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Abstract Most of the fastest-growing string collections today are repetitive,
that is, most of the constituent documents are similar to many others. As these
collections keep growing, a key approach to handling them is to exploit their
repetitiveness, which can reduce their space usage by orders of magnitude. We
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study the problem of indexing repetitive string collections in order to perform
efficient document retrieval operations on them. Document retrieval problems
are routinely solved by search engines on large natural language collections,
but the techniques are less developed on generic string collections. The case
of repetitive string collections is even less understood, and there are very few
existing solutions. We develop two novel ideas, interleaved LCPs and precom-
puted document lists, that yield highly compressed indexes solving the problem
of document listing (find all the documents where a string appears), top-k doc-
ument retrieval (find the k documents where a string appears most often), and
document counting (count the number of documents where a string appears).
We also show that a classical data structure supporting the latter query be-
comes highly compressible on repetitive data. Finally, we show how the tools
we developed can be combined to solve ranked conjunctive and disjunctive
multi-term queries under the simple tf-idf model of relevance. We thoroughly
evaluate the resulting techniques in various real-life repetitiveness scenarios,
and recommend the best choices for each case.

Keywords Repetitive string collections · Document retrieval on strings ·
Suffix trees and arrays

1 Introduction

Document retrieval on natural language text collections is a routine activity in
web and enterprise search engines. It is solved with variants of the inverted in-
dex (Büttcher et al, 2010; Baeza-Yates and Ribeiro-Neto, 2011), an immensely
successful technology that can by now be considered mature. The inverted in-
dex has well-known limitations, however: the text must be easy to parse into
terms or words, and queries must be sets of words or of sequences of words
(phrases). Those limitations are acceptable in most cases when natural lan-
guage text collections are indexed, and they enable the use of an extremely
simple index organization that is efficient and scalable, and that has been the
key to the success of Web-scale information retrieval.

Those limitations, on the other hand, hamper the use of the inverted index
in other kinds of string collections where partitioning the text into words and
limiting queries to word sequences is inconvenient, difficult, or meaningless:
DNA and protein sequences, source code, music streams, and even some East
Asian languages. Document retrieval queries are of interest in those string
collections, but the state of the art about alternatives to the inverted index is
much less developed (Hon et al, 2013; Navarro, 2014).

In this article we focus on repetitive string collections, where most of the
strings are very similar to many others. These types of collections arise natu-
rally in scenarios like versioned document collections (such as Wikipedia1 or
the Wayback Machine2), versioned software repositories, periodical data pub-

1 www.wikipedia.org
2 From the Internet Archive, www.archive.org/web/web.php
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lications in text form (where very similar data is published over and over),
sequence databases with genomes of individuals of the same species (which
differ at relatively few positions), and so on. Such collections are the fastest-
growing ones today. For example, genome sequencing data is expected to grow
at least as fast as astronomical, YouTube, or Twitter data by 2025, exceeding
Moore’s Law rate by a significant margin (Stephens et al, 2015). This growth
brings new scientific opportunities but also new computational problems.

A key tool for handling this kind of growth is to exploit repetitiveness
to obtain size reductions of orders of magnitude. An appropriate Lempel-Ziv
compressor3 can successfully capture such repetitiveness, and version control
systems have offered direct access to any version since their beginnings, by
means of storing the edits of a version with respect to some other version that
is stored in full (Rochkind, 1975). However, document retrieval requires much
more than retrieving individual documents. In this article we focus on three
basic document retrieval problems on string collections:

Document Listing: Given a string P , list the identifiers of all the df documents
where P appears.

Top-k Retrieval: Given a string P and k, list k documents where P appears
most often.

Document Counting: Given a string P , return the number df of documents
where P appears.

Apart from the obvious case of information retrieval on East Asian and
other languages where separating words is difficult, these queries are relevant
in many other applications where string collections are maintained. For exam-
ple, in pan-genomics (Marschall et al, 2016) we index the genomes of all the
strains of an organism. The index can be either a specialized data structure,
such as a colored de Bruijn graph, or a text index over the concatenation of
the individual genomes. The parts of the genome common to all strains are
called core; the parts common to several strains are called peripheral; and the
parts in only one strain are called unique. Given a set of DNA reads from
an unidentified strain, we may want to identify it (if it is known) or find the
closest strain in our database (if it is not), by identifying reads from unique or
peripheral genomes (i.e., those that occur rarely) and listing the corresponding
strains. This boils down to document listing and counting problems. In turn,
top-k retrieval is at the core of information retrieval systems, since the term
frequency tf (i.e., the number of times a pattern appears in a document) is a
basic criterion to establish the relevance of a document for a query (Büttcher
et al, 2010; Baeza-Yates and Ribeiro-Neto, 2011). On multi-term queries, it is
usually combined with the document frequency, df, to compute tf-idf, a simple
and popular relevance model. Document counting is also important for data
mining applications on strings (or string mining (Dhaliwal et al, 2012)), where
the value df/d of a given pattern, d being the total number of documents, is
its support in the collection. Finally, we will show that the best choice of doc-
ument listing and top-k retrieval algorithms in practice strongly depends on

3 Such as p7zip, http://p7zip.sourceforge.net
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the df/occ ratio, where occ is the number of times the pattern appears in the
collection, and thus the ability to compute df quickly allows for the efficient
selection of an appropriate listing or top-k algorithm at query time. Navarro
(2014) lists several other applications of these queries.

In the case of natural language, there exist various proposals to reduce
the inverted index size by exploiting the text repetitiveness (Anick and Flynn,
1992; Broder et al, 2006; He et al, 2009, 2010; He and Suel, 2012; Claude
et al, 2016). For general string collections, the situation is much worse. Most
of the indexing structures designed for repetitive string collections (Mäkinen
et al, 2010; Claude et al, 2010; Claude and Navarro, 2010, 2012; Kreft and
Navarro, 2013; Gagie et al, 2012a, 2014; Do et al, 2014; Belazzougui et al, 2015)
support only pattern matching, that is, they count or list the occ occurrences
of a pattern P in the whole collection. Of course one can retrieve the occ
occurrences and then answer any of our three document retrieval queries, but
the time will be Ω(occ). Instead, there are optimal-time indexes for string
collections that solve document listing in time O(|P |+ df) (Muthukrishnan,
2002), top-k retrieval in time O(|P |+ k) (Navarro and Nekrich, 2012), and
document counting in time O(|P |) (Sadakane, 2007). The first two solutions,
however, use a lot of space even for classical, non-repetitive collections. While
more compact representations have been studied (Hon et al, 2013; Navarro,
2014), none of those is tailored to the repetitive scenario, except for a grammar-
based index that solves document listing (Claude and Munro, 2013).

In this article we develop several novel solutions for the three document
retrieval queries of interest, tailored to repetitive string collections. Our first
idea, called interleaved LCPs (ILCP) stores the longest common prefix (LCP)
array of the documents, interleaved in the order of the global LCP array.
The ILCP turns out to have a number of interesting properties that make
it compressible on repetitive collections, and useful for document listing and
counting. Our second idea, precomputed document lists (PDL), samples some
nodes in the global suffix tree of the collection and stores precomputed answers
on those. Then it applies grammar compression on the stored answers, which
is effective when the collection is repetitive. PDL yields very efficient solutions
for document listing and top-k retrieval. Third, we show that a solution for
document counting (Sadakane, 2007) that uses just two bits per symbol (bps)
in the worst case (which is unacceptably high in the repetitive scenario) turns
out to be highly compressible when the collection is repetitive, and becomes
the most attractive solution for document counting. Finally, we show how the
different components of our solutions can be assembled to offer tf-idf ranked
conjunctive and disjunctive multi-term queries on repetitive string collections.

We implement and experimentally compare several variants of our solutions
with the state of the art, including the solution for repetitive string collections
(Claude and Munro, 2013) and some relevant solutions for general string col-
lections (Ferrada and Navarro, 2013; Gog and Navarro, 2015a). We consider
various kinds of real-life repetitiveness scenarios, and show which solutions are
the best depending on the kind and amount of repetitiveness, and the space re-
duction that can be achieved. For example, on very repetitive collections of up
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to 1 GB we perform document listing and top-k retrieval in 10–100 microsec-
onds per result and using 1–2 bits per symbol. For counting, we use as little as
0.1 bits per symbol and answer queries in less than a microsecond. Multi-term
top-k queries can be solved with a throughput of 100-200 queries per second,
which we show to be similar to that of a state-of-the-art inverted index. Of
course, we do not aim to compete with inverted indexes in the scenarios where
they can be applied (mainly, in natural language text collections), but to offer
similar functionality in the case of generic string collections, where inverted
indexes cannot be used.

This article collects our earlier results appearing in CPM 2013 (Gagie et al,
2013), ESA 2014 (Navarro et al, 2014a), and DCC 2015 (Gagie et al, 2015),
where we focused on exploiting repetitiveness in different ways to handle dif-
ferent document retrieval problems. Here we present them in a unified form,
considering the application of two new techniques (ILCP and PDL) and an
existing one (Sadakane, 2007) to the three problems (document listing, top-
k retrieval, and document counting), and showing how they interact (e.g.,
the need to use fast document counting to choose the best document listing
method). In this article we also consider a more complex document retrieval
problem we had not addressed before: top-k retrieval of multi-word queries. We
present an algorithm that uses our (single-term) top-k retrieval and document
counting structures to solve ranked multi-term conjunctive and disjunctive
queries under the tf-idf relevance model.

The article is organized as follows (see Table 1). In Section 2 we introduce
the concepts needed to follow the presentation. In Section 3 we introduce the
Interleaved LCP (ILCP) structure and show how it can be used for document
listing and, with a different representation, for document counting. In Section 4
we introduce our second structure, Precomputed Document Lists (PDL), and
describe how it can be used for document listing and, with some reordering
of the lists, for top-k retrieval. Section 5 then returns to the problem of doc-
ument counting, not to propose a new data structure but to study a known
one (Sadakane, 2007), which is found to be compressible in a repetitiveness
scenario (and, curiously, on totally random texts as well). Section 6 shows how
our developments can be combined to build a document retrieval index that
handles multi-term queries. Section 7 empirically studies the performance of
our solutions on the three document retrieval problems, also comparing them
with the state of the art for generic string collections, repetitive or not, and
giving recommendations on which structure to use in each case. Finally, Sec-
tion 8 concludes and gives some future work directions.

Problem ILCP PDL Sadakane
Listing Section 3.3 Section 4.1
Top-k Section 4.2
Counting Section 3.4 Section 5

Table 1 The techniques we study and the document retrieval problems we solve with them.
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2 Preliminaries

2.1 Suffix Trees and Arrays

A large number of solutions for pattern matching or document retrieval on
string collections rely on the suffix tree (Weiner, 1973) or the suffix array
(Manber and Myers, 1993). Assume that we have a collection of d strings, each
terminated with a special symbol “$” (which we consider to be lexicographi-
cally smaller than any other symbol), and let T [1..n] be their concatenation.
The suffix tree of T is a compacted digital tree where all the suffixes T [i..n]
are inserted. Collecting the leaves of the suffix tree yields the suffix array,
SA[1..n], which is an array of pointers to all the suffixes sorted in increasing
lexicographic order, that is, T [SA[i]..n] < T [SA[i+ 1]..n] for all 1 ≤ i < n. To
find all the occ occurrences of a string P [1..m] in the collection, we traverse the
suffix tree following the symbols of P and output the leaves of the node we ar-
rive at, called the locus of P , in time O(m+ occ). On a suffix array, we obtain
the range SA[`..r] of the leaves (i.e., of the suffixes prefixed by P ) by binary
search, and then list the contents of the range, in total time O(m lg n+ occ).

