalj. This index is not included in the tests form = 10 becausej = 1 (that is, the
Dfs index) is already the optimal value.

Online: is the best online algorithm for each case (according to [26]). This is included
for comparison purposes.

26 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

n (Mb) [DNA, m = 10]

k=1, j=1
k=2, j=1
k=3, j=1

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 20, k = 2]

j = 1
j = 2
j = 3

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

n (Mb) [DNA, m = 20, k = 4]

j = 1
j = 2
j = 3

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 20, k = 6]

j = 1
j = 2
j = 3

FIG. 13: Different alternatives for our hybrid index on DNA and for increasingn. In
reading order, the casesm = 10; m = 20 with k = 2; m = 20 with k = 4; andm = 20 with k = 6.

In particular, one of the most relevantq-gram indexes [36] is not yet implemented
and therefore is excluded from our tests. We know, however, that its space requirement
is low (close to a word-retrieving index), but also that since the index simulates the
on-line algorithm [35], its tolerance to errors is quite low(see [7, 25], for example).

All the indexes were set to show the matches they found, in order to put them in a
reasonably real scenario.

We present the time to build the indexes and the space they take in Table 3. We
show the time per megabyte and the proportional extra space needed to index 6 Mb
(since Myers’ index could not be built for larger texts), although this time is almost
independent on the text size. As can be seen, Myers’ index is efficiently built but is
the most space demanding. The suffix array takes half the space, and could be built in
less time if the algorithm of [19] were used. Finally, Exact(q) gets heavier asq grows,
but in general is the most compact index.

Figure 14 compares the search time (onlyCPU) of the different algorithms form =10 asn grows. For these short patterns our hybrid scheme does not apply, so only
Dfs is shown. Myers’ index (automatically) usesq = 5 on WSJ andq = 11 on DNA.
Therefore, onWSJ we are comparing indeedj = 1 (Dfs), j = 2 (Myers’) andj = 3
(Exact), albeit the implementation details are quite different. As in our results with

A Hybrid Indexing Method for Approximate String Matching27

Index Myers’ Exact(4) Exact(5) Exact(6) S. Array

WSJ 4.51 sec 13.33 sec 18.06 sec n/a 25.17 sec
8.12 X 2.50 X 3.89 X 4.00 X

DNA 4.11 sec n/a 5.33 sec 7.50 sec 27.50 sec
7.67 X 1.93 X 2.15 X 4.00 X

TABLE 3: Times (in seconds ofCPU per megabyte) to build the different indexes and
their space overhead (in the formatrX, meaning that the index takesr times the text
size). The text had 6 Mb of size. The suffix array is the data structure for the Dfs and
Hybrid methods.

our own index, the best choice isj = 1 (except fork = 3 where the choicej = 2 is
very close). The different choices of the Exact index show their space-time tradeoff:
the largerq, the fastest the index but, it demands more space. OnDNA, Myers’ index is
also usingj = 1, and its better search time shows that the choice of generating all the
neighborhood of the pattern is better than a suffix array approach when the alphabet is
small.

Figure 15 shows the results form = 20. We first considerWSJ. For k = 2 we
already know thatj = k + 1 is the best choice, and this is reflected in the fact that
the best is the Hybrid index withj = 3 together with Exact(5), which is a very close
approximation. Myers’ and Dfs are usingj = 2 andj = 1 respectively, and hence
perform worse.

For k = 4 the best option isj = 2 and therefore the Hybrid beats Exact and Dfs.
Myers’ index is beaten too, although it is also usingj = 2. The reason is that over
this large and biased alphabet the technique of generating all the possibleq-grams
that match the pattern piece with errors is not a good choice,because a huge number
of nonexistent strings are generated and searched. The suffix tree or array, on the
other hand, are used to search only the strings that actuallyexist in the text. It is also
interesting that the differences blur fork = 6.

On DNA, the optimalj is always 2, so Dfs and Exact(q) are ruled out. Myers’
index is faster than the Hybrid, showing again that generating the strings close to the
pattern pays off if the alphabet is small. We remark also thatthis text is “perfect”,
in the sense that it is randomly generated and not truly DNA. Aless random text
negatively affects Myers’ index, while the suffix array technique should benefit from
less different strings close to the pattern.

Note also that fork = 6 the online algorithm is much faster than any indexed
scheme onDNA. In general, the online algorithms are less sensitive to theerror level.

