A Hybrid Indexing Method for
Approximate String Matching

GONZALO NAVARRO!, Dept. of Computer Science, University of
Chile. Blanco Encalada 2120, Santiago, Chile.
ghavarro@icc. uchile. cl

RICARDO BAEZA-YATES!, Dept. of Computer Science, University
of Chile. Blanco Encalada 2120, Santiago, Chile.
rbaeza@icc. uchil e. cl

ABSTRACT:We present a new indexing method for the approximate striatgihing problem.
The method is based on a suffix array combined with a pariitgpof the pattern. We analyze
the resulting algorithm and show that the average retriiava isO(n> log n), for somex > 0
that depends on the error fraction toleratednd the alphabet size. It is shown that\ < 1

for approximatelyn < 1 — e/+/o, wheree = 2.718.... The space required is four times the
text size, which is quite moderate for this problem. We expentally show that this index can
outperform by far all the existing alternatives for indexaaproximate searching. These are
also the first experiments that compare the different exjsgschemes.

Keywords Suffix tries, suffix trees, text searching allowing erraext indexing, computational biology.

1 Introduction

Approximate string matching is a recurrent problem in margnbhes of computer
science, with applications to text searching, computatidiology, pattern recogni-
tion, signal processing, etc.

The problem is: given a long text of length and a (comparatively short) pattern
of lengthm, retrieve all the text segments (or “occurrences”) whediedistancded)
to the pattern is at modt. The edit distancebetween two strings is defined as the
minimum number of character insertions, deletions andaeghents needed to make
them equal. We define the “error level” as= k/m.

In the on-line version of the problem, the pattern can be noegssed but the text
cannot. The classical solution uses dynamic programmidgsf (mn) worst case
time [33]. A number of algorithms improved later this re§@6]. The lower bound
of the on-line problem (proved and reached in [101ig:(k + log, m)/m) average
search time, where is the size of the alphab&t This is of coursé)(n) for constant
m.

If the text is large even the fastest on-line algorithms artgpmactical, and prepro-

IThis work has been supported in part by Fondecyt grants $38pand 1-000929.

J. of Discrete Algorithmsvol. 0 No. 0, pp. 1-35, 0000 (© Hermes Science Publications

2 J. of Discrete Algorithmgsvol. 0 No. 0, 0000

cessing the text becomes necessary. However, just a few ggar indexing text for
approximate string matching was considered one of the nyaém @roblems in this
area [40, 3].

Despite some progress in the last years, the indexing schfemthis problem are
still rather immature. The existing indexes do not perforeilin practice. Some of
them, based on suffix trees, are impractically large (12 tn7€s the text size), do not
behave well in secondary memory, and suffer from an expdadetgpendence on the
pattern length or ok in their search time. Others, based on filtration, have Irezisie
space requirements but permit only a very low error levat search time.

We present an index which is practical and can be considerachgbrid between
the two approaches mentioned above. The main novelty istthaes a suffix tree-
like approach but, to avoid the exponential dependence @ £, the search pattern
is split in smaller subpatterns and their occurrences aee ilategrated. It is shown
that this is an intermediate option between the extremagsepted by the two pre-
vious approaches and that the optimum search time is notes® thxtremes but in
between. We show analytically that the average search thtared using the opti-
mal partitioning scheme i©(n* logn), whereA < 1 whena < 1 — e/\/o, where
e=2718..2

On the practical side, we replace the suffix tree by a suffixyamhich takes only
four times the text size (this idea is not new) and use a noweéérprocessing algo-
rithm. We show experimentally that the search time on théxsafray is in practice
slower than using the suffix tree only in some cases, for veoytgexts, and by a
small percentage. On longer texts, on the other hand, tlfie aufay becomes much
superior. We show experimentally that the hybrid partitscheme is better than the
two extremes. Finally, we compare our index against therathplemented indexes,
showing that it can be much faster than any alternative ampro In particular, an
approach closer to ours is Myers’ index [24], and we show erpntally that each
index is faster than the other in different cases. This dtutes the first experimental
comparison that includes most of the implemented indexethéproblem.

This paper is organized as follows. Section 2 covers relatdk in more detail
and puts our results in context. Section 3 explains the haslmiques our approach
builds on. Section 4 presents the core of our contributinrsdction 5 we analyze its
average search time. Section 6 presents all the experihnestdts and Section 7 our
conclusions. This paper is an extended and improved veo$if29].

2 Previous Work and Our Contribution

There are two types of indexing mechanisms for approxinmategsmatching, which
we call “word-retrieving” and “sequence-retrieving”. Vdoretrieving indexes [23,
8, 2] are more oriented to natural language text and infdomagtrieval. They can
retrieve everyword whose edit distance to the pattemord is at mostk. Hence, they
are not able to recover from an error involving a separatwhss recovering the
word " f | ower s" from the misspelled textfl o wers", if we allow one error.

2All the average case results of this paper assume that this tendom and that the letters are independently and unifodistributed.

A Hybrid Indexing Method for Approximate String Matching@

These indexes are more mature, but their restriction cannbeceptable in some
applications, especially where there are no words (as in DMAere the concept
of word is difficult to define (as in oriental languages) or gghutinating languages
such as Finnish.

Our focus in this paper is sequence retrieving indexes. Antbase, we find two
types of approaches.

A first type is based on simulating a sequential algorithmnimg it on the suffix
tree [21, 1, 38] or DAWG (directed acyclic word graph) [12,d]the text instead
of the text itself. Asuffix trieis a trie where all the suffixes of the text string have
been inserted. Auffix treeachieves)(n) worst-case space and construction time by
compressing unary paths of the suffix trie. A DAWG is the miairautomaton that
recognizes all the substrings of the text and is obtainedbypressing the suffix tree
via identifying all the final states.

Since every different substring in the text is representea Isingle node in the
suffix tree or the DAWG, it is possible to avoid redoing the sawork when the
text has repetitions. Those indexes t&ke:) space and construction time, but their
construction is not optimized for secondary memory and Hreyvery inefficient in
this case (see, however, [13]). Moreover, the structureery inefficient in space
requirements, since it takes 12 to 70 times the text size ésge[14]).

In [15, 6], a limited depth-first search (DFS) technique amghbffix tree was intro-
duced. Since every substring of the text (that is, everymiiatiepattern occurrence)
can be found by descending from the root of the sulffix tres, stifficient to explore
every path starting at the root, descending by every brapdb where it can be seen
that that branch does not represent the beginning of an @swe of the pattern. This
algorithm was analyzed in [6]. With an additiora{log n) time factor, it also runs on
suffix arrays [22, 16], which take four times the text sizaéasl of (at least) twelvé

In [20, 37, 11], on the other hand, more sophisticated algms were presented
that traverse the least possible nodes in the suffix treen(tvé DAWG). The idea
is to traverse all the different tree nodes that represeiabte prefixes”, which are
minimal text substrings that can be prefixes of an approx@maturrence of the pat-
tern. Compared to the simple DFS approach, this one avoigsieg so deep in the
suffix tree, but its node processing is more expensive andatdre implemented on
the cheaper suffix array.

In all cases the search time of these algorithms is asyneptiytindependent on
but exponentially dependent amor k, €.9.0(min(3™, (20m)*)) in the average and
worst cases [37].

The second type of sequence-retrieving indexes is basedagptiag an on-line fil-
tering algorithm. Filters are fast algorithms that disdarde parts of the text checking
for a necessary condition (simpler than the matching camjit Most existing filters
are based in finding substrings of the pattern without eyimd checking for poten-
tial occurrences around those matches. The index is usaddklyjfind those pattern
substrings, and is in most cases based on storing some-gmams (substrings of

3These figures come from considering that the suffix array :1eelbg, n bits, which is limited bydn bytes ifn < 4 Gb. The text
needsn log, o bits and it is customary to use one byte per character (thatis 256). The suffix tree needs at lea®t log, n bits. In
this paper we use the convention that characters take 1 bgitpainters and integers take 4 bytes.

4 J. of Discrete Algorithmsvol. 0 No. 0, 0000

lengthg) and their positions in the text.

Different filtration indexes [20, 24, 18, 36, 34, 28] differostly in how the text
is sampled (distance between consecutive text sampleshartbey overlap or not,
etc.), in how the pattern is sampled, in how many matchingpsesnare needed to
verify their neighborhood in the text, their alignment ciaiwths, etc. Depending on
this and oy they achieve different space-time tradeoffs. In genetahfion indexes
needO(n) space but they are much smaller than suffix trees (1 to 10 tiheetext
size), and can also be built in linear time. The price is thaytperform badly for
medium and large error level Differentanalyses show that these indexes can achieve
sublinear search time on average onlydor= O(1/log, n).

Somewhat outside the previous classification is [24], bee#does not reduce the
search to exact but to approximate search of pattern pidoesearch for a pattern of
lengthm < g — k, all the maximal strings with edit distangé & to the pattern are
generated and searched in the seg-gfams. Later, all the occurrences are merged.
Longer patterns are split in as many pieces as necessaryk imam short enough,
the pieces are searched and their occurrences used to dsseeninal answers. The
analysis shows that the average search timii:* logn) for A = log, ((c+1)/(c—

1)) + alog, ¢ + a, wherec = 1/a + /1 + 1/a2. This is sublinear when < 1,
which puts an upper bound en(which can be numerically computed for each

In this paper we study more in depth the technique of reduttiegproblem to
approximate searching of pattern pieces. We show that shéssentially a hybrid
between the extremes of suffix tree traversal and filterindimgying exact pattern
pieces. Moreover, we show that the optimal reduction schisnbetween both ex-
tremes, namely partitioning the patterrdiim/ log, n) pieces. The goal is to balance
between the cost to search in the suffix tree (which grows thi¢tsize of the subpat-
terns) and the cost to verify the potential occurrencesglwgrows when shorter pat-
terns are searched). Unlike [24], which fixes the partitigrat indexing time because
of the constraints of, we propose an index than can handle any pattern length (con-
ceptually, a suffix tree) and therefore it can select the padition at query time. We
show analytically that the average search time can be rogde(>*-(2))/(1+a)y
where H,, (o) is the baser entropy function. This is sublinear far < 1 — e/\/7,
wheree = 2.718.... On the other hand, the results of [7, 25] show that sublibear
cannot be achieved far > 1 — e/+/o.

We implement the index using a suffix array instead of a suffig.t The suffix array
takes only 4 times the text size and multiplies the abovecheznst only byO (log n).
We also use a faster node processing algorithm based oropsawiork [7] which is
especially well suited for this case.