We will make use of compressed suffix arrays (Navarro and Mäkinen, 2007),
which we will call generically CSAs. Their size in bits is denoted |CSA|, their
time to find ` and r is denoted search(m), and their time to access any cell
SA[i] is denoted lookup(n). A particular version of the CSA that is tailored for
repetitive collections is the Run-Length Compressed Suffix Array (RLCSA)
(Mäkinen et al, 2010).

2.2 Rank and Select on Sequences

Let S[1..n] be a sequence over an alphabet [1..σ]. When σ = 2 we use 0 and 1
as the two symbols, and the sequence is called a bitvector. Two operations of
interest on S are rankc(S, i), which counts the number of occurrences of symbol
c in S[1..i], and selectc(S, j), which gives the position of the jth occurrence of
symbol c in S. For bitvectors, one can compute both functions in O(1) time
using o(n) bits on top of S (Clark, 1996). If S contains m 1s, we can also
represent it using m lg n

m + O(m) bits, so that rank takes O
(
lg n

m

)
time and

select takes O(1) (Okanohara and Sadakane, 2007)4.
The wavelet tree (Grossi et al, 2003) is a tool for extending bitvector rep-

resentations to sequences. It is a binary tree where the alphabet [1..σ] is re-
cursively partitioned. The root represents S and stores a bitvector W [1..n]
where W [i] = 0 iff symbol S[i] belongs to the left child. Left and right children
represent a subsequence of S formed by the symbols of [1..σ] they handle, so
they recursively store a bitvector and so on until reaching the leaves, which
represent a single symbol. By giving constant-time rank and select capabili-
ties to the bitvectors associated with the nodes, the wavelet tree can compute

4 This is achieved by using a constant-time rank/select solution (Clark, 1996) to represent
their internal bitvector H.



Document Retrieval on Repetitive String Collections 7

any S[i] = c, rankc(S, i), or selectc(S, j) in time proportional to the depth of
the leaf of c. If the bitvectors are represented in a certain compressed form
(Raman et al, 2007), then the total space is at most n lg σ + o(nh), where h
is the wavelet tree height, independent of the way the alphabet is partitioned
(Grossi et al, 2003).

2.3 Document Listing

Let us now describe the optimal-time algorithm of Muthukrishnan (2002) for
document listing. Muthukrishnan stores the suffix tree of T ; a so-called doc-
ument array DA[1..n] of T , in which each cell DA[i] stores the identifier of
the document containing T [SA[i]]; an array C[1..n], in which each cell C[i]
stores the largest value h < i such that DA[h] = DA[i], or 0 if there is no such
value h; and a data structure supporting range-minimum queries (RMQs)
over C, rmqC(i, j) = arg mini≤k≤j C[k]. These data structures take a total
of O(n lg n) bits. Given a pattern P [1..m], the suffix tree is used to find the
interval SA[`..r] that contains the starting positions of the suffixes prefixed
by P . It follows that every value C[i] < ` in C[`..r] corresponds to a distinct
document in DA[i]. Thus a recursive algorithm finding all those positions i
starts with k = rmqC(`, r). If C[k] ≥ ` it stops. Otherwise it reports document
DA[k] and continues recursively with the ranges C[`..k−1] and C[k+1..r] (the
condition C[k] ≥ ` always uses the original ` value). In total, the algorithm
uses O(m+ df) time, where df is the number of documents returned.

Sadakane (2007) proposed a space-efficient version of this algorithm, using
just |CSA|+O(n) bits. The suffix tree is replaced with a CSA. The array DA is
replaced with a bitvector B[1..n] such that B[i] = 1 iff i is the first symbol of a
document in T . Therefore DA[i] = rank1(B, SA[i]) can be computed in constant
time (Clark, 1996). The RMQ data structure is replaced with a variant (Fischer
and Heun, 2011) that uses just 2n+ o(n) bits and answers queries in constant
time without accessing C. Finally, the tests C[k] ≥ ` are replaced by marking
the documents already reported in a bitvector V [1..d] (initially all 0s), so that
V [DA[i]] = 1 iff document DA[i] has already been reported. If V [DA[i]] = 1
the recursion stops, otherwise it sets V [DA[i]], reports DA[i], and continues.
This is correct as long as the RMQ structure returns the leftmost minimum
in the range, and the range [`..k − 1] is processed before the range [k + 1..r]
(Navarro, 2014). The total time is then O(search(m) + df · lookup(n)).

3 Interleaved LCP

We introduce our first structure, the Interleaved LCP (ILCP). The main idea
is to interleave the longest-common-prefix (LCP) arrays of the documents, in
the order given by the global LCP of the collection. This yields long runs of
equal values on repetitive collections, making the ILCP structure run-length
compressible. Then, we show that the classical document listing technique of
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Muthukrishnan (2002), designed to work on a completely different array, works
almost verbatim over the ILCP array, and this yields a new document listing
technique of independent interest for string collections. Finally, we show that
a particular representation of the ILCP array allows us to count the number
of documents where a string appears without having to list them one by one.

3.1 The ILCP Array

The longest-common-prefix array LCPS [1..|S|] of a string S is defined such
that LCPS [1] = 0 and, for 2 ≤ i ≤ |S|, LCPS [i] is the length of the longest
common prefix of the lexicographically (i− 1)th and ith suffixes of S, that is,
of S[SAS [i− 1]..|S|] and S[SAS [i]..|S|], where SAS is the suffix array of S. We
define the interleaved LCP array of T , ILCP, to be the interleaving of the LCP
arrays of the individual documents according to the document array.

Definition 1 Let T [1..n] = S1 · S2 · · ·Sd be the concatenation of documents
Sj , DA the document array of T , and LCPSj the longest-common-prefix array
of string Sj . Then the interleaved LCP array of T is defined, for all 1 ≤ i ≤ n,
as

ILCP[i] = LCPSDA[i]

[
rankDA[i](DA, i)

]
.

That is, if the suffix SA[i] belongs to document Sj (i.e., DA[i] = j), and this
is the rth suffix of SA that belongs to Sj (i.e., r = rankj(DA, i)), then ILCP[i] =
LCPSj

[r]. Therefore the order of the individual LCP arrays is preserved in ILCP.

Example Consider the documents S1 = "TATA$", S2 = "LATA$", and S3 =
"AAAA$". Their concatenation is T = "TATA$LATA$AAAA$", its suffix array
is SA = 〈15, 10, 5, 14, 9, 4, 13, 12, 11, 7, 2, 6, 8, 3, 1〉 and its document array is
DA = 〈3 ,2, 1, 3 ,2, 1, 3 , 3 , 3 ,2, 1,2,2, 1, 1〉. The LCP arrays of the documents
are LCPS1

= 〈0, 0, 1, 0, 2〉, LCPS2
= 〈0,0,1,0,0〉, and LCPS3

= 〈0 , 0 , 1 , 2 , 3 〉.
Therefore, ILCP = 〈0 ,0, 0, 0 ,0, 0, 1 , 2 , 3 ,1, 1,0,0, 0, 2〉 interleaves the LCP
arrays in the order given by DA (see the fonts).

The following property of ILCP makes it suitable for document retrieval.

Lemma 1 Let T [1..n] = S1 · S2 · · ·Sd be the concatenation of documents Sj,
SA its suffix array and DA its document array. Let SA[`..r] be the interval that
contains the starting positions of suffixes prefixed by a pattern P [1..m]. Then
the leftmost occurrences of the distinct document identifiers in DA[`..r] are in
the same positions as the values strictly less than m in ILCP[`..r].

Proof Let SASj
[`j ..rj ] be the interval of all the suffixes of Sj starting with

P [1..m]. Then LCPSj
[`j ] < m, as otherwise Sj [SA[`j−1]..SA[`j−1]+m−1] =

Sj [SA[`j ]..SA[`j ] + m − 1] = P as well, contradicting the definition of `j . For
the same reason, it holds that LCPSj [`j + k] ≥ m for all 1 ≤ k ≤ rj − `j .

Now let Sj start at position pj + 1 in T , where pj = |S1 · · ·Sj−1|. Because
each Sj is terminated by “$”, the lexicographic ordering between the suffixes
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Sj [k..] in SASj
is the same as that of the corresponding suffixes T [pj + k..] in

SA. Hence 〈SA[i] | DA[i] = j, 1 ≤ i ≤ n〉 = 〈pj + SASj [i] | 1 ≤ i ≤ |Sj |〉. Or,
put another way, SA[i] = pj + SASj [rankj(DA, i)] whenever DA[i] = j.

Now let fj be the leftmost occurrence of j in DA[`..r]. This means that
SA[fj ] is the lexicographically first suffix of Sj that starts with P . By the
definition of `j , it holds that `j = rankj(DA, fj). Thus, by definition of ILCP,
it holds that ILCP[fj ] = LCPSj [rankj(DA, fj)] = LCPSj [`j ] < m, whereas all
the other ILCP[k] values, for ` ≤ k ≤ r, where DA[k] = j, must be ≥ m. ut

Example In the example above, if we search for P [1..2] = "TA", the resulting
range is SA[13..15] = 〈8, 3, 1〉. The corresponding range DA[13..15] = 〈2, 1, 1〉
indicates that the occurrence at SA[13] is in S2 and those in SA[14..15] are in
S1. According to the lemma, it is sufficient to report the documents DA[13] = 2
and DA[14] = 1, as those are the positions in ILCP[13..15] = 〈0, 0, 2〉 with values
less than |P | = 2.

Therefore, for the purposes of document listing, we can replace the C array
by ILCP in Muthukrishnan’s algorithm (Section 2.3): instead of recursing until
we have listed all the positions k such that C[k] < `, we recurse until we list
all the positions k such that ILCP[k] < m. Instead of using it directly, however,
we will design a variant that exploits repetitiveness in the string collection.

3.2 ILCP on Repetitive Collections

The array ILCP has yet another property, which makes it attractive for repeti-
tive collections: it contains long runs of equal values. We give an analytic proof
of this fact under a model where a base document S is generated at random
under the very general A2 probabilistic model of Szpankowski (1993)5, and
the collection is formed by performing some edits on d copies of S.

Lemma 2 Let S[1..r] be a string generated under Szpankowski’s A2 model.
Let T be formed by concatenating d copies of S, each terminated with the
special symbol “$”, and then carrying out s edits (symbol insertions, deletions,
or substitutions) at arbitrary positions in T (excluding the ‘$’s). Then, almost
surely (a.s.6), the ILCP array of T is formed by ρ ≤ r+O(s lg(r + s)) runs of
equal values.

