
Compression: A Key for Next GenerationText Retrieval Systems�Nivio Ziviani Edleno Silva de MouraDepartment of Computer ScienceUniv. Federal de Minas Gerais, BrazilGonzalo Navarro Ricardo Baeza-YatesDepartment of Computer ScienceUniv. de Chile, ChileSeptember 27, 2000AbstractIn this article we discuss recent methods for compressing the text and the index oftext retrieval systems. By compressing both the complete text and the index, the totalamount of space is less than half the size of the original text alone. Most surprisingly,the time required to build the index and also to answer a query is much less than if theindex and text had not been compressed. This is one of the few cases where there is nospace-time trade-o�. Moreover, the text can be kept compressed all the time, allowingupdates when changes occur in the compressed text.Keywords: Text retrieval systems, text and index compression.The widespread use of digital libraries, o�ce automation systems, document databases,and lately the World-Wide Web has led to an explosion of textual information availableonline [3, 11]. In [6], the Web alone was shown to have approximately 800 million staticpages, containing a total of approximately 6 terabytes of plain text. A terabyte is a bit morethan one million of million bytes, enough to store the text of a million books. Text retrievalis the kernel of most Information Retrieval (IR) systems, and one of the biggest challenges toIR systems is to provide fast access to such a mass of text.In this article we discuss recent techniques that permit fast direct searching on the com-pressed text and how the new techniques can improve the overall e�ciency of IR systems. Toillustrate this point consider the problem of creating a large text database and providing fastaccess through keyword searches. By compressing both the index and the complete text, thetotal amount of space is less than half the size of the original text alone. Most surprisingly,the time required to build the index and also to answer a query is much less than if the index�This work has been partially supported by SIAM/DCC/UFMG Project, grant MCT/FINEP/PRONEX76.97.1016.00, AMYRI/CYTED Project, CNPq grant 520916/94-8 (Nivio Ziviani), CAPES scholarship(Edleno Silva de Moura) and CONICYT grant 1990627 (Gonzalo Navarro and Ricardo Baeza-Yates).1

and text had not been compressed. This is one of the few cases where there is no space-timetrade-o�.Traditionally, compression techniques have not been used in IR systems because the com-pressed texts did not allow fast access. Recent text compression methods [7] have enabledthe possibility of searching directly the compressed text faster than in the original text, andhave also improved the amount of compression obtained. Direct access to any point in thecompressed text has also become possible, and the IR system might access a given word ina compressed text without the need to decode the entire text from the beginning. The newfeatures lead to a win-win situation that is raising renewed interest in text compression forthe implementation of IR systems.Text compression is about �nding ways to represent the text in less space. This is ac-complished by substituting the symbols in the text by equivalent ones that are representedusing a smaller number of bits or bytes. For large text collections, text compression appearsas an attractive option for reducing costs. The gain obtained from compressing text is thatit requires less storage space, it takes less time to be read from disk or transmitted over acommunication link, and it takes less time to search. The price paid is the computing costnecessary to code and decode the text. This drawback, however, is becoming less and lesssigni�cant as technology progresses. From 1980 to 1995 the time to access disks kept approx-imately constant while processing speed increased approximately 2,000 times [9]. As timepasses, investing more and more computing power in compression in exchange for less disk ornetwork transfer times becomes a pro�table option.The savings of space obtained by a compression method is measured by the compressionratio, de�ned as the size of the compressed �le as a percentage of the uncompressed �le.Besides the economy of space, there are other important aspects to be considered, such ascompression and decompression speed. In some situations, decompression speed is moreimportant than compression speed. For instance, this is the case with textual databases anddocumentation systems in which it is common to compress the text once and to read it manytimes from disk.Another important characteristic of a compression method is the possibility of performingpattern matching in a compressed text without decompressing it. In this case, sequentialsearching can be speeded up by compressing the search key rather than decoding the com-pressed text being searched. As a consequence, it is possible to search faster on compressedtext because much less bytes have to be scanned.E�cient text retrieval on large text collections requires specialized indexing techniques.An index is a data structure built on the text collection intended to speed up queries. A simpleand popular indexing structure for text collections is the inverted �le [3, 11]. Inverted �les areespecially adequate when the pattern to be searched for is formed by simple words. This is acommon type of query, for instance, when searching the Web for pages that include the words\text" and \compression". An inverted �le is typically composed of a vector containing all thedistinct words in the text collection (which is called the vocabulary) and a list of all documentnumbers in which each distinct word occurs (sometimes its frequency in each document isalso stored). The largest part of the index is the lists of document numbers, for which speci�ccompression methods have been proposed that provide very good compression ratios. In thiscase, both index construction time and query processing time can be signi�cantly improvedby using index compression schemes.In this article, we �rst review traditional and recent methods for compressing text. Fol-lowing, we discuss how recent techniques permit fast direct searching on the compressed text.2