Ours and Myers’ can be considered as a third class of algasithased on reducing
the problem to approximate search of pattern pieces (annetiate between the
two extremes of pure suffix tree searching and partitionittig exact searching of
pattern pieces). A very recent work in this line is [31], aligh they show no analysis
and their comparison against previous work shows that anckdimes are superior
(albeit they need less space).

A Hybrid Indexing Method for Approximate String Matching
3 Basics

We present in this section the basic algorithms on which ppr@ach builds.

3.1 Computing Edit Distance

We start with the classical algorithm to compute the editadise ¢d) between two
strings and later show how it is extended for online texta®ag allowing errors [33].

The algorithm is based on dynamic programming. Imagineseaieed to compute
ed(z,y). AmatrixCy._|,|0...1 is filled, whereC; ; represents the minimum number
of operations needed to mateh_; to y;. ;. This is computed as follows

Cio = Jj, Coi = 1
Cj,i = if (T] = 1/7) then ijl,ifl
else 1 + min(C’j,M, Cj_’ifl, ijl,ifl)

where at the end’, | |,| = ed(z,y). The rationale of the above formula is as follows.
First, C; o andCy ; represent the edit distance between a string of legigth: and
the empty string. Clearly (respectivelyi) deletions are needed on the non-empty
string. For two non-empty strings of lengttandi, we assume inductively that all the
edit distances between shorter strings have already beeputed, and try to convert
xy..;intoy. .

Consider the last characters andy;. If they are equal, then we do not need
to consider them and we proceed in the best possible way teedory . ;_; into
y1...i—1. On the other hand, if they are not equal, we must deal witmthresome
way. Following the three allowed operations, we can detetand convertin the best
way zi. j—1 intoyi. 4, inserty; at the end ofe; . ; and convert in the best way .
intoy;._;—1, or replacer; by y; and convertin the bestway . ;_; intoy;;—1. In
all cases, the cost is 1 plus the cost for the rest of the pso@deady computed).
Notice that the insertions in one string are equivalent tetdms in the other. Figure
1 (left) illustrates this algorithm to compute(" sur vey" ," sur gery").

o|I<|["(c|»

O W N~ O

S
u
r
\Y
e

WIN| RN W Q@
N NN Wl oD

WIN| || N RO

NN WNNFPOT
N| W Wl W N oI

N ERINNN RO D

WIN[PO PO

AIWINPFROIRLOIC

g WN| R Olo|n

N W BB 0o N|I<

NN WW oo™

WIN[PO N W™

g R W N ROk ®
BAIWNRPOIRNC

OO AW N O

y y|l6

FiG. 1. On the left, the dynamic programming algorithm to conetht edit distance
between' survey" and"surgery". The bold entry shows the final result. On
the right, the variation to searctsur vey" in the text" sur gery" . Bold entries
indicate matching text positions whén= 2.

6 J. of Discrete Algorithmgsvol. 0 No. 0, 0000

Therefore, the algorithm i©(|z||y|) time in the worst and average case. However,
the space required is only(min(|z|, |y|)). This is because, by a column-wise pro-
cessing, only the previous column must be stored in ordesttgpeite the new one, and
therefore we just keep one column and update it. We can mdlacesnatrix row-wise
or column-wise so that the space requirement is minimized.

We show now how to adapt this algorithm to search a shortqpaftén a long text
T'. The algorithm is basically the same, with= P andy = T" (proceeding column-
wise so thatD(m) space is required). The only difference is that we must atioat
any text position is the potential start of a match. This isienmed by setting’y ; = 0
foralli € 0...n. Thatis, the empty pattern matches with zero errors at axty te
position (because it matches with a text substring of leagtb).

The algorithm then initializes its columt, .. ,, with the values’; = j, and pro-
cesses the text character by character. At each new textatbér;, its column vector
is updated ta”, ,,,. The update formula is

C; = if (P] = Tl) then Cj,1

else 1 +min(C}_,Cj,Cj1)

and the text positions whet@,, < k are reported.
The search time of this algorithm 3(mn) and its space requirement@¥(m).
Figure 1 (right) exemplifies.

3.1.1 A Bit-parallel Simulated NFA

An alternative and very useful way to consider the probleta imodel the search with
a non-deterministic automaton (NFA) [39, 40, 4, 7].

Consider the NFA fok = 2 errors under edit distance shown in Figure 2. Every row
denotes the number of errors seen (the first row zero, thendeow one, etc.). Every
column represents matching a pattern prefix. Horizontavesrepresent matching
a character (i.e. if the pattern and text characters matehadvance in the pattern
and in the text). All the others increment the number of er@nove to the next
row): vertical arrows insert a character in the pattern (deaace in the text but not
in the pattern), solid diagonal arrows replace a charaeteradvance in the text and
pattern), and dashed diagonal arrows delete a charactéegfattern (they are-
transitions, since we advance in the pattern without aduagrin the text). The initial
self-loop allows a match to start anywhere in the text. Th®maton signals (the
end of) a match whenever a rightmost state is active. Wittimuinitial self-loop, the
automaton computes edit distance.

It is not hard to see that once a state in the automaton iseaetivthe states of the
same column and higher rows are active too. Moreover, atengiext position, if
we collect the smallest active rows at each column, we oltkebrvertical vector of
the dynamic programming algorithm (in this cg$e 1, 2, 3, 3, 3,2}, compare to right
table of Figure 1).

This NFA is implemented in [7] using “bit-parallelism”: tretates of the NFA are
mapped to bits in a computer word, and all the updates redjtorall the states when

A Hybrid Indexing Method for Approximate String Matching’

no errors

1 error

\\@ 2 errors

FiG. 2: An NFA for approximate string matching of the pattésur vey" with two
errors. The shaded states are those active after readitexttiesur ger y" .

a new text character is read are performedifi) operations on the whole machine
word. The simulation needsn — k)(k + 2) bits for the simulation, since only the
full diagnoals need to be represented. The first full diagmfrthermore excluded
because the initial self-loop makes it always active. I&thbits do not fit in a single
computer word then the cost to update the NFAJI§m — k)(k + 2)/w) per text
character, whera is the number of bits in the machine word. This yields a total
worst case time of)(mkn/w), which is very fast for short patterns. The reader is
referred to the original paper for the details of the simalat

3.2 DFS over Suffix Trees

The number of strings that match a pattétrwith at mostk errors is finite. This is
immediately clear if we see that the length of any such stmingt be betweem — &
andm + k, since otherwise more tha@ndeletions or insertions would be necessary to
convert one into the other. We call this set of strings thakighborhood” ofP, and
denote it

Up(P) ={z € ¥*, ed(z, P) < k}

The idea of this approach is, in essence, to generate allttingssin the neigh-
borhood of P and search them in the text (without errors). It is clear thatanswer
is the set of all positions where the stringdlip(P) appear. Each such string can be
found by using an exact search technique, as done in [24]itoamore sophisticated
technique, as explained shortly.

The main problem with this approach is tHa{(P) is quite large. For instance,
U1 ("hello”) is

{ello, hllo, helo, hell } U U { zello, hzllo, hezxlo, helzo, hellz } U
rEX

8 J. of Discrete Algorithmsvol. 0 No. 0, 0000

U { zhello, hzello, hexllo, hellzo, helloz }
TEX
An analysis in [39] shows that, by considering the numberifieknt sequences
of k edit operations that can be performed o¥erthe number of different resulting
elements can be upper bounded by

UL (P)| < %(m+1)’“(a+l)k = O(m*o)

which shows an exponential growth with A slightly more elaborated upper bound is
given in [24], where “maximal” neighborhood elements, neighborhood elements
that are not prefixes of others, are considered. We call &g/ P) C Ui (P). An
upper bound foiU} (P)| is obtained by working on the recurrence that defines an
approximate occurrence (Section 3.1). The result is shovet

k+1 m
t N R
|Up(P)] < W a
for anyc > 1, a formula that is minimized for ~ 1/« + /1 + 1/a? (recall that
a = k/m). This is still exponential oft.
Both bounds show that this approach works well for smakndk values. Other-
wise the number of elements to search makes the problenctaibia.

However, searching all the strings one by one is not the &stachoice. A more
clever search strategy is possible if we use the suffix amatyée) as the data structure
to implement this search [15, 6, 37]. Since every substrinthe text (i.e. every
potential occurrence) can be found by traversing the suféi® from the root, it is
sufficient to explore every path starting at the root, dedicenby every branch up to
where it can be seen that that branch cannot be the beginhanstiong inUy (P).

We explain now the detailed algorithm (on a suffix trie for pliwity), although it is
not hard to adapt it to the suffix tree or array. We choose aoritign that determines
the edit distance betwedh and any other string. The algorithm must be able to:
(a) consider the string: incrementally,(b) determine wherd(P,z) < k, and(c)
determine whered(P, xzy) > k for anyy. The state of the algorithm is initialized
and we start at the root of the tree. Now, we descend reclydiyesvery branch of
the suffix tree. When we descend by a branch labeled by tles detthe comparison
algorithm adds to the current string. If the algorithm determines thatl(P, z) < k,
we report all the leaves of the current subtree as answeren tthe other hand, the
algorithm determines thati(P, zy) > k for any stringy, we abandon immediately
that branch. Otherwise, we continue recursively desceridithe suffix tree.

The algorithm is shown in Figure 3. Recall that each suffi& trede/V corresponds
to a different text substring. At each invocatior$ reflects the result of comparirfg
against the text substringrepresented by. The first"i f " corresponds to action
(b) in the comparison algorithm, while the second correspoadaction(c). The
operation pdate corresponds to actiofa), where the lettes is added to the current
string z corresponding to stat§. Notice that the algorithm is recursive and a set of
statesS is stacked along the execution. This stack has height atimast:.

A Hybrid Indexing Method for Approximate String Matching@
Search (Suffix Tree Node N, Search State S)

if (Sinplies a match between P and N)
Report all the |eaves below N
else if (Sinplies that N can be extended to nmatch P)
for each tree edge N — N' |labeled a
Search (N', Update(S, a))

FiG. 3. The algorithm to find the neighborhood of a pattern udiregsuffix tree.