Some more general conclusions that can be extracted from theexperiments are:� The most important feature that affects the performance of the indexes is the
amount of pattern partitioning performed. Under this light, suffix tree/array traver-
sal algorithms do not partition the pattern (j = 1), traditional filtering indexes par-
tition the pattern ink + 1 pieces, and Myers’ index uses an intermediate partition
fixed at indexing time. Our hybrid index has the potential of selecting the best

28 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 10, k = 1]

Myers’
Dfs

Exact(4)
Exact(5)

Online

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 10, k = 1]

Myers’
Dfs

Exact(5)
Exact(6)

Online

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 10, k = 2]

Myers’
Dfs

Exact(4)
Exact(5)

Online

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 10, k = 2]

Myers’
Dfs

Exact(5)
Exact(6)

Online

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 10, k = 3]

Myers’
Dfs

Exact(4)
Exact(5)

Online

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 10, k = 3]

Myers’
Dfs

Exact(5)
Exact(6)

Online

FIG. 14: Comparison between different indexes form = 10 andk = 1, 2 and 3 (first
to third rows, respectively). The left plots correspond toWSJ and the right plots to
DNA.

A Hybrid Indexing Method for Approximate String Matching29

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 20, k = 2]

Myers’
Dfs

Hybrid
Exact(4)
Exact(5)

Online

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 20, k = 2]

Myers’
Dfs

Hybrid
Exact(5)
Exact(6)

Online

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 20, k = 4]

Myers’
Dfs

Hybrid
Exact(4)
Exact(5)

Online

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 20, k = 4]

Myers’
Dfs

Hybrid
Exact(5)
Exact(6)

Online

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 20, k = 6]

Myers’
Dfs

Hybrid
Exact(4)
Exact(5)

Online

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(m
se

cs
)

n (Mb) [DNA, m = 20, k = 6]

Myers’
Dfs

Hybrid
Exact(5)
Exact(6)

Online

FIG. 15: Comparison between different indexes form = 20 andk = 2, 4 and 6 (first
to third rows, respectively). The left plots correspond toWSJ and the right plots to
DNA.

30 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

partition at query time and needs half the space of Myers’.� Among the suffix tree/array traversal algorithms, depth-first search over a suffix
array shows to be the best choice in practice.� When Myers’ index can use the bestj, its main difference with our index is that it
generates all the text substrings at some edit distance to the pattern and searches all
them in the index. We instead use the suffix array to find the strings that actually
exist in the text. Myers’ technique shows to be faster on random texts over small
alphabets (as in random DNA and perhaps on real DNA), while itis slower in
other cases (as in English text).� The Exact(q) is a low-cost alternative in terms of space, and performs reasonably
well for low error levels and not too small alphabets.� The indexed schemes are more sensitive to the error level allowed than the online
algorithms, so for high error levels still there is no way to improve over online
searching.

7 Conclusions and Future Work

We have proposed a hybrid indexing scheme for approximate string matching. The
main idea is to split the pattern in pieces to be searched withless errors, and use a suffix
tree to find their approximate matches in the text. Later, we verify all their matches
for an occurrence of the complete pattern. The splitting technique balances between
traversing too many nodes of the suffix tree and verifying toomany text positions. We
have shown that this hybrid is an intermediate approach between the extremes of pure
suffix tree traversal and filtering using exact searching of pattern pieces.

We have proved analytically that the optimal number of pieces is indeed between
both extremes, and that the resulting index has sublinear retrieval time (of the formO(n�), where0 < � < 1 if the error level is moderate).

We have implemented this approach using a fast node processing algorithm and
simulating the suffix tree on the less space demanding suffix array. We have shown
experimentally that this approach performs better in practice than those based on suf-
fix trees. We have also shown the effect of partitioning the pattern in different number
of pieces. Finally, we have presented the first experimentalresults that compare the
different implemented indexing schemes, which show that the proposed idea can im-
prove over the previously implemented approaches.

We have implemented a crude technique to verify the occurrences of the pieces in
order to check if they form an occurrence of the complete pattern. A better approach
is shown in [24, 27]. Since this would make a difference only for largerj, we have not
considered that improvement for this paper, but it would make an important difference
for longer patterns.