Later on, we show how the new techniques can improve the overall e�ciency of IR systems.Moreover, the text can be kept compressed all the time, allowing updates when changes occurin the compressed text.Text Compression Methods for IR SystemsOne well-known coding strategy is Hu�man coding [5]. The idea of Hu�man coding is tocompress the text by assigning shorter codes to symbols with higher frequencies. This canbe achieved by assigning a unique variable-length bit encoding to each di�erent symbol ofthe text. The traditional implementations of the Hu�man method are character-based, i.e.,adopt the characters as the symbols in the alphabet. A successful idea towards merging therequirements of compression algorithms and the needs of IR systems is to consider that thesymbols to be compressed are words and not characters. Words are the atoms on whichmost IR systems are built. Taking words as symbols means that the table of symbols inthe compression coder is exactly the vocabulary of the text, allowing a natural integrationbetween an inverted �le and a word-based Hu�man compression method. New word-basedHu�man methods allow random access to words within the compressed text, which is acritical issue for an IR system. Moreover, character-based Hu�man methods are typicallyable to compress English texts to approximately 60% while word-based Hu�man methods areable to reduce them to just over 25%, because the distribution of words is much more biasedthan the distribution of characters.Another important family of compression methods, called Ziv-Lempel, substitutes a se-quence of symbols by a pointer to a previous occurrence of that sequence. Compressionis obtained because the pointers need less space than the phrase they replace. Ziv-Lempelmethods are popular for their speed and economy of memory, but they present importantdisadvantages in an IR environment. First, they require decoding to start at the beginningof a compressed �le, which makes random access expensive. Second, they are di�cult tosearch without decompressing. A possible advantage is that they do not need to store a tableof symbols as a Hu�man-based method does, but this has little importance in IR scenariosbecause the vocabulary of the text is needed anyway for indexing and querying purposes.Arithmetic coding [11], another well-known compression method, presents similar problems.Word-Based Hu�man CompressionFor natural language texts used in an IR context, the most e�ective compression technique isword-based Hu�man coding. Compression proceeds in two passes over the text. The encodermakes a �rst pass over the text to obtain the frequency of each di�erent text word and thenit performs the actual compression in a second pass.The text is not only composed of words but also of separators. An e�cient way to dealwith words and separators is to use a method called spaceless words [7]. If a word is followedby a space, just the word is encoded. If not, the word and then the separator are encoded.At decoding time, it is assumed that a space follows each word, except if the next symbolcorresponds to a separator. Figure 1 presents an example of compression using Hu�mancoding for the spaceless words method. The set of symbols in this case is f"a", "each","is", "for", "rose", ",t"g, whose frequencies are 2, 1, 1, 1, 3, 1, respectively.The example also shows how the codes for the symbols are organized in a so-calledHu�mantree. The most frequent word (in this case, "rose") receives the shortest code (in this case,3