In[15, 6] the comparison algorithm used is the dynamic progning algorithm we
have presented in Section 3.1. Each new charactecofresponds to a new columnin
the matrix, and the statg is simply the last column processed((n) space). Adding
a new letter (actiorfa)) can be done by updating the last coluSyin O(m) time. A
match is detected (actiqid)) when the last element of the colunSnis < k. Also, it
is known thatz cannot be extended to matéh(action(c)) when all the values of the
last column are> k.

Figure 4 illustrates the process. We show the path thatsspatlithe string sur gery" .
The matrix can be seen now as a stack (that grows to the righit).~x = 2 the back-
tracking ends indeed after readifigur ge" since that string matches the pattern
(action(b)). If we had instead: = 1 the search would have been pruned (acfion
after consideringd' sur ger ", and in the alternative path shown, after considering
"surga", since in both cases no entry of the matrix has a 1 or 0.

Yet other even more sophisticated traversal techniquesaasble [37, 11] but, as
we show later, they are not better in practice.

3.3 Filtration Techniques

Each approximate match of a pattern contains some pattestraigs that match with-
out errors. This means that it is possible to derive suffiatenditions for an approxi-
mate match based on exact matching of one or more carefldigted pattern pieces.
The text can be scanned for the exact occurrences of thepatezes selected, and
the text areas surrounding those occurrences can be vdufiesh approximate oc-
currence of the complete pattern. This has been well knowa fong time in on-line
algorithms, giving rise to the so-called “filtration” tedqnes [26].

The application of the idea to indexed searching is as falaseme kind of index
is used to help locate quickly tlexactoccurrences of the selected pattern pieces, and
once their positions in the text are known, a classical na-#ilgorithm is run on the
candidate text areas to check for real occurrences of tlterpafA general limitation
of all those methods (on-line and indexed) is due to the eaifithe problem: there is
always a maximum error rati@ up to where they are useful, as for larger error levels
the text areas to verify cover almost all the text.

A general lemma can be used to abstract from the many exigtingnts of exact
partitioning.

10 J. of Discrete Algorithmgsvol. 0 No. 0, 0000

TLEGLED]

o1 |23 45|67 Vo
s|1]o|1|2]3[4[5]6 PR _
wul2|1|o[1]2[3[4]5 FA 5
r|3[2]1]0]1[2]3]4 ;
v]4]3][2]1]1[2|3]4 . 5
e|5|4(3[22]1[2]3) 2
vI6|5]4]3[3]2]2]2 2

2

FIG. 4: The dynamic programming algorithm run over the suffietréve show just
one path and one additional link.

LEMMA 3.1

Let A andB be two strings suchthati(A, B) < k. LetA = Az Asxo...Tpts—1 Akts,
for stringsA; andz; and for anys > 1. Then, at least stringsA4;, ... A;, appearin
B. Moreover, their relative distances insiffecannot differ from those inl by more
thank.

That is, we can seleét + s non-overlapping pieces from, and at least of them
must appear unaltered iB. This is clear if we consider the sequence of at niost
edit operations that convettinto B. As each edit operation can affect at most one of
the A;’s, at leasts of them must remain unaltered. The extra requirement otivela
distances follows by considering thaedit operations cannot produce misalignments
larger thank. Figure 5 illustrates the lemma.

The lemma can be used in different ways. In particular, twénnmanches of
algorithms based on it exist, differing essentially in wh@pattern or text) are the
errors assumed to occur. That is, the branch explored inZ84considerP = A
andT’' = B (whereT" is an occurrence oP in T'), while the branch explored in
[20, 18, 36] considef” = A andP = B. A very simple application of the lemma
[30] is to split the pattern itk + 1 pieces and check the text area surrounding each
exact occurrence of a piece in the text.

However, Lemma 3.1 can be relaxed to permit the presencenaé sorors in the
pieces:

A Hybrid Indexing Method for Approximate String Matchindl1

A Al X1 A2 _x_2‘ ~ A3 X3 Ad x4 A5
B AL AZ A3 BNV AS

Fic. 5: An example of Lemma 3.1 witk = 3 ands = 2. At least 2 of theA]s
survive unaltered. They are actually 3 such segments iretample because one of
the errors appeared ir,. Another possible reason could have been more than one
error occurring in a singlel;.

LEMMA 3.2

Let A andB be two strings such thati(A, B) < k. LetA = Ajz1Aszs..x; 14,
for stringsA; andz; and for anyj > 1. Then, at least one string; appears irB with
at most|k/j| errors.

The proof is similar to that of Lemma 3.1: since at mb&rrors are performed on
A to convert it intoB, at least one of thel;'s get no more thamnk/j| of them. Note
that Lemmas 3.1 and 3.2 have a common point at £ + 1 ands = 1. Figure 6
illustrates.

Al 1 A2 X2 A3
A] ---—e *—---—oo——
AL A2 AZ’

B T ANNANNN NNNANAANAAN/

FiG. 6: lllustration of Lemma 3.2, where = 5 andj = 3. At least one of thed;’s
has at most one error (in this cade).

It is worthwhile to note that it is possible thatk/j| < k, so we are not only
“distributing” the errors across pieces but also “removVisgmne of them.

In this case, the idea is to partition the pattern in less thaih pieces, so one cannot
guarantee that there are pieces free of errors. Howevegameeduce the number of
errors that may appear in at least one of the pieces. Thesefitxation approaches
based on different interpretations fdrand B [24, 31]. The one we use in this paper
correspondst® = A, x; = ¢ andB = T', whereT"” is an occurrence dP in T'. The
patternP is split in j pieces and these are searched allowibgj | errors in the text.
Only the text areas surrounding those occurrences canio@tamplete occurrence
of P.

4 Combining Suffix Trees/Arrays and Pattern Partitioning

We present now our proposal. The general idea is to partitierpattern in pieces,
search each piece in the suffix tree in the classical way, hadkcall the positions
found for a complete match. We first consider how to searcheaepin the suffix

12 J. of Discrete Algorithmgsvol. 0 No. 0, 0000

tree, then we address the pattern partitioning issue, aatiyfidiscuss a suffix array
implementation.

4.1 DFS Using the NFA

We combine the DFS over suffix trees (Section 3.2) with our NkAulation (Sec-
tion 3.1.1). Recall that the former consists of a limitedttiefirst search on the suffix
tree, starting at the root and stopping when it can be se¢ththaurrent text substring
cannot start an approximate pattern occurrence. No textroerece can be missed be-
cause every text substring can be found starting from the roo

The reason to combine DFS with our NFA as its node processgayithm is as
follows. According to [26], the NFA simulation [7] is the f&st algorithm for short
patterns. This is precisely the type of patterns that we aheggto search with this
method, since longer patterns will be split in many subpasteAs the next section
makes clear, if the pattern is long enough to make another poatessing algorithm
better, it is because the pattern pieces are so long thakfgianential nature of the
search cost on suffix trees will make the whole approach ssef@n the other hand,
there exist (filtering) algorithms that for low error levelse faster than our choice,
e.g. [30], but those algorithms need to skip over the texichvts not possible in this
setup.

The use of the NFA node processing algorithm is only possib&use of the sim-
plicity of the DFS traversal. For instance, the idea doeswook on the more complex
setup of [37, 11], since these need some adaptations of tlendlg programming al-
gorithm that are not easy to parallelize. The tradeoff is:cam explore less nodes
at higher cost per node or more nodes at less cost per nodehdelater experi-
mentally that this last alternative is much faster when tié& M used to process the
nodes.

The NFA is modified as follows. We remove the initial self4oof the automaton,
so that it forces the whole string read to match the patteitially, the active states at
row are at the columns from 0 ipto represent the deletion of the fiistharacters of
the pattern. Hence, we start the automaton with its firsfiadjonal active. The other
states in the lower left triangle represent initial ins@ns in the pattern and hence need
not be represented, since if a substring matches with liimisartions we will find (in
other branch of the suffix tree) a suffix of it which does notchthe insertiorts

Relating this to Section 3.2, we have that the three actieesled aréa) add a
new letter to the text, which is accomplished by changingttiere states of the NFA,
(b) recognize a match, which is signaled by the fact that the tawgét state of the
automaton is activele) determine that the current string cannot be extended tomatc
the pattern, which is determined when the NFA runs out of/acifates.

On the other hand, unlike for the online algorithm [7], wedhérepresent the first
full diagonal of the NFA, since now it will not be always aaivThe simulation of
this automaton needs: — k + 1)(k + 2) bits. If we callw the number of bits in the
computer word, then when the previous numbeg i®» we can put all the states in a

41, after traversing a text substring a 1 finally exits from the lower-left triangle, then a suffiikowill do the same without entering into
the triangle.

A Hybrid Indexing Method for Approximate String Matchindl3

single computer word and woi®(1) per traversed node of the suffix tree, using the
bit-parallel simulation algorithm depicted in [7]. For lger patterns, the automaton
is split in many computer words, at a cost@{k(m — k)/w). For moderate-size
patterns this improves over dynamic programming, whichisa0¢m) per suffix tree
node.

An additional twist is possible: every approximate occnoeof the pattern in the
text must start with one of the firét+ 1 pattern characters, since otherwise a match
is not possible. Hence, in the first level of the tree we neehter only into those (at
most)k + 1 different characters.

4.2 Partitioning the Pattern

As seen in the Introduction and Section 3.2, the search sogj the suffix tree grows
exponentially withm andk, no matter which of the two techniques we use (DFS or
optimal traversal). Hence, we prefer thatandk are small numbers. We present in
this section a new technique based in partitioning the patt®o that the pattern is
split in many sub-patterns which are searched in the suffix, tand their occurrences
are directly verified in the text for a complete match.

This method is based on the pattern partitioning technid&=otion 3.3. The core
of the idea is that, if a pattern of length occurs withk errors and we split the pattern
in j parts, then at least one part will appear wiithy j | errors inside the occurrence.

The new algorithm follows. We evenly divide the patterryipieces { is unspec-
ified by now). Then we search in the suffix tree thpieces with| k/j | errors using
the algorithm of Section 4.1. For each match found endingxdttosition: we check
the text aredi — m — k..i + m + k.

