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Abstract

Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories

of versioned documents, among other applications. These collections may reach huge sizes, but are formed

mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail

to properly exploit their regularities in order to reduce space.

We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity.

They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead

of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression

methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns.

Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the

collection, nor that a clear versioning structure even exists.

We also introduce compressed self-indexes in the comparison. These are designed for general strings

(not only natural language texts) and represent the text collection plus the index structure (not an inverted

index) in integrated form. We show that these techniques can compress much further, using a small fraction

of the space required by our new inverted indexes. Yet, they are orders of magnitude slower.
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1. Introduction

Large versioned document collections, such as Wikipedia (www.wikipedia.org) and the Wayback Ma-

chine from the Internet Archive (www.archive.org/web/web.php), are examples of the emergence of highly

repetitive document collections, where most documents are near-duplicates of others. Apart from versioned

document collections, other applications where this situation arises are software repositories (where a tree of

versions is maintained), biological databases (where many DNA or protein sequences from organisms of the

same or related species are maintained), periodic technical publications (where the same data, with small

updates, are published over and over), and so on.

These collections may be very large, but at the same time are highly compressible. While Lempel-

Ziv compressors [68] are successful in capturing their repetitiveness, such compression is suitable only for

archival purposes. Version control systems offer, in addition, efficient direct access to individual versions.

This was done, since their early beginnings, by storing edits with respect to some previous version [52]. The

applications we have enumerated require even more: fast searching capabilities on all the versions. Thus, we

need to compress not only the data, but also the indexes built on them to speed up searches.

There is a burst of recent activity in exploiting repetitiveness at the indexing structures, in order to

provide fast searches in the collection within little space. Both inverted indexes for word and phrase queries

over natural language texts [3, 12, 35, 65, 36, 34], and other indexes for general string collections [43, 16, 19,

20, 40, 28, 29, 26, 9], have been pursued.

The focus of this paper is on natural language text collections, which can be decomposed into words, and

queried for words or phrases. The classical data structure to index such collections is the inverted index,

where a list of the occurrences of each distinct word is maintained. The variant where the lists are sorted by

increasing document identifier has gained relevance, since such ordering is most useful for list intersections.

Intersections of inverted lists arise as a fundamental task under the Google-like policy of treating bag-of-

word queries as ranked AND-queries. Therefore, intersections form the heaviest part of the search process,

and relevance ranking is done as a postprocessing step [64, 65, 24] or via on-the-fly filtration [25, 23, 39].

Intersections are also fundamental for solving phrase queries.

In this context, there are two different types of indexes. Non-positional indexes find, given a word or

bag-of-words query, the documents containing all the words. They store, for each word, the increasing list of

documents containing it. Positional indexes retrieve the precise positions in each document where a word or

phrase query appears. They store, in addition to the document identifiers, the word offsets of the occurrences

within each document.

Traditional techniques to compress inverted indexes [63, 5, 69, 13, 6] represent the differences between

consecutive document or position values. Many of those differences tend to be small, and thus they are
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encoded in a way that favors small numbers. While very effective for traditional collections, this compression

technique generally fails to exploit the repetitiveness that arises in versioned collections.

In this paper we introduce new techniques for compressing inverted indexes on highly repetitive collec-

tions. Instead of using the classical encoding of differences, we adapt and apply run-length, Lempel-Ziv [68],

and grammar [41] compression on the lists of differences. Run-length compression simply exploits successive

differences equal to 1 in the lists, and works if the similar documents are grouped in the ordering. Lempel-Ziv

compression captures more general repetitive patterns that appear within the list of the same word, and

needs to decompress the whole list to access any position of it. Grammar compression can be applied to the

whole set of lists because it can decompress portions of any list independently. Therefore, it can also exploit

repetitions across lists. These repetitions are very interesting because they capture the case of pairs of words

that appear in almost the same documents. We enrich grammar compression with additional information

on the nonterminal symbols, which allows us skip them without decompressing when a particular document

is sought during list intersections.

Our techniques clearly outperform classical inverted index compression in this scenario. For example,

our Lempel-Ziv-based index is 15 times smaller than a Rice-encoded index (the best choice for classical

text collections), at the modest price of being at most 70% slower on word and conjunctive queries. Our

grammar-based compressed index is up to 30 times smaller and at most 3 times slower. Our experiments also

show that some encodings designed for typical collections, such as Partitioned Elias-Fano [51] and PforDelta

[37, 70, 51], improve substantially on repetitive collections, yet they still require 2.5–7 times more space than

ours. These modern encodings are also 2–9 times faster than Rice codes on conjunctive queries. Other recent

codes built on the last generation of SIMD-based techniques [61] are an order of magnitude faster, but they

are shown to use too much space on repetitive collections.

Except for our run-length compression, which is not the best technique, our compressed representations

are universal, that is, they do not need to identify which document is a version of which. Indeed, there is no

need that the documents have a well-defined versioning structure at all: it is sufficient that most documents

contain long parts that appear in others.

We also apply our compression techniques in the positional scenario, where the lists are less compressible.

This time, the method that performs best in space is Lempel-Ziv compression, which is around 3.5 times

smaller than classical inverted indexes, but also 2.5–10 times slower on the most common queries. The

grammar-compressed index is twice as large as the Lempel-Ziv index, but it is significantly faster to solve

queries, 2–5 times slower than classical indexes.

In this scenario we also consider self-indexes, which are compressed indexes (not based on inverted

indexes) that encode both the text and the index. We use, adapt, or implement existing self-indexes designed
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for highly repetitive collections (mostly for computational biology scenarios) [43, 16, 19, 20, 40]. Self-indexes

obtain sharp space reductions, being up to 12 times smaller than our Lempel-Ziv-compressed inverted index.

Their query times, however, are 10–200 times slower on the most typical queries. While the time difference

is large, this shows that there is still much redundancy to exploit in the positional scenario.

We have left our codes and experimental testbeds available at https://github.com/migumar2/uiHRDC.

1.1. Related work

The most relevant previous work targeting highly repetitive collections of natural language text is by

He et al. [35, 36]. They presented alternative compression methods for non-positional indexes on versioned

collections. Their approach, called two-level indexing, merges all the versions of each document for creating

the inverted lists. A secondary index stores, for each entry of the main inverted list, a bitmap indicating the

versions of the document that contain the term. They convert previous “one-level” techniques [3, 12] into

two-level methods, and also study methods for reordering the versions in order to improve compression.

They obtained excellent compression results on a non-positional inverted index built over subsets of

Wikipedia and the Internet Archive collections. The authors attribute the success of their technique to the

effective management of the bitmaps in the second level of the index.

Our experiments show that our techniques still do not match the performance of He et al.’s methods.

However, these work under a restricted model where there exists a set of independent documents, each

of which has a number of versions, and this versioning information is known for indexing. Our universal

techniques, instead, also work on settings where the versions form a tree structure (as in collaborative

document creation, software repositories, or phylogenetic trees), or where the versions form a continuous

stream of incremental changes (as in periodic publications of technical data), or where it is unknown or

unclear which documents are versions of which (as in DNA sequence databases, or near-duplicate pages in

Web crawls).

He and Suel [34] also designed a positional inverted index for the repetitive scenario. They apply a

previous technique to partition documents into fragments [67] and then use their non-positional approach

[36] on the fragments. They focus on answering top-k queries, by first obtaining the top-k′ (k′ > k) documents

over the non-positional index and then re-ranking them using the positional information in order to return

the top-k results. This is faster than using the whole positional information in the first stage [34, 57].

Although their index serves a different kind of queries than those we study here, a rough comparison is

possible. The space they obtain with their best result (ZS-FREQ) is about half the space of our Lempel-Ziv

inverted indexes, whereas their time to extract each position from the index is around the microsecond, that

is, about 5 times slower than our Lempel-Ziv index. Our self-indexes are still up to 6 times smaller than
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ZS-FREQ, yet also around 20 times slower. Once again, their index is not universal, as it makes explicit use

of a known and specific versioning structure.

2. Basic Concepts

In this section we briefly review the best known strategies to intersect inverted lists, and then consider

compression methods that are compatible with those intersection algorithms. We then present Re-Pair and

Lempel-Ziv compression methods, which are the base of the best inverted list representations we propose in

Sections 3 and 4. Finally, we provide a brief introduction to the compressed self-indexes that are well-suited

to handle repetitive data, which we will adapt to our positional scenario in Appendix A.

2.1. Intersection algorithms for inverted lists

The intersection of two inverted lists can be done in a merge-wise fashion (which is the best choice if both

lists are of similar length), or using a set-versus-set (svs) approach where the longer list is searched for each

of the elements of the shortest, to check which should appear in the result. Either binary or exponential (also

called galloping or doubling) search are typically used in svs. The latter checks the list at positions i + 2j

for increasing j, to find an element known to be after position i (but probably close). All these approaches

assume that the lists to be intersected are given in sorted order.

Algorithm bys [4] is based on binary searching the longer list n for the median of the smallest list m. If

the median is found, it is added to the result set. Then the algorithm proceeds recursively on the left and

right parts of each list. At each new step the longest sublist is searched for the median of the shortest sublist.

Results showed that bys performs about the same number of comparisons than svs with binary search. As

expected, both svs and bys improve upon merge algorithm when |n| � |m| (actually from |n| ≈ 20|m|).

Multiple lists can be intersected using any pairwise approach (iteratively intersecting the two shortest

lists, and then the result against the next shortest one, and so on). Other algorithms are based on choosing

the first element of the smallest list as an eliminator that is searched for in the other lists (usually keeping

track of the position where the search ended). If the eliminator is found, it becomes a part of the result.

In any case, a new eliminator is chosen. Barbay et al. [8] compared four multi-set intersection algorithms:

i) a pairwise svs-based algorithm; ii) an eliminator-based algorithm [7] (called sequential) that chooses the

eliminator cyclically among all the lists and exponentially searches for it; iii) a multi-set version of bys; and

iv) a hybrid algorithm (called small-adaptive) based on svs and on the so-called adaptive algorithm [22]. The

adaptive algorithm recomputes at each step the list ordering according to the elements not yet processed,

chooses the eliminator from the shortest list, and tries the others in order. The simplest pairwise svs-based

approach (with exponential search) performed best in practice [8].
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2.2. Data structures for inverted lists

The previous algorithms require that lists can be accessed at any given position (for example those using

binary or exponential search) and/or that, given a value, its smallest successor from a list can be obtained.

Those needs interact with the inverted list compression techniques.

The compression of inverted lists usually represents each list 〈p1, p2, p3, . . . , p`〉 as a sequence of d-gaps

〈p1, p2 − p1, p3 − p2, . . . , p` − p`−1〉, and uses a variable-length encoding for these differences, for example

γ-codes, δ-codes, Rice codes, etc. [63]. Those methods assign shorter codes to smaller numeric values, this

way taking advantage of the fact that, on longer lists, the d-gaps are shorter.

