
An Empirical Evaluation

of Intrinsic Dimension Estimators✩

Gonzalo Navarroa, Rodrigo Paredesb,∗, Nora Reyesc,∗, Cristian Bustosc

aCenter of Biotechnology and Bioengineering, Department of Computer Science,

University of Chile, Chile
bDepartamento de Ciencias de la Computación, Universidad de Talca, Chile
cDepartamento de Informática, Universidad Nacional de San Luis, Argentina

Abstract

We study the practical behavior of different algorithms and methods that aim1

to estimate the intrinsic dimension (IDim) in metric spaces. Some of them2

were specifically developed to evaluate the complexity of searching in metric3

spaces, based on different theories related to the distribution of distances4

between objects on such spaces. Others were originally designed for vector5

spaces only, and have been extended to general metric spaces. To empirically6

evaluate the fitness of various IDim estimations with the actual difficulty of7

searching in metric spaces, we compare two representatives of each of the8

broadest families of metric indices: those based on pivots and those based9

on compact partitions. Our conclusions are that the estimators Distance10

Exponent and Correlation fit best their purpose.11

Keywords: intrinsic dimension, complexity of searching, metric spaces

1. Introduction12

Similarity search in metric spaces has received much attention due to its13

applications in many fields, ranging from multimedia information retrieval to14

machine learning, classification, and searching the Web. While a wealth of15

practical algorithms exist to handle this problem, it has been often noted that16

some datasets are intrinsically harder to search than others, no matter which17

search algorithms are used. An intuitive concept of “curse of dimensionality”18

has been coined to denote this intrinsic difficulty, but a clear method to19

measure it, and thus to predict the performance of similarity searching in a20

space, has been elusive.21

✩Partially funded by basal funds FB0001, Conicyt, Chile and Fondecyt grant 1131044,
Chile.

∗Corresponding author
Email addresses: gnavarro@dcc.uchile.cl (Gonzalo Navarro),

raparede@utalca.cl (Rodrigo Paredes), nreyes@unsl.edu.ar (Nora Reyes),
cjbustos@unsl.edu.ar (Cristian Bustos)

Preprint submitted to Information Systems May 23, 2016

The similarity between a set of objects U is modeled using a distance22

function (or metric) d : U × U 7→ R
+ ∪ {0} that satisfies the properties of23

triangle inequality, strict positivity, reflexivity, and symmetry. In this case,24

the pair (U, d) is called a metric space [1, 2, 3, 4].25

In some applications, the metric spaces are of a particular kind called26

“vector spaces” of finite explicit or representational dimension, where the27

elements consist of D coordinates of real numbers. In this case, we can28

use some Minkowski metric or any other metric appropriate to the specific29

case (for instance, the cosine distance) as the dissimilarity measure between30

two objects. Many works exploit the geometric properties of vector spaces,31

but they usually cannot be extended to general metric spaces, where the only32

available information is the distance between objects. Since in most cases the33

distance is very expensive to compute, the main goal when searching in metric34

spaces is to reduce the number of distance evaluations. In contrast, vector35

space operations tend to be cheaper and the primary goal when searching36

them is to reduce the CPU cost or the number of I/O operations carried out.37

Similarity queries are usually of two types. For a given database S ⊆ U38

with size |S| = n, q ∈ U and r ∈ R
+, the range query (q, r)d returns all the ob-39

jects of S at distance at most r from q, formally (q, r)d = {x ∈ S, d(x, q) ≤ r};40

whereas the nearest neighbor query kNNd(q) retrieves the k elements of S that41

are closest to q, that is, kNNd(q) is a set such that for all x ∈ kNNd(q) and42

y ∈ S \ kNNd(q), d(q, x) ≤ d(q, y), and |kNNd(q)| = k.43

A näıve way to answer similarity queries is to compare all the database ele-44

ments with the query q and return those elements that are close enough to q.45

This brute force approach is too expensive for real applications. Research46

has then focused on ways to reduce the number of distance computations47

performed to answer similarity queries. There has been significant progress48

around the idea of building an index, that is, a data structure that allows49

discarding some database elements without explicitly comparing them to q.50

Moreover, there are some relatively recent works [5, 6, 7, 8, 9, 10] that try to51

get jointly the goals of reducing the number of distance evaluations and the52

number of I/O operations performed.53

In vector spaces with uniformly distributed data, the curse of dimension-54

ality describes the well-known exponential increase of the cost of all existing55