The reason why this idea works better than a simple suffixtteeersal with the
complete pattern is that, since the search cost on the stdfixis exponential im
andk, it may be better to perforphsearches of patterns of lengity j andk/j errors.
However, the largey, the more text positions have to be verified, and therefage th
optimum is in between. In Section 5 we find analytically thdimpm j and the
complexity of the search. Figure 7 illustrates the idea.

y

=

</

Suffix tree Hybrid Filtration

§ search E verify
FiG. 7. lllustration of the tradeoff between indexing techragqu

One of the closest approaches to this idea is Myers’ indek {24dich collects all

14 J. of Discrete Algorithmgsvol. 0 No. 0, 0000

the textg-grams (that is, prunes the suffix tree at degthand given the pattern it
generatesll the strings at distance at mdsfrom it, searches them in the index and
merges the results. This is the same work of a suffix tree deavihat we do not enter
too deep (thatis;m + k& < ¢). If m + k > ¢, Myers’ approach splits the pattern
and searches the subpatterns in the index, checking albtieatal occurrences. The
main difference with our proposed approach is that Myerdeingenerates all the
strings at a given edit distance to the pattern and searbkes instead of traversing
the structure to see which of them actually exist. This makasapproach degrade
on biased texts, where most of the genergtgdams do not exist (in the experimental
section we show that it works well on DNA but quite bad on Esigli Moreover,
we split the pattern to optimize the search cost, while thigtisg in Myers’ index is
forced by indexing constraints (that i§,and cannot be adapted at query time.

4.3 A Suffix Array Implementation

As discussed, the suffix tree poses very high space requitsns® high that the data
structure becomes impractical for many applications. Wavshow how our search
algorithms can be implemented on a suffix array [22]. Thisakesady donein [15, 6],
so we explain the idea again and give some optimizationldetai

The basic idea is to simulate over the suffix array the algoritiesigned for the
suffix tree. Nodes of the suffix tree correspond to intervakhée suffix array. Specif-
ically, the interval is that of all the leaves of the subtreeted by the node. So each
time the suffix tree algorithm is at a given node, its suffiagisimulation is at a given
interval. When the backtracking algorithm is at a given nateither (1) stops and
prunes the search in that branch, (2) stops and reportseaitthtree leaves as oc-
currences, or (3) enters recursively into all its childréhe first two cases are easily
handled in the suffix array (reporting the leaves is paréiduleasy because they form
precisely the current interval).

For the third case, we need to find all the subintervals of tireeat interval that
correspond to the children of the current suffix tree node.rg Ghoice is to binary
search the children in alphabetical order (that is, lefigbt). We prefer to start by
searching the child whose interval contains the middletfmrsof the current interval,
and proceed recursively with the two halves left. The nedaffs the same, but we
search in smaller intervals on average. Additionally, wé@wto sequential traversal
when the intervals are too short.

Finally, to speed up the first level of the search we precompwtupraindex that
gives direct access to the suffix array with the first letteérisTheeds only) (o) ex-
tra space, and is particularly helpful to start the sear¢hrarg only in the intervals
corresponding to the firét + 1 characters of the pattern.

Our prototype uses a very simple construction algorithrantBuffixes are pointed
to and then quicksorted. There are many other more effic@mgtouction algorithms
[22, 32, 19]. The last reference shows to be about 8 timesrfgsin using quicksort.
However, we concentrate on the search algorithm in this yaskhe data structure is
well known.

A Hybrid Indexing Method for Approximate String Matchindl5
5 Analysis

In which follows we analyze the query time complexity of oybhid algorithm over
suffix trees. The analysis over suffix arrays yields the sagsalts for the optimal
partitioning (up to lower order terms), but the final comjiies over suffix arrays
have to be multiplied by)(log n).

5.1 Searching One Piece

An asymptotic analysis on the performance of a depth-firstcteover suffix trees
is immediate if we consider that we cannot go deeper thar leve k since past
that point the edit distance between the path and our pattdanger thark and we
abandon the search. Therefore, we can spend at@@3$t+*) time, which is inde-
pendent om and hence)(1). Another way to see this is to use the analysis of [5],
where the problem of searching an arbitrary automaton oseffix trie is considered.
Their result for this case indicates constant time (thalépending on the size of the
automaton only) because the automaton of Figure 2 has nesycl

However, we are interested in a more detailed average asabgpecially the case
wheren is not so large in comparison "%, We start by analyzing which is the
average number of nodes at leveih the suffix tree of the text, for smafl Since
almost all suffixes of the text are longer th&afthat is, all except the la€), we have
nearlyn suffixes that reach that level. The total number of nodes\at eis the
number of different suffixes once they are pruned etaracters. This is the same as
the number of differenf-grams in the text. If the text is random, then we can use a
model wheren balls are thrown intar® urns, to find out that the average number of
filled urns (that is, suffix tree nodes at levls

ot (1 — (1 l/ai)n) = o (1 - efe(”/”f)) = O (min (n,0"))

which shows that the average case is close to the worst caselevellog, n all the
possibles? nodes exist, while for deeper levels all theodes exist.

We also need the probability of processing a given node d@hdep the suffix tree.
In the Appendix we prove that the probability is very high foe k/¢ > 1 —¢/\/o
(Eq. (A.3)), and otherwise it i€)(y(3)"), wherey(3) < 1. The constant can be
proven to be smaller than= 2.718..., and is empirically known to be close to 1. The
~v(z) function (Eq. (A.1))isl /(o' ~*2?* (1 — 2)?>(' =), which goes from /o to 1 as
z goes fromOtad — ¢//o.

Therefore, we pessimistically consider that in levels

k p—
l—c/Vo

all the nodes in the suffix tree are visited, while nodes atllév> L(k) are visited
with probability O(y(k/¢)*), wherey(k/¢) < 1. Finally, we never work past level
m + k. We are left with three disjoint cases to analyze, illustidh Figure 8.

¢ < Lk) = O(k)

16 J. of Discrete Algorithmgsvol. 0 No. 0, 0000

all nodes
L(k)

some nodes
m+k

FiG. 8: The upper left figure shows the visited parts of the trelee fiest shows the
three disjoint cases in which the analysis is split.

(a) L(k) > log, n, thatis,n < o) or “smalln”
In this case, since on average we work on all the nodes upébltey n, the total
work is n, that is, the amount of work is proportional to the text sizhis shows
that the index simply does not work for very small texts, lgedim on-line search
preferable as expected.

(b) m + k < log, n, thatis,;n > o™** or “largen”
In this case we traverse all the nodes up to Iéygl), and from there on we work
at level? with probabilityy(k/£)¢, until £ = m + k. Under caséb), there arer’
nodes at leved. Hence the total number of nodes traversed is

m-+k

ZO’ + Z v(k/O) e

(=L(k

where the first term i€ (o~ (*)). For the second term, we see thdt) > 1/,
and hencéy(k/¢)o)* > 1. More precisely,

w . ng%
((k/B0)" = g —pyrn

which grows as a function of. Since(y(k/¢)o)* > 1, we have that even if it
were constant witlf, the last term would dominate the summation. Hence, the

A Hybrid Indexing Method for Approximate String Matchindl7
total cost in caséb) is

L) Uk(1+2«22(m+k)
—

which is independent of.

(¢) L(k) <log, n < m + k, thatis, “intermediate”
In this case, we work on all nodes upkdk) and on some nodes up#o+ k. The
formula for the number of visited nodes is

log, (n)—1 m+k
Za+ Z kIO + DT k0
{=L(t=log, n
The first sum i) (o”(¥)). For the second sum, we know already that the last term

dominates the complexﬁy (see caseg). Finally, for the third sum we have that

~(k/¢) decreases a@grows, and therefore the first term dominates the rest (which

would happen even for a constaf)t
Hence, the casé= log, n dominates the last two sums. This term is

B o*(log, n)?'o8-n _ o"(log, n)**
= W log, (1) KPIROTB g

ny(k/log, n)'°&-" (1+0(1))

(this can be bounded by (1 + 1/a)?)* by noticing that we are inside cage,
but we are interested in howaffects the growth of the cost).

The search time is then sublinear fog, n > min(L(k), m + k), or which is the
samep < max(log, (n)/m (1 —¢/+/0),log,(n)/m — 1). Figure 9 illustrates.

=

1

5

log, n

|
V7 /e

FiG. 9. Area of sublinearity for suffix tree traversal.

5.2 Pattern Partitioning

When pattern partitioning is applied, we perfojraearches of the same kind of Sec-

tion 4.1, this time with patterns of length/;j andk/;j errors. We also need to verify
all the possible matches.

18 J. of Discrete Algorithmgvol. 0 No. 0, 0000

As shown in [7], the matching probability for a text positimO(y(«)™), where
~(«) is that of Eq. (A.1). From now on we use= v(«). Using dynamic program-
ming, a verification cost® (m?) °. Hence, our total search cost is

j x suf fix_tree_traversal(m/j, k/j) + jx ™ Im*n

and we want the optimurp First, notice that ify = 1 (thatis,a > 1 — ¢/+/7), the
verification cost is as high as an on-line search and thergfattern partitioning is
useless. In this case it may be better to use plain DFS. Inthlysis that follows, we
assume that < 1 and hencex < 1 —¢/+/0.

According to Section 5.1, we divide the analysis in threesaslotice that now we
can adjusy to select the best case for us.

() 7" #/) >, or jlog,n < k/(1 - ¢/ /o)
In this case the search costi$n) and the index is of no use.

(b) omtR)/i < n, or jlog,n>m+k

In this case the total search cost is
k/j 2(m+k)/j
j<UL(k/j) L 2 T+ o)t

a2k/i

+ vm/ijn)

where the first two terms decrease and the last one incredbes Bincea + b =
©(max(a,b)), the minimum order is achieved when increasing and decrgasi
terms meet. When equating the first and third terms we obtairtthe optimuny

IS
m

. [0

ne log,, (m?n) (1 —c/\o
and the complexity (only considering is O (n"‘/(‘”“ —¢/Vo) 10&“””).
On the other hand, if we equate the second and third term etbig s

+108,(1/7))

. m
jo = W (1+2((1+ @) log, (1 4+ a)+ (1 —a)log, (1 — a)))
and the Complexity i) (n] —log, (1/7)/(1+2((1+a)log, (1+a)+(1—a) log, (1 70‘)))) .

In any case, we are able to achieve a sublinear complexity(of), where

1_ log, (1/7))

A= max(TH2((1+a) log, (1 +a)+(1—a)Tog, (1—a))

a+(l—c//o)log,(1/v)’

Which of the two complexities dominates yields a rather clexpondition that
depends on the error level but in both cased < 1if a < 1—¢/\/o. If o

is large enoughd > 24 for ¢ = ¢), the complexity corresponding g always
dominates. However, it is possible thator j, are outside the bounds of case
(b) (that is, they are too small). In this case we would use thermim possible

j = (m + k)/log, n, and the third term would dominate the cost, for an overall
complexity of O(n'~1°8-(1/7)/(1+2)) " This complexity is also sublinear if <

1—c¢/+/o.