e��� XXX0 1 rosee��� XXX0 1e hhhh((((0 1eHH��each ,t0 1 iseHH��for 10 aOriginal text:Compressed text: 0010 0000 1 0001 01 1 0011 01 1for each rose, a rose is a roseFigure 1: Compression using Hu�man coding for spaceless words."1"). The Hu�man method gives the tree that minimizes the length of the compressed �le,but many trees would have achieved the same compression. For instance, exchanging the leftand right children of a node yields an alternative Hu�man tree with the same compressionratio. The preferred choice for most applications is the canonical tree, where the right subtreeis never taller than the left subtree, as it happens in Figure 1. Canonical trees allow moree�ciency at decoding time with less memory requirement. The algorithm for building theHu�man tree from the symbol frequencies is described, for instance, in [11], and can be donein linear time after sorting the symbol frequencies.Decompression is accomplished as follows. The stream of bits in the compressed �le istraversed sequentially. The sequence of bits read is used to traverse the Hu�man tree, startingat the root. Whenever a leaf node is reached, the corresponding word (which constitutes thedecompressed symbol) is printed out and the tree traversal is restarted. Thus, according tothe tree in Figure 1, the presence of the code "0010" in the compressed �le leads to thedecompressed symbol "for".Byte-Oriented Hu�man CodingThe original method proposed by Hu�man is mostly used as a binary code. In [7], the codeassignment is modi�ed such that a sequence of whole bytes is associated with each word inthe text. As a result, the maximum degree of each node is now 256. This version is calledplain Hu�man code in this article. An alternative use of byte coding is what we call taggedHu�man code, where only 7 of the 8 bits of each byte are used for the code (and hence thetree has degree 128). The eighth bit is used to signal the �rst byte of each codeword (which,as seen later, aids the search). For example, a possible plain code for the word "rose" couldbe the 3-byte code \47 31 8", and a possible tagged code for the word "rose" could be\175 31 8" (where the �rst byte 175 = 47 + 128). Experimental results have shown that nosigni�cant degradation of the compression ratio is experienced by using bytes instead of bitswhen coding the words of a vocabulary. On the other hand, decompression and searchingare faster with a byte-oriented Hu�man code than with a binary Hu�man code, because bitshifts and masking operations are not necessary.Table 1 shows the compression ratios and the compression and decompression timesachieved for binary Hu�man, plain Hu�man, tagged Hu�man, gnu Gzip and Unix Compressfor the �le wsj containing the Wall Street Journal (1987, 1988, 1989), part of the TREC 3collection [4]. The wsj �le has 250 megabytes, almost 43 million words and nearly 200,000di�erent words (vocabulary). As it can be seen, the compression ratio degrades only slightlyby using bytes instead of bits. The increase in the compression ratio of the tagged Hu�man4

code is approximately 3 points over that of the plain Hu�man code, which comes from the ex-tra space allocated for the tag bit in each byte. The compression time is 2-3 times faster thanGzip and only 17% slower than Compress (which achieves much worse compression ratios).Considering decompression, there is a signi�cant improvement when using bytes instead ofbits. Using bytes, both tagged and plain Hu�man are more than 20% faster than Gzip andthree times faster than Compress.Method Compression Compression DecompressionRatio (%) Time (min) Time (min)Binary Hu�man 27.13 8.77 3.08Plain Hu�man 30.60 8.67 1.95Tagged Hu�man 33.70 8.90 2.02Gzip 37.53 25.43 2.68Compress 42.94 7.60 6.78Table 1: Comparison of compression techniques on the wsj text collection.One important consequence of using byte Hu�man coding is the possibility of perform-ing fast direct searching on compressed text. The search algorithm is explained in the nextsection. The exact search can be done on the compressed text directly, using any knownsequential pattern matching algorithm. The general algorithm allows a large number of vari-ations of exact and approximate searching, such as phrases, ranges, complements, wild cardsand arbitrary regular expressions. This technique is not only useful to speed up sequentialsearch. As we see later, it can also be used to improve indexed schemes that combine inverted�les and sequential search [8, 11].Online Searching on Compressed TextOne of the most attractive properties of the Hu�manmethod oriented to bytes rather than bitsis that it can be searched exactly like any uncompressed text. When a query is submitted,the text is in compressed form and the pattern is in uncompressed form. The key idea isto compress the pattern instead of uncompressing the text. We call this technique directsearching.The algorithm to �nd the occurrences of a single word starts by searching it in the vo-cabulary, where binary searching is a simple and inexpensive choice. Once the word has beenfound, its compressed code is obtained. Then, this compressed code is searched in the textusing any classical string matching algorithm with no modi�cations. This is possible becausethe Hu�man code uses bytes instead of bits, otherwise the method would be complicated.A possible problem with this approach is that the compressed code for a word may appearin the compressed text even if the word does not appear in the original text. This may happenin plain Hu�man codes because the concatenation of the codes of other words may containthe code sought, but it is impossible in tagged Hu�man code [7].A common requirement of today's IR systems is exibility in the search patterns. We callthose \complex" patterns, which range from disregarding upper or lower case to searchingfor regular expressions and/or \approximate" searching. Approximate string searching, also5