search algorithms as the dimension grows. Non-uniformly distributed vector56

spaces may be easier to search than uniform ones, despite having the same ex-57

plicit dimensionality. The phenomenon also extends to general metric spaces58

despite their absence of coordinates: some spaces are intrinsically harder to59

2

search than others. This has lead to the concept of intrinsic dimensionality60

(IDim) of a metric space, as a measure of the difficulty of searching it. A61

reliable measure of IDim has been elusive, despite the existence of several62

formulae.63

Computing the IDim of a metric space is useful, for example, to determine64

whether it is amenable to indexing at all. If the IDim is too high, then we65

must just resort to brute-force solutions or to approximate search algorithms66

(which do not guarantee to find the exact answers). Even when exact index-67

ing is possible, the IDim helps decide which kind of index to use and how to68

tune it. For example, in lower dimension spaces, a pivot-based method works69

fine using a small set of pivots; whereas in higher dimensions we need to use70

a large set of pivots [1], which also implies a large amount of memory for the71

index. Alternatively, if we do not have enough extra memory for the index,72

we can switch to the List of Clusters [11], which has reasonable performance73

in high dimension spending little space in the index.74

In this work we aim to empirically study the fitness of various IDim75

measures to predict the search difficulty of metric space searching. Some76

measures were specifically developed for metric spaces, based on different77

theories related to the distribution of distances between objects. Others78

were originally designed for vector spaces and have then been adapted to79

general metric spaces. We chose various synthetic and real-life metric spaces80

and four indexing methods that are representatives of the major families of81

indices: two based on pivots and two based on compact partitions. Our82

comparison between real and estimated search difficulty yields that Distance83

Exponent [12, 13] and Correlation [14] are currently the best predictors in84

practice, however all the estimators behave relatively well.85

The rest of this paper is organized as follows. In Section 2, we review86

some relevant issues of IDim estimators for vector spaces. Next, in Section 3,87

we survey four methods for estimating IDim in vector spaces and show how88

to adapt them to the metric case. We also include three new IDim estimators89

for general metric spaces. The experimental evaluation for the seven methods90

is presented in Section 4. We finally draw our conclusions and future work91

directions in Section 5. An early version of this work appeared in [15].92

2. Intrinsic Dimension Estimators for Vector Spaces93

There are several interesting applications where the data are represented94

as D-dimensional vectors in R
D. For instance, in pattern recognition appli-95

3

cations, objects are usually represented as vectors [16]. Therefore, data are96

embedded in R
D, even though this does not imply that its intrinsic dimension97

is D.98

There are many definitions of IDim. For instance, the IDim of a given99

dataset is the minimum number of free variables needed to represent the100

data without loss of information [17]. In general terms, a dataset X ⊆ R
D

101

has IDim M ≤ D, if its elements fall completely within an M -dimensional102

manifold of RD [18]. Another intuitive notion is the logarithm of the search103

cost, as in many cases this cost grows exponentially with the dimension.104

Even in vector spaces, there are many reasons to estimate the IDim of a105

dataset. Using more dimensions (more coordinates in the vectors) than nec-106

essary can bring several problems. For example, the space to store the data107

may be an issue. A dataset X ⊆ R
D with |X| = n requires to store n × D108

real coordinates. Instead, if we know that the IDim of X is M ≤ D, we109

can map the points to R
M and just store n×M real coordinates. The CPU110

cost to compute a distance is also reduced. This can in addition help iden-111

tify the important dimensions in the original data. Also, as the amount of112

available information increases, compressing the data storage becomes even113

more important. Secondly, as the asymptotic complexity of the algorithms is114

monotonically increasing with respect to the dataset dimensionality, a dimen-115

sionality reduction (to the actual dataset IDim) can produce an important116

CPU time reduction. For instance, in the case of data classification or pat-117

tern recognition, producing reliable classifiers is difficult when the dataset118

dimensionality is high (curse of dimensionality [19]); and according to the119

theoretical approximation of statistical learning [20], the classifier general-120

ization capability depends on the IDim of the space.121

There are two approximations to estimate the IDim of a vector space [16,122

17], namely, local and global methods. The local ones make the estimation123

by using the information contained in sample neighborhoods, avoiding the124

data projection over spaces of lower dimensionality. The global ones deploy125

the dataset over an M -dimensional space using all the dataset information.126

Unlike the local methods that only use the information contained in the127

neighborhood of each data sample, global methods use whole information of128

the dataset.129

In this work we focus on global IDim estimators. That is, we consider130

all the dataset information to estimate the IDim as accurately as possible.131

Global methods can be split into three families: projection techniques, mul-132

tidimensional scaling methods, and fractal based methods. The last two are133

4

more suitable to extend to metric spaces, so we have selected and adapted134

some representatives of these groups.135

3. Intrinsic Dimension Estimators for Metric Spaces136

In general metric spaces, since the curse of dimensionality severely affects137

the performance of the search process, knowing the IDim can help choose a138

metric index appropriate to the space dimension and also give some insight on139

the specific index tuning. For instance, in low IDim spaces, where searching140

is easier, pivot based indices usually perform better, even when using a small141

set of pivots. However, they can fail in high IDim spaces, or hard spaces,142

as a large set of pivot is needed to preserve the performance at the cost of143

an excessive amount of space for the index. Alternatively, if there is little144

amount of extra memory, we can use the List of Clusters (LC) [11], which is145

a very appropriate, RAM economical index.146

Hence, a proper estimation of the operating dataset IDim is very impor-147

tant, as it helps improve the time and memory costs of the selected solution.148

There are few IDim estimators that apply directly in general metric149

spaces. The IDim estimators that are proper to metric spaces can only150

consider the dataset objects and their distances between each other.151

In this section we analyze various methods to estimate the IDim of vector152

spaces and others to general metric spaces. We discuss how to adapt the153

former to the case of general metric spaces. Note that, since multidimensional154

spaces are a particular case of metric spaces, our estimators can also be155

applied to obtain the IDim of D-dimensional vector spaces.156

3.1. Fractal Based Methods157

Unlike other families, fractal based methods can estimate non-integer158

IDim values. The most popular techniques of this family are Box Counting159

[21], which is a simplified version of the Haussdorff dimension [22, 23], and160

Correlation [14]. These techniques have been successfully used to estimate161

the dimensionality of the underlying dynamic systems that generate time162

series [24].163

The dimension estimation by Box CountingDB of a set Ω ⊆ R
D is defined164

as follows: if v(r) is the number of boxes of size r needed to cover Ω, then165

DB = lim
r→0

ln(v(r))

ln
(

1

r

) . (1)

5

In this method, the boxes are multidimensional regions of side r on each166

dimension (that is, they are hypercubes of side r). Regrettably, even though167

efficient algorithms have been proposed, the Box Counting dimension can be168

computed only for low dimension datasets, because its algorithmic complexity169

grows exponentially with the dimension.170

Estimating the dimension by Correlation is an alternative to Box Count-171

ing. It is defined as follows. Let Ω = {x1, x2, . . . , xn} ⊂ R
D and the correla-172

tion integral173

Cm(r) = lim
n→∞

2

n(n− 1)

∑

1≤i<j≤n

I(||xj − xi|| < r), (2)

where I(·) is the indicator function. Intuitively, Cm(r) is the fraction of174

object pairs whose distance is lower than r. So, the dimension estimation by175

Correlation DC is176

DC = lim
r→0

ln(Cm(r))

ln r
. (3)

3.1.1. Correlation177

The most popular method to estimate the dimension by Correlation is the178

log-log plot. It consists in plotting ln(Cm(r)) versus ln(r). The dimension by179

Correlation is the slope of the linear section of the curve.180

To illustrate the process of estimating IDim using the Correlation estima-181

tor, in Fig. 1 we show an example of its computation on the real world metric182

space Histograms (this dataset is described in Section 4.2). The line plotted183

by circles corresponds to the curve ln(Cm(r)) versus ln(r), obtained from the184

experimental data. We estimate the IDim of this dataset by computing the185

slope of the linear section at the beginning of the plot (drawn with a line).186

Note that this is the section of the curve that shows the usual exponential187

growth of the fraction Cm(r) with respect to the intrinsic dimensionality of188

the space. At the end of the linear section of the plot, Cm(r) almost reaches189

its maximum value, so the growth beyond this linear section is very mild.190

Hence, we need to neglect this section of the curve, otherwise we can un-191

derestimate the space intrinsic dimensionality. To compute the slope we use192

linear regression with least squares over the first linear section of the curve.193

Note that this procedure allows us to estimate IDim with a dataset of modest194

size, because we are only focused on the section of the curve that does reveal195

exponential growth.196

6

-14

-12

-10

-8

-6

-4

-2

 0

 2

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

ln
(C

m
(r

))

ln(r)

Example of how to compute the slope of the linear section of the curve

Cm(r)
model

Figure 1: IDim estimation with Correlation by computing the slope of the linear section
of the curve.