51t can be done ir0 ((m /7)?) time [24, 27], but this does not affect the result here.

A Hybrid Indexing Method for Approximate String Matchindl9

(¢) oL/ < p < omHR/i or k/(1—¢/\/o) < jlog,n <m+ k
The search cost in this intermediate case is

, k/i(] 2k/j ‘
Lk O (log, n) m/j, 2
i (o119 + S

where the first two terms decrease wjtand the last one increases. Repeating the
same process as before, we find that the first and third termhamgee atj = j;

with the same complexity. We could not solve exactly wheeestbcond and third
term meet. We found

m(a + 2alog, log, n + log, % — 2alog, 1) m(a + log, %)

3= log, (m2n) - log, (m2n)

and since the solution is approximate, the terms are notlgx@gual atjs. The
second term i€) (n®(1+2l0g; (1/7))/(atlog, (1/))) slightly higher than the third.
Again, it is possible thaf; is out of the bounds of cage) and we have to use the
same limiting value as before.

The conclusion is that, despite that the exact formulasaoimplex, we have sub-
linear complexity fora < 1 — ¢/+/o, as well as formulas for the optimupnto use,
which is®(m/ log, n) with a complicated constant.

For largera values the pattern partitioning method gives linear coxiplend we
need to resort to the traditional suffix tree travergat(1). As shownin [7, 25], it is
very unlikely that this limit ofl — ¢/\/o can be improved, since there are too many
real approximate occurrences in the text.

A simplified technique that gives a reasonable result in roaseés is to selegt=
(m + k)/ log, n, for a complexity of

logy (1/7) 2(a+Hg (a))
0 (w2 o (=)

whereH,(a) = —alog, a — (1 — a)log, (1 — «a) is the baser entropy function.
This is the complexity that we claim in the beginning of thisrk; despite that it is
not necessarily the best that can be obtained.

5.3 The Limits of the Method

Let us pay some attention to the limits of our hybrid methadiFe 10).

Usingj = (m + k)/log, n, the besy becomes 1 (that is, no pattern partitioning)
whenn > o™*F (this is because the cost of verifications dominates ovdixsuée
traversal). The besgtis > k + 1 forn < ¢'*!/*. Since in this case we search the
pieces with zero errors (that isk/(k + 1)| = 0, recall Section 4.2), the search in
the suffix tree cost®(m), and later we have to verify all their occurrences. This is
basically what the-gram index of [28] does, except because it prunes the suodfix t
at depthy.

Finally, the only case where the index is not useful is whes very small. We
can increasg to be more resistant to small texts, but the limitjis= £ + 1, and

20 J. of Discrete Algorithmsvol. 0 No. 0, 0000

1
using thatj the index ceases to be useful for< ocT</v= < ¢'/®. We have also
to keep sublinear the cost of verifications, thatis!/* = o(1), which happens for
a < 1/log, ,, n. This requires, in particular, that = Q(log n).

I I I
nothing 1 maximal intermediate j =1
useful | j=k+1 | (hybrid index) | no partit.
1 1 1
1
o1/ V" gltl/e oMtk n

FiG. 10. Thej values to be used accordingro

This last consideration helps also to understand how isiipte to have a sublinear-
time index based on filtering when there is a fixed matchind@dity per text posi-
tion (v™), and therefore the verification cost must(bg:). The trick is that in fact we
assumen = Q(logn), that is, we have to search longer patterns as the text gsvs.
we can tungj, we softly move toj = 1 (then eliminating verification costs) when
becomes large with respectto. This “trick” is also present in the sublinearity result
of Myers’ index [24], and implicit in similar results on na&l language texts [8, 25].

Finally, it is interesting to compare the limit error levelfor which our index re-
mains sublinear in its average search time against that ar§nj24] and typical
filtration indexes. As explained in Section 4.2, ours and Myidex should share
a single analysis, as the idealized method turns out to bsatime (the differences in
practice are explained in Section 4.2 and made apparent ingkt section on exper-
imental results). Since our analysis and that of [24] djffez show in Figure 11 the
numerical solution of\ = 1 in both cases. As can be seen, each analysis is tighter
than the other for different values (on the: axis): Myers' is tighter forr < 30 and
ours is tighter for larges. We note that the curves are the exact numerical solutions
to the equation\ = 1, while our gross conservative bouak 1 — e/+/o approaches
both curves from below and reaches Myers’ ot 60.

Despite that Myers’ limit error level for sublinearity has be numerically com-
puted, it is interesting to mention it can be fairly well apximated by the model
a=1-1.78/(1.09 + In), with a percentual error close to 1% fer< 200. This
shows a deeper difference in models: Myers’ solution is eftyipel — a/(b + ln o)
while ours is of the typd — a/+/a. As shown in [26], this last is the theoretically
correct one asymptotically, which explains that our moa@eidmes better than Myers’
from somes value on.

To give an idea of how much these indexes improve over thermaxic tolerated
by typical filtration indexes, we plot one of them [28] (as kped, all of them have
similar limits on the error level). The limit for this indesd < 1/(31og, m+log, n).
Assuming very moderate values = 10 andn = 1 Mb yields the third curve of the
figure.

6 Experimental Results

We present in this section a number of experimental resuttsst the performance of
our algorithm and to compare it against others. We first compiae existing algo-

A Hybrid Indexing Method for Approximate String Matchin@1
0.8 T T T T T T

0.7 r

,,,,,

0.6

05 r

Myers’ index ——
Our index —— A

Typical filtration index —=—

0.4 |
03} |
02}

0.1

maximum error level for sublinear time

0 10 20 30 40 50 60 70
alphabet size

FiG. 11: The maximuna values for which different indexes have sublinear average
search time, according to the analyses in the source papers.

rithms on suffix trees and arrays, showing that our impleaté on suffix arrays is
the best choice. We then show the behavior of our hybrid keslgorithm. Finally,
we compare our algorithm against the others.

We have tested shorin(= 10) and medium-sizer¢ = 20) patterns, searching
with 1, 2 and 3 errors the short ones and with 2, 4 and 6 the mrednes. We used
two types of text: English and DNA. The specific texts used/\z@cause we are
severely limited in the text sizes that can be handled wiffixsinees (little more than
1 megabyte in our machine), while we use texts of up to 10 mggalin the rest of
the experiments. In all cases, we selected 1000 randonmrmsmftem each text file
and used the same set for all thealues of that length, and for all the indexes.

Our machine is a Sun UltraSparc-1 of 167 MHz and 64 Mb of RAMyning So-
laris.

6.1 Suffix Trees vs Suffix Arrays

Our first experiment aims at determining the most convertresrersal strategy over
suffix trees and suffix arrays. We used two different texts:

¢ DNA text (“h.influenzae”), a 1.34 Mb file. This file is callezhNA in our tests, and
H-DNA is the first half megabyte of it. In this case= 4.

¢ English literary text (from B. Franklin), filtered to lowease and the separators
converted into a single space. This text has 1.26 Mb, andllisdcara in the
experiments.H-FRA is the first half megabyte tfRA. Given that the character
distribution is not uniform, the best choice is to consider &lphabet size as the
inverse probability of two random letters being equal, ehievess around 13.

22 J. of Discrete Algorithmsvol. 0 No. 0, 0000
On the other hand, three indexes are compared:

Cobbs’: The index proposed by Cobbs [11], which minimizes the nunobesuffix
tree nodes traversed. We use the implementation of the iauibiooptimized for
space (and actually implemented over a DAWG instead of axduéfe). The code
is restricted to work on an alphabet of size 4 or less, so ihig built on DNA.

Dfs(ST): The depth-first search technique of Gonnet [15, 6] run overfaxgree and
using our bit-parallel NFA simulation to process the nodd® code is oufs

Dfs(SA): The same depth-first search technique run over a suffix anéwsing our
bit-parallel NFA simulation to process the nodes. The cedmurs.

Table 1 shows the construction cost and space requiremktiis mdexes. While
Cobbs’ implementation requires about 65 times the textaimbour suffix tree needs
35 to 39 times the text size, the suffix array requires onlynes the text size. Its
construction time is close to that of suffix trees, despita the have not used the
fastest algorithms for suffix array construction but jusirapde quicksort of pointers
(as shown in [19], this means that the construction could tie@&s faster). In partic-
ular, note that suffix arrays are built faster than suffixdredaen the capacity of the
RAM memory is reached by the size of the data structure anthgagmes into play.

| Index | DNA | H-DNA | FRA | H-FRA |
Cobbs’ | 108.70u/532.813 30.50u/76.069 n/a
65.67X 65.85X
Dfs(ST) | 30.89u/104.17s | 6.48u/0.42s 28.46u/76.86s 6.43u/0.619
38.99X 39.10X 35.45X 35.32X
Dfs(SA) | 31.19u/0.04s 9.27u/0.021s | 24.95u/0.05s | 7.57u/0.02s
4.00X 4.00X 4.00X 4.00X

TABLE 1: Times (in seconds) to build the suffix tree and array indexal their space
overhead. The time is separated in ttru part (“u”) and thel/o part (“s”). The space
is expressed in terms of the ratio index/text: means that the index takegimes the
text size.

Table 2 shows query time for short and medium length patteeasched with an
error level of 10% to 30%.
Three conclusions are clear from this comparison:

o Suffix trees are not practical except when the text size talleais so small that
the suffix tree fits in main memory. In the experiments we caslel texts of little
more than one megabyte only, because in our machine of 64 NRAM larger
texts were unmanageable. Even for these small texts, itwpoto 12 hours to
build Cobb’s index.

¢ Even when the suffix trees fit in main memory, the suffix arrag lzetter alter-
native (despite its theoretically worse complexity). Irr edperiments the suffix

5The implementation of the suffix tree is from Erkki Sutinen.