If the inverted lists stay on disk, minimizing I/O is the key to improve performance, and thus the codes

achieving the least space are preferable. Rice codes are usually the best choice for compressing inverted lists

in this case [63].

Recently, there has been an increasing interest on inverted index structures designed to reside in main

memory (possibly distributed across several processors) [59, 21, 60, 13]. While space-efficient representations

are still important to reduce communication and number of processors, the CPU time for traversing the lists

in memory becomes relevant as well.

A proposal in this line uses byte-aligned codes [21], which lose little compression and are faster at

decoding. We will use in particular Vbyte [62], which splits a number into 7-bit chunks and places each

chunk in a byte, using the highest bit to signal the end of the codeword.

Other representations achieve space even closer to that of Rice [66]. Simple9 [1] packs consecutive d-

gaps into a 32-bit word. The first 4 bits signal the type of packing done, depending on how many bits the

next d-gaps need: we can pack 28 1-bit numbers, or 14 2-bit numbers, and so on (9 combinations in total).

PforDelta [37, 70] extends this idea by packing many more numbers, namely 128, while allowing for 10% of

exceptions that need more bits than the core 90% of the numbers. The exceptions are then coded separately

afterwards using, say, a variant of Simple9.

In recent years, new word-wise integer representations that take advantage of the large registers (typically

64 or 128-bit) of modern processors and their SIMD-based instruction set have been developed [2, 56, 58,

61, 42]. Most of these works mainly target at improving the decoding speed of existing representations by

using implementations that take advantage of the capabilities of modern CPUs.

Intersections can be carried out by traversing the lists sequentially. When one list is much shorter than

the other, it is advantageous to provide direct access so that the longer list can be searched for the elements

of the shorter one. As said before, it was shown experimentally [8] that in practice the best is to sort the

lists by length, taking the shortest as the “candidate” list, and iteratively intersect the candidate list with

longer and longer lists, shortening the candidate list at each step.
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One of the best techniques to intersect two lists of very different length [21] samples regularly the com-

pressed list and stores separately the array of samples, which is searched with exponential search. Given a

sampling parameter k, a list of length ` is sampled every k log2 ` positions. Very long lists (more precisely,

longer than u/8, where u is the largest document identifier) are replaced by a bitmap [21], which marks

which documents are present in the list. This is both space and time efficient when the bitmap is sufficiently

dense. Another good method [60] regularly samples the universe of positions, so that the exponential search

is avoided. Given a parameter B, it samples the universe of size u at intervals 2dlog2(uB/`)e.

2.3. Re-Pair compression algorithm

Re-Pair [41] consists of repeatedly finding the most frequent pair of symbols in a sequence of integers

and replacing it with a new symbol, until no more replacements are useful. More precisely, Re-Pair over a

sequence L works as follows: (1) It identifies the most frequent pair ab in L; (2) It adds the rule s→ ab to

a dictionary R, where s is a new symbol not appearing in L; (3) It replaces every occurrence of ab in L by

s; (4) It iterates until every pair in L appears once.

Re-Pair can be implemented in linear time [41]. We call C the sequence resulting from L after compression.

Every symbol in C represents a phrase (a substring of L), which is of length 1 if it is an original symbol

(called a terminal) or longer if it is an introduced one (a nonterminal). Any phrase can be recursively

expanded in optimal time (i.e., proportional to its length). Note that replaced pairs can contain terminal

and nonterminal symbols.

Larsson and Moffat [41] proposed a method to compress the set of rules R. In this work we prefer another

method [33], which is not so effective but allows accessing any rule without decompressing the whole set of

rules. It represents the DAG of rules as a set of trees. Each tree is represented as a sequence of leaf values

(collected into a sequence RS) and a bitmap that defines the tree shapes in preorder (collected into a bitmap

RB). Nonterminals are represented by the starting position of their tree (or subtree) in RB . In RB , internal

nodes are represented by 1s and leaves by 0s, so that the value of the leaf at position i in RB is found at

RS [rank0(RB , i)]. Operation rankb counts the number of bs in RB [1, i] and can be implemented in constant

time, after a linear-time preprocessing that stores only o(|RB |) bits of space [15] on top of the bitmap. To

expand a nonterminal, we traverse RB and extract the leaf values, until we have seen more 0s than 1s. Leaf

values corresponding to nonterminals must be recursively expanded.

Figure 1 shows an example. Consider L as the sequence to be compressed (where the shaded boxes

indicate that pairs cannot include symbols crossing such boxes; we will need this in Section 4). The most

frequent pair in L is 〈1 , 2 〉. Hence we add rule A→ 1 2 to the dictionary R and replace all the occurrences

of 1 2 by nonterminal A. We go on replacing pairs; note that the fourth rule D → AA replaces nonterminals.
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1 2 1 2 1 4 2 1 4 2 2 1 2 1 2 2 2

A A 1 4 2 1 4 2 2 A A 2 2

A A 1 4 2 1 4 B A A B

A A C 2 C B A A B

D C 2 C B D B

L

C’

D

A A

1 2

B

2 2

C

1 4

1 1 0 0 0 1 0 0 1 0 0

1 2 6 9

RB

1 2 2 2 2 1 4RS

D A B C

A 1 2

B 2 2

C 1 4

D A A

(rules)

1 9 2 9 6 1 6C

Figure 1: Example of Re-Pair compression. Solid boxes (C and rules) enclose the data represented. Bold numbers (nonterminals)

in the final C sequence and RS refer to positions in RB , whereas slanted ones (terminals) refer to original values. To distinguish

them, the maximum offset u is added to the bold numbers.

In the final sequence DC 2 C BDB, no repeated pair appears. We now represent the dictionary of four

rules as a forest of four small subtrees. Now, as nonterminal A is used in the right-hand side of another rule,

we insert its tree as a subtree of one such occurrence, replacing the leaf. Other occurrences of A are kept as

is (see the rightmost box in the first row). This will save one integer in the representation of A. The final

representation is shown in the rightmost box of the second row. In RB , the shape of the first subtree (rooted

at D) is represented by 11000 (the first 1 corresponds to D and the second to A); the other two (B and C)

are 100. These nonterminals will be further identified by the position of their 1 in RB : D = 1, A = 2, B = 6,

C = 9. Each 0 (tree leaf) corresponds to an entry in RS , containing the leaf values: 12A = 122 for the first

subtree, and 22 and 14 for the others. Nonterminal positions (in boldface) are in practice distinguished from

terminal values (in italics) by adding them the largest terminal value. Finally, sequence C is 19 2 9616.1

To expand, say, its sixth position (C[6] = 1), we scan from RB [1, . . .] until we see more 0s than 1s, i.e.,

RB [1, 5] = 11000. Hence we have three leaves, namely the first three 0s of RB , thus they correspond to the

first three positions of RS , RS [1, 3] = 122. Whereas 12 are already final (i.e., terminals), we still have to

recursively expand 2. This corresponds to subtree RB [2, 4] = 100, that is, the first and second 0 of RB , and

thus to RS [1, 2] = 12 . Concatenating, C[6] expands to 1212 .

2.4. Lempel-Ziv compression

The Lempel-Ziv 1977 (LZ77) compression algorithm [68] works by decomposing the text from left to

right into phrases. Each phrase i is represented as a triplet 〈k, l, a〉: a pointer to a previous position k in the

1By adding the largest terminal value (l = 4) to the values in C we would obtain C′ = 5 13 2 13 10 7 10. Values C′[i] > 4 are

the nonterminals C′[i] − 4, and the others are terminals.
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text, the length l of the portion to be copied, and a new symbol a to be added. This means that phrase i

represents the substring text[k, k+ l−1] with symbol a added at the end. The parsing maximizes the length

of the phrases being added in order to obtain a small encoding. The main drawback of the LZ77 parsing is

that it does not support random access, and even constructing the substring represented by a single phrase

can be expensive. The pointers point to text positions and not phrases, thus obtaining more than just the

last symbol of a phrase might be arbitrarily costly. Only decompression from the beginning is efficient.

An alternative parsing called LZ-End [40] solves this problem and achieves constant time per symbol

when retrieving a whole phrase or a suffix of it. The main idea is to limit the positions where the source of a

phrase may end, so that sources can only end where a previous phrase ends. Although the parsing is stricter

than that of LZ77, the compression was shown to be competitive on highly repetitive collections [40].

The representation of the LZ-End parsing that supports random access to a sequence L[1, n] is as follows.

We keep the triplets corresponding to the phrases, but the pointer only indicates the phrase number where the

source ends, and lengths are replaced by a bitmap B[1, n] that marks where each phrase ends. This sparse

bitmap is represented with gap-encoding of the distances between consecutive ones, plus some sampled

absolute values, so as to support rank and select queries [15]. Operation selectb(j) obtains the position

where the j-th bit b appears. To extract the content of the phrase p, with pair 〈k, a〉, we recursively extract

the content of phrase k and then output a (the recursion terminates when k is void). This takes O(1) time

per character extracted. In general, for extracting a snippet L[i, j], we extract the longer one L[i, j′], where

j′ = select1(B, p) is the final position of the pth phrase, and p = rank1(B, j)+1 is the phrase where position

j falls. As we have now a sequence of complete phrases, possibly started by a phrase suffix, we can extract

the string in time O(j′− i). This is generally efficient if j− i is not too small compared to the average phrase

length.

2.5. Compressed self-indexes

Self-indexes are data structures that enable efficient searches over an arbitrary string collection (called the

text), and also replace the text by supporting extraction of arbitrary snippets or documents. The supported

searches obtain all the positions of a substring in the collection. This enables self-indexes to compete in the

positional setting.

Self-indexes have undergone much progress in the last decade [49]. Recently they have been adapted

to index highly repetitive sequences [43, 16, 19, 20, 40, 28, 29, 26, 9]. While general self-indexes have

been successful by targeting statistical compression, they have been proved insufficient on highly repetitive

collections [43, 40].

The first self-index successfully capturing high repetitiveness was the RLCSA [43] (for Run-Length Com-

pressed Suffix Array). This index adapts the well-known CSA of Sadakane [54] to better cope with the
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regularities that arise when indexing highly repetitive sequences. A CSA variant aimed at indexing natural

language, WCSA [27] (for Word CSA), regards the text as a sequence of words and separators instead of

characters. Another index aimed at repetitive collections is the SLP [19, 16], which exploits the regularities

of highly repetitive sequences because its structure is determined by a grammar-based compressor (Re-Pair).

We adapt the SLP to words (WSLP) in this paper. Finally, other strong indexes for repetitive sequences are

LZ77-index and LZend-index [40], which are based on the LZ77 or LZ-End compression algorithms, respec-

tively. The LZ77 parsing is at least as powerful as any grammar representation [53], and thus, becomes also

a good candidate for highly repetitive sequences. All these self-indexes are explained in Appendix A.

3. New List Representations

We present inverted list compression schemes for repetitive collections capturing progressively more so-

phisticated regularities. First, we consider Run-Length and Lempel-Ziv compression, and in Section 4 we

use grammar compression (Re-Pair, precisely). The latter is enriched so that the list can be processed in

compressed form, without the need to fully decompress it when carrying out intersections.