Our analysis predicts the asymptotic behavior of the index but it is too crude to
help determine the correct number of pieces in which the pattern has to be partitioned.
A finer analysis or empirical procedure able to determine this number automatically
would be of great practical importance. Related to this issue is optimizing the par-
titioning: there is no need to split the pattern in equal-length pieces. Although this

A Hybrid Indexing Method for Approximate String Matching31

is the best choice on random text, in cases like English a veryfrequent pattern piece
will trigger many more verifications. In that case we want to split in pieces so that the
overall number of text positions to verify is minimized. In [28] anO(mk2) dynamic
programming algorithm is presented that finds the best partition in this sense. Adapt-
ing such an algorithm to this case, where the pattern pieces are not searched exactly,
is another interesting problem.

Acknowledgements

We thank the useful comments of the referees of the [29] version, which helped to
improve this work. We also thank Erkki Sutinen for his code tobuild the suffix tree,
and Gene Myers and Archie Cobbs for sending us their implemented indexes.

References
[1] A. Apostolico and Z. Galil.Combinatorial Algorithms on Words. Springer-Verlag, New York, 1985.
[2] M. Araújo, G. Navarro, and N. Ziviani. Large text searching allowing errors. InProc. 4th South

American Workshop on String Processing (WSP’97), pages 2–20. Carleton University Press, 1997.
[3] R. Baeza-Yates. Text retrieval: Theory and practice. In12th IFIP World Computer Congress, volume I,

pages 465–476. Elsevier Science, September 1992.
[4] R. Baeza-Yates. A unified view of string matching algorithms. InSOFSEM’96: Theory and Practice

of Informatics, LNCS 1175, pages 1–15, 1996. Invited paper.
[5] R. Baeza-Yates and G. Gonnet. Fast text searching for regular expressions or automaton searching on

a trie. Journal of the ACM, 43, 1996.
[6] R. Baeza-Yates and G. Gonnet. A fast algorithm on averagefor all-against-all sequence matching.

In Proc. 6th Symposium on String Processing and Information Retrieval (SPIRE’99). IEEE CS Press,
1999. Previous version unpublished, Dept. of Computer Science, Univ. of Chile, 1990.

[7] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 23(2):127–158,
1999. Preliminary version inProc. CPM’96, LNCS 1075.

[8] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval.Journal of
the American Society for Information Science (JASIS), 51(1):69–82, January 2000.

[9] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas. The smallest automaton
recognizing the subwords of a text.Theoretical Computer Science, 40:31–55, 1985.

[10] W. Chang and T. Marr. Approximate string matching and local similarity. InProc. 5th Annual Sym-
posium on Combinatorial Pattern Matching (CPM’94), LNCS 807, pages 259–273, 1994.

[11] A. Cobbs. Fast approximate matching using suffix trees.In Proc. 6th Annual Symposium on Combi-
natorial Pattern Matching (CPM’95), LNCS 937, pages 41–54, 1995.

[12] M. Crochemore. Transducers and repetitions.Theoretical Computer Science, 45:63–86, 1986.
[13] M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottleneck in suffix tree

construction. InProc. 9th Symposium on Discrete Algorithms (SODA’98), pages 174–183, 1998.
[14] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees. InProc. 3rd

Workshop on Algorithm Engineering (WAE’99), LNCS 1668, pages 30–42, 1999.
[15] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin. Technical report,

Informatik E.T.H., Zuerich, Switzerland, 1992.
[16] G. Gonnet, R. Baeza-Yates, and T. Snider.Information Retrieval: Data Structures and Algorithms,

chapter 3: New indices for text: Pat trees and Pat arrays, pages 66–82. Prentice-Hall, 1992.
[17] D. Harman. Overview of the Third Text REtrieval Conference. InProc. Third Text REtrieval Confer-

ence (TREC-3), pages 1–19, 1995. NIST Special Publication 500-207.
[18] N. Holsti and E. Sutinen. Approximate string matching using q-gram places. InProc. 7th Finnish

Symposium on Computer Science, pages 23–32. University of Joensuu, 1994.

32 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

[19] H. Itoh and H. Tanaka. An efficient method for in memory construction of suffix arrays. InProc. 6th
Symposium on String Processing and Information Retrieval (SPIRE’99), pages 81–87. IEEE CS Press,
1999.

[20] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts. InProc.
2nd Annual Symposium on Mathematical Foundations of Computer Science (MFCS’91), volume 16,
pages 240–248, 1991.