A Hybrid Indexing Method for Approximate String Matching23

Short patternsip = 10)
Index | & | DNA | H-DNA | FRA | H-FRA
1 || 110.0u/192.58 101.8u/156.09
Cobbs’ | 2 588.1u/1989s| 377.0u/1113s| n/a
3 || 3370u/142913 1835u/6060s
1 6.81u/15.45s| 2.59u/0.25s | 6.11u/13.01s| 2.12u/0.17s
Dfs(ST) | 2 || 134.4u/337.28 48.55u/0.91s| 42.82u/87.509 13.71u/0.275
3 1044u/2482s| 446.4u/5.25s| 215.2u/500.13 51.38u/0.339
1 5.90u/0.31s 2.83u/0.22s 4.,74u/0.15s | 2.27u/0.19s
Dfs(SA) | 2 77.32u/1.58s| 33.86u/0.75s| 25.91u/0.23s| 12.74u/0.229
3 || 615.8u/12.4283 240.6u/4.83s| 90.32u/0.50s| 42.14u/0.325
Medium patternsrp = 20)
Index | & | DNA H-DNA | FRA | H-FRA
2 726.1u/1700s | 496.3u/974.09
Cobbs’ | 4 e 8060u/144475 n/a
6 *%x% *%k%
2 56.80u/189.5s| 18.60u/0.31s| 35.98u/80.308 12.93u/0.3195
Dfs(ST) | 4 1989u/8269s | 432.6u/0.22s| 482.9u/1488s| 125.6u/0.369
6 || 11341u/40604s 2185u/0.20s| 2204u/7286s| 516.2u/0.209
2 35.26u/0.22s | 18.81u/0.21s| 23.59u/0.31s| 11.94u/0.225
Dfs(SA) | 4 713.4u/0.31s | 336.3u/0.42s| 202.5u/0.20s| 96.12u/0.235
6 4005u/0.44s 1751u/0.45s| 806.8u/0.20s| 382.1u/0.275

*** One single query took more than 2 hours of elapsed time.

TABLE 2: Times (in milliseconds) to search approximate pattemrsuffix tree/array
indexes. They are separateddnutime (“u”) andi/o time (“s”).

array beats the suffix tree even for 0.5 Mb texts. Where thixsarfray does not
beat the suffix tree, it gets very close. This is probably dubdtter locality of
reference, which translates into more efficient cache usage

e Among suffix tree algorithms, the idea of a more complex noaegssing al-
gorithm in exchange for traversing less nodes does not dayiropractice, the
simpler depth-first search strategy performs better. Thperments show that
Cobbs’ index is 20 to 30 times slower than the suffix array enpéntation.

Therefore, in which follows we keep only our traversal altfon on suffix array,

and discard suffix tree implementations. This gives us tls¢ fepresentative of these

methods and allows us to use much larger texts in the resteoétperiments that
follow. As the data structures that remain fit in main memay,do not consider the
I/0 time anymore.

24 J. of Discrete Algorithmsvol. 0 No. 0, 0000
6.2 The Performance of the Hybrid Index

Our aim in this section is to show how our hybrid algorithm &eds under different
choices ofj, as well as to show its sublinear behavior. From now on, weaukfferent
set of texts:

¢ English natural language text (articles from The Wall Stisurnal taken from
the TREC collection [17]), filtered to lower-case and thessafors converted into
a single space. We use 10 megabytes of the collection andt calbsin the
experiments. Againy can be considered to be around 13.

¢ DNA-like text, which consists of 10 megabytes of text randipgenerated with
a uniform distribution over a 4-letter alphabet. This file#@ledDNA in the tests
that follow. We made this choice because we did not have eDidal text of that
size.

Figure 12 shows the result of different choices fovhen using our hybrid algo-
rithm on thewsJatext. We present only thgvalues that are interesting (the others give
very bad results). First consider = 10. Although for one and two errors the simple
backtracking algorithm is the best, we can see that a partiti; = 2 pieces is better
for 3 errors for 2 Mb of text or less. This matches with the gsialin the sense that,
the largerj, the worse the complexity with respectiipso asn grows the optimayj
is reduced (recall that the optimals ©(m/ log, n)).

The same phenomenon can be observedrfor 20 andk = 2. In this case the
best choice in the range afvalues tested ig = 3, thatis,j = k + 1. However, it
is clear that soon after = 10 Mb the situation will change and= 2 will dominate
(since the complexity in terms afis better than withy = 3). Much laterj; = 1 would
become the best choice.

A case where an intermediate< j < k is the best choice appears far = 20
andk = 4. The bestj is disputed between 2 and 3, becoming 2 the best choice for
n = 3 Mb or more. This plot shows nicely how the optinjails in between, as the
two extremes{ = 1 and 4) are much more expensive. The same happens with the
combinationm = 20 andk = 6.

Figure 13 shows the same experimentsbon. In this casej = 1 is the only
reasonable option fon, = 10, and an intermediate= 2 becomes the best choice for
m = 20 and all the differenk values.

In the sections that follow, we use the bgsivhen comparing our index against
others. It should be noted, however, that despite that agiObanalysis predicts
correctly the growth rates, it does not predict well the ¢xaealues that should be
used.

6.3 Comparison Against Others

We compare our index with the other existing proposals. Heweas the task to
program an index is rather heavy, we have only consideredttier indexes that are
already implemented. These are

Myers’: The index proposed by Myers [24]. We use the implementatitimeoauthor,

A Hybrid Indexing Method for Approximate String Matching25

80

350

300 70 1]

Lo

NP R

60)

AR

250

o

50
200
40
150
30+t

CPU time (msecs)

100 t 20!

50/// 10 L

[V c— c— i ! ! L i 0
8 9 10

4 5 6 7
n (Mb) [WSJ, m = 10]

1000 3000

800 | 2500 |]

it

2000
600

1500 -

400 r
1000 -

" ;;;57w—4—‘$:::1ﬁii::i::::i::::i:::ji/::ji:::j 500 ¢

0 0
1 9 10 1

CPU time (msecs)

3 4 5 6 7 8 3 4 5 6 7 8 E; 10
n (Mb) [WSJ, m = 20, k = 4] n (Mb) [WSJ, m = 20, k = 6]
Fic. 12: Different alternatives for our hybrid index on Englistxt and for increasing
n. In reading order, the cases = 10; m = 20 with k¥ = 2; m = 20 with £ = 4; and

m = 20 with k = 6.

which is a prototype that works only for some values that depend anandn
(the algorithm is generic but the implementation is not) pamticular, the range
of n values that fit our pattern lengthswmsJgoes from 2 Mb to 6 Mb. ODNA
we have usedn = 11 andm = 22 (instead of 10 and 20) for this index, which
allowed us to use it from 2 Mb to 10 Mb. However, we also limitada to 6 Mb
because the time becomes unmanageable as soon as the iaslex trefit in main
memory.

Exact(q): The index based op-grams presented in [28]. This is quite similar to
partition ink + 1 pieces, except that the index stores aplyrams and some extra
work may be necessary when the length of the pattern piecestis We show
the results foy = 4 and 5 onwsJandg = 5 and 6 OrNDNA.

Dfs: Our suffix array implementation of the depth-first searchersal [15, 6].

Hybrid: Our new index based on suffix arrays and pattern partitiqnisigg optimal
j. This index is not included in the tests for = 10 becausg = 1 (that is, the
Dfs index) is already the optimal value.

Online: is the best online algorithm for each case (according tg[Z8jis is included
for comparison purposes.

26 J. of Discrete Algorithmsvol. 0 No. 0, 0000

3000

2500

2000 r

1500

1000

500 ¢

0

3000

2500]
2000 |
1500 |

1000

CPU time (msecs)

920

80 I
70t
60 f
50 f
40 t

30

20

10
0

25000

20000

15000 r

10000

3 4 5 6 7
n (Mb) [DNA, m = 20, k = 2

8
]

9

CPU time (msecs)

500 [5000 |-

9 10 1 3 4 5 6 7 8 9 10
n (Mb) [DNA, m = 20, k = 6]

3 4 5 6 7 8
n (Mb) [DNA, m = 20, k = 4]
FiG. 13: Different alternatives for our hybrid index on DNA araf fncreasing. In
reading order, the cases = 10; m = 20 with & = 2; m = 20 with ¥ = 4; and
m = 20 with k = 6.

In particular, one of the most relevapgram indexes [36] is not yet implemented
and therefore is excluded from our tests. We know, howelvat jts space requirement
is low (close to a word-retrieving index), but also that sinlbe index simulates the
on-line algorithm [35], its tolerance to errors is quite I¢see [7, 25], for example).

All the indexes were set to show the matches they found, ierdaput them in a
reasonably real scenario.

We present the time to build the indexes and the space theyinakable 3. We
show the time per megabyte and the proportional extra spaeéed to index 6 Mb
(since Myers’ index could not be built for larger texts) haltigh this time is almost
independent on the text size. As can be seen, Myers’ indeficseatly built but is
the most space demanding. The suffix array takes half thespad could be built in
less time if the algorithm of [19] were used. Finally, Exattjets heavier aggrows,
butin general is the most compact index.

Figure 14 compares the search time (ooihu) of the different algorithms fom =
10 asn grows. For these short patterns our hybrid scheme does pbt, & only
Dfs is shown. Myers’ index (automatically) uses= 5 onwsJandg = 11 onDNA.
Therefore, orwsJwe are comparing indeed= 1 (Dfs), j = 2 (Myers’) andj = 3
(Exact), albeit the implementation details are quite défe. As in our results with

A Hybrid Indexing Method for Approximate String Matchin@7

| Index | Myers’ | Exact(4) | Exact(5) | Exact(6)] S. Array |

wsJ | 451 sec| 13.33sec| 18.06 sec| n/a 25.17 sec
8.12X | 250X 3.89 X 4.00 X

DNA | 4.11 sec| n/a 5.33sec | 7.50sec| 27.50 sec
7.67 X 1.93X 2.15X 4.00 X

TaBLE 3: Times (in seconds afPu per megabyte) to build the different indexes and
their space overhead (in the forma¢, meaning that the index takegsimes the text
size). The text had 6 Mb of size. The suffix array is the datacttire for the Dfs and
Hybrid methods.

our own index, the best choicejs= 1 (except fork = 3 where the choicg = 2 is
very close). The different choices of the Exact index shosirtbpace-time tradeoff:
the largerg, the fastest the index but, it demands more spaceoi@®) Myers’ index is
also usingj = 1, and its better search time shows that the choice of gengraliithe
neighborhood of the pattern is better than a suffix array@agr when the alphabet is
small.

Figure 15 shows the results for = 20. We first considewsJ Fork = 2 we
already know thaj = k + 1 is the best choice, and this is reflected in the fact that
the best is the Hybrid index with = 3 together with Exact(5), which is a very close
approximation. Myers’ and Dfs are usig= 2 andj = 1 respectively, and hence
perform worse.