Proof Before applying the edit operations, we have T = S1 · · ·Sd and Sj = S$
for all j. At this point, ILCP is formed by at most r + 1 runs of equal values,

5 This model states that the statistical dependence of a symbol from previous ones tends to
zero as the distance towards them tends to infinity. The A2 model includes, in particular, the
Bernoulli model (where each symbol is generated independently of the context), stationary
Markov chains (where the probability of each symbol depends on the previous one), and kth
order models (where each symbol depends on the k previous ones, for a fixed k).

6 This is a very strong kind of convergence. A sequence Xn tends to a value β almost
surely if, for every ε > 0, the probability that |XN/β− 1| > ε for some N > n tends to zero
as n tends to infinity, limn→∞ supN>n Pr(|XN/β − 1| > ε) = 0.
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since the d equal suffixes Sj [SASj
[i]..r + 1] must be contiguous in the suffix

array SA of T , in the area SA[(i − 1)d + 1..id]. Since the values l = LCPSj [i]
are also equal, and ILCP values are the LCPSj values listed in the order of
SA, it follows that ILCP[(i − 1)d + 1..id] = l forms a run, and thus there are
r+ 1 = n/d runs in ILCP. Now, if we carry out s edit operations on T , any Sj
will be of length at most r+s+1. Consider an arbitrary edit operation at T [k].
It changes all the suffixes T [k−h..n] for all 0 ≤ h < k. However, since a.s. the
string depth of a leaf in the suffix tree of S is O(lg(r + s)) (Szpankowski, 1993),
the suffix will possibly be moved in SA only for h = O(lg(r + s)). Thus, a.s.,
only O(lg(r + s)) suffixes are moved in SA, and possibly the corresponding
runs in ILCP are broken. Hence ρ ≤ r +O(s lg(r + s)) a.s. ut

Therefore, the number of runs depends linearly on the size of the base
document and the number of edits, not on the total collection size. The proof
generalizes the arguments of Mäkinen et al (2010), which hold for uniformly
distributed strings S. There is also experimental evidence (Mäkinen et al, 2010)
that, in real-life text collections, a small change to a string usually causes only
a small change to its LCP array. Next we design a document listing data
structure whose size is bounded in terms of ρ.

3.3 Document Listing

Let LILCP[1..ρ] be the array containing the partial sums of the lengths of
the ρ runs in ILCP, and let VILCP[1..ρ] be the array containing the values
in those runs. We can store LILCP as a bitvector L[1..n] with ρ 1s, so that
LILCP[i] = select(L, i). Then L can be stored using the structure of Okanohara
and Sadakane (2007) that requires ρ lg(n/ρ) +O(ρ) bits.

With this representation, it holds that ILCP[i] = VILCP[rank1(L, i)]. We
can map from any position i to its run i′ = rank1(L, i) in time O(lg(n/ρ)), and
from any run i′ to its starting position in ILCP, i = select(L, i′), in constant
time.

Example. Consider the array ILCP[1..15] = 〈0, 0, 0, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0, 2〉
of our running example. It has ρ = 7 runs, so we represent it with VILCP[1..7] =
〈0, 1, 2, 3, 1, 0, 2〉 and L[1..15] = 100000111101001.

This is sufficient to emulate the document listing algorithm of Sadakane
(2007) (Section 2.3) on a repetitive collection. We will use RLCSA as the CSA.
The sparse bitvector B[1..n] marking the document beginnings in T will be
represented just like L, so that it requires d lg(n/d) + O(d) bits and lets us
compute any value DA[i] = rank1(B, SA[i]) in time O(lookup(n)). Finally, we
build the compact RMQ data structure (Fischer and Heun, 2011) on VILCP,
requiring 2ρ+o(ρ) bits. We note that this RMQ structure does not need access
to VILCP to answer queries.

Assume that we have already found the range SA[`..r] in O(search(m))
time. We compute `′ = rank1(L, `) and r′ = rank1(L, r), which are the end-
points of the interval VILCP[`′..r′] containing the values in the runs in ILCP[`..r].
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function listDocuments(`, r)
(`′, r′)← (rank1(L, `), rank1(L, r))
return list(`′, r′)

function list(`′, r′)
if `′ > r′: return ∅
i′ ← rmqVILCP(`′, r′)
i← max(`, select(L, i′))
j ← min(r, select(L, i′ + 1)− 1)
res← ∅
for k ← i . . . j:

g ← rank1(B, SA[k])
if V [g] = 1: return res
V [g]← 1
res← res ∪ {g}

return res ∪ list(`′, i′ − 1) ∪ list(i′ + 1, r′)

Fig. 1 Pseudocode for document listing using the ILCP array. Function listDocuments(`, r)
lists the documents from interval SA[`..r]; list(`′, r′) returns the distinct documents men-
tioned in the runs `′ to r′ that also belong to DA[`..r]. We assume that in the beginning it
holds V [k] = 0 for all k; this can be arranged by resetting to 0 the same positions after the
query or by using initializable arrays. All the unions on res are known to be disjoint.

Now we run Sadakane’s algorithm on VILCP[`′..r′]. Each time we find a mini-
mum at VILCP[i′], we remap it to the run ILCP[i..j], where i = max(`, select(L, i′))
and j = min(r, select(L, i′ + 1) − 1). For each i ≤ k ≤ j, we compute DA[k]
using B and RLCSA as explained, mark it in V [DA[k]]← 1, and report it. If,
however, it already holds that V [DA[k]] = 1, we stop the recursion. Figure 1
gives the pseudocode.

We show next that this is correct as long as RMQ returns the leftmost
minimum in the range and that we recurse first to the left and then to the
right of each minimum VILCP[i′] found.

Lemma 3 Using the procedure described, we correctly find all the positions
` ≤ k ≤ r such that ILCP[k] < m.

Proof Let j = DA[k] be the leftmost occurrence of document j in DA[`..r]. By
Lemma 1, among all the positions where DA[k′] = j in DA[`..r], k is the only
one where ILCP[k] < m. Since we find a minimum ILCP value in the range, and
then explore the left subrange before the right subrange, it is not possible to
find first another occurrence DA[k′] = j, since it has a larger ILCP value and is
to the right of k. Therefore, when V [DA[k]] = 0, that is, the first time we find
a DA[k] = j, it must hold that ILCP[k] < m, and the same is true for all the
other ILCP values in the run. Hence it is correct to list all those documents and
mark them in V . Conversely, whenever we find a V [DA[k′]] = 1, the document
has already been reported. Thus this is not its leftmost occurrence and then
ILCP[k′] ≥ m holds, as well as for the whole run. Hence it is correct to avoid
reporting the whole run and to stop the recursion in the range, as the minimum
value is already at least m. ut
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Fig. 2 On the left, the schematic view of our skewed wavelet tree; on the right, the case of
our running example where it represents VILCP = 〈0, 1, 2, 3, 1, 0, 2〉.

Note that we are not storing VILCP at all. We have obtained our first result
for document listing, where we recall that ρ is small on repetitive collections
(Lemma 2):

Theorem 1 Let T = S1 · S2 · · ·Sd be the concatenation of d documents Sj,
and CSA be a compressed suffix array on T , searching for any pattern P [1..m]
in time search(m) and accessing SA[i] in time lookup(n). Let ρ be the number
of runs in the ILCP array of T . We can store T in |CSA|+ ρ lg(n/ρ) +O(ρ) +
d lg(n/d)+O(d) = |CSA|+O((ρ+ d) lg n) bits such that document listing takes
O(search(m) + df · (lookup(n) + lg n)) time.

3.4 Document Counting

Array ILCP also allows us to efficiently count the number of distinct docu-
ments where P appears, without listing them all. This time we will explicitly
represent VILCP, in the following convenient way: consider a skewed wavelet
tree (Section 2.2), where the leftmost leaf is at depth 1, the next 2 leaves are
at depth 3, the next 4 leaves are at depth 5, and in general the 2d−1th to
(2d − 1)th leftmost leaves are at depth 2d − 1. Then the ith leftmost leaf is
at depth 1 + 2blg ic = O(lg i). The number of wavelet tree nodes up to depth

d is
∑(d+1)/2
i=1 2i = 2(2(d+1)/2 − 1). The number of nodes up to the depth of

the mth leftmost leaf is maximized when m is of the form m = 2d−1, reaching
2(2d − 1) = 4m− 2 = O(m). See Figure 2.

Let λ be the maximum value in the ILCP array. Then the height of the
wavelet tree is O(lg λ) and the representation of VILCP takes at most ρ lg λ+
o(ρ lg λ) bits. If the documents S are generated using the A2 probabilistic
model of Szpankowski (1993), then λ = O(lg|S|) = O(lg n), and VILCP uses
ρ lg lg n(1+o(1)) bits. The same happens under the model used in Section 3.2.

The number of documents where P appears, df, is the number of times
a value smaller than m occurs in ILCP[`..r]. An algorithm to find all those
values in a wavelet tree of ILCP is as follows (Gagie et al, 2012b). Start at the
root with the range [`..r] and its bitvector W . Go to the left child with the
interval [rank0(W, `−1)+1..rank0(W, r)] and to the right child with the interval
[rank1(W, ` − 1) + 1..rank1(W, r)], stopping the recursion on empty intervals.
This method arrives at all the wavelet tree leaves corresponding to the distinct
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function countDocuments(`, r)
(`′, r′)← (rank1(L, `), rank1(L, r))
l← m
c← count(root, `′, r′)
if VILCP[`′] < m: c← c− (`− select(L, `′))
if VILCP[r′] < m: c← c− (select(L, r′ + 1)− 1− r)
return c

function count(v, `′, r′)
if l = 0: return 0
if v is a leaf:

l← l − 1
if `′ > r′: return 0
return select(L′, r′ + 1)− select(L′, `′)

(`1, r1)← (rank1(v.W, `′ − 1) + 1, rank1(v.W, r′))
return count(v.left, `′ − `1 + 1, r′ − r1) + count(v.right, `1, r1)

Fig. 3 Document counting with the ILCP array. Function countDocuments(`, r) counts the
distinct documents from interval SA[`..r]; count(v, `′, r′) returns the number of documents
mentioned in the runs `′ to r′ under wavelet tree node v that also belong to DA[`..r]. We
assume that the wavelet tree root node is root, and that any internal wavelet tree node v
has fields v.W (bitvector), v.left (left child), and v.right (right child). Global variable l is
used to traverse the first m leaves. The access to VILCP is also done with the wavelet tree.

values in ILCP[`..r]. Moreover, if it arrives at a leaf l with interval [`l..rl], then
there are rl − `l + 1 occurrences of the symbol of that leaf in ILCP[`..r].

Now, in the skewed wavelet tree of VILCP, we are interested in the oc-
currences of symbols 0 to m − 1. Thus we apply the above algorithm but we
do not enter into subtrees handling an interval of values that is disjoint with
[0..m − 1]. Therefore, we only arrive at the m leftmost leaves of the wavelet
tree, and thus traverse only O(m) wavelet tree nodes, in time O(m).

A complication is that VILCP is the array of run length heads, so when
we start at VILCP[`′..r′] and arrive at each leaf l with interval [`′l..r

′
l], we only

know that VILCP[`′..r′] contains from the `′lth to the r′lth occurrences of value
l in VILCP[`′..r′]. We store a reordering of the run lengths so that the runs
corresponding to each value l are collected left to right in ILCP and stored
aligned to the wavelet tree leaf l. Those are concatenated into another bitmap
L′[1..n] with ρ 1s, similar to L, which allows us, using select(L′, ·), to count
the total length spanned by the `′lth to r′lth runs in leaf l. By adding the areas
spanned over the m leaves, we count the total number of documents where P
occurs. Note that we need to correct the lengths of runs `′ and r′, as they may
overlap the original interval ILCP[`..r]. Figure 3 gives the pseudocode.

