
Faster Repetition-Aware Compressed Suffix Trees

based on Block Trees∗

Manuel Cáceres1,2 and Gonzalo Navarro2,3

1Department of Computer Science, University of Helsinki, Finland, manuel.caceresreyes@helsinki.fi
2CeBiB — Center for Biotechnology and Bioengieering, Chile

3Department of Computer Science, University of Chile, Chile, gnavarro@dcc.uchile.cl

Abstract

The suffix tree is a fundamental data structure in stringology, but its space usage, though
linear, is an important problem in applications like Bioinformatics. We design and implement
a new compressed suffix tree (CST) targeted to highly repetitive texts, such as large genomic
collections of the same species. Our first contribution is to enhance the Block Tree, a data
structure that captures the repetitiveness of its input sequence, to represent the topology of
trees with large repeated subtrees. Our so-called Block-Tree Compressed Topology (BT-CT)
data structure augments the Block Tree nodes with data that speeds up tree navigation. Our
Block-Tree CST (BT-CST), in turn, uses the BT-CT to compress the topology of the suffix
tree, and also replaces the sampling of the suffix array and its inverse with grammar- and/or
Block-Tree-based representations of those arrays.

Our experimental results show that BT-CTs reach navigation speeds comparable to compact
tree representations that are insensitive to repetitiveness, while using 2–10 times less space on
the topologies of the suffix trees of repetitive collections. Our BT-CST is slightly larger than
previous repetition-aware suffix trees based on grammar-compressed topologies, but outperforms
them in time, often by orders of magnitude.

1 Introduction

Suffix trees [1, 2, 3] are one of the most appreciated data structures in Stringology [4] and application
areas like Bioinformatics [5], enabling efficient solutions to complex problems such as (approximate)
pattern matching, pattern discovery, finding repeated substrings, computing matching statistics,
computing maximal matches, and many others. In other collections, like natural language and
software repositories, suffix trees are useful for plagiarism detection [6], authorship attribution [7],
document retrieval [8], and others.

While their linear space complexity is regarded as acceptable in classical terms, the actual
space usage of suffix trees brings serious problems in application areas. From an Information
Theory standpoint, on a text of length n over alphabet [1, σ], classical suffix tree representations
use Θ(n lg n) bits, whereas the information contained in the text is, in the worst case, just n lg σ bits.
From a practical point of view, even carefully engineered implementations [9] require at least 10
bytes per symbol, which forces many applications to run the suffix tree on (the orders of magnitude
slower) secondary memory.

∗Funded by Fondecyt Grant 1-200038 and Basal Funds FB0001, ANID, Chile. A preliminary partial version of
this paper appeared in Proc. SPIRE 2019.

Consider for example Bioinformatics, where various complex analyses require the use of sophis-
ticated data structures, suffix trees being among the most important ones. DNA sequences range
over σ = 4 different nucleotides represented with lg 4 = 2 bits each, whereas the suffix tree uses
at least 10 bytes = 80 bits per base, that is, 4000% of the text size. A human genome fits in
approximately 715 MB, whereas its suffix tree requires about 30 GB. The space problem becomes
daunting when we consider the DNA analysis of large groups of individuals; consider for example
the 100,000-human-genomes project (www.genomicsengland.co.uk).

One solution to the problem is to build suffix trees on secondary memory [10, 11]. Most
suffix tree algorithms, however, require traversing them across arbitrary access paths, which makes
secondary memory solutions many orders of magnitude slower than in main memory. Another
approach replaces the suffix trees with suffix arrays [12], which decreases space usage to 4 bytes
(32 bits) per character but loses some functionality like the suffix links, which are essential to solve
various complex problems. This functionality can be recovered [13] by raising the space to about
6 bytes (48 bits) per character. Those numbers get even larger when the text collection is longer
than 4 billion bases and 32-bit numbers do not suffice.

A promising line of research is the construction of compact representations of suffix trees,
named Compressed Suffix Trees (CSTs), which simulate all the suffix tree functionality within
space bounded not only by O(n lg σ) bits, but by the information content (or text entropy) of
the sequence. An important theoretical achievement was a CST using O(n) bits on top of the
text entropy that supports all the operations within an O(polylog n) time penalty factor [14]. A
recent implementation [15] uses, on DNA, about 10 bits per base and supports the operations in
a few microseconds. Even smaller, though slower, CSTs have been proposed [16, 17], reaching the
extreme of using as little as 5 bits per base [18], though in this case the operation times already
raise to milliseconds, close to a secondary-memory deployment.

Still, further space reductions are possible (and necessary!) when facing large genome reposito-
ries, thanks to the fact that DNA sequences of two humans differ by less than 0.5% [19]. Many other
large text collections are equally repetitive, for example versioned document collections and soft-
ware repositories. This repetitiveness is not well captured by statistical compression methods [20],
on which most of the CSTs are based. Lempel-Ziv [21] and grammar [22] based compression tech-
niques, among others, do better in this scenario [23], but only recently we have seen CSTs building
on them, both in theory [24, 25] and in practice [17, 26]. The most successful CST in practice
for repetitive collections is the grammar-compressed suffix tree (GCST [26]), which on DNA uses
about 2 bits per base and supports the operations in tens to hundreds of microseconds.