called \searching allowing errors", permits at most k extra, missing or replaced charactersbetween the pattern and its occurrence.If the pattern is a complex word, we perform a sequential search in the vocabulary andcollect the compressed codes of all the words that match the pattern. A multipattern searchfor all the codes is then conducted on the text [7]. Sequential vocabulary searching is notexpensive for natural language texts because the vocabulary is small compared with the wholetext (0.5% is typical for large texts). On the other hand, this sequential searching permitsextra exibility such as allowing errors.Flexible Pattern MatchingDirect searching is very e�cient but di�cult to extend to handle much more complex queries,formed by phrases of complex patterns that are to be searched allowing errors and/or arede�ned by regular expressions. We present a more general approach now, which works alsoon plain Hu�man codes. We start with the search algorithm for simple words and then showprogressively how the query can be extended to phrases formed by complex patterns, keepingthe simplicity of the approach.The searching algorithm for a single word starts again in the vocabulary using binarysearch. Once the word has been found the corresponding leaf in the Hu�man tree is marked.Next, the compressed text is scanned byte by byte, and at the same time the Hu�man treeis traversed downwards, as if one were decompressing the text, but without generating it.Each time a leaf of the Hu�man tree is reached, one knows that a complete word has beenread. If the leaf has a mark then an occurrence is reported. Be the leaf marked or not, onereturns to the root of the Hu�man tree and resumes the text scanning. Figure 2 illustrates thealgorithm for the pattern "rose", encoded as the 3-byte 47 31 8. Each time this sequence ofbytes is found in the compressed text the corresponding leaf in the Hu�man tree is reached,reporting an occurrence. Complex patterns are, as before, handled by a sequential search inthe vocabulary. This time we mark all the leaves corresponding to matching words.
8

47 31

Huffman tree MarksVocabulary

rose XFigure 2: General searching scheme for the word "rose".This simple scheme can be nicely extended to handle complex phrase queries. Phrasequeries are a sequence of patterns, each of which can be from a simple word to a complexregular expression allowing errors. If a phrase has ` elements, we set up a mask of ` bits foreach vocabulary word (leaf of the Hu�man tree). The i-th bit of word x is set if x matches thei-th element of the phrase query. For this sake, each element i of the phrase in turn is searched6

in the vocabulary and marks the i-th bit of the words it matches with. Figure 3 illustratesthe masks for the pattern "ro* rose is" allowing one error per word, where "ro*" meansany word starting with "ro". For instance, the word "rose" in the vocabulary matches thepattern in positions 1 and 2, as the mask is "110" for this 3-elements phrase.
xxx

1xx x1x xx1
8

47 31

Huffman tree Searching AutomatonMarksVocabulary

rose

001

110
100

100

001

row

road

is

in

Figure 3: General searching scheme for the phrase "ro* rose is" allowing 1 error. The x inthe automaton stands for 0 or 1.After the preprocessing phase is performed the text is scanned as before. The stateof the search is controlled by a nondeterministic automaton of ` + 1 states, as shown inFigure 3 for the pattern "ro* rose is". The automaton allows to move from state i to statei + 1 whenever the i-th pattern of the phrase is recognized. State zero is always active andoccurrences are reported whenever state ` is activated. The automaton is nondeterministicbecause at a given moment many states may be active. The bytes of the compressed text areread and the Hu�man tree is traversed as before. Each time a leaf of the tree is reached itsbit mask is sent to the automaton. An active state i� 1 will activate the state i only if thei-th bit of the mask is active. Therefore, the automaton makes one transition per word of thetext.This automaton can be implemented e�ciently using the Shift-Or algorithm [1]. Thisalgorithm is able to simulate an automaton of up to w + 1 states (where w is the length inbits of the computer word), performing just two operations per text character. This meansthat it can search phrases of up to 32 or 64 words, depending on the machine. This is morethan enough for common phrase searches. Longer phrases would need more machine wordsfor the simulation, but the technique is the same.The Shift-Or algorithmmaps each state of the automaton (except the �rst one) to a bit ofthe computer word. For each new text character, each active state can activate the next one,which is simulated using a shift in the bit mask. Only those states that match the currenttext word can actually pass, which is simulated by a bit-wise and operation with the bit maskfound in the leaf of the Hu�man tree. Therefore, with one shift and one and operation per textword the search state is updated (the original algorithm uses the reverse bits for e�ciency,hence the name Shift-Or).It is simple to disregard separators in the search, so that a phrase query is found evenif there are two spaces instead of one. Stop words (articles, prepositions, etc.) can also bedisregarded. The procedure is just to ignore the corresponding leaves of the Hu�man treewhen the search arrives to them. This ability is common on inverted �les but is very rare inonline search systems. 7