Theorem 2 Let T = S1 · S2 · · ·Sd be the concatenation of d documents Sj,
and CSA a compressed suffix array on T that searches for any pattern P [1..m]
in time search(m). Let ρ be the number of runs in the ILCP array of T and
λ be the maximum length of a repeated substring inside any Sj. Then we can
store T in |CSA|+ρ(lg λ+ 2 lg(n/ρ) +O(1)) = |CSA|+O(ρ lg n) bits such that
the number of documents where a pattern P [1..m] occurs can be computed in
time O(m+ search(m)).
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4 Precomputed Document Lists

In this section we introduce the idea of precomputing the answers of doc-
ument retrieval queries for a sample of suffix tree nodes, and then exploit
repetitiveness by grammar-compressing the resulting sets of answers. Such
grammar compression is effective when the underlying collection is repetitive.
The queries are then extremely fast on the sampled nodes, whereas on the
others we have a way to bound the amount of work performed. The resulting
structure is called PDL (Precomputed Document Lists), for which we develop
a variant for document listing and another for top-k retrieval queries.

4.1 Document Listing

Let v be a suffix tree node. We write SAv to denote the interval of the suf-
fix array covered by node v, and Dv to denote the set of distinct document
identifiers occurring in the same interval of the document array. Given a block
size b and a constant β ≥ 1, we build a sampled suffix tree that allows us to
answer document listing queries efficiently. For any suffix tree node v, it holds
that:

1. node v is sampled and thus set Dv is directly stored; or
2. |SAv| < b, and thus documents can be listed in time O(b · lookup(n)) by

using a CSA and the bitvectors B and V of Section 2.3; or
3. we can compute the set Dv as the union of stored sets Du1

, . . . , Duk
of

total size at most β · |Dv|, where nodes u1, . . . , uk are the children of v in
the sampled suffix tree.

The purpose of rule 2 is to ensure that suffix array intervals solved by brute
force are not longer than b. The purpose of rule 3 is to ensure that, if we have
to rebuild an answer by merging a list of answers precomputed at descendant
sampled suffix tree nodes, then the merging costs no more than β per result.
That is, we can discard answers of nodes that are close to being the union of
the answers of their descendant nodes, since we do not waste too much work
in performing the unions of those descendants. Instead, if the answers of the
descendants have many documents in common, then it is worth to store the
answer at the node too; otherwise merging will require much work because the
same document will be found many times (more than β on average).

We start by selecting suffix tree nodes v1, . . . , vL, so that no selected node
is an ancestor of another, and the intervals SAvi of the selected nodes cover
the entire suffix array. Given node v and its parent w, we select v if |SAv| ≤ b
and |SAw| > b, and store Dv with the node. These nodes v become the leaves
of the sampled suffix tree, and we assume that they are numbered from left
to right. We then assume that all the ancestors of those leaves belong to the
sampled suffix tree, and proceed upward in the suffix tree removing some of
them. Let v be an internal node, u1, . . . , uk its children, and w its parent. If
the total size of sets Du1

, . . . , Duk
is at most β · |Dv|, we remove node v from
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the tree, and add nodes u1, . . . , uk to the children of node w. Otherwise we
keep node v in the sampled suffix tree, and store Dv there.

When the document collection is repetitive, the document array DA[1..n]
is also repetitive. This property has been used in the past to compress it using
grammars (Navarro et al, 2014b). We can apply a similar idea on the Dv sets
stored at the sampled suffix tree nodes, since Dv is a function of the range
DA[`..r] that corresponds to node v.

Let v1, . . . , vL be the leaf nodes and vL+1, . . . , vL+I the internal nodes of the
sampled suffix tree. We use grammar-based compression to replace frequent
subsets in sets Dv1 , . . . , DvL+I

with grammar rules expanding to those subsets.
Given a set Z and a grammar rule X → Y , where Y ⊆ {1, . . . , d}, we can
replace Z with (Z ∪ {X}) \ Y , if Y ⊆ Z. As long as |Y | ≥ 2 for all grammar
rules X → Y , each set Dvi can be decompressed in O(|Dvi |) time.

To choose the replacements, consider the bipartite graph with vertex sets
{v1, . . . , vL+I} and {1, . . . , d}, with an edge from vi to j if j ∈ Dvi . Let X → Y
be a grammar rule, and let V be the set of nodes vi such that rule X → Y can
be applied to set Dvi . As Y ⊆ Dvi for all vi ∈ V , the induced subgraph with
vertex sets V and Y is a complete bipartite graph or a biclique. Many Web
graph compression algorithms are based on finding bicliques or other dense
subgraphs (Hernández and Navarro, 2014), and we can use these algorithms
to find a good grammar compressing the precomputed document lists.

When all rules have been applied, we store the reduced sets Dv1 , . . . , DvL+I

as an array A of document and rule identifiers. The array takes |A| lg(d+nR)
bits of space, where nR is the total number of rules. We mark the first cell
in the encoding of each set with a 1 in a bitvector BA[1..|A|], so that set Dvi

can be retrieved by decompressing A[select(BA, i)..select(BA, i + 1) − 1]. The
bitvector takes |A|(1 + o(1)) bits of space and answers select queries in O(1)
time. The grammar rules are stored similarly, in an array G taking |G| lg d
bits, with a bitvector BG[1..|G|] of |G|(1 + o(1)) bits separating the array into
rules (note that right hand sides of rules are formed only by terminals).

In addition to the sets and the grammar, we must also store the sampled
suffix tree. A bitvector BL[1..n] marks the first cell of interval SAvi for all
leaf nodes vi, allowing us to convert interval SA[`..r] into a range of nodes
[ln..rn] = [rank1(BL, `)..rank1(BL, r + 1)− 1]. Using the format of Okanohara
and Sadakane (2007) for BL, the bitvector takes L lg(n/L) + O(L) bits, and
answers rank queries in O(lg(n/L)) time and select queries in constant time.
A second bitvector BF [1..L + I], using (L + I)(1 + o(1)) bits and supporting
rank queries in constant time, marks the nodes that are the first children of
their parents. An array F [1..I] of I lg I bits stores pointers from first children
to their parent nodes, so that if node vi is a first child, its parent node is vj ,
where j = L + F [rank1(BF , i)]. Finally, array N [1..I] of I lgL bits stores a
pointer to the leaf node following those below each internal node.

Figure 4 gives the pseudocode for document listing using the precomputed
answers. Function list(`, r) takes O((r + 1− `) lookup(n)) time, set(i) takes
O(|Dvi |) time, and parent(i) takes O(1) time. Function decompress(`, r) pro-
duces set res in time O(|res| · βh), where h is the height of the sampled suf-
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function listDocuments(`, r)
(res, ln)← (∅, rank1(BL, `))
if select(BL, ln) < `:

r′ ← min(select(BL, ln+ 1)− 1, r)
(res, ln)← (list(`, r′), ln+ 1)
if r′ = r: return res

rn← rank1(BL, r + 1)− 1
if select(BL, rn+ 1) ≤ r:

`′ ← select(BL, rn+ 1)
res← res ∪ list(`′, r)

return res ∪ decompress(ln, rn)

function decompress(`, r)
(res, i)← (∅, `)
while i ≤ r:

next← i+ 1
while BF [i] = 1:

(i′, next′)← parent(i)
if next′ > r + 1: break
(i, next)← (i′, next′)

res← res ∪ set(i)
i← next

return res

function parent(i)
par ← F [rank1(BF , i)]
return (par + L,N [par])

function set(i)
res← ∅
`← select(BA, i)
r ← select(BA, i+ 1)− 1
for j ← ` to r:

if A[j] ≤ d: res← res ∪ {A[j]}
else: res← res ∪ rule(A[j]− d)

return res

function rule(i)
`← select(BG, i)
r ← select(BG, i+ 1)− 1
return G[`..r]

function list(`, r)
res← ∅
for i← ` to r:

res← res ∪ {rank1(B, SA[i])}
return res

Fig. 4 Document listing using precomputed answers. Function listDocuments(`, r) lists the
documents from interval SA[`..r]; decompress(`, r) decompresses the sets stored in nodes
v`, . . . , vr; parent(i) returns the parent node and the leaf node following it for a first child
vi; set(i) decompresses the set stored in vi; rule(i) expands the ith grammar rule; and
list(`, r) lists the documents from interval SA[`..r] by using CSA and bitvector B.

fix tree: finding each set may take O(()h) time, and we may encounter the
same document O(()β) times. Hence the total time for listDocuments(`, r)
is O(df · βh+ lg n) for unions of precomputed answers, and O(b · lookup(n))
otherwise. If the text follows the A2 model of Szpankowski (1993), then h =
O(lg n) and the total time is on average O(df · β lg n+ b · lookup(n)).

We do not write the result as a theorem because we cannot upper bound
the space used by the structure in terms of b and β. In a bad case like T =
a`−1$b`−1$c`−1$ . . ., the suffix tree is formed by d long paths and the sampled
suffix tree contains at least d(n/d − b) = Θ(n) nodes (assuming bd = o(n)),
so the total space is O(n lg n) bits as in a classical suffix tree. In a good case,
such as a balanced suffix tree (which also arises on texts following the A2
model), the sampled suffix tree has O(n/b) nodes. Although each such node v
may store a list Dv with b entries, many of those entries are similar when the
collection is repetitive, and thus their compression is effective.

4.2 Top-k Retrieval

Since we have the freedom to represent the documents in sets Dv in any order,
we can in particular sort the document identifiers in decreasing order of their
“frequencies”, that is, the number of times the string represented by v appears
in the documents. Ties are broken by document identifiers in increasing order.
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Then a top-k query on a node v that stores its list Dv boils down to listing
the first k elements of Dv.

This time we cannot use the set-based grammar compressor, but we rather
need a compressor that preserves the order. We use Re-Pair (Larsson and Mof-
fat, 2000), which produces a grammar where each nonterminal produces two
new symbols, terminal or nonterminal. As Re-Pair decompression is recursive,
decompression can be slower than in document listing, although it is still fast
in practice and takes linear time in the length of the decompressed sequence.

In order to merge the results from multiple nodes in the sampled suffix
tree, we need to store the frequency of each document. These are stored in
the same order as the identifiers. Since the frequencies are nonincreasing, with
potentially long runs of small values, we can represent them space-efficiently
by run-length encoding the sequences and using differential encoding for the
run heads. A node containing s suffixes in its subtree has at most O(

√
s)

distinct frequencies, and the frequencies can be encoded in O(
√
s lg s) bits.

There are two basic approaches to using the PDL structure for top-k doc-
ument retrieval. First, we can store the document lists for all suffix tree nodes
above the leaf blocks, producing a structure that is essentially an inverted
index for all frequent substrings. This approach is very fast, as we need only
decompress the first k document identifiers from the stored sequence. It works
well with repetitive collections thanks to the grammar-compression of the lists.
Note that this enables incremental top-k queries, where value k is not given
beforehand, but we extract documents with successively lower scores and can
stop at any time. Note also that, in this version, it is not necessary to store
the frequencies.