[21] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley,
1973.

[22] U. Manber and E. Myers. Suffix arrays: a new method for on-line string searches.SIAM Journal on
Computing, pages 935–948, 1993.

[23] U. Manber and S. Wu.GLIMPSE: A tool to search through entire file systems. InProc. USENIX
Technical Conference, pages 23–32, Winter 1994.

[24] E. Myers. A sublinear algorithm for approximate keyword searching.Algorithmica, 12(4/5):345–374,
Oct/Nov 1994.

[25] G. Navarro.Approximate Text Searching. PhD thesis, Dept. of Computer Science, Univ. of Chile, De-
cember 1998. Technical Report TR/DCC-98-14.ftp://ftp.dcc.uchile.cl/pub/users/-
gnavarro/thesis98.ps.gz.

[26] G. Navarro. A guided tour to approximate string matching. Technical Report TR/DCC-99-5, Dept.
of Computer Science, Univ. of Chile, 1999. To appear inACM Computing Surveys. ftp://-
ftp.dcc.uchile.cl/pub/users/gnavarro/survasm.ps.gz.

[27] G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pattern matching. Technical
Report TR/DCC-98-5, Dept. of Computer Science, Univ. of Chile, 1998. Submitted.

[28] G. Navarro and R. Baeza-Yates. A practicalq-gram index for text retrieval allowing errors.CLEI
Electronic Journal, 1(2), 1998.http://www.clei.cl.

[29] G. Navarro and R. Baeza-Yates. A new indexing method forapproximate string matching. InProc.
10th Annual Symposium on Combinatorial Pattern Matching (CPM’99), LNCS 1645, pages 163–186,
1999.

[30] G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching.Information
Processing Letters, 72:65–70, 1999.

[31] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximateq-grams. InProc.
11th Annual Symposium on Combinatorial Pattern Matching (CPM’2000), Montreal, Canada, 2000.
To appear.

[32] K. Sadakane. A fast algorithm for making suffix arrays and for the Burrows-Wheeler transformation.
In Proc. Data Compression Conference (DCC’98), pages 129–138, 1998.

[33] P. Sellers. The theory and computation of evolutionarydistances: pattern recognition.Journal of
Algorithms, 1:359–373, 1980.

[34] F. Shi. Fast approximate string matching with q-blockssequences. InProc. 3rd South American
Workshop on String Processing (WSP’96), pages 257–271. Carleton University Press, 1996.

[35] E. Sutinen and J. Tarhio. On usingq-gram locations in approximate string matching. InProc. ESA’95,
LNCS 979, pages 327–340, 1995.

[36] E. Sutinen and J. Tarhio. Filtration withq-samples in approximate string matching. InProc. 7th
Annual Symposium on Combinatorial Pattern Matching (CPM’96), LNCS 1075, pages 50–61, 1996.

[37] E. Ukkonen. Approximate string matching over suffix trees. InProc. 4th Annual Symposium on
Combinatorial Pattern Matching (CPM’93), pages 228–242, 1993.

[38] E. Ukkonen. Constructing suffix trees on-line in lineartime. Algorithmica, 14(3):249–260, Sep 1995.
[39] Esko Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132–137, 1985.
[40] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM, 35(10):83–91, October

1992.

A Probability of Reaching a Suffix Tree Node
We need to determine which is the probability of the automaton being active at a given node of depth` in
the suffix tree. Notice that the automaton is active if and only if some state of the last row is active (recall

A Hybrid Indexing Method for Approximate String Matching33

Figure 2). This is equivalent to someprefixof the pattern matching withk errors or less the text substring
represented by the suffix tree node under consideration.

We are therefore interested in the probability of a pattern prefix of lengthm0 matching a text substring
of length`. This analysis is an extension of that of [7]. As Figure 16 illustrates, at least̀�k text characters
text must match the pattern when` � m0, and at leastm0 � k pattern characters must match the text
wheneverm0 � `. Hence, the probability of matching is upper bounded by1�`�k � ``� k�� m0`� k� or 1�m0�k � `m0 � k�� m0m0 � k�
depending on whether̀� m0 orm0 � `, respectively (the combinatorials count all the possible locations
for the matching characters in both strings). Notice that this imposes thatm0 � k � ` � m0 + k. We
also assumem0 � k, since otherwise the matching probability is 1. Sincek � m0 � m, we have that` � m + k, otherwise the matching probability is zero. Hence the matching probability is 1 for̀ � k and
0 for ` > m+ k, and we are interested in what happens in between.