Both non-positional and positional indexes will consist of essentially lists of increasing numbers. In the

first case this will be a list of document identifiers, and list intersections will correspond to conjunctive

queries.

For positional indexes, the lists will be sequences of word positions. We consider the collection as a

concatenation D of texts, with separators between consecutive documents to avoid false matches. Then our

positional indexes store the positions (word offsets) where each word occurs in D.

To find a phrase on a positional index, we use a modified intersection process to take into account the

(word) offsets. Consider a phrase w1w2 . . . wm; we need to find the positions p1, . . . , pk in the list of w1 such

that pi + j is in the list of wj+1 for 1 ≤ j < m. For simplicity, in our descriptions we will consider plain

intersections, yet adapting them to phrase queries is straightforward.

The absolute positions resulting from a query on a positional index are translated back to a document

number and a word offset within the document by means of an array where the document starting positions

are stored in plain form. Once the index returns the increasing list of positions where a word or phrase

appears, the list is traversed and each element is found in the array of document starting positions using

exponential search, starting from the position of the previous translated occurrence. This way, o occurrences

are translated in time O(o(1 + log d
o )), where d is the number of documents.

Our basic idea, for both non-positional and positional indexes, is to differentially encode the inverted

lists, transforming a sequence 〈p1, p2, p3, . . . , p`〉 into the d-gap sequence 〈p1, p2 − p1, p3 − p2, . . . , p` − p`−1〉,

and then apply a general compression algorithm to the sequence formed by the concatenation of all the lists.
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Each vocabulary word will store a pointer to the beginning of its list in the compressed data that permits

us to fetch any inverted list individually.

3.1. Using run-length compression

A typical regularity in highly repetitive collections arises when the versions of a document happen to

receive consecutive identifiers. As most of the words in such documents will appear in all versions, a

consecutive sequence of numbers will appear in each inverted list of non-positional indexes. Consider the

word wt appearing in documents di, . . . , di+k: the d-gapped list for wt will contain k − 1 consecutive ones.

In this representation we use any variable-length encoding for the differences. However, when this dif-

ference is 1, the next encoded number is the number of 1s in that run (k, in the previous paragraph). This

number is encoded in the same way as the d-gaps.

This encoding allows us to skip whole runs in a single operation when processing intersections. It also

allows combining with sampling techniques that support intersection methods other than the sequential

one [21, 60]. In this paper we combine run-length compression with Rice coding, giving rise to method

Rice-Runs.

Note that run-length compression works well only under the assumption that the documents can be

linearized so that close documents receive consecutive numbers. While such kinds of assumptions are used

in previous work [35, 36], we aim to handle more general cases in this paper. Moreover, this technique can

be efficient only for non-positional indexes.

3.2. Using LZMA

This representation (already used for compressing q-gram indexes on DNA [16]) encodes each d-gap list

with Vbyte and then compresses it with the LZMA variant of LZ77 (www.7-zip.org). LZMA is applied

only on the lists where it reduces space. Otherwise, the plain Vbyte encoded sequence is stored. A bitmap

indicates which inverted lists were stored compressed with Vbyte plus LZMA, and which only with Vbyte.

This representation, called Vbyte-LZMA, only supports extracting a list from the beginning, that is, we

cannot jump to a random position on the list, and thus the only intersection algorithm supported is the

sequential one. Moreover, unlike run-length compression, it cannot skip a compressed subsequence without

fully processing it.

LZMA handles more complex regularities than run-length compression. In particular, it also works well

on positional indexes: Consider a long substring S that occurs in r similar documents across the collection.

For each word wt in S, with occurrences at relative positions i1, i2, . . . , ik in S, the sublist i2−i1, . . . , ik−ik−1
appears r times in the list of word wt. Hence, LZMA will capture this repetition and represent r − 1 of

11



those sublists with just one reference. Note that this will occur independently of whether the versions are

consecutive, and even without any need to know which documents are close versions of which.

3.3. Using LZ-End

This method works similarly to the previous one, but instead of compressing the lists with LZMA, it

uses LZ-End. Since LZ-End allows random access, the sequence of all the concatenated lists is compressed

as a whole, not list-wise. Therefore, we first concatenate the Vbyte representation of all the posting lists

(keeping track of where each posting list started in the Vbyte sequence), and then use LZ-End to represent

it. This makes up our Vbyte-Lzend representation.

Note that, since the phrases of the parsing are not limited by the ends of lists, this technique does not

use an array of pointers from words to compressed data to mark the beginning of the inverted lists, but

pointers to the positions in the original (Vbyte) sequence. Then, the LZ-End capability to extract arbitrary

substrings is used.

Although LZ-End is weaker than LZMA, it has the potential of spotting inter-list regularities, whereas

LZMA is limited to intra-list regularities. In the same example of Section 3.2, consider a long substring

S occurring r times in the collection, and that we have a phrase wt1wt2 . . . wts occurring k times in S, at

relative offsets i1, i2, . . . , ik. Then the sequence i2 − i1, . . . , ik − ik−1 will appear r times inside each of the s

lists, and LZ-End compression will be able to replace rs− 1 of the occurrences by a single reference. LZMA

would have replaced only rs− s.

LZ-End also captures these regularities in the non-positional case. Let dj1 , . . . , djr be the r documents

where the phrase wt1wt2 . . . wts appears. Then, we will have the sequence dj2 − dj1 , . . . , djr − djr−1 repeated

in the lists of the words that do not appear in other documents in between. Again, by compressing globally,

LZ-End is exploiting inter-list similarities that LZMA could not detect.

4. Re-Pair Compressed Lists

As in the representation based on LZ-End, we aim at globally compressing the list of d-gaps. However,

we will use a grammar compressor (Re-Pair) and will operate over the integer values rather than over their

Vbyte encodings (using the latter increased the space by 10% in preliminary experiments).

We prevent phrases from spanning multiple lists, which can be easily enforced at compression time. We

simply have to add a separator to mark the beginning of each posting list (−1 for the first posting list, −2

for the second, −3 for the third, and so on) prior to performing the Re-Pair process. Since those separators

occur only once, Re-Pair will not use them in any phrase. Therefore, we can remove them directly from the

compressed sequence C after Re-Pair completes (see the shaded boxes in Figure 1). We can store pointers
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Figure 2: Example of inverted lists compressed with our Re-Pair-based method. Solid boxes enclose the data we finally keep.

We include both variants of compressed rules with data aligned to the 1s in RB (skipping) or not. Again, bold numbers

(nonterminals) in the lists and RS refer to positions in RB , whereas slanted ones (terminals) refer to gap values.

from the vocabulary to the points in the compressed sequence C where the lists begin, so that any list can

be expanded in optimal time (i.e., proportional to its uncompressed size), by expanding all the symbols of C

from its vocabulary pointer to the next. We store the Re-Pair dictionary in the compact format described

in Section 2.3.

The terminal symbols are directly the corresponding differential values, for example, value C[3] = 2 is

represented by the terminal integer value 2. This saves table accesses at decompression time. Figure 2 shows

the complete inverted lists representation. Note that the Re-Pair process is identical to that in Figure 1.

4.1. Using skipping data

An attractive feature of grammar compression is that we can add extra information to nonterminals

that enables fast skipping over the compressed list data without decompressing. This yields much faster

sequential list intersections.

The key idea is that nonterminals also represent differential values, namely the sum of the differences

they expand to. We call this the phrase sum of the nonterminal. In our example of Figure 2, as D = 1

expands into 1212 , its phrase sum is 1 + 2 + 1 + 2 = 6. If we store this sum associated to D, we can skip it

in the lists without expanding it, by knowing that its symbols add up to 6.

Phrase sums will be stored in sequence RS , aligned with the 1s of sequence RB . Thus rank is not anymore

necessary to move from one sequence to the other. The 0s in RB are aligned in RS to the leaf data, and the

1s to the phrase sums of the corresponding nonterminals.

In order to find whether a given document d is in the compressed list, we first scan the entries in C,

adding up in a sum s the value C[i] if it is a terminal, or RS [C[i]] if it is a nonterminal. If at some point we

reach s = d, then d is in the list. If instead we reach s > d, we consider whether the last C[i] processed is
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a terminal or not. If it is a terminal, then d is not in the list. If it is a nonterminal, we restart the process

from s−C[i] and process the RS values corresponding to the 0s in RB [C[i], . . .], recursing as necessary until

we get s = d or s > d after reading a terminal.

In our example of Figure 2, assume we want to know whether document 9 is in the list of word β. We

scan its list 2 C B = 2 96, from sum s = 0. We process 2 , and since it is a terminal we set s = s + 2 = 2.

Now we process 9, and since it is a nonterminal, we set s = s + RS [9] = s + 5 = 7 (note the 5 is correct

because 9 = C expands to 1 4 ). Now we process 6, setting s = s + RS [6] = s + 4 = 11. We have exceeded

d = 9, thus we restart from s = 7 and now process the zeros in RB [6, . . .] = 100 . . .. The first 0 is at RB [7],

and since RS [7] = 2 is a terminal, we add s = s+RS [7] = 9, concluding that d = 9 is in the list. The same

process would have shown that d = 8 was not in the list.

4.2. Using sampling

Apart from the skipping capabilities above, we can add sampling to speed up the access to sequence

C. Depending on whether we want to use strategies of type svs or lookup for the search, we can add the

corresponding sampling of absolute values to the Re-Pair compressed lists. For svs we will sample C at

regular positions, and will store the absolute values preceding each sample. The pointers to C are not

necessary, as both the sampling and the length of the entries of C are regular. This is a plus compared

to classical gap encoding methods. Strategy lookup will insert a new sample each time the absolute value

surpasses a new multiple of a sampling step. Now we need to store pointers to C (as in the original method)

and also the absolute values preceding each sample (unlike the original method). The reason is that the

value to sample may be inside a nonterminal of C, and we will be able to point only to the (beginning of

the) whole nonterminal in C. Indeed, several consecutive sampled entries may point to the same position in

C.

In Figure 2, imagine we wish to do the second kind of sampling on list γ, for 2k = 4 (including the first

element too). Then the samples should point at positions 1, 3, and 5, of the original list γ = 〈1 3 4 6 8 10〉.

But this list is compressed into DB, so the first two pointers point to D, and the latter to B. That is,

the sampling array stores the pairs [(0, 1), (0, 1), (6, 2)]. Its third entry (6, 2), for example, means that the

first element ≥ 8 is at the 2nd entry (B) in its compressed list, and that we should start from value 6 when

processing the differences. For example, if we wish to access the first list value exceeding 4, we should start

from (0, 1), that is, accumulate differences from D (the first entry), starting from value 0, until exceeding 4.

4.3. Intersection algorithm

To intersect several lists, we sort them in increasing order of their uncompressed length (which we store

separately). Then we proceed iteratively, searching in step i the list i+ 1 for the elements of the candidate
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list (recall Section 2.2).