Alternatively, we can build the PDL structure as in Section 4.1, with some
parameter β, to achieve better space usage. Answering queries is now slower, as
we have to decompress multiple document sets, merge the sets, and determine
the top k documents. We tried different heuristics for merging prefixes of the
document sequences, stopping when a correct answer to the top-k query could
be guaranteed. The heuristics did not generally work well, making brute-force
merging the fastest alternative.

5 Engineering a Document Counting Structure

In this section we revisit a generic document counting structure by Sadakane
(2007), which uses 2n + o(n) bits and answers counting queries in constant
time. We show that the structure inherits the repetitiveness present in the
text collection, which can then be exploited to reduce its space occupancy.
Surprisingly, the structure also becomes repetitive with random and near-
random data, such as unrelated DNA sequences, which is a result of interest for
general string collections. We show how to take advantage of this redundancy
in a number of different ways, leading to different time/space trade-offs.
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5.1 The Basic Bitvector

We describe the original document structure of Sadakane (2007), which com-
putes df in constant time given the locus of the pattern P (i.e., the suffix tree
node arrived at when searching for P ), while using just 2n+o(n) bits of space.

We start with the suffix tree of the text, and add new internal nodes to it
to make it a binary tree. For each internal node v of the binary suffix tree, let
Dv be again the set of distinct document identifiers in the corresponding range
DA[`..r], and let count(v) = |Dv| be the size of that set. If node v has children
u and w, we define the number of redundant suffixes as h(v) = |Du∩Dw|. This
allows us to compute df recursively: count(v) = count(u) + count(w) − h(v).
By using the leaf nodes descending from v, [`..r], as base cases, we can solve
the recurrence:

count(v) = count(`, r) = (r + 1− `)−
∑
u

h(u),

where the summation goes over the internal nodes of the subtree rooted at v.
We form an array H[1..n − 1] by traversing the internal nodes in inorder

and listing the h(v) values. As the nodes are listed in inorder, subtrees form
contiguous ranges in the array. We can therefore rewrite the solution as

count(`, r) = (r + 1− `)−
r−1∑
i=`

H[i].

To speed up the computation, we encode the array in unary as bitvector H ′.
Each cell H[i] is encoded as a 1-bit, followed by H[i] 0s. We can now compute
the sum by counting the number of 0s between the 1s of ranks ` and r:

count(`, r) = 2(r − `)− (select1(H ′, r)− select1(H ′, `)) + 1.

As there are n− 1 1s and n− d 0s, bitvector H ′ takes at most 2n+ o(n) bits.

5.2 Compressing the Bitvector

The original bitvector requires 2n + o(n) bits, regardless of the underlying
data. This can be a considerable overhead with highly compressible collections,
taking significantly more space than the CSA (on top of which the structure
operates). Fortunately, as we now show, the bitvector H ′ used in Sadakane’s
method is highly compressible. There are five main ways of compressing the
bitvector, with different combinations of them working better with different
datasets.

1. Let Vv be the set of nodes of the binary suffix tree corresponding to node
v of the original suffix tree. As we only need to compute count() for the
nodes of the original suffix tree, the individual values of h(u), u ∈ Vv, do not
matter, as long as the sum

∑
u∈Vv

h(u) remains the same. We can therefore



Document Retrieval on Repetitive String Collections 19

make bitvector H ′ more compressible by setting H[i] =
∑
u∈Vv

h(u), where
i is the inorder rank of node v, and H[j] = 0 for the rest of the nodes. As
there are no real drawbacks in this reordering, we will use it with all of our
variants of Sadakane’s method.

2. Run-length encoding works well with versioned collections and collections
of random documents. When a pattern occurs in many documents, but no
more than once in each, the corresponding subtree will be encoded as a
run of 1s in H ′.

3. When the documents in the collection have a versioned structure, we can
reasonably expect grammar compression to be effective. To see this, con-
sider a substring x that occurs in many documents, but at most once in
each document. If each occurrence of substring x is preceded by symbol a,
the subtrees of the binary suffix tree corresponding to patterns x and ax
have identical structure, and the corresponding areas in D are identical.
Hence the subtrees are encoded identically in bitvector H ′.

4. If the documents are internally repetitive but unrelated to each other,
the suffix tree has many subtrees with suffixes from just one document.
We can prune these subtrees into leaves in the binary suffix tree, using
a filter bitvector F [1..n − 1] to mark the remaining nodes. Let v be a
node of the binary suffix tree with inorder rank i. We will set F [i] = 1 iff
count(v) > 1. Given a range [`..r−1] of nodes in the binary suffix tree, the
corresponding subtree of the pruned tree is [rank1(F, `)..rank1(F, r − 1)].
The filtered structure consists of bitvector H ′ for the pruned tree and a
compressed encoding of F .

5. We can also use filters based on the values in array H instead of the sizes of
the document sets. If H[i] = 0 for the most cells, we can use a sparse filter
FS [1..n− 1], where FS [i] = 1 iff H[i] > 0, and build bitvector H ′ only for
those nodes. We can also encode positions with H[i] = 1 separately with a
1-filter F1[1..n− 1], where F1[i] = 1 iff H[i] = 1. With a 1-filter, we do not
write 0s in H ′ for nodes with H[i] = 1, but subtract the number of 1s in
F1[`..r− 1] from the result of the query instead. It is also possible to use a
sparse filter and a 1-filter simultaneously. In that case, we set FS [i] = 1 iff
H[i] > 1.

5.3 Analysis

We analyze the number of runs of 1s in bitvector H ′ in the expected case.
Assume that our document collection consists of d documents, each of length
r, over an alphabet of size σ. We call string S unique, if it occurs at most once
in every document. The subtree of the binary suffix tree corresponding to a
unique string is encoded as a run of 1s in bitvector H ′. If we can cover all
leaves of the tree with u unique substrings, bitvector H ′ has at most 2u runs
of 1s.

Consider a random string of length k. Suppose the probability that the
string occurs at least twice in a given document is at most r2/(2σ2k), which is
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Fig. 5 The number of runs of 1-bits in Sadakane’s bitvector H′ on synthetic collections of
DNA sequences (σ = 4). Each collection has been generated by taking a random sequence
of length m = 27 to 217, duplicating it d = 217 to 27 times (making the total size of the
collection 224), and mutating the sequences with random point mutations at probability p =
0.001 to 1. The mutations preserve zero-order empirical entropy by replacing the mutated
symbol with a randomly chosen symbol according to the distribution in the original sequence.
The dashed line represents the expected case upper bound for p = 1.

the case if, e.g., we choose each document randomly or we choose one document
randomly and generate the others by copying it and randomly substituting
some symbols. By the union bound, the probability the string is non-unique is
at most dr2/(2σ2k). Let N(i) be the number of non-unique strings of length
ki = lgσ(r

√
d) + i. As there are σki strings of length ki, the expected value of

N(i) is at most r
√
d/(2σi). The expected size of the smallest cover of unique

strings is therefore at most

(σk0−N(0))+

∞∑
i=1

(σN(i−1)−N(i)) = r
√
d+(σ−1)

∞∑
i=0

N(i) ≤
(σ

2
+ 1
)
r
√
d,

where σN(i−1)−N(i) is the number of strings that become unique at length
ki. The number of runs of 1s in H ′ is therefore sublinear in the size of the
collection (dr). See Figure 5 for an experimental confirmation of this analysis.

6 A Multi-term Index

The queries we defined in the Introduction are single-term, that is, the query
pattern P is a single string. In this section we show how our indexes for
single-term retrieval can be used for ranked multi-term queries on repetitive
text collections. The key idea is to regard our incremental top-k algorithm of
Section 4.2 as an abstract representation of the inverted lists of the individual
query terms, sorted by decreasing weight, and then apply any algorithm that
traverses those lists sequentially. Since our relevance score will depend on the
term frequency and the document frequency of the terms, we will integrate a
document counting structure as well (Sections 3.4 or 5).
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Let Q = 〈q1, . . . , qm〉 be a query consisting of m patterns qi. We support
ranked queries, which return the k documents with the highest scores among
the documents matching the query. A disjunctive or ranked-OR query matches
document D if at least one of the patterns occurs in it, while a conjunctive
or ranked-AND query matches D if all query patterns occur in it. Our index
supports both conjunctive and disjunctive queries with tf-idf-like scores

w(D,Q) =

m∑
i=1

w(D, qi) =

m∑
i=1

f(tf(D, qi)) · g(df(qi)),

where f ≥ 0 is an increasing function, tf(D, qi) is the term frequency (the
number of occurrences) of pattern qi in document D, g ≥ 0 is a decreasing
function, and df(qi) is the document frequency of pattern qi. For example, the
standard tf-idf scoring scheme corresponds to using f(tf) = tf and g(df) =
lg(d/max(df, 1)).

From Section 4.2, we use the incremental variant, which stores the full
answers for all the suffix tree nodes above leaves. The query algorithm uses
CSA to find the lexicographic range [`i..ri] matching each pattern qi. We then
use PDL to find the sparse suffix tree node vi corresponding to range [`i..ri]
and fetch its list Dvi , which is stored in decreasing term frequency order. If
vi is not in the sparse suffix tree, we use instead the CSA to build Dvi by
brute force from SA[`i..ri]. We also compute df(qi) = count(vi) for all query
patterns qi with our document counting structure. The algorithm then iterates
the following loop with k′ = 2k, 4k, 8k, . . . :

1. Extract k′ more documents from the document list of vi for each pattern
qi.

2. If the query is conjunctive, filter out extracted documents that do not
match the query patterns with completely decompressed document lists.

3. Determine a lower bound for w(D,Q) for all documents D extracted so
far. If document D has not been encountered in the document list of vi,
use 0 as a lower bound for w(D, qi).

4. Determine an upper bound for w(D,Q) for all documents D. If document
D has not been encountered in the document list of vi, use tf(D′, qi), where
D′ is the next unextracted document for pattern qi, as an upper bound for
tf(D, qi).

5. If the query is disjunctive, filter out extracted documents D with smaller
upper bounds for w(D,Q) than the lower bounds for the current top-k
documents. Stop if the top-k set cannot change further.

6. If the query is conjunctive, stop if the top-k documents match all query
patterns and the upper bounds for the remaining documents are lower than
the lower bounds for the top-k documents.

The algorithm always finds a correct top-k set, although the scores may be
incorrect if a disjunctive query stops early.
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7 Experiments and Discussion

7.1 Experimental Setup

7.1.1 Document Collections

We performed extensive experiments with both real and synthetic collections.7

Most of our document collections were relatively small, around 100 MB in size,
as some of the implementations (Navarro et al, 2014b) use 32-bit libraries. We
also used larger versions of some collections, up to 1 GB in size, to see how the
collection size affects the results. In general, collection size is more important
in top-k document retrieval. Increasing the number of documents generally
increases the df/k ratio, and thus makes brute-force solutions based on docu-
ment listing less appealing. In document listing, the size of the documents is
more important than collection size, as a large occ/df ratio makes brute-force
solutions based on pattern matching less appealing.