3.1.2. Ball Counting197

Analogously with Correlation, to estimate the dimension by Box Count-198

ing, we can compute the slope of the linear section of the curve ln(v(r))199

versus ln(1/r). However, in the general case of metric spaces, we do not have200

coordinates. Thus, to adapt the Box Counting method, we consider balls of201

radius r, that is, the set of objects within a distance r from a reference object202

o. We randomly pick the reference objects from the dataset, and count the203

number B(r) of balls of radius r needed to cover the dataset. To do so, we204

use the List of Clusters (LC) index [11], whose code is available from SISAP205

[25], with the variant of fixed radius and centers chosen at random. Then,206

B(r) is just the length of the LC.207

To estimate the dimension by Box Counting, which in this case is Ball208

Counting, we replace ln(v(r)) by ln(B(r)), plot ln(B(r)) versus ln
(

1

r

)

in209

log-log and obtain the IDim as the slope of the linear section of the curve210

by using linear regression with least squares over the experimental data211
(

ln(B(r)), ln
(

1

r

))

, using a procedure analogous to Correlation.212

3.2. Distance Exponent213

Traina et al. [12, 13] discuss the problem of the selectivity estimation for214

range queries in real-world metric spaces, including spatial or multidimen-215

sional datasets as special cases. It plays an important role when analyzing216

real metric spaces. Their main finding is that several datasets follow the so-217

called Power Law. They call Distance Exponent the exponent of the power218

7

law, and show how to use it to derive formulae for estimating the selectivity219

of range queries. For instance, the number of objects relevant to the query,220

the number of I/Os to answer the query when the data is stored on disk, the221

amount of time needed to answer the query, and so on.222

To find a formula that estimates the number of neighbors of objects within223

a distance r in a dataset of n-objects, they introduce the following notions:224

(i) the Distance Plot of a metric set is the number of object pairs at distance225

at most r versus the distance r, and both axes are drawn in logarithmic scale;226

and (ii) the Distance Exponent is the slope of the line that better fits the227

distance plot in case it is linear for a range of scales. Using these two notions,228

they define the Distance Law.229

Definition 1. (Distance Law) Given a dataset of n objects from a metric230

space with distance function d(x, y), the average number of distances lower231

than a radius r follows a power law; that is, the average number of neighbors232

nb(r) within a distance r is proportional to rD. Formally,233

n · Φ(r) = nb(r) ∝ rD, (4)

where n is the number of objects in the dataset and Φ(r) is the accumulated234

distribution function of the probability of a pair of objects to be within a235

distance r.236

If a dataset has a metric to evaluate the distance between every object237

pair, then this plot can always be drawn. They show that the distance plot238

has an almost linear behavior for many databases, both real and synthetic.239

Building the distance plot requires O(n2) distance computations. To reduce240

this cost, nb(r) is estimated using an index [12], in particular the M-tree [5].241

That is, a way to estimate the distance exponent D of a dataset stored in a242

metric index is by means of the very same index.243

Since in this work we are only interested in comparing the different IDim244

measures, indexing the space is not necessary and we compute nb(r) directly,245

considering a reference object chosen at random from the dataset. We only246

determine the number of elements at distance r from that object. The result247

is averaged over various choices for the object.248

3.3. Fastmap249

This method arises from the proposal [26] of a fast algorithm to map250

objects of any metric space onto points of a k-dimensional space (k being251

8

defined by the user), so that the dissimilarities are preserved. Its goal is to252

speed up searches in traditional or multimedia databases.253

To do so, the objects are mapped onto the k-dimensional space using254

k feature extraction functions, provided by domain experts [26]. The main255

issue is how to define such feature extraction functions. For example, in the256

metric case of strings with the edit distance [27], it is not clear which features257

can be considered.258

For a domain expert, it is generally easier to provide a distance function259

to compare objects than to provide feature extraction functions. Fastmap260

[28] is a generalization of the original method [26], where the objects are261

mapped using only a distance function.262

Fastmap finds, given a dataset of n objects from a metric space (U, d), n263

image points in a k-dimensional target space, such that the distances between264

the objects in the original space are preserved as much as possible in the265

target space.266

For evaluating the dissimilarity preservation in the target space, a stress267

function is defined as follows,268

stress2 =

(

∑

i,j(d̂ij − dij)
2

)

(

∑

i,j d
2
ij

) , (5)

where dij is the dissimilarity measure (the distance of the original space)269

between objects oi and oj, and d̂ij is the Euclidean distance between their270

respective images pi and pj. The stress function gives the relative error that271

the distances in the target space suffer on average after the transformation.272

Fastmap begins with an estimation that is iteratively improved, until no273

additional improvement is possible.274

In the metric case, we can assume that we have the n × n matrix of275

distances between all the dataset objects, and Fastmap must find n points in276

the k-dimensional space whose Euclidean distances are close to the original277

matrix of n × n distances. The crux is to assume that objects are points278

in some m-dimensional space, with unknown m, and to project these points279

over k mutually orthogonal directions. The challenge is to compute all these280

projections using only the distance matrix. Fastmap projects the objects281

over carefully selected lines. It chooses two objects oa and ob, and considers282

the “line” passing through them in the original space. The projections x′
i of283

the objects over this line are obtained using the cosine law :284

9

Theorem 1. (Cosine Law) Any triangle
△

oaoiob satisfies:285

d(ob, oi)
2 = d(oa, oi)

2 + d(oa, ob)
2 − 2x′

id(oa, ob). (6)

Eq. 6 can be solved for x′
i to compute the projection of object oi with the286

formula287

x′
i =

d(oa, oi)
2 + d(oa, ob)

2 − d(ob, oi)
2

2d(oa, ob)
. (7)

Thus, the input of Fastmap is a set S of size n and, in each iteration, it288

computes the coordinates of all the n objects over the new axis. So, after289

k iterations, it produces a k-dimensional target space S ′ where each object290

oi ∈ S is mapped to a k-coordinate vector pi = (x′
i,1, x

′
i,2, . . . , x

′
i,k) ∈ S ′,291

where x′
i,j is the j-th projection of the image pi of the object oi.292

In our case, we want to estimate the number of projections needed so293

that the target space reaches a mapping with a small enough stress, that294

is, preserving the distances sufficiently well. Thus, we modify the Fastmap295

algorithm so that it computes the stress of the target space after each new296

dimension is added. If the difference between the current and the previous297

stress values is significant, we compute another projection (thus increasing298

the dimensionality of the target space). Otherwise, the current dimension299

of the target space is reported as the estimation of the IDim of the original300

metric space.301

3.4. Principal Component Analysis302

Principal Component Analysis (PCA) [29] is a statistical procedure that303

projects the data onto new axes, called the principal components, where the304

axes are ordered by maximum to minimum variance. As the first components305

accumulate most of the variance, the original data can be projected using306

the first components controlling how much information we want to preserve307

or lose (and we can use more components if we want to preserve a larger308

amount of the data information).309

A common application of PCA is to reduce the dimensionality of a vector310

dataset by neglecting the components with small variance, as they have min-311

imum impact in the amount of information that the projected dataset will312

have. So, we can identify the number of selected components as the IDim of313

the dataset.314

The crux of PCA is that it finds a set of basis vectors, where the first315

component follows the maximum variance direction, the second follows the316

10

Table 1: Verification of the pivot table IDim for synthetic spaces.