At each intersection, the candidate list is sequentially traversed. Let x be its current element. We

skip phrases of list i + 1, accumulating gaps until exceeding x, and then consider the previous and current

cumulative gaps, x1 ≤ x < x2. Thus, the last phrase represents the range [x1, x2). If x1 = x we report x and

shift to the next element in the candidate list. In either case, we advance in the candidate list until finding

the largest x′ < x2. Then, we process the whole interval [x, x′] within the phrase representing [x1, x2) in RS

in a recursive fashion, until one of the two lists gets empty.

This procedure can be speeded up by adding samples. The most promising choice is the one [21] that

simply stores the absolute value of every s-th entry in C. Then, instead of sequentially traversing the phrases

in list i + 1 looking for x, we can exponentially search for x in the samples and then sequentially traverse

only one chunk of length at most s. Samples that are regular on the universe [60] are not so efficient because

Re-Pair does not give direct access to arbitrary list elements. Moreover, note that once we switch to the

recursive search inside RS we do not have any sampling to speed up the scanning, so the impact of sampling

is limited.

In the experimental section, we will present four Re-Pair variants. The first one (RePair-Skip) stores

skipping information on nonterminals and no sampling. The second one (RePair-Skip-CM) uses skipping

data and sampling at regular positions of C to permit exponential search within the list i+1 as shown above.

The third alternative (RePair-Skip-ST) uses sampling at domain positions and adapts the lookup search

strategy. Finally, we also provide a simpler variant with neither skipping nor sampling data (RePair) where

the intersection is done by first decompressing the whole lists and then applying a merge-type algorithm.

Note that, even though the use of sampling enables direct accesses to the inverted lists, these methods

would experiment a slowdown compared to their uncompressed counterpart. This is because, as explained,

we can only have direct access to the Re-Pair phrase beginnings, that is, to integers in the compressed

sequence C. This worsens even more in a repetitive scenario, where a single entry in C may expand to a

large number of terminals, and may make the advantage of sampling vanish in practice.

4.4. Analysis

One can achieve worst-case time O(m(1 + log n
m )) to intersect two lists of length m < n, for example by

binary searching the longer list for the median of the shortest and dividing the problem into two [4], or by

exponentially searching the longer list for the consecutive elements of the shortest [21]. This is a lower bound

in the comparison model, as one can encode any of the
(
n
m

)
possible subsets of size m of a universe of size n

via the results of the comparisons of an intersection algorithm, so these must be ≥ log2

(
n
m

)
≥ m log2

n
m in

the worst case, and the output can be of size m. Better results are possible for particular classes [8].
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We now analyze our skipping method in an idealized scenario where we assume that (1) we represent the

dictionary as a binary tree, not using RS and RB (this can be done at the expense of worsening compression);

(2) the derivation trees of our rules have logarithmic depth (this can be achieved [55], in particular the RePair

implementation we use usually satisfies this property); and (3) we use an appropriate sampling (which, again,

impacts on the space). We aim to show that our Re-Pair compression is able to achieve optimum performance

in theory, even if in practice we opt for a more space-efficient representation.

We expand the shortest list if it is compressed, at O(m) cost, and use skipping to find its consecutive

elements on the longer list, of length n but compressed to n′ ≤ n symbols by Re-Pair. Thus, we pay O(n′)

time for skipping over all the symbols of C. Now, consider that we have to expand C[j], to its length nj , to

find mj symbols of the shortest list,
∑n′

j=1 nj = n,
∑n′

j=1mj = m. Assume mj > 0 (the others are absorbed

in the O(n′) cost). In the worst case we will traverse all the O(mj) nodes of the derivation tree up to level

log2mj , and then carry out mj individual traversals from that level to the leaves, at depth O(log nj). For

the second part, we have mj individual searches for one element x, which costs O(mj(log nj − logmj)). All

adds up to O(mj(1 + log
nj

mj
)). Added over all j, this is O(m(1 + log n

m )), as the worst case is nj = n
n′ ,

mj = m
n′ .

Theorem 1. The intersection between two lists L1 and L2 of length n and m respectively, with n > m, can

be computed in time O
(
n′ +m(1 + log n

m )
)
, where Re-Pair compresses L1 to n′ symbols using rules of depth

O(log n).

To achieve the optimal worst-case complexity we need to add sampling. One absolute sample out of

log2
n
n′ positions in C multiplies the space by 1 + 1

log2
n
n′

, and reduces the O(n′) term to O(m log n
n′ ). This

is absorbed by the optimal complexity as this matters only when m ≤ n′.

Corollary 1. With an 1 + 1
log2

n
n′

extra space factor, the algorithm of Theorem 1 takes O
(
m(1 + log n

m )
)

time.

5. Experimental results

We experimentally study the space/time tradeoffs obtained with the described inverted list representa-

tions, in both the non-positional and positional scenarios. In the positional scenario we also add a comparison

with the self-indexes proposed in Appendix A.

The machine used has an Intel(R) Xeon(R) E5520 CPU (2.27GHz, 8 MB cache, 4 cores) and 72 GB

of DDR3@800MHz memory. It runs Ubuntu GNU/Linux version 9.10 (kernel 2.6.31-19-server-64 bits) and
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Subset Size Articles Number of Versions / Avg bytes /

(GB) Versions Article Version

Full 108.50 240,179 8,467,927 35.26 13,757

Non-pos 24.77 2,203 881,802 400.27 23,782

Pos 1.94 4,327 149,761 34.61 13,941

Table 1: Some characteristics of the Wikipedia subcollections used.

g++ compiler version 4.4.1 (unless stated otherwise). Our code was compiled with the -O9 directive2. We

measure CPU user-times.

We used the 108.5 GB Wikipedia collection described by He et al. [36], which contained 10% of the

complete English Wikipedia from 2001 to mid 2008. This collection is formed by 240,179 articles, each of

which has a number of versions. Table 1 shows its statistics.

We also chose two subsets of the articles, and collected all the versions of the chosen articles. Each version

is considered as a document in our collection (we do not mark which versions belong to which article). For the

non-positional setting our subset contains a prefix of 24.77 GB of the full collection, whereas for positional

indexes we chose 1.94 GB of random articles. Table 1 also provides the statistics of our two subsets. As

it can be seen, the 24.77 GB prefix is more repetitive than the full collection (yet, in Section 5.1.3 we will

also present some results over the full collection for the non-positional scenario in order to compare with the

approach of He et al. [36]), whereas the 1.94 GB subcollection is similar to the global collection.

To compare the space/time tradeoffs of the different indexing alternatives we used four different query

sets, each of them containing 1,000 queries. The first two consist of one-word patterns that were chosen

at random from the vocabulary of the indexed subcollection. They differ in the number of occurrences of

the patterns. The first one (low-frequency scenario) includes infrequent words, which occur less than 1,000

times in the subcollection. The second query set (high-frequency scenario) includes only very frequent words,

which occur more than 1,000 times in the subcollection.

The last two query sets consist of 1,000 phrases of 2 and 5 words that were chosen at random from the text

of the subcollection. When dealing with non-positional indexes, such phrases are taken as conjunctive (AND)

queries. In the positional scenario, we will take them as phrase queries, hence returning the documents where

the words of each query occur at consecutive positions.

2Some recent state-of-the-art techniques [51] used libraries and software we were unable to install in our base server. In

those cases, we set a temporary Ubuntu GNU/Linux version 14.04 (kernel 3.13.4.49-generic-64 bits) on the same machine to

run those experiments.
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Finally, for the self-indexes used in the positional scenario we also include experiments to check the speed

to recover the original documents. We choose two sets of random snippets of length 80 (around one line)

and 13,000 (around one document, in our collection) characters.

5.1. Non-positional indexes

Our experiments compare the space/time tradeoffs of several variants of non-positional inverted indexes

over the highly repetitive 24.77 GB subcollection described above. We include in this comparison some of

the best classical encodings to represent d-gaps covered in Section 2, such as Rice, Simple9, PforDelta, and

Vbyte with no sampling to speed up intersections (thus only merge-wise intersections are feasible). We also

include two alternatives using Vbyte coupled with list sampling [21] (Vbyte-CM) with k = {4, 32}, or domain

sampling [60] (Vbyte-ST) with B = {16, 128}. In addition, we include the hybrid variant of Vbyte-CM that

uses bitmaps to represent the largest inverted lists (Vbyte-CMB) [21]. For completeness we used the same

approach on Vbyte-ST, to build Vbyte-STB, and also included variants VbyteB and RiceB with no sampling.

We also tested the novel QMX3 technique [61] that uses SIMD-instructions to boost decoding of large lists,

and coupled it with an intersection algorithm [42] that also benefits from SIMD-instructions.4

We also tested the recent Partitioned Elias-Fano indexes [51], and used the best/optimized variant from

that paper (EF-opt). The source code is available at authors’ website.5 From the same authors [51], we

also included in our experiments the variants OPT-PFD (optimized PForDelta variant [65]), Interpolative

(Binary Interpolative Coding [45]), and varintG8IU (SIMD-optimized Variable Byte code [58]). To match

their software requirements, we set our system to Ubuntu 14.04 and used CMake 2.8.12.2 (Release mode),

g++ version 4.8.2 with options (-msse4.2 -std=c++11), and libboost library version 1.54.0 (available with

apt). All the experiments run on our Ubuntu 14.04 system will be marked with an ‘*’ in the figures.

We compare all those techniques in Section 5.1.1, to determine which of the traditional techniques perform

best in the repetitive scenario. Then, in Section 5.1.2 we compare them with the new variants designed to deal

with repetitive data we proposed in Sections 3 and 4. In particular, we include Rice-Runs, Vbyte-LZMA,

Vbyte-Lzend, RePair, RePair-Skip. We add no sampling to them. Therefore, only RePair-Skip can

benefit of additional data to boost the intersections (which are performed sequentially). In addition, we

show the Re-Pair variants using sampling, RePair-Skip-CM (with k = {1, 64}) and RePair-Skip-ST (with

B = {16, 256, 1024}). For Vbyte-Lzend we will obtain different space/time tradeoffs by tuning its delta-

codes-sampling parameter ds (see [40] for details) to ds = {4, 16, 64, 256}.

3http://www.cs.otago.ac.nz/homepages/andrew/papers/QMX.zip.
4https://github.com/lemire/SIMDCompressionAndIntersection. In this case we had to use g++ version 4.7 with the -O3

-msse4 flags, according to authors’ sources.
5https://github.com/ot/partitioned_elias_fano.
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Later, in Section 5.1.3, we will compare the approach of He et al. [36] with our new representations, over

the same data used in their article. To make a fairer comparison, during the parsing stage of the construction

of our inverted indexes we use exactly their same parsing of words. Therefore, we apply case folding, we do

not consider stemming, and remove the 20 most common stopwords. After this parsing, the original 108.5

GB are reduced to around 85.55 GB, and the 24.77 GB of the indexed subcollection becomes around 19.54

GB. Anyway, from here on, the space results reported for the indexes are shown as a percentage of the index

size with respect to the size of the original [sub]collection in plain text (index size/original size × 100).