Pattern: m’=9, k=5

m’ At least 9-5=4 matches

Text substring

l

FIG. 16: Upper bound for the probability of matching. At leastmax(m0 � k; ` � k)
characters must match, since otherwise it would not be possible to convert one string
into the other.

Since we are interested in any pattern prefix matching the current text substring, we add up all the
possible lengths from̀� k to `+ k:X̀m0=`�k 1�`�k � ``� k�� m0`� k� + `+kXm0=`+1 1�m0�k � `m0 � k�� m0m0 � k�

In the analysis that follows, we call� = k=`, where�=(1 + �) � � � 1. We will prove that, after
some depth̀ in the suffix tree, the matching probability isO(
(�)`), for some
(�) < 1. We begin with
the first summation. We analyze its largest term (the last one), which is1�`�k �k̀�2
and by using Stirling’s approximationx! = (x=e)xp2�x(1 +O(1=x)) we have1�`�k ``p2�`kk(`� k)`�kp2�kp2�(`� k)!2 �1 +O� 1̀��
which is � 1�1���2�(1� �)2(1��)�` `�1 � 12��(1 � �) +O� 1̀��

34 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

where the last step is done using Stirling’s approximation to the factorial. This formula is of the form
(�)` O(1=`), where we define
(x) = 1�1�xx2x(1 � x)2(1�x) (A.1)

The whole first summation is bounded by`�k times the last term, which gives(`�k)
(�)`O(1=`) =O(
(�)`). Therefore the first summation is exponentially decreasingwith ` if and only if
(�) < 1, that
is, � > � 1�2�(1 � �)2(1��)� 11�� = 1� 2�1�� (1� �)2 (A.2)

It is easy to show analytically thate�1 � � �1�� � 1 if 0 � � � 1, so it suffices that� > e2=(1��)2 ,
or equivalently � < 1� ep� (A.3)

is a sufficient condition for the largest (last) term to beO(
(�)`), as well as the whole first summation.

We address now the second summation, which is more complicated. In this case, it is not clear which is
the largest term. We can see each term as1�r �r̀��k + rk �
where`�k < r � `. By consideringr = x` (x 2 [1��; 1℄) and applying again Stirling’s approximation,
we maximize the base of the resulting exponential, which ish(x) = (x+ �)x+��xx2x(1� x)1�x��

Elementary calculus leads to solve a second-degree equation that has roots in the interval[1 � �;1)
only if � � �=(1 � �)2. Since due to Eq. (A.3) we are only interested in� � 1=(1 � �)2, Æh(x)=Æx
does not have roots, and the maximum ofh(x) is atx = 1 � �. That meansr = ` � k, that is, the first
term of the second summation, which is the same as the largestterm of the first summation.

We conclude that the probability of being active at a node of level` is upper bounded bym� k`
(�)` �1 +O� 1̀�� = O �
(�)`�
and therefore Eq. (A.3) is valid for the whole summation. When
(�) is 1, the probability is very high:
only considering the termm0 = ` we have
(1=`).

Hence, the result is that the matching probability is very high for� = k=` � 1� e=p�, and otherwise
it is O(
(�)`), where
(�) < 1.

Although thee appeared via a bounding condition, we can see that this boundis tight: we takelog� on
both sides of the condition
(�) < 1 and get1� � + 2(� log� � + (1� �) log�(1� �)) > 0
and by replacingx = 1� � and usingln(1� x) = �x+O(x2) we havex ln� + 2(x lnx� (1� x)(x+O(x2)) = x ln� + 2x lnx� 2x+O(x2) > 0
from where dividing byx we obtainx > ep� eO(x) = ep� (1 +O(x)) = ep� (1 +O(1=p�))

A Hybrid Indexing Method for Approximate String Matching35

We conclude that the precise limit for� = 1� x is� < 1� ep� + O(1=�)
As we show experimentally in [7], however, the real� limit is very close to the same formula ife is

replaced by
 = 1:09. The reason is that the bounding condition (Figure 16) we useis not strong enough:
for instance, we could avoid replacements in the edit distance and the bound would be the same. In this
paper we use a limit of the form� = 1�
=p�, knowing that we can prove
 � e but in practice it holds
 � 1.