The performance of various solutions depends both on the repetitiveness
of the collection and the type of the repetitiveness. Hence we used a fair
number of real and synthetic collections with different characteristics for our
experiments. We describe them next, and summarize their statistics in Table 2.

A note on collection size. The index structures evaluated in this paper should
be understood as promising algorithmic ideas. In most implementations, the
construction algorithms do not scale up for collections larger than a couple
of gigabytes. This is often intentional. In this line of research, being able to
easily evaluate variations of the fundamental idea is more important than the
speed or memory usage of construction. As a result, many of the construction
algorithms build an explicit suffix tree for the collection and store various kinds
of additional information in the nodes. Better construction algorithms can be
designed once the most promising ideas have been identified. See Appendix B
for further discussion on index construction.

Real collections. We use various document collections from real-life repeti-
tive scenarios. Some collections come in small, medium, and large variants.
Page and Revision are repetitive collections generated from a Finnish-language
Wikipedia archive with full version history. There are 60 (small), 190 (medium),
or 280 (large) pages with a total of 8,834, 31,208, or 65,565 revisions. In Page,
all the revisions of a page form a single document, while each revision becomes
a separate document in Revision. Enwiki is a non-repetitive collection of 7,000,
44,000, or 90,000 pages from a snapshot of the English-language Wikipedia.
Influenza is a repetitive collection containing 100,000 or 227,356 sequences from
influenza virus genomes (we only have small and large variants). Swissprot is a
non-repetitive collection of 143,244 protein sequences used in many document
retrieval papers (e.g., Navarro et al (2014b)). As the full collection is only

7 See http://jltsiren.kapsi.fi/rlcsa for the datasets and full results.
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54 MB, only the small version of Swissprot exists. Wiki is a repetitive collec-
tion similar to Revision. It is generated by sampling all revisions of 1% of pages
from the English-language versions of Wikibooks, Wikinews, Wikiquote, and
Wikivoyage.

Synthetic collections. To explore the effect of collection repetitiveness on doc-
ument retrieval performance in more detail, we generated three types of syn-
thetic collections, using files from the Pizza & Chili corpus8. DNA is similar
to Influenza. Each collection has d = 1, 10, 100, or 1,000 base documents,
100,000/d variants of each base document, and mutation rate p = 0.001, 0.003,
0.01, 0.03, or 0.1. We take a prefix of length 1,000 from the Pizza & Chili DNA
file and generate the base documents by mutating the prefix at probability 10p
under the same model as in Figure 5. We then generate the variants in the
same way with mutation rate p. Concat and Version are similar to Page and
Revision, respectively. We read d = 10, 100, or 1,000 base documents of length
10,000 from the Pizza & Chili English file, and generate 10,000/d variants of
each base document with mutation rates 0.001, 0.003, 0.01, 0.03, and 0.1, as
above. Each variant becomes a separate document in Version, while all variants
of the same base document are concatenated into a single document in Concat.

7.1.2 Queries

Real collections. For Page and Revision, we downloaded a list of Finnish words
from the Institute for the Languages in Finland, and chose all words of length
≥ 5 that occur in the collection. For Enwiki, we used search terms from an
MSN query log with stopwords filtered out. We generated 20,000 patterns
according to term frequencies, and selected those that occur in the collection.
For Influenza, we extracted 100,000 random substrings of length 7, filtered out
duplicates, and kept the 1,000 patterns with the largest occ/df ratios. For
Swissprot, we extracted 200,000 random substrings of length 5, filtered out
duplicates, and kept the 10,000 patterns with the largest occ/df ratios. For
Wiki, we used the TREC 2006 Terabyte Track efficiency queries9 consisting of
411,394 terms in 100,000 queries.

Synthetic collections. We generated the patterns for DNA with a similar pro-
cess as for Influenza and Swissprot. We extracted 100,000 substrings of length
7, filter out duplicates, and chose the 1,000 with the largest occ/df ratios. For
Concat and Version, patterns were generated from the MSN query log in the
same way as for Enwiki.

7.1.3 Test Environment

We used two separate systems for the experiments. For document listing and
document counting, our test environment had two 2.40 GHz quad-core Intel

8 http://pizzachili.dcc.uchile.cl
9 http://trec.nist.gov/data/terabyte06.html
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Xeon E5620 processors and 96 GB memory. Only one core was used for the
queries. The operating system was Ubuntu 12.04 with Linux kernel 3.2.0. All
code was written in C++. We used g++ version 4.6.3 for the document listing
experiments and version 4.8.1 for the document counting experiments.

For the top-k retrieval and tf-idf experiments, we used another system with
two 16-core AMD Opteron 6378 processors and 256 GB memory. We used only
a single core for the single-term queries and up to 32 cores for the multi-term
queries. The operating system was Ubuntu 12.04 with Linux kernel 3.2.0. All
code was written in C++ and compiled with g++ version 4.9.2.

We executed the query benchmarks in the following way:

1. Load the RLCSA with the desired sample period for the current collection
into memory.

2. Load the query patterns corresponding to the collection into memory and
execute find queries in the RLCSA. Store the resulting lexicographic ranges
[`..r] in vector V .

3. Load the index to be benchmarked into memory.
4. Iterate through vector V once using a single thread and execute the desired

query for each range [`..r]. Measure the total wall clock time for executing
the queries.

We divided the measured time by the number of patterns, and listed the
average time per query in milliseconds or microseconds and the size of the
index structure in bits per symbol. There were certain exceptions:

– LZ and Grammar do not use a CSA. With them, we iterated through the
vector of patterns as in step 4, once the index and the patterns had been
loaded into memory. The average time required to get the range [`..r] in
CSA-based indexes (4 to 6 microseconds, depending on the collection) was
negligible compared to the average query times of LZ (at least 170 mi-
croseconds) and Grammar (at least 760 microseconds).

– We used the existing benchmark code with SURF. The code first loads the
index into memory and then iterates through the pattern file by reading
one line at a time. To reduce the overhead from reading the patterns, we
cached them by using cat > /dev/null. Because SURF queries were based
on the pattern instead of the corresponding range [`..r], we executed find
queries first and subtracted the time used for them from the subsequent
top-k queries.

– In our tf-idf index, we parallelized step 4 using the OpenMP parallel for

construct.
– We used the existing benchmark code with Terrier. We cached the queries

as with SURF, set trec.querying.outputformat to NullOutputFormat,
and set the logging level to off.
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7.2 Document Listing

We compare our new proposals from Sections 3.3 and 4.1 to the existing doc-
ument listing solutions. We also aim to determine when these sophisticated
approaches are better than brute-force solutions based on pattern matching.

7.2.1 Indexes

Brute force (Brute). These algorithms simply sort the document identifiers in
the range DA[`..r] and report each of them once. Brute-D stores DA in n lg d
bits, while Brute-L retrieves the range SA[`..r] with the locate functionality of
the CSA and uses bitvector B to convert it to DA[`..r].

Sadakane (Sada). This family of algorithms is based on the improvements
of Sadakane (2007) to the algorithm of Muthukrishnan (2002). Sada-L is the
original algorithm, while Sada-D uses an explicit document array DA instead
of retrieving the document identifiers with locate.

ILCP (ILCP). This is our proposal in Section 3.3. The algorithms are the same
of Sadakane (2007), but they run on the run-length encoded ILCP array. As
for Sada, ILCP-L obtains the document identifiers using locate on the CSA,
whereas ILCP-D stores array DA explicitly.

Wavelet tree (WT). This index stores the document array in a wavelet tree
(Section 2.2) to efficiently find the distinct elements in DA[`..r] (Välimäki and
Mäkinen, 2007). The best known implementation of this idea (Navarro et al,
2014b) uses plain, entropy-compressed, and grammar-compressed bitvectors
in the wavelet tree, depending on the level. Our WT implementation uses a
heuristic similar to the original WT-alpha (Navarro et al, 2014b), multiplying
the size of the plain bitvector by 0.81 and the size of the entropy-compressed
bitvector by 0.9, before choosing the smallest one for each level of the tree.
These constants were determined by experimental tuning.

Precomputed document lists (PDL). This is our proposal in Section 4.1. Our
implementation resorts to Brute-L to handle the short regions that the index
does not cover. The variant PDL-BC compresses sets of equal documents using
a Web graph compressor (Hernández and Navarro, 2014). PDL-RP uses Re-
Pair compression (Larsson and Moffat, 2000) as implemented by Navarro10

and stores the dictionary in plain form. We use block size b = 256 and storing
factor β = 16, which proved to be good general-purpose parameter values.

10 http://www.dcc.uchile.cl/gnavarro/software
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Grammar-based (Grammar). This index (Claude and Munro, 2013) is an adap-
tation of a grammar-compressed self-index (Claude and Navarro, 2012) to doc-
ument listing. Conceptually similar to PDL, Grammar uses Re-Pair to parse
the collection. For each nonterminal symbol in the grammar, it stores the set
of identifiers of the documents whose encoding contains the symbol. A sec-
ond round of Re-Pair is used to compress the sets. Unlike most of the other
solutions, Grammar is an independent index and needs no CSA to operate.

Lempel-Ziv (LZ). This index (Ferrada and Navarro, 2013) is an adaptation of
a pattern-matching index based on LZ78 parsing (Navarro, 2004) to document
listing. Like Grammar, LZ does not need a CSA.

We implemented Brute, Sada, ILCP, and the PDL variants ourselves11 and
modified existing implementations of WT, Grammar, and LZ for our purposes.
We always used the RLCSA (Mäkinen et al, 2010) as the CSA, as it performs
well on repetitive collections. The locate support in RLCSA includes optimiza-
tions for long query ranges and repetitive collections, which is important for
Brute-L and ILCP-L. We used suffix array sample periods 8, 16, 32, 64, 128 for
non-repetitive collections and 32, 64, 128, 256, 512 for repetitive ones.

When a document listing solution uses a CSA, we start the queries from
the lexicographic range [`..r] instead of the pattern P . This allows us to see the
performance differences between the fastest solutions better. The average time
required for obtaining the ranges was 4 to 6 microseconds per pattern, depend-
ing on the collection, which is negligible compared to the average time used
by Grammar (at least 760 microseconds) and LZ (at least 170 microseconds).

7.2.2 Results

Real collections. Figures 6 and 7 contain the results for document listing with
small and large real collections, respectively. For most of the indexes, the
time/space trade-off is given by the RLCSA sample period. The trade-off of
LZ comes from a parameter specific to that structure involving RMQs (Ferrada
and Navarro, 2013). Grammar has no trade-off.

Brute-L always uses the least amount of space, but it is also the slowest
solution. In collections with many short documents (i.e., all except Page),
we have occ/df < 4 on the average. The additional effort done by Sada-L
and ILCP-L to report each document only once does not pay off, and the
space used by the RMQ structure is better spent on increasing the number of
suffix array samples for Brute-L. The difference is, however, very noticeable on
Page, where the documents are large and there are hundreds of occurrences of
the pattern in each document. ILCP-L uses less space than Sada-L when the
collection is repetitive and contains many similar documents (i.e., on Revision
and Influenza); otherwise Sada-L is slightly smaller.