Note that we are not considering in this experiment the compressed representation of the text. Times are

shown in microseconds per occurrence.

5.1.1. Using traditional techniques in a repetitive scenario

As indicated above we include a comparison of well-known techniques that were initially developed for

non-repetitive scenarios, now operating on repetitive collections. Figure 3 shows the space/time tradeoffs

for non-positional indexes using those techniques to represent posting lists.

We can see that, among classical compression methods, both Simple9 and PforDelta are much better in

space than the older techniques like Rice (one third of the space) and Vbyte (one fifth of the space). In typical

collections Rice achieves the best space, but these newer methods take advantage of the many runs of 1s.

They are also several times faster than Rice, and roughly as fast as Vbyte on word queries. On conjunctive

queries, however, Vbyte is faster. In those queries, adding samples to support lookup-type intersections is

advantageous: Vbyte-ST is significantly faster than Vbyte (more than 3 times faster on 5-word queries).

Surprisingly, in our experiments Vbyte-CM (sampling to support svs with exponential search on the longest

list) turned out to be a bad choice, obtaining worse results than the simple Vbyte with no sampling. Note

that the increase of time needed to recover an inverted list is due to the fact that values stored in the samples

are removed from the differential sequence, what adds an additional branch at decompression time. Using

hybrid techniques (representing the longest inverted lists with bitmaps and Vbyte for the others) turned out

to be a good choice, as both space and time are improved with respect to the non-hybrid Vbyte variants. In

the case of Rice, the RiceB hybrid counterpart did not improve space (as expected, since Rice is a bit-wise

technique), yet the intersection times benefit significantly from the fast direct access to the longest lists.

The novel QMX shows to be an extremely fast technique when we deal with long posting lists (otherwise

it cannot benefit from SIMD-optimized decompression) and the SIMD-based intersection algorithm [42]

outperforms the others for long conjunctive queries. Unfortunately, its space is high, even worse than Vbyte.

The comparison with the Elias-Fano indexes [51] shows that the recent EF-opt performs very well in the

repetitive scenario. It obtains the best overall space (half the space of the above PforDelta variant). It
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Figure 3: Space/time tradeoffs for non-positional indexes using traditional techniques. Logscale.

also outperforms Interpolative in time, and is close to the times of OPT-PFD (which requires around 20%

more space). Technique varintG8IU is the fastest of this group [51], yet as expected its space usage is far

from the best ones (it is slightly worse than Vbyte). The conjunctive queries using these techniques are very

fast. The use of a two-level structure enables an intersection algorithm (similar to sequential) where the

candidate/eliminator from the shortest list is searched for in the others using next geq() built-in operator.

Their implementation is however somehow slow on word queries, mainly because list elements are recovered

one at a time by using an operator next. Note that varintG8IU (the SIMD-optimized Vbyte) is slightly

slower than our implementation of Vbyte even when fetching the posting lists of frequent words.

For the comparison with our new techniques, considering the scope of our article, we have retained three

of those techniques, whose space usage is under 1%: i) Simple9, which offers good performance both for word

and 2-word conjunctive queries; ii) EF-opt, which obtains the best space values and still good performance;

and iii) OPT-PFD, which obtains space close to that of EF-opt and slightly better performance both for word
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Figure 4: Space/time tradeoffs for non-positional indexes, comparing the best classical techniques with our new ones. Logscale.

and conjunctive queries.

5.1.2. Comparison with our proposals

Our next experiments compare our proposals with the best counterparts from the previous section. Figure

4 shows the space/time tradeoffs for all the resulting non-positional indexes. The most important conclusion

with regard to classical encoding methods is that they are unsuitable for highly repetitive collections. Our

new techniques take one order of magnitude less space than Simple9 and up to 5 times less space than

EF-opt. Yet, they are also significantly slower than the fastest classical variants.

Our first simple method to take advantage of repetitiveness, Rice-Runs, makes an interesting leap in

space, from 1% taken by Simple9 or 0.5% taken by EF-opt, to around 0.3%. If we compare it in Figure 3 we

can see that it takes one tenth the space of plain Rice and is at the same time faster, as it needs much less

decompression work. It does not, however, get close to the space of stronger methods like Vbyte-LZMA, which

achieves around 0.2% space by exploiting other types of redundancy. However, Rice-Runs is significantly
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faster than Vbyte-LZMA (up to 3 times).

Vbyte-LZMA is close to the smallest space that we can achieve. It is significantly faster than RePair (up

to 10 times) and than RePair-Skip (up to 3 times) at word queries, as it decompresses faster the inverted

list. However, on conjunctive queries, where many of the decoded values have to be discarded, the ability

of RePair-Skip to skip nonterminals without decompressing them finally makes it almost twice as fast as

Vbyte-LZMA, and even faster than Rice-Runs.

As expected, Vbyte-Lzend succeeds at exploiting inter-list regularities and almost halves the space of

Vbyte-LZMA, yet it is by far the slowest technique in our comparison, being more than an order of magnitude

slower than Vbyte-LZMA.

Note that RePair obtains lower space (85%) than Vbyte-LZMA, despite the fact that LZ77 compression

is more powerful than Re-Pair. This is a consequence of LZMA exploiting only intra-list regularities, and,

as in Vbyte-LZMA, shows that significant further repetitions are captured when considering the inter-list

redundancies. The skipping information added to RePair adds very little space (6%), but significantly

improves its time performance (almost 20 times faster on long phrases). This improvement occurs even on

one-word queries (up to 2.6 times faster), since RePair-Skip does not need to carry out rank operations on

RB (recall Section 2.3). Results also show that it is not worth adding sampling to RePair-Skip. Sampling

increases the space requirements, but no improvements at intersections upon RePair-Skip are reported

by RePair-Skip-CM nor RePair-Skip-ST. Note that for RePair-Skip-ST we are showing only the plot

corresponding to sampling parameter B = 1024, which obtained the least space, since we obtain no time

improvements and space usage grew from 25% to 700% using smaller values.

5.1.3. Comparison with previous work for repetitive collections

As described in Section 2.2, the best previous work for repetitive collections is by He et al. [36]. We tried

hard to compile their index in our machine in order to carry out a direct comparison, with no success. On

the other hand, limitations in one of our codes (Vbyte-Lzend) prevented us from indexing their full 108.5

GB collection.

We opted for the following compromise to compare the approaches as fairly as possible. The machine

where they ran their experiments is very similar to ours in speed, RAM, and processors (except they have

8 cores and we have 4). Thus times are comparable. We ran the same set of 9,508 queries they used

in their experiments with our new techniques. For Vbyte-Lzend (which was unable to index the whole

collection) we split the 108.5 GB collection into four subcollections of approximately equal size, indexed

them separately, and added up the space of the four parts. We ran the same set of 9,508 queries on each of

the four subcollections, and added up the times. We believe that this gives us a very tight upper bound on
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the space and time Vbyte-Lzend would need for the whole collection, because we repeated the same process

for the other techniques and obtained negligible differences between the estimated values and the real ones.

Figure 5 shows the space and time, the latter in milliseconds per query. We consider Rice-Runs, RePair,

RePair-Skip, Vbyte-LZMA, and Vbyte-Lzend, and the techniques that performed best in their experiments

[36, Table 6].

As it can be seen, techniques of He et al. obtain roughly half the space and time of RePair, RePair-Skip,

and Vbyte-LZMA. The advantage of the latter is that they are universal, that is, they work for more general

scenarios where their techniques could not be applied.

Finally, note that the gap in space between RePair and Vbyte-LZMA is much smaller than in Section 5.1.2.

This is because the whole collection has lower repetitiveness than the 24.77 GB subcollection and less inter-

list regularities can be found. This also affected Vbyte-Lzend, whose results are now worse than those of

Vbyte-LZMA.

5.2. Positional indexes

For testing the positional indexes we used the 1.94 GB subcollection because several self-index imple-

mentations are unable to handle texts larger than 231 bytes.

Since self-indexes must reproduce the precise text, we cannot apply case folding nor any kind of filtering

in this scenario. We index the original text as is. As explained, word-based self-indexes will regard (and

index) the text as a sequence of words and separators. For fairness, the positional inverted indexes will

index separators as valid words as well, and phrase queries will choose sequences of tokens, be they words

or separators. Still, we note that character-based self-indexes will return more occurrences than word-based

self-indexes (or than inverted indexes), as they also report the non-word-aligned occurrences. Times per
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occurrence still seem comparable, yet they slightly favor character-based self-indexes since the time per

occurrence drops as more occurrences are reported (there is a fixed time cost per query).

We consider most of the techniques of the non-positional setting, now operating on position lists. Yet,

for Rice and Vbyte we do not include the hybrid variants using bitmaps as they obtain no space/time

improvements in the positional scenario. For the Vbyte counterparts using sampling, we set the same

sampling parameters as in the previous section: Vbyte-CM with k = {4, 32} and Vbyte-ST withB = {16, 128}.

We had to adapt Simple9 because it is unable to represent gaps longer than 228. While such gaps do not

arise on document lists, they do occur in position lists. We use the gap 228 − 1 as an escape code and then

the next 32 bits represent the real gap. We exclude PforDelta because it has the same limitation, fixing

it is more cumbersome, and its performance is not very different from that of Simple9. We also exclude

Rice-Runs, as runs do not arise in the positional setting.

We did not include Vbyte-Lzend, as it was clearly overcome by Vbyte-LZMA and our Re-Pair variants. For

the variants of Re-Pair using sampling, we set the sampling parameters to k = {1, 64} for RePair-Skip-CM

and B = {4, 256} for RePair-Skip-ST (yet we will again show only results for B = 256, as using B = 4

doubled the space and brought no time improvements).

To compete in similar conditions with self-indexes, positional inverted indexes must be enhanced with

an efficient decoding mechanism that allows any portion of the text to be efficiently reproduced. We choose

Re-Pair for this purpose because it is well-suited for highly repetitive collections and supports fast direct

access to the text. Because the text in this way represents a very small fraction of the total space, we will

represent the rules as pairs of integers to speed up text extraction, instead of the slower RB and RS based

implementation. This adds up to 1.21% of the original text size. To further improve extraction performance,

we add a regular sampling of the array C, which increases space up to 1.3% for the densest sampling. As

a comparison, p7zip (from www.7-zip.org), the best compressor for this type of repetitive texts, achieved

0.52% space on this subcollection (albeit not providing direct access).

We compare the self-indexes described in Appendix A, but first we tune SLP and the LZ-based indexes

to optimize their performance. Regarding CSA-based self-indexes, we consider sampling rates of the form

2i for i = [5 . . . 11] for RLCSA, and seven different configurations of sampling parameters for WCSA (for the

structures 〈ψ,AS , A
−1
S 〉, ranging from 〈8, 8, 8〉 to 〈2048, 2048, 2048〉). We add to both the inverted indexes

and self-indexes the time and space required for converting absolute positions to (document,offset) pairs, as

explianed in Section 3. The extra space added by the corresponding mapping structure is just 0.03%.