Table 2 presents exact (k = 0) and approximate (k = 1; 2; 3) searching times for thewsj �le using Agrep [12], the direct search on tagged Hu�man and the automaton searchusing plain Hu�man. It can be seen from this table that both direct and automaton searchalgorithms are almost insensitive to the number of errors allowed in the pattern while Agrepis not. It also shows that both compressed search algorithms are faster than Agrep, up to 50%faster for exact searching and nearly 8 times faster for approximate searching. Notice thatautomaton searching permits complex phrase searching at exactly the same cost. Moreover,the automaton technique permits even more sophisticated searching, which is described below.However, automaton searching is always slower than direct searching, and should be used forcomplex queries as just described above.Algorithm k = 0 k = 1 k = 2 k = 3Agrep 23.8 � 0.38 117.9 � 0.14 146.1 � 0.13 174.6 � 0.16Direct Search 14.1 � 0.18 15.0 � 0.33 17.0 � 0.71 22.7 � 2.23Automaton Search 22.1 � 0.09 23.1 � 0.14 24.7 � 0.21 25.0 � 0.49Table 2: Searching times (in seconds) for the wsj text �le, with 99% con�dence.Enhanced SearchingThe Shift-Or algorithm can do much more than just searching for a simple sequence of ele-ments. For instance, it has been enhanced to search for regular expressions, to allow errorsin the matches and other exible patterns [12, 2]. This powerful type of search is the basis ofthe software Agrep [12].A new handful of choices appear when we use these abilities in the word-based compressedtext scenario that we have just described. Consider the automaton of Figure 4. It can searchin the compressed text for a phrase of four words allowing up to two insertions, deletions orreplacements of words. Apart from the well known horizontal transitions that match charac-ters, there are vertical transitions that insert new words in the pattern, diagonal transitionsthat replace words, and dashed diagonal transitions delete words from the pattern.This automaton can be e�ciently simulated using extensions of the Shift-Or algorithm, sowe can search in the compressed text for approximate occurrences of the phrase. For instance,the search for "identifying potentially relevant matches" could �nd the occurrence of"identifying a number of relevant matches" in the text with one replacement error,assuming that the stop words "a" and "of" are disregarded as explained before. Moreover,if we allow three errors at the character level as well we could �nd the occurrence of "whoidentified a number of relevant matches" in the text, since for the algorithm there isan occurrence of "identifying" in "identified".Other e�ciently implementable setups can be insensitive to the order of the words inthe phrase. The same phrase query could be found in "matches considered potentiallyrelevant were identified" with one deletion error for "considered". Proximity searchingis also of interest in IR and can be e�ciently solved. The goal is to give a phrase and �nd itswords relatively close to each other in the text. This would permit to �nd out the occurrenceof "identifying and tagging potentially relevant matches" in the text.Approximate searching has traditionally operated at the character level, where it aims8