C5 C10 C15 C20 G5 G10 G15 G20 G101
IDim Space 5.08 8.40 12.13 15.80 4.73 8.83 13.46 15.80 0.92
IDim PT 4.70 7.45 11.17 13.92 4.83 8.01 11.98 13.40 0.96

next variance direction, and so on. That is, each component accounts for as317

much of the variability in the data as possible. The resulting vectors, called318

principal components, are an uncorrelated orthogonal basis set, because they319

are the eigenvectors of the data covariance matrix.320

In the metric case, we do not necessary have objects with coordinates.321

So, the first step is to represent the object from a given space as a vector. For322

this purpose, we simply select a set of random pivots and compute the pivot323

table. Thus, each object is represented as a row in the table, a vector, where324

its components are the distances to every pivot. After this, we compute the325

principal components of the pivot table. In the process, the components are326

sorted by their importance, that is, in decreasing proportion of the variance327

of the data. So the first components should accumulate most of the variance.328

We start the computation with an educated guess. In the synthetic metric329

spaces, we use a set of pivots two times bigger than the representational330

dimension. The underlying intuition is that we should not estimate an IDim331

bigger than the representational dimension, but, as we use random pivots,332

we grant the pivot set the chance of incorporating the maximum of distance333

information between the objects in the dataset. On the other hand, in the334

case of real world metric spaces we use a set of 20 pivots, as our experience335

says that the real world metric space under study has a much lower IDim.336

Since we need to fix a threshold, we use the number of components that337

accumulates 90% of the variance of the dataset as the IDim estimation of338

the space. This threshold gave us the best results in our experiments. To339

perform the statistics computation we use R [30].340

It is important to verify whether the IDim of the given metric space is341

preserved after representing the objects as vectors. To do so, we carry out a342

preliminary study which consists in calculating the intrinsic dimensionality343

computed with the estimator Distance Exponent over the pivot table. The344

results of the study are shown in Tables 1 and 2, where IDim Space is the345

IDim estimation that Distance Exponent suggests for the respective space346

and IDim PT is the estimation for the vectors in the pivot table.347

As can be seen, the IDim computed with Distance Exponent over the348

11

Table 2: Verification of the pivot table IDim for real world spaces.

ENG NASA DOCS HIS
IDim Space 4.96 3.70 3.52 4.70
IDim PT 9.29 3.02 0.57 3.54

pivot table is similar to the one computed on the original dataset, with349

the exception of the space of strings (ENG) and documents (DOCS). These350

results validate our application of PCA. The mismatch in the case of strings351

can be due to the discrete nature of the space, and in the case of documents,352

to the extremely concentrated histogram of distances. For example, several353

other estimators yield similar numbers for these two spaces.354

3.5. Intrinsic Search Difficulty355

Chávez et al. [1] introduced a measure of the intrinsic complexity of356

searching in general metric spaces, which is easy to estimate and is inde-357

pendent of the search algorithm.358

Several authors [31, 32, 33] have proposed to use the distance histogram359

to characterize the hardness of searching in arbitrary metric spaces, yet the360

cost was tailored to a specific index. This measure [1] is the first quantitative361

definition. It depends only on the histogram and not on any assumption on362

the indexing method.363

The intuition behind this measure is that, in random vectors in D di-364

mensions, the histogram has a larger mean µ and a smaller variance σ2 as365

D increases. In fact, it holds D = c · µ2/σ2 for some constant c [34]. Thus,366

the same formula could be used to estimate a dimension D from the mean367

and variance of the histogram of distances in a general metric space. We do368

not have the histogram of the whole universe U, but we can approximate it369

using the histogram of the dataset S ⊂ U, considering the set S as a random370

sample of U.371

Definition 2. (Intrinsic Search Difficulty) Let µ be the mean and σ2
372

be the variance of the histogram of distances of a metric space. Then, its373

intrinsic search difficulty is374

ρ =
µ2

2σ2
. (8)

12

An obvious advantage of this measure, which has contributed to its pop-375

ularity, is that ρ is easy to compute from a reasonable sampling of pairs in376

S. Other techniques require more complex and expensive computations.377

Pestov [35] presents a system of three axioms an intrinsic dimension func-378

tion must satisfy. He proves that the intrinsic dimension measure ρ satisfies379

a weak version of these axioms. Later [36], he introduces a set of goals an380

intrinsic dimension function should fulfill, and ρ achieves many of them.381

As the measure ρ has been designed for general metric spaces, we use it as382

is. We consider the dataset S and we compute all the distances d(x, y), ∀ x, y ∈383

S. Then we compute the average µ = 1

n2

∑

x,y∈S

d(x, y) and the variance384

σ2 = 1

n2

∑

x,y∈S

(d(x, y) − µ)2. Finally, we obtain the value of ρ = µ2

2σ2 and385

report it as the IDim of the metric space.386

3.6. Sparse Spatial Selection Method387

This method is based on a very simple pivot selection strategy [37], called388

Sparse Spatial Selection (SSS). This strategy has the advantage that it is not389

required to know the number of pivots in advance.390

Initially, the set of pivots contains only the first object of the collection.391

Then, for each element x ∈ S, x is chosen as a new pivot if its distance to392

every pivot in the current set of pivots is equal or greater than α d+, being393

α a constant parameter (for indexing purposes this constant α takes values394

around 0.5) and d+ the maximum distance between two objects in the space.395

That is, an object in the collection becomes a new pivot if it is located at396

more than a fraction of the maximum distance d+ with respect to all the397

current pivots. For example, if α = 0.5 an object is chosen if it is located398

further than a half of the maximum distance d+ from the already selected399

pivots.400

Therefore, the selected pivots will not be too close to each other. Forcing401

the distance between two pivots to be greater or equal than α d+, it is ensured402

that they are well distributed in the whole space. It is important to take into403

account that these pivots are not very far away from each other, neither very404

far from the rest of the objects in the collection (i.e., they are not necessarily405

outliers), but they are well distributed and cover the whole space.406

An distinguishing feature of SSS is that an element x is compared against407

the pivots already selected and it becomes a new pivot if needed. In this way408

the number of pivots does not depend on the collection size but on its intrinsic409

13

dimensionality. This number of pivots is very similar to the optimum number410

for other strategies.411

We note that surrounding a pivot, there is a ball of radius α d+. Also,412

the method produces pivots as long as there is some part of the space that is413

not covered by any previous pivot. This resembles the fractal methods. So,414

we can use a similar technique to estimate IDim. Let P (α) be the number415

of pivots produced by SSS for a given value of α. So, we plot lnP (α) versus416

ln 1

α
and obtain the slope of the linear section of the curve by using linear417

regression with least squares over the experimental data (ln(P (α)), ln(1
α
)).418