In Section 5.2.1 we compare positional inverted indexes using state-of-the-art representations for posting

lists. Then, in Section 5.2.2, we fine-tune the self-indexes we use, to find their best configurations. In

Section 5.2.3 we compare the best state-of-the art representations and our new representations of positional
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Figure 6: Space/time tradeoffs for traditional representations of positional indexes. Logscale.

inverted lists, plus the tuned self-indexing alternatives. Our final experiments, in Section 5.2.4, study the

speed to extract snippets and recover the original documents.

5.2.1. Traditional inverted list representations

Figure 6 shows the space/time tradeoffs achieved, for the four types of queries, with traditional inverted

index representations. All classical inverted indexes achieve similar space, ranging from 30% to 40% of the

text size. The more recent representations, instead, reach almost 10% of space. From those, Interpolative

obtains the best compression, with a slight gap over EF-opt and OPT-PFD.

Simple9 is slightly faster than Vbyte for decompressing (i.e., for one-word queries), yet Vbyte becomes

faster on phrases. Adding sampling, particularly Vbyte-ST, improves phrase query times significantly while

almost not affecting the space. This is much more noticeable as the length of the pattern increases. Note

that as more terms are involved in the query, it is more expectable that the ratio between the length of

the shortest and longest involved lists increases. Therefore, a merge-wise intersection algorithm becomes
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less suitable than those that look up the longer lists. Rice is not competitive in this scenario. QMX (which

occupies more space than using uncompressed posting values) is again the fastest technique at decompression

(word queries). At phrase queries it is still twice as fast as Vbyte, but is clearly overcome by the techniques

using sampling.

In particular, excluding QMX due to its poor compression, the most successful techniques considering

phrase queries are EF-opt, OPT-PFD, and varintG8IU (yet it requires around 25% more space than EF-opt).

At word-queries Simple9 is the fastest representation. These four techniques will be used as the baselines

to compare with our inverted list representations in Section 5.2.3.

5.2.2. Tuning self-indexes

Before comparing them with inverted indexes, we tune SLP and LZ-based self-indexes to improve their

space/time tradeoffs.

SLP-based self-indexes. We analyze four different parameters for tuning SLP and WSLP:

• delta establishes the sampling value used by the bitmap B, which records the starting positions of

the symbols in C. The space/time tradeoffs are not greatly improved by this parameter, so we retain

its original value delta=16.

• perm determines the largest allowed cycle length [48] in the permutation π that maps reverse to direct

lexicographic ordering. We try values from perm=64 to perm=8. As seen in Figure 7 (left), smaller

values yield better query times at the price of slight additional space. On the other hand, this parameter

does not have any influence on snippet extraction performance. Even so, we set perm=8 to improve all

types of word/phrase queries, because it only adds ≈ 800 KB to both self-index sizes.
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• range parameterizes the bitmap configuration used for implementing the two binary relations in the

self-index. We evaluate several configurations of well-known techniques from the state of the art [32].

As shown in Figure 7 (right), the technique called 37.5% (which uses 37.5% extra space on top of the

bitmap) outperforms by far the original range configuration (which only adds 5% extra space) for all

types of queries. A similar situation arises for snippet extraction. In this case, we prefer the fastest

configuration at the price of increasing the self-index sizes (≈ 5MB for SLP and ≈ 4MB for WSLP).

• Finally, parameter dict affects the compressed string dictionaries used for indexing q-gram prefixes

and suffixes from LBRs. As explained in Appendix A.2, these structures speed up binary searches on

rows and columns of LBRs. We consider q-grams of different length (from q = 1 to q = 12 characters),

but the best tradeoffs are reported for q = 4. Thus, we index all prefix and suffix combinations of

4-chars using a Plain Front-Coding (PFC) dictionary [44].

All these decisions converge into new SLP and WSLP configurations that use ≈ 14% more space than their

original counterparts, but are clearly faster in all types of queries and snippet extraction operations. More

precisely, word/phrase queries are 30%–35% faster, while the extraction speed is doubled on average.

LZ-based self-indexes. We consider five different variants of these indexes [40]. These are, ordered by de-

creasing space, as follows:

• Conf.#1 uses suffix and reverse Patricia trees for representing phrase boundaries.

• Conf.#2 performs binary search on the id array and holds the Patricia tree for the reversed phrases.

• Conf.#3 holds the Patricia tree for the suffixes and performs binary search on the explicit rid array.

• Conf.#4 performs binary searches on id and the explicit rid arrays.

• Conf.#5 performs binary searches on id and the implicit rid arrays.

Figure 8 shows the space/time tradeoffs on LZ77-index (similar conclusions are obtained on LZend-index).

In this case, the space used ranges from 1.8% to 2.8% of the original collection size. This means, in practice,

that Conf.#1 requires about 56 MB and Conf.#5 about 36MB. Regarding performance, the most noticeable

difference is seen in low-frequency word queries (results range from 10 to 12.5µs per pattern occurrence).

In the remaining cases, the difference between the fastest and the slowest configurations is roughly 1µs per

pattern occurrence. Moreover, snippet extraction performance does not depend on the chosen configuration,

as can be seen in the bottom plots. Thus, we decide to use Conf.#5, as it clearly reports the best compression

numbers while providing very competitive performance both for query and extraction operations.
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Figure 8: Space/time tradeoffs for different LZ77-index configurations.

Once the configuration is defined, we tune the same delta, perm, and range parameters described for

SLP-based indexes. In this case, delta parameterizes the bitmaps S and B, which encode the phrase

structure. As in the previous case, it has no relevant effect in the query tradeoffs, but it affects extraction

performance. Nevertheless, we discard reducing delta because it introduces a non-negligible space overhead

(more than 20% of the space). Thus, the original value delta=16 is maintained. Regarding perm, its influence

is similar to that for SLP-indexes; see Figure 7 (left). Thus we also also choose perm=8 to favor query times.

Finally, the range value is not as decisive as in the previous case. As can be seen in Figure 7 (right), query

performance is barely improved, but space increases as for SLP-indexes. Thus, we retain the RG(20) bitmaps

for building binary relations in both LZ-based self-indexes.

Summarizing, we only change the perm value on the Conf.#5 variant. This means only 1.5% extra space,

but speeds up word/phrase queries by around 20% in all cases.

5.2.3. Comparing positional inverted indexes with self-indexes

We compare the best traditional inverted indexes with the variants we developed to exploit repetitiveness.

In addition, we include the self-indexes (tuned as shown above) in the comparison. Figure 9 shows the results.

RePair and RePair-Skip achieve almost the same space, close to 20%, and the latter is always faster

for the same reasons as on non-positional indexes. While for words RePair-Skip is slower than the classical

methods, its times become similar to those of Simple9 on phrases. Adding sampling on top of RePair-Skip

clearly outperforms Simple9 on phrases. Yet, RePair-Skip-ST and RePair-Skip-CM are still clearly slower
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Figure 9: Space/time tradeoffs for positional indexes. Logscale.

than the EF-opt, OPT-PFD, and varintG8IU, which obtain the best performance at phrase queries.

The best space of inverted indexes is achieved by Vbyte-LZMA, which reaches a compression ratio near

10% (half the space of RePair-Skip variants). This represents a significant improvement upon the state of

the art. Moreover, for single-word queries its times are only slightly worse than those of RePair-Skip, yet

on phrase queries its need to fully decompress the list makes it clearly slower (among the inverted indexes,

only RePair performs worse than Vbyte-LZMA in this scenario).

Self-indexes are able to use much less space. First, note that WSLP is only slightly smaller than SLP.

This shows that grammar-based compressors do not gain much from handling words instead of characters.

They achieve around 3% compression ratio. This important reduction in space compared to the 10% of

Vbyte-LZMA is paid with a sharp increase in search times. On words, they are up to 100–150 times slower

than Vbyte-LZMA. This gap, however, decreases to 12 times on 2-word queries and to 1.2 times on 5-word

queries. These self-indexes are mostly insensitive to the number of words in the query, whereas inverted
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indexes become much slower when looking for longer phrases. Thus, for long queries, SLP and WSLP are very

attractive alternatives.

The RLCSA offers a wide space/time tradeoff that goes from roughly the space of LZend-index (where

the latter is faster) to that reported by inverted indexes. Although these are clearly faster for word searches,

differences are reduced as the search phrase becomes longer. Note that RLCSA reports similar numbers than

Re-Pair-based inverted indexes for 5-word phrase queries. Regarding WCSA, it can be seen as a word-based

variant of the RLCSA, yet it is not so well optimized for highly repetitive sequences. As expected, WCSA is

far from the space reached by other self-indexes (its best space is about 10% of the original collection). On

the contrary, it reports the best self-index times for all types of queries when using sufficient space. For that

space, other inverted indexes are much faster on word queries, but the WCSA retains a niche on phrase queries.

In conclusion, RLCSA and WCSA build a bridge between self-index and inverted index tradeoffs, opening an

interesting area for future improvements.

Finally, LZ-based self-indexes report the best numbers in compression. LZ77-index achieves the least

space, overcoming its variant LZend-index and also grammar-based compressors, both in time and space.

The LZ77-index takes less than 2% space and answers queries in 8–10 µs per occurrence. The LZend-index

needs about 2.4% of the original space and solves queries in 9–11 µs per occurrence. Their performance is

particularly interesting on 5-word phrase queries. In this case, they are faster than Vbyte-LZMA, and compete

in the same order of magnitude of Simple9 and all Re-Pair-based inverted indexes. Thus, for long queries

these self-indexes compete with traditional approaches, but use up to 10–20 times less space.

5.2.4. Text extraction

Since self-indexes represent the text as a part of the index, it is relevant to measure how fast they are

at extracting an arbitrary text snippet. For fairness we have added to our inverted indexes a Re-Pair-

compressed version of the text. In order to support snippet extraction, we add a regular sampling over the

C vector, which indicates the text position where the corresponding symbol starts. For decompressing an

arbitrary snippet we binary search the rightmost preceding sample and decompress from there. This induces

a space/time tradeoff regarding the sampling step.

Figure 10 shows the results of extracting random snippets of length 80 and 13,000 characters. Word-based

indexes WCSA and WSLP extract a number of words equal to 80 or 13,000 divided by the average word length,

to provide a roughly comparable result.

Here the word-based self-indexes WCSA and WSLP are significantly faster than their corresponding character-

based counterparts RLCSA and SLP. WSLP is slightly faster than LZ77-index, but it is always overcome by

the LZend-index. The fastest method overall is WCSA, at 0.1µs per extracted symbol, but at the price of
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Figure 10: Space/time tradeoffs for extraction. Logscale.

using much space. The second-fastest is the LZend-index, reaching 0.5–0.7µs per extracted symbol (1.4–2

MB/sec) and much better space than WCSA, yet still far from the smaller LZ77-index, which takes 1.2–1.5µs

per extracted symbol. Finally, RLCSA competes better for long snippets, but it nevers dominate the com-

parison. Note that the methods that offer a tradeoff are much more sensitive to a denser sampling when

extracting short snippets.