1xxx x1xx xx1x xxx1

xxx1

xxx1

xx1x

xx1x

x1xx

x1xx

1xxx

1xxx
no errors

2 errors

1 error

Figure 4: A nondeterministic automaton for approximate phrase searching (4 words, 2 errors)in the compressed text. Dashed transitions ow without consuming any text input. The otherunlabeled transitions accept any bit mask.at recovering the correct syntax from typing or spelling mistakes, errors coming from opti-cal character recognition software, misspelling of foreign names, and so on. Approximatesearching at the word level, on the other hand, aims at recovering the correct semantics fromconcepts that are written with a di�erent wording. This is quite usual in most languages andis a common factor that prevents �nding the relevant documents.This kind of search is very di�cult for a sequential algorithm. Some indexed schemespermit proximity searching by operating on the list of exact word positions, but this is all. Inthe scheme described above, this is simple to program, elegant and extremely e�cient (morethan on characters). This is an exclusive feature of this compression method that opens newpossibilities aimed at recovering the intended semantics, rather than the syntax, of the query.Such capability may improve the retrieval e�ectiveness of IR systems.Using Compression on Inverted IndicesAn IR system normally uses an inverted index to quickly �nd the occurrences of the wordsin the text. Up to now we have only considered text compression, but the index can becompressed as well. We now show how text and index compression can be combined.Three di�erent types of inverted indices can be identi�ed. The �rst one, called \fullinverted index", stores the exact positions of each word in the text. All the query processingcan be done using the lists and the access to the text is not necessary at all. In this case, thetext can be compressed with any method, since it will only be decompressed to be presentedto the user.The second type is the \inverted �le", which stores the documents where each wordappears. For single word queries it is not necessary to access the text, since if a word appearsin a document the whole document is retrieved. However, phrase or proximity queries cannotbe solved with the information that the index stores. Two words can be in the same documentbut they may or may not form a phrase. For these queries the index must search directly thetext of those documents where all the relevant words appear. If the text is to be compressed,an e�cient compression scheme like that explained in previous sections must be used to permit9

fast online searching.The third type, called \block addressing index", divides the text in blocks of �xed size(which may span many documents, be part of a document or overlap with document bound-aries). The index stores only the blocks where each word appears. The space occupied bythe index may be small, but almost any query must be solved using online searching becauseit is not known in which documents of the block the word appears. The index is used justas a device to �lter out some blocks of the collection that cannot contain a match. Thistype of �lter also needs e�ciently searchable compression techniques if the text is to be keptcompressed.Any of the above schemes can be combined with index compression. The size of an invertedindex can be reduced by compressing the occurrence lists [11]. Because the list of occurrenceswithin the inverted list is in ascending order, it can also be considered as a sequence of gapsbetween positions (be them text positions, document numbers, or block numbers). Sinceprocessing is usually done sequentially starting from the beginning of the list, the originalpositions can always be recomputed through sums of the gaps. By observing that these gapsare small for frequent words and large for infrequent words, compression can be obtainedby encoding small values with shorter codes. Moreover, the lists may be built already incompressed form, which in practice expands the capacity of the main memory. This improvesindex construction times because the critical feature in this process is the amount of mainmemory available. In practice, text compression plus compressed index construction can becarried out faster than just index construction on uncompressed text.The type of index chosen inuences the degree of compression that can be obtained. Themore �ne-grained the addressing resolution of the occurrence lists (i.e. from pointing toblocks of text to pointing to exact positions), the less compression can be achieved. Thisoccurs because the gaps between consecutive numbers of the occurrence lists are larger ifthe addressing is �ner-grained. Therefore, the reduction in space from a �ner-grained to acoarser-grained is more noticeable if index compression is incorporated into the system.An attractive property of word-based Hu�man text compression is that it integrates verywell with an inverted index [8]. Since the table of Hu�man symbols is precisely the vocabularyof the text, the data structures of the compressor and the index can be integrated, whichreduces space and I/O overhead. At search time, the inverted index searches the patterns inthe vocabulary; while if a sequential scan is necessary the online algorithm also searches thepattern in the vocabulary. Both processes can therefore be merged.The research presented in [10] shows that for ranked queries it may be more e�cientto store document numbers sorted by frequency rather than by document number. Thecompression techniques have to be adapted to this new problem. For instance, since thefrequencies are decreasing, gaps between frequencies can be coded. Normally, in the list of eachword there are a few documents with high frequencies and many with low frequencies. Thisinformation can be used to e�ciently compress the frequencies. Moreover, all the documentswith the same frequency can be stored in increasing document number, so gaps betweendocuments can be used.Updating the Text CollectionAn important issue regarding text databases is how to update the index when changes occur.Inverted indices normally handle those modi�cations by building di�erential inverted indices10