4. Experimental Evaluation419

We evaluate experimentally the seven IDim estimators described on gen-420

eral metric spaces. We consider two kinds of metric spaces, depending on421

the data source:422

Synthetic: these are spaces generated artificially so that they present some423

interesting characteristic to be evaluated. For instance, uniformly dis-424

tributed vectors in R
D with known dimension.425

Real world: these are metric spaces obtained from real-world applications.426

For instance, a feature vector space of images obtained from a NASA427

image set.428

4.1. Synthetic Metric Spaces429

These are vector spaces with Euclidean distance. They are treated as430

metric spaces, as we do not consider the coordinate information. A first set431

is formed by vectors with uniform distribution, so that the representational432

dimension matches the IDim. Here, we can test the estimators in a case433

where the IDim is known. A second set is formed by vectors with Gaussian434

distribution, so that the representational dimension is greater than the IDim435

(the more clustered is the space, the lower is the IDim). The distance is also436

Euclidean. Here, we aim to check whether the estimators give lower values437

as the IDim decreases.438

4.1.1. Uniformly Distributed Vectors with Euclidean Distance439

We generate four datasets of 100,000 uniformly distributed vectors in the440

unitary cube [0, 1)D, with D = 5, 10, 15, and 20. The spaces are called C5,441

C10, C15, and C20, respectively.442

14

 0

 5

 10

 15

 20

 25

 30

C20C15C10C5

E
st

im
at

io
n

of
 d

im
en

si
on

al
ity

Metric space

Estimations of dimensionality for uniform spaces

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

Figure 2: Comparison of dimensionality estimations for uniform spaces.

Fig. 2 depicts the estimations obtained with the seven IDim estimators,443

namely, Ball Counting, Distance Exponent, Fastmap, Intrinsic Search Diffi-444

culty, PCA, SSS, and Correlation, for these four metric spaces. As it can be445

seen, Ball counting becomes insensitive to the correct dimension in C20. The446

other six methods increase proportionally with D, but with different slopes.447

Fastmap is the one with the best fit, matching D almost perfectly, closely448

followed by Correlation and Distance Exponent. Intrinsic Search Difficulty449

based estimator shows a consistent factor multiplying D. Both PCA and450

SSS fit well in C5, but as IDim grows, the fit loses precision.451

Search degradation as IDim grows. To verify that the dataset IDim is re-452

sponsible of the search degradation, we pick C5 and extend its vectors with453

zeroes to produce spaces with 10, 15, and 20 representational dimensions,454

and study the search performance over it.455

We perform 10 executions of the algorithms, building the index with456

90% of the database elements and reserving the remaining 10% (chosen at457

random) for the queries. So, the query objects do not belong to the index.458

We average the results over the 10 executions. In each execution, the objects459

in the metric space are permuted at random. Therefore, each of the 10 indices460

uses a different dataset S, and the query objects are also different.461

We use two pivot indices and two compact partition indices. For the pivot462

index family, we use the generic pivot algorithm and the Vantage Point Tree463

15

index [38, 39].464

In the case of the generic pivot algoritithm, we choose at random a set of465

pivots P = {P1, P2, . . . , Pk} ⊂ S of size |P| = k. We store the kn distances466

between pivots and objects, and use them to filter out candidates using the467

triangle inequality. For each space, we experimentally determine the number468

of pivots that obtains the best search performance. Thus, the results shown469

for each case correspond to the best possible ones for this method, in the470

corresponding metric space.471

On the other hand, the Vantage Point tree (VPT) is a tree recursively472

built by taking an arbitrary element p as the root. The distances from the473

root to every object in the database are computed {d(p, u), u ∈ U}. Let M474

be the median of those distances. All objects such that d(p, u) ≤ M are475

assigned to the left node and the rest to the right node. Then, we recurse476

until the number of elements is smaller than a certain bucket size. To solve a477

query in the VPT the query ball is tested to see if there could be candidates478

in the left and right nodes. It is possible to enter both subtrees.479

For the case of compact partition based algorithms, we consider the LC480

[11], which is one of the best indexes for medium and high dimensions, and the481

Spatial Approximation Tree [40]. We use the LC variant that has a maximum482

size for each cluster. For each metric space considered, we experimentally483

determine the cluster size whose perfomance is the best, and this is the result484

shown in the plots.485

Finally, the Spatial Approximation Tree (SAT) is a data structure aim-486

ing at approaching the query spatially by starting at the root and getting487

iteratively closer to the query by navigating the tree. The SAT is built as488

follows. An element a is selected as the root, and is connected to a set of489

neighbors N(a), defined as a subset of elements x in the dataset such that x490

is closer to a than to any other element in N(a). The other elements (not in491

N(a) ∪ {a}) are assigned to their closest element in N(a). Each element in492

N(a) is recursively the root of a new subtree containing the elements assigned493

to it.494

In Fig. 3, we show the cost of range queries retrieving 0.01%, 0.1% and495

1% of the vector dataset per query, using the generic pivot index, the LC,496

the VPT, and the SAT, see Figs. 3(a), (b), (c), and (d), respectively. These497

results are compared with the ones for searching C10, C15, and C20. The four498

plots show that the search effort performed by the four tested indices remain499

almost unaltered when working on the four spaces of IDim 5 (independently500

of the representational dimension of the space), while the curves for C10,501

16

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage retrieved

Search cost per element with Pivots, n = 100,000 uniform vectors

Dim. 5, Rep. 5
Dim. 5, Rep. 10
Dim. 5, Rep. 15
Dim. 5, Rep. 20

Dim. 10, Rep. 10
Dim. 15, Rep. 15
Dim. 20, Rep. 20

(a) Generic pivot index.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage retrieved

Search cost per element with LC, n = 100,000 uniform vectors

Dim. 5, Rep. 5
Dim. 5, Rep. 10
Dim. 5, Rep. 15
Dim. 5, Rep. 20

Dim. 10, Rep. 10
Dim. 15, Rep. 15
Dim. 20, Rep. 20

(b) List of clusters.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage retrieved

Search cost per element with VPT, n = 100,000 uniform vectors

Dim. 5, Rep. 5
Dim. 5, Rep. 10
Dim. 5, Rep. 15
Dim. 5, Rep. 20

Dim. 10, Rep. 10
Dim. 15, Rep. 15
Dim. 20, Rep. 20

(c) Vantage Point Tree.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage retrieved

Search cost per element with SAT, n = 100,000 uniform vectors

Dim. 5, Rep. 5
Dim. 5, Rep. 10
Dim. 5, Rep. 15
Dim. 5, Rep. 20

Dim. 10, Rep. 10
Dim. 15, Rep. 15
Dim. 20, Rep. 20

(d) Spatial Approximation Tree.

Figure 3: The search effort does not vary when the IDim of the space does not change.