For k = 4 the best option ig = 2 and therefore the Hybrid beats Exact and Dfs.
Myers’ index is beaten too, although it is also usjng- 2. The reason is that over
this large and biased alphabet the technique of generallinigeapossibleg-grams
that match the pattern piece with errors is not a good chbieeause a huge number
of nonexistent strings are generated and searched. Thg weffi or array, on the
other hand, are used to search only the strings that acedtyin the text. It is also
interesting that the differences blur for= 6.

On DNA, the optimalj is always 2, so Dfs and Exag)(are ruled out. Myers’
index is faster than the Hybrid, showing again that genagetie strings close to the
pattern pays off if the alphabet is small. We remark also thigttext is “perfect”,
in the sense that it is randomly generated and not truly DNAegs random text
negatively affects Myers’ index, while the suffix array taifue should benefit from
less different strings close to the pattern.

Note also that fork = 6 the online algorithm is much faster than any indexed
scheme omNA. In general, the online algorithms are less sensitive t@thar level.

Some more general conclusions that can be extracted froexgleiments are:

e The most important feature that affects the performancehefimdexes is the
amount of pattern partitioning performed. Under this lighiffix tree/array traver-
sal algorithms do not partition the pattefn=£ 1), traditional filtering indexes par-
tition the pattern ink + 1 pieces, and Myers’ index uses an intermediate partition
fixed at indexing time. Our hybrid index has the potential elesting the best

28 J. of Discrete Algorithmsvol. 0 No. 0, 0000

Myers’ —— 140 1
Dfs —+— Myers’ ——
Exact(4) =— 120 | Dfs —— 1
Exact(5) ~— Exact(5) -=—
Online — m Exact(6) ——
@ 100 Online ——]
1 £
~ 80 4
[}
i £
S 60 R
o
- 1 °© 40 f 1
L 1 20 W
0 L L L L L L L L O e e S— S L L L
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
n (Mb) [WSJ, m =10, k = 1] n (Mb) [DNA, m = 10, k = 1]
T T T T 300 T T T T T T T
Myers’ —— Myers’ ——
Dfs —— Dfs ——
Exact(4) —=— 250 Exact(5) —=— 1
Exact(5) —— Exact(6) ——
Online — I Online —=—
1] 200 1
3
E
B) 150 q
£
>
g o 100 R
o
/ 50 / |
1 3 4 5 6 7 8 9 10 1 3 4 5 6 7 8 9 10
n (Mb) [WSJ, m =10, k = 2] n (Mb) [DNA, m = 10, k = 2]
1000 T T T T - T 3000 T T T T - - -
Myers' —— Myers’ ——
Dfs —— Dfs ——
800 - Exact(4) -=— i 2500 r Exact(5) —=—]
Exact(5) —— Exaclt(G) -
Online —— @ Online —-—
: g 2000
600 1 ﬁ
) 1500
£
400 1 S
o 1000
o
~ // 500
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
n (Mb) [WSJ, m = 10, k = 3] n (Mb) [DNA, m = 10, k = 3]

FiG. 14: Comparison between different indexesior= 10 andk = 1, 2 and 3 (first
to third rows, respectively). The left plots correspondaeJ and the right plots to
DNA.

A Hybrid Indexing Method for Approximate String Matching29

70 T T T T
140
60
Dfs —— 120
50 Hybrid =— |
Exact(4) —— Q) 100
Exact(5) —— o
Online —— | £
= 80
[}
£
S 60
o
© 40
20
0
1 3 4 5 6 7 8 9 10
n (Mb) [WSJ, m = 20, k = 2]
700 T T T T T T T 3000
Myers’ ——
600 | Dfs — i
Hybrid -=— 2500
500 Exact(4) ——
Exact(5) — 1 m
Online g 2000
(%2}
E
) 1500
£
>
o 1000
o
500
0 0
1 3 4 5 7 8 9 0
n (Mb) [WSJ, m = 20, k = 4]
2500 T T T T - - T 20000
Myers’ ——
Dfs —
2000 Hybrid =— 4
Exact(4) —— 15000
Exact(5) —-— g‘
Online —— @
1500 1 g
‘s 10000
£
1000 1 S
o
o
5000
500 1
0 0
1 2 3 4 5 6 7 8 9 10

n (Mb) [WSJ, m = 20, k = 6]

Hybrid
Exact(5)
Exact(6) ——
Online ——

<

g —

P

Exact(5)
Exact(6) ——
Online +—

N

1 2 3 4 5 6 7 8 9 10
n (Mb) [DNA, m = 20, k = 4]
Exact(5) ——
Exact(6) —-—
Online ——

10

2 3 4 5 6
n (Mb) [DNA, m = 20, k = 6]

FiG. 15: Comparison between different indexesior= 20 andk = 2, 4 and 6 (first
to third rows, respectively). The left plots correspondaeJ and the right plots to

DNA.

30 J. of Discrete Algorithms\vol. 0 No. 0, 0000

partition at query time and needs half the space of Myers'.

e Among the suffix tree/array traversal algorithms, deptst-fiearch over a suffix
array shows to be the best choice in practice.

e When Myers'’ index can use the bgsits main difference with our index is that it
generates all the text substrings at some edit distance fatitern and searches all
them in the index. We instead use the suffix array to find thegstrthat actually
exist in the text. Myers’ technique shows to be faster on oamtexts over small
alphabets (as in random DNA and perhaps on real DNA), while #lower in
other cases (as in English text).

e The Exact{) is a low-cost alternative in terms of space, and perforrasarably
well for low error levels and not too small alphabets.

¢ The indexed schemes are more sensitive to the error leealed than the online
algorithms, so for high error levels still there is no way maprove over online
searching.

7 Conclusions and Future Work

We have proposed a hybrid indexing scheme for approximetegsinatching. The
main idea is to split the pattern in pieces to be searchedestherrors, and use a suffix
tree to find their approximate matches in the text. Later, esfy all their matches
for an occurrence of the complete pattern. The splittingnéqe balances between
traversing too many nodes of the suffix tree and verifyingt@my text positions. We
have shown that this hybrid is an intermediate approachdmtthe extremes of pure
suffix tree traversal and filtering using exact searchingatfgon pieces.

We have proved analytically that the optimal number of pesandeed between
both extremes, and that the resulting index has sublinédeval time (of the form
O(n*), whered < X < 1 if the error level is moderate).

We have implemented this approach using a fast node progeakjorithm and
simulating the suffix tree on the less space demanding suffay.aWe have shown
experimentally that this approach performs better in pra¢han those based on suf-
fix trees. We have also shown the effect of partitioning thégpa in different number
of pieces. Finally, we have presented the first experimeagallts that compare the
different implemented indexing schemes, which show thapttoposed idea can im-
prove over the previously implemented approaches.

We have implemented a crude technique to verify the occae®nf the pieces in
order to check if they form an occurrence of the completegpattA better approach
is shown in [24, 27]. Since this would make a difference oolldrger;, we have not
considered that improvement for this paper, but it would eakimportant difference
for longer patterns.

Our analysis predicts the asymptotic behavior of the indxitbis too crude to
help determine the correct number of pieces in which thepatias to be partitioned.
A finer analysis or empirical procedure able to determing thimber automatically
would be of great practical importance. Related to thiséssuoptimizing the par-
titioning: there is no need to split the pattern in equalgtbrpieces. Although this

A Hybrid Indexing Method for Approximate String Matching1

is the best choice on random text, in cases like English afvequent pattern piece
will trigger many more verifications. In that case we wantpbtsn pieces so that the
overall number of text positions to verify is minimized. 28] anO(mk?) dynamic
programming algorithm is presented that finds the besttfwariin this sense. Adapt-
ing such an algorithm to this case, where the pattern pieeesa searched exactly,
is another interesting problem.

Acknowledgements

We thank the useful comments of the referees of the [29] eraivhich helped to
improve this work. We also thank Erkki Sutinen for his coddutild the suffix tree,
and Gene Myers and Archie Cobbs for sending us their impléasdendexes.

References

[1] A. Apostolico and Z. Galil.Combinatorial Algorithms on WordsSpringer-Verlag, New York, 1985.
[2] M. Araljo, G. Navarro, and N. Ziviani. Large text seara allowing errors. InProc. 4th South
American Workshop on String Processing (WSP'@apes 2—20. Carleton University Press, 1997.

[3] R. Baeza-Yates. Text retrieval: Theory and practicel2th IFIP World Computer Congresgolume |,
pages 465-476. Elsevier Science, September 1992.

[4] R. Baeza-Yates. A unified view of string matching algomits. INSOFSEM’96: Theory and Practice
of Informatics LNCS 1175, pages 1-15, 1996. Invited paper.

[5] R. Baeza-Yates and G. Gonnet. Fast text searching fotaegxpressions or automaton searching on
a trie. Journal of the ACM43, 1996.

[6] R. Baeza-Yates and G. Gonnet. A fast algorithm on avefagall-against-all sequence matching.
In Proc. 6th Symposium on String Processing and Informatidnid¥al (SPIRE'99) IEEE CS Press,
1999. Previous version unpublished, Dept. of Computerr8eieUniv. of Chile, 1990.

[7] R. Baeza-Yates and G. Navarro. Faster approximategsinatching. Algorithmica 23(2):127-158,
1999. Preliminary version iRroc. CPM’'96, LNCS 1075

[8] R. Baeza-Yates and G. Navarro. Block-addressing irsdfoe approximate text retrievaldournal of
the American Society for Information Science (JAS3$]1):69-82, January 2000.

[9] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. @hand J. Seiferas. The smallest automaton
recognizing the subwords of a textheoretical Computer Sciencé0:31-55, 1985.

[10] W. Chang and T. Marr. Approximate string matching anchlesimilarity. InProc. 5th Annual Sym-
posium on Combinatorial Pattern Matching (CPM'94NCS 807, pages 259-273, 1994.

[11] A. Cobbs. Fast approximate matching using suffix trée€?roc. 6th Annual Symposium on Combi-
natorial Pattern Matching (CPM'95)LNCS 937, pages 41-54, 1995.

[12] M. Crochemore. Transducers and repetitiohseoretical Computer Sciencé5:63-86, 1986.

[13] M. Farach, P. Ferragina, and S. Muthukrishnan. Ovemegrthe memory bottleneck in suffix tree
construction. IrProc. 9th Symposium on Discrete Algorithms (SODA'@8pes 174-183, 1998.

[14] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implettag¢ion of lazy suffix trees. IProc. 3rd
Workshop on Algorithm Engineering (WAE'9@NCS 1668, pages 30—-42, 1999.