The line marked RePair (text) corresponds to the text represented with Re-Pair plus sampling. It uses

the least space but it must be added to an inverted index in order to support searches. RePair is very slow

to display short contexts. When displaying long contexts, however, it is the fastest option, even beating

WCSA. This shows that the method is intrinsically fast, yet it is costly to arrive at the right starting position

to extract (in the densest sampling shown, we sample every position in C).

6. Conclusions

We have studied the problem of indexing text collections that are highly repetitive, that is, where most

documents are very similar to others. Many of the fastest-growing text collections today are indeed repetitive,

and therefore exploiting repetitiveness in order to store and index them within little space is the key to handle

the huge collection sizes that are becoming commonplace.

Repetitive collections may arise in controlled scenarios like versioned document collections, where versions

have a known linear structure (such as Wikipedia) or a known tree structure (such as software repositories),

but also in less controlled scenarios like DNA sequence collections of similar species or periodic publications,

where the repetition structure may be chaotic and unknown. Our main focus has been natural language text

collections, where the inverted index is the main actor, but we have also studied self-indexes, a new family
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of structures that apply on general string collections.

We first studied how known non-positional inverted indexes perform on repetitive collections. These

indexes store the documents where each word appears. While classical indexes require 3%–6% of the plain

text size in these collections, some of the more recent inverted indexes [45, 1, 65, 51] reach just 0.5%-1.0%

and are about as fast. This is, however, significant if we consider that a Lempel-Ziv compression on the

repetitive text reduces it to just 0.5% of its size. Our new non-positional inverted indexes, instead, reach

0.1%–0.2% of the plain text size, at the price of being a few times slower. Previous work [36] obtains even less

space and time, but they can only be used if the versioning structure is formed by known isolated documents

and their versions. Our techniques, instead, are universal: they do not need that a clear versioning structure

is known or even exists.

Positional inverted indexes also store the positions of the words in the documents, and support phrase

queries. Classical ones require more than 40% of the plain text size, whereas the more recent formats

[45, 65, 51] reach around 30% and are about as fast. Our new repetition-tailored representations, instead

require 10%–20% space and are a few times slower. Self-indexes, which offer similar functionality, reach as

little as 2%–3% space, but are orders of magnitude slower.

Our main technical novelty is to apply grammar-based compression (Re-Pair, in particular) to the whole

set of differentially-encoded inverted lists, and enhance the grammar nonterminals with summary information

that allows us intersecting the compressed inverted lists without fully decompressing them. This is the key to

obtain significant space reductions while only moderately slowing down the operations. We also implement

and tune several other simpler or existing ideas, some of which also obtain relevant results.

In the case of inverted indexes, being a few times slower is not so important if their lower space allows

us holding the index in a faster and smaller memory, for example in main memory instead of disk. If both

structures must reside on disk, the smaller size of our indexes allows retrieving the lists with fewer I/Os,

which blurs the relatively small CPU-time differences and plays in our favor. For example, if our inverted

index is 3–5 times smaller than a classical one, then a long enough list will also be read into main memory

3–5 times faster.

In the case of self-indexes, even if they are orders of magnitude slower, they may still be convenient if

their smaller size allows us fit them in main memory instead of on disk. In addition, self-indexes handle

general string collections, not only natural language. On the other hand, self-indexes do not perform well

on disk.

These giant space/time differences clearly indicate that much more can be done in this area. An interest-

ing line of future work is to find further regularities induced by repetitiveness in the inverted indexes, so as

to match the space of self-indexes while retaining the good time performance of inverted indexes. We have
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shown that grammar-based compression exploits several inter- and intra-list regularities, while allowing for

fast list processing, but the results on self-indexes show that we may be missing many others.

Another important line to explore is that of more sophisticated queries. One such query is to find the

occurrences of a pattern within a range of document identifiers. This could correspond to a range or subtree

of versions, or a temporal interval. While the task is relatively simple with an inverted index, self-indexes

deliver the results out of order, and such a requirement is challenging for them [38].

Another challenging family of queries for self-indexes are the document-oriented ones. The equivalent of

a non-positional inverted index is a self-index offering document listing, which lists the documents where a

pattern appears. Only very recent proposals exist for this problem on repetitive collections [17, 30], but even

the best implementations use 7% space or more. More sophisticated queries involve obtaining the k most

important documents where the pattern appears, according to some definition of importance. There already

exist some proposals for this problem in the repetitive scenario, but they are either inverted indexes for the

particular versioning structure described above [34], or they are self-indexes using at least 20% of space [50].

We have left our codes and experimental testbeds available at https://github.com/migumar2/uiHRDC.
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[32] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical implementation of rank and select

queries. In Poster Proc. 4th Workshop on Efficient and Experimental Algorithms (WEA), pages 27–38,

2005.
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A. Self-Indexes

Self-indexes [49] are an innovative approach for positional indexing. They process the concatenated

text collection D to build compressed structures that integrate the text and a positional index in a single

representation. It is worth noting that self-indexes are designed for general strings, not only natural language

collections where only words and phrases can be sought.

Self-indexes provide efficient pattern searching and snippet extraction. In the first operation, the self-

index will find all the occurrences of the pattern, yet usually not in order. This implies that the o pattern

occurrences must be sorted prior to translating them into the document and offset format, using the tech-

nique described in Section 3. This leads a total translation cost of O(o log n). The extraction operation is

implemented by decoding the required text fragment from the compressed self-index, and takes proportional

time to the length of the snippet.

We consider different self-indexes to compare their space/ time tradeoffs with those reported by com-

pressed inverted indexes. On the one hand, we analyze character-oriented approaches, which regard the text

as a sequence of characters and report any substring matching the pattern. We choose RLCSA, LZ77-index,

LZend-index, and SLP as examples of character-oriented self-indexes. We make some tuning and improve-

ments on the last three techniques, outperforming the original implementations. These are described in this

section. On the other hand, we include two word-oriented self-indexes in our study: WCSA and WSLP, the

latter designed for this paper. These techniques map words and separators (maximal spaces between words)

to integers, and the indexes represent the resulting integer sequence. We use the spaceless words model [47],

where the single whitespace separator is omitted and assumed by default. The mapping between integers

and their corresponding words is provided by a simple vocabulary representation.

A.1. CSA-based self-indexes

The Compressed Suffix Array (CSA) of Sadakane [54] proposes a succinct suffix array encoding. In short,

the suffix array A[1, n] for a text D[1, n], with alphabet Σ = [1, σ], is a permutation of [1, n] so that D[A[i], n]

is the i-th lexicographically smallest suffix in the text. Note that the suffix array arranges all the suffixes
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starting with any given search pattern P [1,m] in a contiguous range, so their occurrences can be binary

searched in time O(m log n).

CSA encodes D and A using two main structures (plus other less important ones). A bitmap B[1, n]

marks where the first symbol of the suffixes changes in A. That is, B[i] = 1 iff i = 1 or D[A[i]] 6= D[A[i− 1]].

The second structure is the array ψ[1, n], defined so that A[ψ[i]] = A[i] + 1. That is, if the suffix D[j, n] is

pointed from A[i] = j, then the next text suffix D[j + 1, n] is pointed from A[ψ[i]] = j + 1. Note that the

first symbol of D[A[i], n] can be recovered with rank1(B, i), the second with rank1(B,ψ[i]), the third with

rank1(B,ψ[ψ[i]]), and so on, which enables O(m log n) time binary searching for the area of A of the suffixes

that start with P [1,m].

Once we have found that the suffixes starting with p are in the range A[l, r], its occurrences are precisely

the positions A[l], A[l + 1], . . . , A[r]. To recover each such entry A[j], we also use ψ. We sample the

text positions that are a multiple of some parameter s, and store the entries of A pointing to those in

a sampled suffix array AS [1, n/s]. We mark in a bitmap S[1, n] the positions of A that are sampled, so that

A[j] = AS [rank1(S, j)] if S[j] = 1. If S[j] = 0, we take ψ[j] for increasing k until it holds S[ψk[j]] = 1 for

some k. Then, by the properties of ψ, it holds A[j] = A[ψk[j]] − k. Note that it is guaranteed that k ≤ s,

thus each occurrence is reported in O(s) time, whereas the extra space for AS is O((n/s) log n) bits.

For extracting a text snippet D[x, y], note that we can obtain any text suffix D[A[i], n] with B and ψ. A

second sampled array stores inverse suffix array values: A−1s [t] is the position of A pointing to text position

s · t. This allows us extracting D[x, y] in time O(s+ y− x), by locating the latest sampled position before x

in i = A−1S [bx/sc], and then using ψ and B to extract the symbols from positions A[i] = bx/sc · s to y.

The remaining issue in terms of space is how to compress array ψ. It has been shown that ψ can be

compressed to the statistical entropy of D [54, 49]. The compression achieved, however, is not good enough

for highly repetitive collections. We now briefly describe the variants RLCSA and WCSA, which extend CSA

from two different perspectives.

RLCSA. The Run-Length Compressed Suffix Array (RLCSA) [43] was the first self-index optimized for highly

repetitive collections. The authors show that ψ contains long runs of successive values in such class of

collections, and RLCSA exploits this fact.

RLCSA compresses ψ by performing run-length encoding of the differences ψ(i)−ψ(i−1). Regular samples

on ψ permit direct access to absolute ψ(i) values in competitive time and space. This sampling yields different

space/time tradeoffs. However, the other sampling, related to the parameter s used to build AS and A−1S ,

is the one yielding the most relevant tradeoffs. The most important drawback of RLCSA is that these two

sampled arrays are not easy to compress, and their space become dominant in highly repetitive scenarios.
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WCSA. The Word Compressed Suffix Array (WCSA) [27] optimizes CSA for natural language self-indexing,

by regarding the text as a sequence of words instead of characters. It was not designed specifically to cope

with high repetitiveness, but it fills a particular niche in the current comparison. WCSA demands more space

than the other self-indexes, but outperforms them for all types of queries. Thus, WCSA can be considered as

a bridge between self-indexes and inverted indexes.

WCSA transforms the original text collection D into an integer one, Dw, where each position refers to a

word/separator in the vocabulary. Therefore, the space/time complexities we have given stay the same if

we regard n and m as the number of words in D and P , respectively. This shows why both space and time

improve. The drawback is that, like the inverted indexes, WCSA can only search for whole words and phrases,

not for any substring of characters.

A.2. SLP-based self indexes

Grammar-based compression is a good choice for posting list encoding (see Section 4), but it is also a

promising alternative for self-indexing purposes. SLP and WSLP are two grammar-based self-indexes built

around the notion of straight-line program (SLP). In short, an SLP is a restricted type of grammar which

only allows two types of rules. On the one hand, rules of the form Xi → j mean that the terminal j is

generated from the rule Xi. On the other hand, rules Xi → XlXr expand Xi as the concatenation of Xl

and Xr.