C15, and C20 show the usual degradation.502

4.1.2. Gaussian Distributed Vectors with Euclidean Distance503

We generate 100,000 vectors in R
D, where each coordinate has mean504

µ = 1 and variance σ2 = 0.1, for D = 5, 10, 15, and 20. In these spaces,505

there are no, a priori, clusters of elements. These spaces are called G5, G10,506

G15, and G20. Note that the object are not confined in the unitary cube.507

We also generate 100,000 vectors in R
101 with 200 clusters. In this space,508

the first 100 coordinates of each vector follow a N (µ = 1, σ2 = 0.1) distri-509

bution. The 101-th coordinate stores the cluster identifier. So, the cluster510

centers are essentially uniformly distributed in the last coordinate. Geomet-511

rically speaking, one can imagine that this space is a sequence of 200 crisp512

clusters in a line immersed in R
101. This space is called G101.513

17

 0

 5

 10

 15

 20

 25

G20G15G10G5G101

E
st

im
at

io
n

of
 d

im
en

si
on

al
ity

Metric space

Estimations of dimensionality for Gaussian spaces

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

Figure 4: Comparison of dimensionality estimations for Gaussian spaces.

Fig. 4 shows the estimations obtained with the seven IDim estimators514

for these metric spaces. As can be seen, all the methods give increasing515

IDim values as the representational dimension grows (G5 through G20) as516

expected, but with different behaviors. Ball Counting and Distance Exponent517

become less sensitive to high dimensionality, from G15 to G20 they show a518

small increment. Intrinsic, SSS and Correlation give IDim values that grow519

steadily through G5 through G20, and we note that the Intrinsic Search520

Difficulty gives markedly lower values than in the uniform case. Fastmap and521

PCA show a large increment from G15 to G20, and we note that the IDim522

estimated by Fastmap in G20 is higher than in C20, which is unexpected.523

We note that the lower the IDim, the more similar the dimensionality524

estimation. In fact, all the measures estimate the IDim of G5 around 4525

to 5 and the IDim of G101 around 1. This last result is very interesting.526

We prepare the dataset G101 with the purpose of having a space with high527

representational dimension but with very low intrinsic dimension and all the528

estimators detect this fact.529

18

4.2. Real Metric Spaces530

We pick four spaces from the Metric Library [25] 1 in order to estimate531

their IDims with the seven IDim estimators. The selected spaces are varied:532

Dictionary: this is a dictionary of 69,069 English words. In this space, we533

use a discrete function, the Edit Distance or Levenshtein Distance [27].534

NASA: this is a set of 40,700 images from NASA, represented as feature535

vectors of 20 real coordinates per vector, under the Euclidean distance.536

They were generated from images downloaded from the NASA photo537

and video archive site, used in contests conducted by the Center for538

Discrete Mathematics and Theoretical Computer Science (DIMACS) 2.539

To obtain images from the videos, cuts are detected based on the tran-540

sition of the color histogram and then representative images are ex-541

tracted when the changes in the histogram reach a given threshold.542

Later, the images are split into four sub-regions, i.e., upper-left, upper-543

right, lower-left and lower-right, and histograms of the subregions are544

calculated in order to take account of the composition of the image.545

The four histograms are concatenated to compose a 36-dimensional546

feature vector. Finally, using principal component analysis the feature547

vectors are reduced to 20-dimensional vectors 3.548

Histograms: this is a dataset of 112,682 histograms of medical images, each549

one composed by 8-D color histograms of 112 real components 4. As550

any quadratic form function can be used as the distance in this case, we551

also have chosen the Euclidean distance, as is the simplest alternative.552

Documents: this space has 1,265 documents, represented as vectors accord-553

ing to the vector model of documents used in the Information Retrieval554

field. To compare documents we use the cosine distance. Each vector555

has a coordinate for each vocabulary term in the colection, and docu-556

ments can be seen as points in a vector space of high representational557

1Available at http://www.sisap.org/library/dbs/ .
2Available at http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html .
3More details on this dataset can be obtained from

http://www.dimacs.rutgers.edu/Challenges/Sixth/participants.html#KS .
4Available at http://www.dbs.informatik.uni-muenchen.de/∼seidl/DATA/histo112.112682.gz .

19

 0

 2

 4

 6

 8

 10

 12

DOCSHISNASAENG

E
st

im
at

io
n

of
 d

im
en

si
on

al
ity

Metric space

Estimations of dimensionality for real spaces

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

Figure 5: Comparison of dimensionality estimations for real metric spaces.

dimension. The documents are files obtained form the trec-3 collec-558

tion 5.559

We start the experimental evaluation in real metric spaces by estimating560

their IDims. These results are shown in Fig. 5. As it can be seen, all the561

methods shown coincide in that the English dictionary apparently has the562

highest IDim. Also, in these real world metric we can detect two groups of563

estimators that report similar values for IDims. The first is composed by564

Intrinsic Search Difficulty, PCA and SSS, and the second by Ball Counting,565

Distance Exponent and Correlation. On the other hand, Fastmap shows an566

erratic behavior.567

To measure the intrinsic hardness of the searching, we consider the same568

four indices as before, using range queries:569

Dictionary: As the metric is discrete, we use radii 1, 2, 3, and 4, retrieving570

on average about 0.003%, 0.037%, 0.326%, and 1.757% of the database.571

NASA: In this continuous metric we use radii 0.012, 0.285, and 0.53, re-572

trieving on average approximately 0.01%, 0.1%, and 1% of the dataset.573

5Available at http://trec.nist.gov .

20

Histograms: This metric is also continuous. To retrieve on average ap-574

proximately 0.01%, 0.1%, and 1% of the dataset, we use query radii575

0.051768, 0.082514, and 0.131163.576

Documents: The distance is also continuous. We use query radii 0.14,577

0.15, and 0.195, which retrieve on average 0.01%, 0.1%, and 1% of the578

database.579

Fig. 6 shows the correlation between the search cost with the Pivot index580

(on the left) and the List of Clusters (on the right), and the estimation581

reported for each considered IDim estimator, namely, Ball counting, Distance582

Exponent, Fastmap, Intrinsic Search Difficulty, PCA, SSS, and Correlation.583

Fig. 7 illustrates the correlation between the search cost with the Vantage584

Point Tree (on the left) and the Spatial Approximation Tree (on the right)585

with respect to the seven estimators.586

We plot the ratio between the logarithm of the search cost, measured587

with distance computations, and the estimations of the IDim. This mea-588

sures how close is the logarithm of the actual search costs to the predicted589

IDim: if the search cost is consistently s = cd, where d is the predicted IDim590

and c is a constant, then the plots should always be close to log c. Thus591

the best methods are those that give roughly the same value regardless of592

the index used. In Table 3, we show the mean and standard deviation of593

log(Search Difficulty)/IDim obtained for each estimator. To compute the ta-594

ble, we consider the four real world metric spaces, the three radii, and the595

four indices considered for each estimator.596

As on the synthetic spaces, Distance Exponent and Correlation turn out597

to be the best predictors for the four tested indices, as the ratio between598

log(Search Difficulty) and the IDim estimation remains similar in all the real599

world spaces tested considering the different query radii and indices. This600

can be corroborated in Table 3: Distance Exponent and Correlation have601

the lowest standard deviations, just 0.135 and 0.200, respectively. As it can602

be observed, the other methods are not stable enough with respect to search603

costs. In fact, their standard deviations range from 0.289 for Ball Counting to604