[15] G. Gonnet. A tutorial introduction to ComputationaloBhemistry using Darwin. Technical report,
Informatik E.T.H., Zuerich, Switzerland, 1992.

[16] G. Gonnet, R. Baeza-Yates, and T. Sniderformation Retrieval: Data Structures and Algorithms
chapter 3: New indices for text: Pat trees and Pat arraygspa6-82. Prentice-Hall, 1992.

[17] D. Harman. Overview of the Third Text REtrieval Confiece. InProc. Third Text REtrieval Confer-
ence (TREC-3)pages 1-19, 1995. NIST Special Publication 500-207.

[18] N. Holsti and E. Sutinen. Approximate string matchirgng g-gram places. IProc. 7th Finnish
Symposium on Computer Scienpages 23-32. University of Joensuu, 1994.

32 J. of Discrete Algorithmsvol. 0 No. 0, 0000

[19] H. Itoh and H. Tanaka. An efficient method for in memorystuction of suffix arrays. IRroc. 6th
Symposium on String Processing and Information Retrie¥BIRE’'99) pages 81-87. IEEE CS Press,
1999.

[20] P. Jokinen and E. Ukkonen. Two algorithms for approxerstring matching in static texts. Froc.
2nd Annual Symposium on Mathematical Foundations of Ceen@dience (MFCS’91)volume 16,
pages 240-248, 1991.

[21] D. Knuth. The Art of Computer Programmingolume 3: Sorting and Searching. Addison-Wesley,
1973.

[22] U. Manber and E. Myers. Suffix arrays: a new method fotine-string searchesSIAM Journal on
Computing pages 935-948, 1993.

[23] U. Manber and S. Wu.GLIMPSE A tool to search through entire file systems. Rroc. USENIX
Technical Conferen¢gpages 23-32, Winter 1994.

[24] E. Myers. A sublinear algorithm for approximate key@aearchingAlgorithmica 12(4/5):345-374,
Oct/Nov 1994.

[25] G. Navarro.Approximate Text SearchinfhD thesis, Dept. of Computer Science, Univ. of Chile, De-
cember 1998. Technical Report TR/DCC-98-fitip: / / ft p. dcc. uchi |l e. cl / pub/ users/ -
gnavarro/ t hesi s98. ps. gz.

[26] G. Navarro. A guided tour to approximate string matghimechnical Report TR/DCC-99-5, Dept.
of Computer Science, Univ. of Chile, 1999. To appearA@M Computing Surveystp://-
ftp.dcc.uchile.cl/pub/users/gnavarro/ survasm ps. gz.

[27] G. Navarro and R. Baeza-Yates. Improving an algoritbmepproximate pattern matching. Technical
Report TR/DCC-98-5, Dept. of Computer Science, Univ. ofl€Hi998. Submitted.

[28] G. Navarro and R. Baeza-Yates. A practigajram index for text retrieval allowing errorsCLEI
Electronic Journal 1(2), 1998.ht t p: / / wwww. cl ei . cl .

[29] G. Navarro and R. Baeza-Yates. A new indexing methodafiproximate string matching. roc.
10th Annual Symposium on Combinatorial Pattern MatchinBNX9), LNCS 1645, pages 163-186,
1999.

[30] G. Navarro and R. Baeza-Yates. Very fast and simple apmrate string matching.Information
Processing Letters72:65-70, 1999.

[31] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. ximdptext with approximate-grams. InProc.
11th Annual Symposium on Combinatorial Pattern MatchinBN{22000), Montreal, Canada, 2000.
To appear.

[32] K. Sadakane. A fast algorithm for making suffix arraysl éor the Burrows-Wheeler transformation.
In Proc. Data Compression Conference (DCC'98ages 129-138, 1998.

[33] P. Sellers. The theory and computation of evolutiondigtances: pattern recognitionlournal of
Algorithms 1:359-373, 1980.

[34] F. Shi. Fast approximate string matching with g-bloclegjuences. Ifroc. 3rd South American
Workshop on String Processing (WSP'96dges 257-271. Carleton University Press, 1996.

[35] E. Sutinen and J. Tarhio. On usigegram locations in approximate string matching Pioc. ESA’95
LNCS 979, pages 327-340, 1995.

[36] E. Sutinen and J. Tarhio. Filtration witfrsamples in approximate string matching. Rroc. 7th
Annual Symposium on Combinatorial Pattern Matching (CPB'&NCS 1075, pages 50-61, 1996.

[37] E. Ukkonen. Approximate string matching over suffixese InProc. 4th Annual Symposium on
Combinatorial Pattern Matching (CPM’'93pages 228-242, 1993.

[38] E. Ukkonen. Constructing suffix trees on-line in linéame. Algorithmica 14(3):249-260, Sep 1995.

[39] Esko Ukkonen. Finding approximate patterns in strinfgairnal of Algorithms6:132—-137, 1985.

[40] S. Wu and U. Manber. Fast text searching allowing err6@mm. of the ACIVB5(10):83-91, October
1992.

A Probability of Reaching a Suffix Tree Node

We need to determine which is the probability of the automdieing active at a given node of degtin
the suffix tree. Notice that the automaton is active if ang/ dibome state of the last row is active (recall

A Hybrid Indexing Method for Approximate String Matching33

Figure 2). This is equivalent to sonpeefix of the pattern matching witk errors or less the text substring
represented by the suffix tree node under consideration.

We are therefore interested in the probability of a pattesfiy of lengthm’ matching a text substring
of length?. This analysis is an extension of that of [7]. As Figure li6sitates, at leadt— k text characters
text must match the pattern whén> m’, and at leasin’ — k pattern characters must match the text
whenevemn’ > £. Hence, the probability of matching is upper bounded by

!

1 { ! 1 /
ol—k (l _ k) (gnj k) or om' —k (ml _ k) (mlm, k)

depending on whethér> m' orm’ > £, respectively (the combinatorials count all the possibtations
for the matching characters in both strings). Notice that itmposes thatn’ — k < £ < m/ + k. We

also assumen’ > k, since otherwise the matching probability is 1. Sikce m’ < m, we have that
¢ < m + k, otherwise the matching probability is zero. Hence the hiatcprobability is 1 for < k£ and

0forZ > m + k, and we are interested in what happens in between.

Text substring

Pattern: m'=9, k=5

m’ At least 9-5=4 matches

FiIG. 16: Upper bound for the probability of matching. At leasix(m' — k, ¢ — k)
characters must match, since otherwise it would not be Iplesi convert one string
into the other.

Since we are interested in any pattern prefix matching theeoutext substring, we add up all the
possible lengths from — k to £ + k:

14 4k
1 14 ! 1 4 !
Z gl—k ([— k) (/T k) + Z om' —k (m’ _ k) (m,"i k)
m'=(—k m/'=(+1

In the analysis that follows, we call = k/¢, wherea/(1 + a) < 3 < 1. We will prove that, after
some deptit in the suffix tree, the matching probability @&(y(3)¢), for somey(38) < 1. We begin with
the first summation. We analyze its largest term (the las}, avigich is

TN
gl—k (k)
and by using Stirling’s approximatian! = (z/e)*v2nz(1 + O(1/z)) we have
2
‘
1 o) (o (1)

otk \ gk — k)R 2rky/2n(0 — k)

which is

l
(i) b+)

34 J. of Discrete Algorithms\vol. 0 No. 0, 0000

where the last step is done using Stirling’s approximatiorihe factorial. This formula is of the form
¥(8)t O(1/¢), where we define

1

(7171,7221(1 _ m)Q(lf.’I:)

v(z) = (A.1)

The whole first summation is bounded by k times the last term, which givég — k)v(3)¢ O(1/£) =
O(v(B)"). Therefore the first summation is exponentially decreasiitly # if and only if v(3) < 1, that
is,

. > <;> [B (A2)
B8)PP gy '

B
Itis easy to show analytically that ' < 3T=7 < 1if 0 < 8 < 1, soit suffices that > e2/(1—)2,
or equivalently

1% A3
B < NG (A.3)

is a sufficient condition for the largest (last) term to®éy(3)*), as well as the whole first summation.

We address now the second summation, which is more comgdlicht this case, it is not clear which is
the largest term. We can see each term as

=06

o’ \r k
where/—k < r < £. By considering = =/ (z € [1— (3, 1]) and applying again Stirling’s approximation,
we maximize the base of the resulting exponential, which is

(z+B)"+P
O—ajm2aj(1 _ m)lfz/gﬁ

h(z) =

Elementary calculus leads to solve a second-degree equhto has roots in the intervél — 3, oo)
only if o < B/(1 — B)2. Since due to Eq. (A.3) we are only interestedrin> 1/(1 — 3)2, dh(z)/dx
does not have roots, and the maximumh¢f) is atz = 1 — 5. That means = £ — k, that is, the first
term of the second summation, which is the same as the |aegesbf the first summation.

We conclude that the probability of being active at a nodeeéll/ is upper bounded by

mEaw) (1+0(5)) = 0 bor)

and therefore Eq. (A.3) is valid for the whole summation. Whé€3) is 1, the probability is very high:
only considering the terrm’ = £ we haveQ(1/¢).

Hence, the result is that the matching probability is veghtor 3 = k/¢ > 1 — e/+/a, and otherwise
itis O(v(6)"), wherey(3) < 1.

Although thee appeared via a bounding condition, we can see that this bsuight: we takeog, on
both sides of the condition(3) < 1 and get

L—pB+2(Blog, B+ (1—pB)log,(1—-8)) > 0
and by replacing: = 1 — 8 and usingn(1 — z) = —zx + O(2?) we have
zlno +2(zing — (1 —z)(z + O(2z?) = zlno+2zInz — 2z +0(z?) > 0

from where dividing byz we obtain

. £ 0@ — &) = —— e
r > 7 f(1+0()) ﬁ(1+0(1/f))

a a

A Hybrid Indexing Method for Approximate String Matching35
We conclude that the precise limit fgr=1 — z is

e
< 1T—-— o(1
8 —= +001/9)
As we show experimentally in [7], however, the rghlimit is very close to the same formula éfis
replaced by = 1.09. The reason is that the bounding condition (Figure 16) weisiset strong enough:
for instance, we could avoid replacements in the edit distaand the bound would be the same. In this
paper we use a limit of the forfi = 1 — ¢/+/a, knowing that we can prove < e but in practice it holds

cr 1.