The two PDL alternatives usually have similar performance, but in some
cases PDL-BC uses much less space. PDL-BC, in turn, can use significantly more

11 http://jltsiren.kapsi.fi/rlcsa
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space than Brute-L, Sada-L, and ILCP-L, but is always orders of magnitude
faster. The document sets of versioned collections such as Page and Revision
are very compressible, making the collections very suitable for PDL. On the
other hand, grammar-based compression cannot reduce the size of the stored
document sets enough when the collections are non-repetitive. Repetitive but
unstructured collections like Influenza represent an interesting special case.
When the number of revisions of each base document is much larger than the
block size b, each leaf block stores an essentially random subset of the revisions,
which cannot be compressed very well.

Among the other indexes, Sada-D and ILCP-D can be significantly faster
than PDL-BC, but they also use much more space. From the non-CSA-based
indexes, Grammar reaches the Pareto-optimal curve on Revision and Influenza,
while being too slow or too large on the other collections. We did not build
Grammar for the large version of Page, as it would have taken several months.

In general, we can recommend PDL-BC as a medium-space alternative for
document listing. When less space is desired, we can use ILCP-L, which offers
robust time and space guarantees. If the documents are small, we can even
use Brute-L. Further, we can use fast document counting to compare df with
occ = r − ` + 1, and choose between ILCP-L and Brute-L according to the
results.

Synthetic collections. Figures 8 and 9 shows our document listing results with
synthetic collections. Due to the large number of collections, the results for a
given collection type and number of base documents are combined in a single
plot, showing the fastest algorithm for a given amount of space and a mutation
rate. Solid lines connect measurements that are the fastest for their size, while
dashed lines are rough interpolations.

The plots were simplified in two ways. Algorithms providing a marginal
and/or inconsistent improvement in speed in a very narrow region (mainly
Sada-L and ILCP-L) were left out. When PDL-BC and PDL-RP had very similar
performance, only one of them was chosen for the plot.

On DNA, Grammar was a good solution for small mutation rates, while
LZ was good with larger mutation rates. With more space available, PDL-BC
became the fastest algorithm. Brute-D and ILCP-D were often slightly faster
than PDL, when there was enough space available to store the document array.
On Concat and Version, PDL was usually a good mid-range solution, with PDL-
RP being usually smaller than PDL-BC. The exceptions were the collections
with 10 base documents, where the number of variants (1,000) was clearly
larger than the block size (256). With no other structure in the collection,
PDL was unable to find a good grammar to compress the sets. At the large
end of the size scale, algorithms using an explicit document array DA were
usually the fastest choices.
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Fig. 6 Document listing on small real collections. The total size of the index in bits per
symbol (x) and the average time per query in milliseconds (y).
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Fig. 7 Document listing on large real collections. The total size of the index in bits per
symbol (x) and the average time per query in milliseconds (y).

7.3 Top-k Retrieval

7.3.1 Indexes

We compare the following top-k retrieval algorithms. Many of them share
names with the corresponding document listing structures described in Sec-
tion 7.2.1.

Brute force (Brute). These algorithms correspond to the document listing al-
gorithms Brute-D and Brute-L. To perform top-k retrieval, we not only collect
the distinct document identifiers after sorting DA[`..r], but also record the
number of times each one appears. Then k identifiers appearing most fre-
quently are then reported.
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Precomputed document lists (PDL). We use the variant of PDL-RP modified
for top-k retrieval, as described in Section 4.2. PDL–b denotes PDL with block
size b and with document sets for all suffix tree nodes above the leaf blocks,
while PDL–b+F is the same with term frequencies. PDL–b–β is PDL with block
size b and storing factor β.

Large and fast (SURF). This index (Gog and Navarro, 2015b) is based on a
conceptual idea by Navarro and Nekrich (2012), and improves upon a previ-
ous implementation (Konow and Navarro, 2013). It can answer top-k queries
quickly if the pattern occurs at least twice in each reported document. If doc-
uments with just one occurrence are needed, SURF uses a variant of Sada-L to
find them.
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We implemented the Brute and PDL variants ourselves12 and used the exist-
ing implementation of SURF13. While WT (Navarro et al, 2014b) also supports
top-k queries, the 32-bit implementation cannot index the large versions of the
document collections used in the experiments. As with document listing, we
subtracted the time required for finding the lexicographic ranges [`..r] using a
CSA from the measured query times. SURF uses a CSA from the SDSL library
(Gog et al, 2014), while the rest of the indexes use RLCSA.

7.3.2 Results

Figure 10 contains the results for top-k retrieval using the large versions of the
real collections. We left Page out from the results, as the number of documents
(280) was too low for meaningful top-k queries. For most of the indexes, the
time/space trade-off is given by the RLCSA sample period, while the results
for SURF are for the three variants presented in the paper.

The three collections proved to be very different. With Revision, the PDL
variants were both fast and space-efficient. When storing factor β was not set,
the total query times were dominated by rare patterns, for which PDL had to
resort to using Brute-L. This also made block size b an important time/space
trade-off. When the storing factor was set, the index became smaller and

12 http://jltsiren.kapsi.fi/rlcsa
13 https://github.com/simongog/surf/tree/single_term
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slower and the trade-offs became less significant. SURF was larger and faster
than Brute-D with k = 10 but became slow with k = 100.

On Enwiki, the variants of PDL with storing factor β set had similar perfor-
mance to Brute-D. SURF was faster with roughly the same space usage. PDL
with no storing factor was much larger than the other solutions. However, it
became competitive with k = 100, as its performance was almost unaffected
by the number of documents requested.

The third collection, Influenza, was the most surprising of the three. PDL
with storing factor β set was between Brute-L and Brute-D in both time and
space. We could not build PDL without the storing factor, as the document
sets were too large for the Re-Pair compressor. The construction of SURF also
failed with this dataset.

7.4 Document Counting

7.4.1 Indexes

We use two fast document listing algorithms as baseline document counting
methods (see Section 7.2.1): Brute-D sorts the query range DA[`..r] to count
the number of distinct document identifiers, and PDL-RP returns the length of
the list of documents obtained. Both indexes use the RLCSA with suffix array
sample period set to 32 on non-repetitive datasets, and to 128 on repetitive
datasets.

We also consider a number of encodings of Sadakane’s document counting
structure (see Section 5). The following ones encode the bitvector H ′ directly
in a number of ways:

– Sada uses a plain bitvector representation.
– Sada-RR uses a run-length encoded bitvector as supplied in the RLCSA

implementation. It uses δ-codes to represent run lengths and packs them
into blocks of 32 bytes of encoded data. Each block stores the number of
bits and 1s up to its beginning.

– Sada-RS uses a run-length encoded bitvector, represented with a sparse
bitmap (Okanohara and Sadakane, 2007) marking the beginnings of the
0-runs and another for the 1-runs.

– Sada-RD uses run-length encoding with δ-codes to represent the lengths.
Each block in the bitvector contains the encoding of 128 1-bits, while three
sparse bitmaps are used to mark the number of bits, 1-bits, and starting
positions of block encodings.

– Sada-Gr uses a grammar-compressed bitvector (Navarro and Ordóñez, 2014).

The following encodings use filters in addition to bitvector H ′:

– Sada-P-G uses Sada for H ′ and a gap-encoded bitvector for the filter bitvec-
tor F . The gap-encoded bitvector is also provided in the RLCSA implemen-
tation. It differs from the run-length encoded bitvector by only encoding
runs of 0-bits.



Document Retrieval on Repetitive String Collections 35

– Sada-P-RR uses Sada for H ′ and Sada-RR for F .
– Sada-RR-G uses Sada-RR for H ′ and a gap-encoded bitvector for F .
– Sada-RR-RR uses Sada-RR for both H ′ and F .
– Sada-S uses sparse bitmaps for both H ′ and the sparse filter FS .
– Sada-S-S is Sada-S with an additional sparse bitmap for the 1-filter F1

– Sada-RS-S uses Sada-RS for H ′ and a sparse bitmap for F1.
– Sada-RD-S uses Sada-RD for H ′ and a sparse bitmap for F1.

Finally, ILCP implements the technique described in Section 3.4, using the
same encoding as in Sada-RS to represent the bitvectors in the wavelet tree.

Our implementations of the above methods can be found online.14

7.4.2 Results

Due to the use of 32-bit variables in some of the implementations, we could not
build all structures for the large real collections. Hence we used the medium
versions of Page, Revision, and Enwiki, the large version of Influenza, and the
only version of Swissprot for the benchmarks. We started the queries from
precomputed lexicographic ranges [`..r] in order to emphasize the differences
between the fastest variants. For the same reason, we also left out of the plots
the size of the RLCSA and the possible document retrieval structures. Finally,
as plain Sada was almost always the fastest method, we scaled the plots to
leave out anything much larger than it. The results can be seen in Figure 11.
Table 5 in Appendix A lists the results in further detail.

On Page, the filtered methods Sada-P-RR and Sada-RR-RR are clearly the
best choices, being only slightly larger than the baselines and orders of magni-
tude faster. Plain Sada is much faster than those, but it takes much more space
than all the other indexes. Only Sada-Gr compresses the structure better, but
it is almost as slow as the baselines.

On Revision, there were many small encodings with similar performance.
Among those, Sada-RS-S is the fastest. Sada-S is somewhat larger and faster.
As on Page, plain Sada is even faster, but it takes much more space.

The situation changes on the non-repetitive Enwiki. Only Sada-RD-S, Sada-
RS-S, and Sada-Gr can compress the bitvector clearly below 1 bit per symbol,
and Sada-Gr is much slower than the other two. At around 1 bit per symbol,
Sada-S is again the fastest option. Plain Sada requires twice as much space as
Sada-S, but it is twice as fast.

Influenza and Swissprot contain, respectively, RNA and protein sequences,
making each individual document quite random. Such collections are easy cases
for Sadakane’s method, and many encodings compress the bitvector very well.
In both cases, Sada-S was the fastest small encoding. On Influenza, the small
encodings fit in CPU cache, making them often faster than plain Sada.

Different compression techniques succeed with different collections, for dif-
ferent reasons. This complicates a simple recommendation for a best option.
Plain Sada is always fast, while Sada-S is usually smaller without sacrificing

14 http://jltsiren.kapsi.fi/rlcsa and https://github.com/ahartik/succinct
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Table 3 Ranked multi-term queries on the Wiki collection. Query type, number of docu-
ments requested, and the average number of queries per second with 1, 8, 16, and 32 query
threads.

Query k 1 thread 8 threads 16 threads 32 threads

Ranked-AND 10 152 914 1699 2668
100 136 862 1523 2401

Ranked-OR 10 229 1529 2734 4179
100 163 1089 1905 2919

too much performance. When more space-efficient solutions are required, the
right choice depends on the type of the collection. Our ILCP-based structure,
ILCP, also outperforms Sada in space on most collections, but it is always
significantly larger and slower than compressed variants of Sada.

7.5 The Multi-term tf-idf Index

We implement our multi-term index as follows. We use RLCSA as the CSA,
PDL–256+F for single-term top-k retrieval, and Sada-S for document counting.
We could have integrated the document counts into the PDL structure, but
a separate counting structure makes the index more flexible. Additionally,
encoding the number of redundant documents in each internal node of the
suffix tree (Sada) often takes less space than encoding the total number of
documents in each node of the sampled suffix tree (PDL). We use the basic
tf-idf scoring scheme.