0.605 for PCA. This is because in some cases they underestimate the search605

difficulty, and in the others they make an overestimation.606

The search cost, however, depends both on the database size and on607

the output size (which in turn depends on the query radius). Therefore,608

dividing the cost of the search by these measures may give a more stable609

21

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 0.01% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(a) Retrieving 0.01%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 0.01% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(b) Retrieving 0.01%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 0.1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(c) Retrieving 0.1%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 0.1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(d) Retrieving 0.1%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(e) Retrieving 1%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(f) Retrieving 1%.

Figure 6: Comparison of Ball Counting, Distance Exponent, Fastmap, Intrinsic Search
Difficulty, PCA, SSS, and Correlation IDim estimators, for real metric spaces. On the left,
using Pivots. On the right, using List of Clusters.

22

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with VPT for real metric spaces, 0.01% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(a) Retrieving 0.01%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with SAT for real metric spaces, 0.01% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(b) Retrieving 0.01%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with VPT for real metric spaces, 0.1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(c) Retrieving 0.1%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with SAT for real metric spaces, 0.1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(d) Retrieving 0.1%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with VPT for real metric spaces, 1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(e) Retrieving 1%.

 0

 0.5

 1

 1.5

 2

DOCSHISNASAENG

Lo
g(

S
ea

rc
h

D
iff

ic
ul

ty
)/

E
st

im
at

io
ns

Metric space

Evaluations of estimators with SAT for real metric spaces, 1% retr.

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

(f) Retrieving 1%.

Figure 7: Comparison of Ball Counting, Distance Exponent, Fastmap, Intrinsic Search
Difficulty, PCA, SSS, and Correlation IDim estimators, for real metric spaces. On the left,
using Vantage Point Tree. On the right, using Spatial Approximation Tree.

23

Table 3: Comparison of log(Search Difficulty)/Estimation for the seven IDim estimators.

IDim Estimator Mean Standard Deviation

Ball Counting 0.810 0.289
Distance Exponent 0.822 0.135
Fastmap 0.924 0.592
Intrinsic Search Difficulty 0.861 0.364
PCA 1.068 0.605
SSS 1.121 0.556
Correlation 0.773 0.200

Table 4: Comparison of log(Search Difficulty/DBS)/Estimation for the seven IDim esti-
mators.

IDim Estimator Mean Standard Deviation

Ball Counting 0.218 0.175
Distance Exponent 0.212 0.149
Fastmap 0.287 0.302
Intrinsic Search Difficulty 0.255 0.196
PCA 0.279 0.247
SSS 0.283 0.186
Correlation 0.204 0.156

measure of search difficulty. We repeat this evaluation considering the re-610

lation between the fraction of the database visited when solving a query611

and the estimation of IDim (this is, − log(Search Difficulty/DBS)/IDim,612

where DBS stands for database size) and, on the other hand, the num-613

ber of distance evaluation per each object in the query answer set (this is,614

log(Search Difficulty/QOS)/IDim, where QOS stands for query output size).615

We summarize these results in Tables 4 and 5. The reduced standard devi-616

ations confirm that the estimations are indeed more stable, especially when617

dividing by the database size. Still, we obtain the same conclusions: The two618

most stable intrinsic dimensionality estimators are Distance Exponent and619

Correlation.620

24

Table 5: Comparison of log(Search Difficulty/QOS)/Estimation for the seven IDim esti-
mators.

IDim Estimator Mean Standard Deviation

Ball Counting 0.427 0.173
Distance Exponent 0.448 0.164
Fastmap 0.398 0.281
Intrinsic Search Difficulty 0.491 0.280
PCA 0.599 0.406
SSS 0.681 0.553
Correlation 0.407 0.137