on the new or modi�ed texts and then merging periodically the main and the di�erentialindex. When using compression, however, a new problem appears because the frequencies ofthe words change too, and therefore the current assignment of compressed codes to them maynot be optimal anymore. Even worse, new words may appear which have no compressed code.The naive solution of recompressing the whole database according to the new frequencies istoo expensive, and the problem of �nding the cheapest modi�cation to the current Hu�mantree has not been yet solved.Fortunately, simple heuristics work well. At construction time, a special empty word withfrequency zero is added to the vocabulary. The code that this empty word receives is calledthe escape code and is used to signal new words that appear. When new text is added, theexisting words use their current code, and new words are codi�ed as the escape code followedby the new words in plain form. Only at long periods the database is recompressed to recoveroptimality. If the text already compressed is reasonably large, the current code assignmentsare likely to remain optimal, and the number of new words added pose negligible overheads.For instance, experiments have shown a degradation of only 1% in the compression ratio afteradding 190 megabytes to a text database of 10 megabytes. The search algorithms have alsoto be adapted if these new words are to be searched.ConclusionsFor e�ective operation in an IR environment a compression method should satisfy the fol-lowing requirements: good compression ratio, fast coding, fast decoding, and direct searchingwithout the need to decompress the text. A good compression ratio saves space in secondarystorage and reduces communication costs. Fast coding reduces processing overhead due tothe introduction of compression into the system. Sometimes, fast decoding is more importantthan fast coding, as it happens in documentation systems in which a document is compressedonce and decompressed many times from disk. Fast random access allows e�cient processingof multiple queries submitted by the users of the information system. Fast sequential searchreduces query times in many types of indices.We have shown new compression techniques that satisfy all these goals. The compressedtext plus a compressed inverted index built on it take no more than 40% of the original textsize without any index. Index construction, including the text compression, proceeds fasterthan the indexing of the uncompressed text, and needs less space. Any search scheme, beit based on the index, on sequential searching, or on a combination of both, proceeds fasterthan on the uncompressed text and allows more exible searching. Moreover, the text canbe kept compressed during all times, being decompressed only to be displayed to the user.Such combination of features is unbeaten in e�ciency and exibility, and permits transparentintegration into not only traditional text databases but also, for example, Web servers andcompressed �lesystems, with the additional bene�t of providing searchability [8].AcknowledgementsWe wish to acknowledge the many comments of Berthier Ribeiro-Neto and Wagner Meira Jrthat helped us to improve this article. 11

References[1] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm. of the ACM,35(10):74{82, October 1992.[2] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,23(2):127{158, 1999.[3] R. Baeza-Yates and B. Ribeiro-Neto, editors. Modern Information Retrieval. Addison-Wesley, 1999. 513 pages.[4] D. K. Harman. Overview of the third text retrieval conference. In Proc. Third TextREtrieval Conference (TREC-3), pages 1{19, Gaithersburg, Maryland, 1995. NationalInstitute of Standards and Technology Special Publica tion.[5] D. Hu�man. A method for the construction of minimum-redundancy codes. In Proc. ofthe Institute of Electrical and Radio Engineers, volume 40, pages 1090{1101, 1952.[6] S. Lawrence and C. Giles. Accessibility of information on the web. Nature, pages 107{109,August 1999.[7] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and exible word searchingon compressed text. ACM Transactions on Information Systems (TOIS), 18(2):113{139,2000.[8] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compressionto block addressing inverted indexes. Kluwer Information Retrieval Journal, 3(1):49{77,2000.[9] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Approach. MorganKaufmann, San Francisco, 2nd edition, 1995.[10] M. Persin. Document �ltering for fast ranking. In Proc. of the 17th International ACMSIGIR Conference on Research and Development in Information Retrieval, pages 339{348. Springer Verlag, July 1994.[11] I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers,New York, second edition, 1999.[12] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, October 1992.
12