We tested the resulting performance on the 1432 MB Wiki collection.
RLCSA took 0.73 bps with sample period 128 (the sample period did not
have a significant impact on query performance), PDL–256+F took 3.37 bps,
and Sada-S took 0.13 bps, for a total of 4.23 bps (757 MB). Out of the total
of 100,000 queries in the query set, there were matches for 31,417 conjunctive
queries and 97,774 disjunctive queries.

The results can be seen in Table 3. When using a single query thread, the
index can process 136–229 queries per second (around 4–7 milliseconds per
query), depending on the query type and the value of k. Disjunctive queries
are faster than conjunctive queries, while larger values of k do not increase
query times significantly. Note that our ranked disjunctive query algorithm
preempts the processing of the lists of the patterns, whereas in the conjunctive
ones we are forced to expand the full document lists for all the patterns; this is
why the former are faster. The speedup from using 32 threads is around 18x.

Since our multi-term index offers a functionality similar to basic inverted
index queries, it seems sensible to compare it to an inverted index designed
for natural language texts. For this purpose, we indexed the Wiki collection
using Terrier (Macdonald et al, 2012) version 4.1 with the default settings. See
Table 4 for a comparison between the two indexes.
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Table 4 Our index (PDL) and an inverted index (Terrier) on the Wiki collection. The size
of the vocabulary, the posting lists, and the collection in millions of elements, the size of the
index in megabytes, and the number of Ranked-OR queries per second with k = 10 or 100
using a single thread.

Index Vocabulary Posting lists Collection Size Queries / second

PDL 39.2M 8840M 1500M 757 229 163
substrings documents symbols MB (k = 10) (k = 100)

Terrier 0.134M 42.3M 133M 90.1 231 228
tokens documents tokens MB (k = 10) (k = 100)

Note that the similarity in the functionality is only superficial: our in-
dex can find any text substring, whereas the inverted index can only look for
indexed words and phrases. Thus our index has an index point per symbol,
whereas Terrier has an index point per word (in addition, inverted indexes
usually discard words deemed uninteresting, like stopwords). Note that PDL
also chooses frequent strings and builds their lists of documents, but since it
has many more index points, its posting lists are 200 times longer than those
of Terrier, and the number of lists is 300 times larger. Thanks to the compres-
sion of its lists, however, PDL uses only 8 times more space than Terrier. On
the other hand, both indexes have similar query performance. When logging
and output was set to minimum, Terrier could process 231 top-10 queries and
228 top-100 queries per second under the tf-idf scoring model using a single
query thread.

8 Conclusions

We have investigated the space/time tradeoffs involved in indexing highly
repetitive string collections, with the goal of performing information retrieval
tasks on them. Particularly, we considered the problems of document listing,
top-k retrieval, and document counting. We have developed new indexes that
perform particularly well on those types of collections, and studied how other
existing data structures perform in this scenario, and in which cases the in-
dexes are actually better than brute-force approaches. As a result, we offered
recommendations on which structures to use depending on the kind of repeti-
tiveness involved and the desired space usage. As a proof of concept, we have
shown how the tools we developed can be assembled to build an efficient index
supporting ranked multi-term queries on repetitive string collections.

We do not aim to outperform inverted indexes on natural language text col-
lecions, where they are unbeatable, but to offer similar capabilities on generic
string collections, where inverted indexes cannot be applied. Our developments
are at the level of algorithmic ideas and prototypes. In order to have our most
promising structures scale up to real-world information systems, where in-
verted indexes are now the norm, various research problems must be faced:
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1. Our construction algorithms scale up to a few gigabytes. This limits the
collection sizes we can handle, even if they are repetitive and thus the final
structures are much smaller. For example, our PDL structure first builds
the classical suffix tree and then samples it. Using construction space pro-
portional to that of the final structures in the case of repetitive scenarios,
or building efficiently using the disk, is an important research problem.

2. When the datasets are sufficiently large, even the compressed structures
will have to operate on disk. Inverted indexes are extremely disk-friendly,
which makes them perform well on huge text collections. We have not
yet studied this aspect of our structures, although PDL seems well-suited
to this case: it traverses one or a few contiguous lists (which should be
decompressed in main memory) or a contiguous area of the suffix array.

3. Our data structures are static, that is, they must be rebuilt from scratch
when documents are inserted in the collection or deleted from it. Inverted
indexes tolerate updates much better, though they are not fully dynamic
either. Instead, since in many scenarios updates are not so frequent, popular
solutions combine a large part of the collection that is indexed and a small
recent part that is traversed sequentially. It is likely that our structures
perform well under such a scheme as well, as long as we manage to rebuild
the index periodically within controlled space and time.

4. We showed that our structures can handle multi-term queries under the
simple tf-idf scoring scheme. While this can be acceptable in some ap-
plications for generic string collections, information retrieval on natural
language texts uses nowadays much more sophisticated formulas. Inverted
indexes have been adapted to successfully support those formulas that are
used for a first filtration step, like BM25. Studying how to extend our
indexes to handle these is another interesting research problem.

5. One point where our indexes could outperform inverted indexes is in phrase
queries, where inverted indexes must perform costly list intersections. Our
suffix-array based indexes, instead, do not have to do anything special. For
a fair comparison, we should regard the text as a sequence of tokens (i.e.,
the terms that are indexed by the inverted index) and build our indexes
on them. The resulting structure would then only answer term and phrase
queries, just like an inverted index, but would be must faster at phrases.
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A Detailed Results

Table 5 shows the precise numerical results displayed in Figure 11, to allow for a finer-grained
comparison.

Table 5 Document counting on different datasets. The average query time in microseconds
and the size of the counting structure in bits per symbol. Results on the Pareto frontier
have been highlighted. The baseline document listing methods Brute-D and PDL-RP are
presented as having size 0, as they take advantage of the existing functionalities in the index.
We did not build Sada-P-G, Sada-P-RR, Sada-RR-G, and Sada-RR-RR for Swissprot, because
the filter was empty and the remaining structure was equivalent to Sada or Sada-RR.

Page Revision Enwiki Influenza Swissprot

Brute-D 59.419 μs 124.286 μs 714.481 μs 4557.310 μs 9.392 μs
0.000 b 0.000 b 0.000 b 0.000 b 0.000 b

PDL-RP 43.356 μs 217.804 μs 1107.470 μs 6221.610 μs 24.848 μs
0.000 b 0.000 b 0.000 b 0.000 b 0.000 b

Sada 0.218 μs 0.213 μs 0.250 μs 0.624 μs 0.246 μs
2.094 b 2.094 b 2.094 b 2.093 b 2.091 b

Sada-P-G 2.030 μs 1.442 μs 1.608 μs 1.291 μs –
1.307 b 2.469 b 2.694 b 2.466 b –

Sada-P-RR 0.852 μs 0.882 μs 1.572 μs 1.356 μs –
0.146 b 2.455 b 2.748 b 2.466 b –

Sada-RR 1.105 μs 0.506 μs 1.013 μs 0.581 μs 0.779 μs
5.885 b 0.125 b 1.223 b 0.007 b 0.076 b

Sada-RR-G 2.268 μs 1.535 μs 2.001 μs 1.046 μs –
1.297 b 0.070 b 1.088 b 0.007 b –

Sada-RR-RR 1.088 μs 0.974 μs 1.960 μs 1.108 μs –
0.136 b 0.056 b 1.142 b 0.007 b –

Sada-Gr 23.750 μs 21.643 μs 18.542 μs 33.502 μs 25.236 μs
0.086 b 0.024 b 0.439 b 0.005 b 0.034 b

Sada-RS 0.742 μs 0.396 μs 0.688 μs 0.584 μs 0.538 μs
5.991 b 0.222 b 1.180 b 0.006 b 0.082 b

Sada-RS-S 0.897 μs 0.492 μs 0.923 μs 0.767 μs 0.545 μs
1.042 b 0.059 b 0.424 b 0.005 b 0.082 b

Sada-RD 1.019 μs 0.521 μs 1.119 μs 0.856 μs 0.792 μs
3.717 b 0.088 b 0.942 b 0.006 b 0.062 b

Sada-RD-S 1.205 μs 0.641 μs 1.316 μs 1.005 μs 0.799 μs
0.989 b 0.046 b 0.374 b 0.005 b 0.062 b

Sada-S 0.604 μs 0.269 μs 0.525 μs 0.439 μs 0.396 μs
5.729 b 0.209 b 1.079 b 0.006 b 0.078 b

Sada-S-S 0.735 μs 0.380 μs 0.755 μs 0.624 μs 0.399 μs
3.432 b 0.142 b 0.823 b 0.006 b 0.078 b

ILCP 4.399 μs 4.482 μs 6.033 μs 7.252 μs 3.414 μs
18.454 b 0.484 b 4.575 b 0.525 b 0.992 b
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Table 6 Building the tf-idf index for the Wiki collection. Construction time in minutes and
peak memory usage in gigabytes for RLCSA construction, PDL construction, compressing
the document sets using Re-Pair, Sada-S construction, and the entire construction.

RLCSA PDL Re-Pair Sada-S Total

Time 10.5 min 39.2 min 123 min 74.7 min 248 min

Memory 19.6 GB 111 GB 202 GB 92.8 GB 202 GB

B Index Construction

Our construction algorithms priorize flexibility over performance. For example, the construc-
tion of the tf-idf index (Section 6) proceeds as follows:

1. Build RLCSA for the collection.
2. Extract the LCP array and the document array from the RLCSA, traverse the suffix

tree by using the LCP array, and build PDL with uncompressed document sets.
3. Compress the document sets using a Re-Pair compressor.
4. Build the Sada-S structure using a similar algorithm as for PDL construction.

See Table 6 for the time and space requirements of building the index for the Wiki collection.
Scaling the index up for larger collections requires faster and more space-efficient con-

struction algorithms for its components. There are some obvious improvements:

– RLCSA construction can be done in less memory by building the index in multiple
parts and merging the partial indexes (Sirén, 2009). With 100 parts, the indexing of a
repetitive collection proceeds at about 1 MB/s using 2–3 bits per symbol (Sirén, 2012).
Newer suffix array construction algorithms achieve even better time/space trade-offs
(Kärkkäinen et al, 2015).

– We can use a compressed suffix tree for PDL construction. The SDSL library (Gog et al,
2014) provides fast scalable implementations that require around 2 bytes per symbol.

– We can write the uncompressed document sets to disk as soon as the traversal returns
to the parent node.

– We can build the H array for Sada-S by keeping track of the lowest common ancestor
of the previous occurrence of each document identifier and the current node. If node v
is the lowest common ancestor of consecutive occurrences of a document identifier, we
increment the corresponding cell of the H array. Storing the array requires about a byte
per symbol.

The main bottleneck in the construction is Re-Pair compression. Our compressor re-
quires 24 bytes of memory for each integer in the document sets, and the number of integers
(8.9 billion) is several times larger than the number of symbols in the colletion (1.5 billion).
It might be possible to improve compression performance by using a specialized compressor.
If interval DA[`..r] corresponds to suffix tree node u and the collection is repetitive, it is
likely that the interval DA[`′..r′] corresponding to the node reached by taking the suffix link
from u is very similar to DA[`..r].