5. Conclusions621

The Intrinsic Dimension (IDim) of metric spaces measures their search622

difficulty, independently of the type of index used. Computing the IDim is623

useful to determine whether a metric space can be indexed at all (or we must624

resort to sequential scanning or approximate methods), which kind of index625

would perform better, and what search performance to expect.626

We have analyzed seven IDim estimators in a practical perspective. Some627

were defined for D-dimensional coordinate spaces, and we have adapted them628

to the more general metric spaces. We compared their predictions with the629

actual search cost using various synthetic and real-life metric spaces, so as630

to verify which are better at predicting the search difficulty.631

Although our results are preliminary, they suggest that all the methods632

considered obtain appropriate estimations over synthetic metric spaces, be-633

cause their values grow as the dimension increases. However, if we compare634

the estimations with the real search costs, the Distance Exponent [12, 13]635

and Correlation [14] turn out to be more stable. This is corroborated in636

Table 3, that shows the mean and standard deviation of the ratio between637

log(Search Difficulty) and the IDim estimation for the seven estimators. The638

standard deviations computed for Distance Exponent and Correlation are639

just 0.135 and 0.200, respectively, and are the two lowest ones. On the other640

hand, the other estimators, namely, Ball Counting (our adaptation of Box641

Counting [21]), Fastmap [28], the simple measure proposed by Chávez et642

al. [1], PCA, and SSS [37] sometimes obtain values less than the logarithm of643

search costs and other times greater than them. These conclusions are also644

25

supported by Tables 4 and 5.645

As future work, we plan to analyze other estimators. For instance, we646

can study the concentration dimension [35].647

Acknowledgements648

We gratefully acknowledge the anonymous referees who helped to improve649

the presentation.650

References651

[1] E. Chávez, G. Navarro, R. Baeza-Yates, J. Marroqúın, Searching in652

metric spaces, ACM Computing Surveys 33 (3) (2001) 273–321.653

[2] G. Hjaltason, H. Samet, Index-driven similarity search in metric spaces,654

ACM Trans. on Database Systems 28 (4) (2003) 517–580.655

[3] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The Met-656

ric Space Approach, Vol. 32 of Advances in Database Systems, Springer,657

2006.658

[4] H. Samet, Foundations of Multidimensional and Metric Data Structures659

(The Morgan Kaufmann Series in Computer Graphics and Geometric660

Modeling), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,661

2005.662

[5] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for663

similarity search in metric spaces, in: Proc. 23rd Conf. on Very Large664

Databases (VLDB), 1997, pp. 426–435.665

[6] V. Dohnal, C. Gennaro, P. Savino, P. Zezula, D-index: Distance search-666

ing index for metric data sets, Multimedia Tools and Applications 21 (1)667

(2003) 9–33.668

[7] T. Skopal, J. Pokorný, V. Snásel, PM-tree: Pivoting metric tree for sim-669

ilarity search in multimedia databases, in: ADBIS (Local Proceedings),670

2004.671

26

[8] G. Navarro, N. Reyes, Dynamic spatial approximation trees for massive672

data, in: T. Skopal, P. Zezula (Eds.), Proc. 2nd Intl. Workshop on673

Similarity Search and Applications (SISAP), IEEE CS Press, 2009, pp.674

81–88.675

[9] G. Navarro, R. Uribe, Fully dynamic metric access methods based on676

hyperplane partitioning, Information Systems 36 (4) (2011) 734–747.677

[10] G. Navarro, N. Reyes, Dynamic list of clusters in secondary memory,678

in: Proc. 7th Intl. Workshop on Similarity Search and Applications679

(SISAP), LNCS 8821, 2014, pp. 94–105.680

[11] E. Chávez, G. Navarro, A compact space decomposition for effective681

metric indexing, Pattern Recognition Letters 26 (9) (2005) 1363–1376.682

[12] C. Traina Jr., A. J. M. Traina, C. Faloutsos, Distance exponent: a new683

concept for selectivity estimation in metric trees, Research Paper 99-684

110, School of Computer Science, Carnegie Mellon University (03/1999685

1999).686

[13] C. Traina Jr., A. J. M. Traina, C. Faloutsos, Distance exponent: A687

new concept for selectivity estimation in metric trees., in: Proc. 16th688

Intl. Conf. on Data Engineering (ICDE), 2000, p. 195.689

[14] F. Camastra, A. Vinciarelli, Estimating the intrinsic dimension of data690

with a fractal-based method., IEEE TPAMI 24 (10) (2002) 1404–1407.691

[15] C. Bustos, G. Navarro, N. Reyes, R. Paredes, An empirical evaluation692

of intrinsic dimension estimators, in: Proc. 8th Intl. Conf. on Similarity693

Search and Applications (SISAP), LNCS 9371, Springer, 2015, pp. 125–694

137.695

[16] A. K. Jain, R. C. Dubes, Algorithms for clustering data, Prentice-Hall,696

Inc., Upper Saddle River, NJ, USA, 1988.697

[17] F. Camastra, Data dimensionality estimation methods: a survey, Pat-698

tern Recognition 36 (12) (2003) 2945–2954.699

[18] K. Fukunaga, Introduction to statistical pattern recognition (2nd ed.),700

Academic Press Professional, Inc., San Diego, CA, USA, 1990.701

27

[19] R. Bellman, Adaptive control processes: a guided tour, Princeton Uni-702

versity Press Princeton, N.J, 1961.703

[20] V. N. Vapnik, The nature of statistical learning theory, Springer-Verlag704

New York, Inc., New York, NY, USA, 1995.705

[21] B. Mandelbrot, Fractals: Form, Chance and Dimension, W. H. Freeman,706

San Francisco, 1977.707

[22] J. P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attrac-708

tors, Rev. Mod. Phys. 57 (1985) 617.709

[23] E. Ott, Chaos in dynamical systems, Cambridge University Press, Cam-710

bridge, New York, 1993.711

[24] D. Kaplan, L. Glass, Understanding Nonlinear Dynamics, Springer-712

Verlag, New York, 1995.713

[25] K. Figueroa, G. Navarro, E. Chávez, Metric spaces library, available at714

http://www.sisap.org/Metric Space Library.html (2007).715

[26] H. V. Jagadish, A retrieval technique for similar shapes, in: SIGMOD716

Conference, ACM Press, 1991, pp. 208–217.717

[27] V. I. Levenshtein, Binary codes capable of correcting deletions, inser-718

tions, and reversals, Soviet Physics Doklady 10 (8) (1966) 707–710.719

[28] C. Faloutsos, K.-I. Lin, Fastmap: A fast algorithm for indexing, data-720

mining and visualization of traditional and multimedia datasets, in:721

Proc. 1995 ACM SIGMOD Intl. Conf. on Management of Data, ACM722

Press, 1995, pp. 163–174.723

[29] I. T. Jolliffe, Principal Component Analysis, 2nd Edition, Springer Series724

in Statistics, Springer, 2002.725

[30] R Core Team, R: A Language and Environment for Statistical Comput-726

ing, R Foundation for Statistical Computing, Vienna, Austria (2013).727

[31] S. Brin, Near neighbor search in large metric spaces, in: Proc. 21st728

Conf. on Very Large Databases (VLDB’95), 1995, pp. 574–584.729

28

[32] E. Chávez, J. Marroqúın, Proximity queries in metric spaces, in: Proc.730

4th South American Workshop on String Processing (WSP’97), Carleton731

University Press, 1997, pp. 21–36.732

[33] P. Ciaccia, M. Patella, P. Zezula, A cost model for similarity queries733

in metric spaces., in: Proc. 17th ACM SIGACT-SIGMOD-SIGART734

Symp. on Principles of Database Systems (PODS), 1998, pp. 59–68.735

[34] P. Yianilos, Excluded middle vantage point forests for nearest neighbor736

search, Tech. rep., NEC Research Institute, Baltimore, MD, in 6th DI-737

MACS Implementation Challenge: Near Neighbor Searches Workshop,738

ALENEX’99 (1998).739

[35] V. Pestov, Intrinsic dimension of a dataset: what properties does one740

expect?, in: 2007 Intl. Joint Conf. on Neural Networks (IJCNN), 2007,741

pp. 2959–2964. doi:10.1109/IJCNN.2007.4371431.742

[36] V. Pestov, An axiomatic approach to intrinsic dimension of a dataset,743

Neural Networks 21 (2–3) (2008) 204–213, advances in Neural Net-744

works Research: 2007 Intl. Joint Conf. on Neural Networks (IJCNN).745

doi:http://dx.doi.org/10.1016/j.neunet.2007.12.030.746

[37] N. R. Brisaboa, A. Fariña, O. Pedreira, N. Reyes, Similarity search using747

sparse pivots for efficient multimedia information retrieval, in: 8th IEEE748

Intl. Symp. on Multimedia (ISM), IEEE CS, 2006, pp. 881–888.749

[38] P. Yianilos, Data structures and algorithms for nearest neighbor search750

in general metric spaces, in: Proc. 4th ACM-SIAM Symposium on Dis-751

crete Algorithms (SODA’93), SIAM Press, 1993, pp. 311–321.752

[39] T. Chiueh, Content-based image indexing, in: Proc. 20th Conf. on Very753

Large Databases (VLDB’94), 1994, pp. 582–593.754

[40] G. Navarro, Searching in metric spaces by spatial approximation, The755

Very Large Databases Journal (VLDBJ) 11 (1) (2002) 28–46.756

29