Finding the smallest grammar for a given text is NP-hard [14], so heuristics must be used to efficiently

build an SLP. We choose again Re-Pair as our grammar-based compressor. RePair does not generate exactly

an SLP, but it can be easily adapted. We only need to enhance its set of rules with a subset of terminal rules

Xi → j for each symbol j used in the text collection. Note that RePair output comprises the grammar, but

also the reduced sequence C, which must be also indexed by SLP-based self-indexes. In the description that

follows, we call F(X) the expansion of the rule X into terminals, and Frev(X) the corresponding reverse

string (read backwards).

SLP. The SLP self-index [19] is proved to require space proportional to that of an SLP compression of the

text. It was implemented and tested on highly repetitive biological databases [16]. SLP indexes independently

the resulting set of n rules, R, and the reduced sequence, C[1, c], obtained by Re-Pair.

The set of rules is represented as a labeled binary relation, LBR : A×B → L, where A = [1, n], B = [1, n],

and L = [1, n] (we refer to A as the rows and B as the columns of the LBR, respectively). This structure is

populated as follows. For each nonterminal rule Xi → XlXr ∈ R, we store the value i in the cell LBR[l, r].

The rows are sorted by lexicographic order of Frev, while the columns are lexicographically sorted by F . A

permutation structure π is used for mapping from rows to columns and vice versa (this inner structure will
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be tuned in Section 5.2.2). This structure enables direct and reverse access to the rules in O(log n) time per

retrieved element:

• L(l, r) returns j if Xj → XlXr or ⊥ otherwise.

• R(l1, l2, r1, r2) retrieves all pairs (l, r) ∈ R such that l1 ≤ l ≤ l2, r1 ≤ r ≤ r2.

• L(s) obtains the pair (l, r) such that Xs → XlXr.

LBR is represented by traversing it by rows and writing two sequences, Sb and Sl, which concatenate

respectively the r and j values for each cell LBR[l, r] = j. Two bitmaps, XA and XB , encode in unary the

cardinalities of rows and columns. Sequence Sb is represented using a wavelet tree without pointers [18],

whereas Sl uses a fast representation for large alphabets [31]. Both structures are tuned in Section 5.2.1.

The SLP index performs three main operations to search for a given pattern P [1,m] = p1p2 . . . pm. First,

all the primary occurrences of the pattern are located in the LBR. Those are the occurreneces that appear

when two nonterminals are concatenated in the right hand side of a rule. We look for the m − 1 possible

pattern partitions of the form P = P<P>, such that P< = p1p2 . . . pk and P> = pk + 1 . . . pm, 1 ≤ k < m.

For each partition, the rows and columns of LBR are binary searched for the reversed P< and for P>,

respectively. This determines contiguous ranges of rows [l1, l2] and columns [r1, r2] such that P< is a suffix

of F(Xl), l1 ≤ l ≤ l2, and P> is a prefix of F(Xr), r1 ≤ r ≤ r2. Thus, the primary occurrences of P are

inside of all nonterminals Xi which label LBR pairs in [l1, l2]× [r1, r2]. For each nonterminal Xi found, we

also store the offset of the ocurrence within it.

Our current SLP implementation introduces an improvement to speed up prefix and suffix searching. It

indexes all the different prefixes of length q in Frev and F and, for each one, stores the first rule that expands

to a string starting with the corresponding q-gram. This significantly reduces the number of comparisons to

be made on binary searches, at the price of a small space overhead. These indexes are implemented using

compressed string dictionaries [44].

Each located primary occurrence Xi leads to secondary occurrences, which are obtained whenever Xi

appears, directly or transitively, in other right hands of rules. We must track all the nonterminals Xs that

use Xi and then find further secondary occurrences from those Xs. Thus, we locate all the labels Xs such

that Xs → XiX∗ or Xs → X∗Xi. We then proceed recursively from those Xs until no more nonterminals use

them. We also maintain the offset where P occurs inside each retrieved nonterminal. The same nonterminal

Xs may be reported several times, but with different offsets, which leads to different occurrences.

For each nonterminal Xs where P appears, we locate all its occurrences in the reduced sequence C. This

is easily implemented using select on C: selectXs
(C, i) retrieves the i-th occurrence of Xs in C. The original
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description [19] represented C with a wavelet tree without pointers, which provides select queries in time

O(log n), but we currently discard it, as explained in the next paragraph.

We still have to locate, however, those occurrences that cross more than one symbol in C, that is, pattern

occurrences that are expanded from consecutive nonterminals in the reduced sequence. For that purpose,

we need a second LBR, which relates the set of n rules with the c positions of the sequence. That is,

for C = s1s2 . . . sc, the LBR relates, with label i, the suffix from si+1 (sorted in lexicographic order of

F(si)) and si (sorted in lexicographic order of Frev(si)). This LBR configuration is a novelty compared

to the original SLP, because we now represent a relation of suffixes × rules instead of the original rules ×

suffixes. This subtle change makes the select structure for C unnecesary because select operations can now

be resolved using the Sb wavelet tree. The occurrences that cross symbols in C are reported just like the

primary occurrences using LBR.

Finally, to convert positions in C (and their offsets) into actual positions of D, we set up a bitmap B[1, n]

that marks the positions of D where the symbols of C begin. This bitmap is sparse, and thus represented by

gap-encoding the distances between consecutive 1s, plus a sampling structure that stores regular positions

of B [40]. This sampling value is also studied in Section 5.2.2.

The extraction of snippets is easily implemented by exploting the self-indexing capabilities. To extract

D[x, y], we find with rank1(B, x) the first symbol of C to be extracted, and then decode sequentially until

reaching the symbol encoding D[y].

WSLP. The Word-oriented SLP (WSLP) is variant of SLP designed for this paper. It follows the same prin-

ciples, but it adapts the structures and algorithms to perform on a word-based (i.e., integer) representation

instead of a character-based one. WSLP also preprocesses D to transform it into the integer sequence Dw. In

this case, all the different words in the text collection are appended as terminals to the set of rules. Another

difference is that WSLP does not use q-gram indexes, because of the space that would require, so prefix and

suffix searches are directly performed on rows and columns of the LBR.

A.3. LZ-based self-indexes

LZ-based self-indexes build on an LZ77-like parsing, such as LZ77 itself or LZ-End (see Section 2.4).

In short, an LZ77-like parsing of a text collection D[1, n] is a sequence Z[1, n′] of phrases such that D =

Z[1]Z[2] . . . Z[n′]. Each phrase encodes the first occurrence of a text substring and concatenates a source (a

maximal substring previously seen in D) and a trailing character. Both LZ77-index and LZend-index [40]

use the following data structures to encode Z for efficient pattern searching and snippet extraction:

• S[1, n + n′] is a bitmap that encodes the structure of the phrase sources. We traverse the text from

D[1] to D[n] and encode the number of sources that start at each position: if k sources start from D[i],
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we append 1k0 to S (note that k may be 0). We consider that the empty-string sources start just

before D[1]. Thus, 0-bits encode text positions, whereas 1s encode the succesive sources. S is stored

in gap-encoded form to exploit its sparseness.

• π[1, n′] is a permutation that maps phrases to sources, that is, π[i] = j means that the source of the

i-th phrase starts at the position corresponding to the j-th 1 in S. This is implemented using the

approach from Munro et al. [48], and it is one of the structures tuned in Section 5.2.2.

• B[1, n] is a gap-encoded bitmap that marks the positions of D where each phrase ends.

• L[1, n′] is an array encoding the trailing characters added at the end of each phrase.

We report each occurrence of a pattern in time O(log n′). For pattern searching, we also distinguish

primary and secondary occurrences. In this case, we consider primary occurrences those overlapping more

than one phrase or ending at a phrase boundary.

A relation analogous to LBR, of size n′ × n′, is used to find the primary occurrences. It stores a pair

(i, j) if the i-th phrase (in reverse lexicographic order) is followed by the suffix starting at the j-th phrase

(in lexicographic order of those suffixes). Thus, if we partition P = P<P> as for SLPs, and find the ranges

[l1, l2] of phrases terminated with P< and [r1, r2] of phrase-aligned suffixes starting with P>, then all the

points in [l1, l2]× [r1, r2] are primary occurrences. We find them all by trying the m− 1 possible partitions

P = P<P>. Since this relation has no labels, we implement it as a wavelet tree R[1, n′], with R[i] = j if (i, j)

is a point (note there is only one j per i value). This provides O(log n′)-time access to any R[i] and R−1[j].

Since accessing the strings is generally more expensive from the LZ-index structures than from SLPs,

it is worth replacing the binary searches on the strings by trie structures built on the reversed phrases or

the phrase-aligned suffixes. In this second trie, the leaves store the identifiers of the corresponding phrases,

id[1, n′]. The tries are implemented as Patricia trees [46], succintly encoded as labeled trees using dfuds

[10]. The characters labeling the edges are stored in plain form, and the skip values of the Patricia tree are

stored using Directly Addressable Codes (DACs) [11], since most skip values are small. Once we arrive at

the node corresponding to P>, covering the leaf range [r1, r2], the corresponding phrase numbers are found

in id[r1, r2]. An analogous Patricia tree can be stored to search for P<, but this time the identifiers rid[1, n′]

need not be stored, as we can find them using rid[j] = id[R−1[j]]− 1.

Before delivering the primary occurrences associated with P<P>, the Patricia trees require a validation,

because all or none of the strings they find may be actual occurrences. Thus we extract one of the reported

results and compare it with P in order to determine that either all or none of the answers are valid. This

costs O(mh) time for LZ77-index and O(m+h) for LZend-index, where h is the length of the largest phrase
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in the parsing. If the occurrences are valid, then for each occurrence with partition P< = p1 . . . pk found at

id[i] = j, its original position in the text is select1(B, j − 1)− k + 1.

The secondary occurrences triggered by each primary occurrence D[t, t + m − 1] are found using S, B,

and π. Every 1 in S before the t-th 0 is a phrase starting at t or earlier. If it is the j-th 1, then it is copied

to the i-th target phrase, for i = π−1[j]. Its length is select1(B, j)−select1(B, j−1), and with this we know

whether the source covers the primary occurrence, and where is it copied. We report that new (secondary)

occurrence and also recursively find new secondary occurrences from that one.

To extract snippets D[x, y] we also use S, B, π, and L. With B we find the last phrase covering position

y, and then extract its contents, plus those of preceding phrases, until covering the area to extract. Each

final character is found in L, and the rest is recursively obtained from the source of the phrase. The source

of the i-th phrase corresponds to the j-th 1 in S, for j = π[i], and its starting position in D is found with S.

For a snippet of length l, the extraction takes time O(l + h) for LZend-index and O(lh) for LZ77-index.

In Section 5.2.2 we study five different configurations of this index, regarding whether we use Patricia

trees or binary search for each dimension of the binary relation, and whether or not we store rid explicitly.
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