GCSTs use grammar compression on the parentheses sequence that represents the suffix tree
topology [27], which inherits the repetitiveness of the text collection. While Lempel-Ziv compression
is stronger, it does not support easy access to the sequence. In this paper we explore an alternative
to grammar compression called Block Trees [28, 29], which offer similar approximation ratios to
Lempel-Ziv compression, but promise faster access.

Our first contribution is the BT-CT, a Block-Tree-based representation of tree topologies, which
enriches Block Trees to support the required navigation operations. Although we are unable to prove
useful upper bounds on the operation times, the BT-CT performs very well in practice: while using
0.3–1.5 bits per node in our repetitive suffix trees, it implements the navigation operations in a
few microseconds, becoming very close to the performance of plain 2.8-bit-per-node representations
that are blind to repetitiveness [30]. We use the BT-CT to represent suffix tree topologies in this
paper, but it might also be useful in other scenarios, such as representing the topology of repetitive
XML collections [31].

Our second contribution improves the performance of suffix tree operations that make heavy
use of its compressed suffix array (CSA). Repetition-aware CSTs [17, 26] use the run-length CSA

2

Operation Description

root() The root of the suffix tree
is-leaf(v) True if v is a leaf node
first-child(v) The first child of v in lexicographic order
tree-depth(v) The number of edges from root() to v
next-sibling(v) The next sibling of v in lexicographic order
previous-sibling(v) The previous sibling of v in lexicographic order
parent(v) The parent of v
is-ancestor(v,u) True if v is an ancestor of u
level-ancestor(v,d) The ancestor of v at tree depth tree-depth(v)− d
lca(v,u) The lowest common ancestor between v and u

letter(v, i) str(v)[i]
string-depth(v) |str(v)|
suffix-link(v) The node u s.t. str(u) = str(v)[2,string-depth(v)]
string-ancestor(v,d) The highest ancestor u of v s.t. string-depth(u) ≥ d
child(v,c) The child u of v s.t. str(u)[string-depth(v) + 1] = c

Table 1: List of typical operations implemented by suffix trees; str(v) represents the concatenation
of the strings in the root-to-v path. The first group are tree topology operations, while the second
is specific of suffix trees.

(RLCSA) [32], whose sampling of the suffix array and its inverse has been difficult to compress.
We show that replacing these samplings by grammar-compressed or Block-Tree-compressed repre-
sentations of those arrays achieves a time improvement of up to two orders of magnitude on such
operations, and better compression when the repetitiveness is very high.

Our new suffix tree, BT-CST, uses the BT-CT to represent the suffix tree topology and some
enhanced version of the RLCSA. Although larger than the GCST, it still requires about 3 bits per
base in highly repetitive DNA collections. In exchange, it is considerably faster than the GCST,
often by an order of magnitude.

2 Preliminaries and Related Work

A text T [1, n] = T [1] · · ·T [n] is a sequence of symbols over an alphabet Σ = [1, σ], terminated by
a special symbol $ that is lexicographically smaller than any symbol of Σ. A substring of T is
denoted T [i, j] = T [i] · · ·T [j]. A substring T [i, j] is a prefix if i = 1 and a suffix if j = n.

The suffix tree [1, 2, 3] of a text T is a trie of its suffixes in which unary paths are collapsed
into a single edge and leaves representing the suffix T [j, n] store the number j. The tree then has
less than 2n nodes, thus a classical/pointer-based implementation uses Θ(n lg n) bits. The suffix
tree supports a set of operations (see Table 1) that suffices to solve a large number of problems in
Stringology [4] and Bioinformatics [5].

The suffix array [12] A[1, n] of a text T [1, n] is a permutation of [1, n] such that A[i] is the
starting position of the ith suffix in increasing lexicographic order. If the suffix tree stores the
children in increasing lexicographic order of the corresponding suffixes, then the concatenation of
the numbers stored at the leaves forms the suffix array. Further, the leaves descending from a suffix
tree node span a range of suffixes in A.

One well-known functionality of the suffix array is to count the occurrences of a pattern S[1,m]

3

in T in O(m lg n) character comparisons, which is achieved with two binary searches on A.
The function lcp(X,Y) is the length of the longest common prefix (lcp) of strings X and Y . The

LCP array [12], LCP [1, n], is defined as LCP [1] = 0 and LCP [i] = lcp(T [A[i − 1], n], T [A[i], n])
for all i > 1, that is, it stores the lengths of the lcps between lexicographically consecutive suffixes
of T [1, n]. When the suffix array is enhanced with a variant of the LCP array, count is possible in
time O(m+ lg n) [12], and if even more information is added, it can achieve O(m) time [13]. Note
that the string-depth of the lowest common ancestor between two consecutive suffix tree leaves is
precisely its corresponding LCP entry.

2.1 Succinct tree representations: BP

A balanced parentheses (BP) representation (there are others [27]) of the topology of an ordinal
tree T of t nodes is a binary sequence (or bitvector) P [1, 2t] built as follows: we traverse T in
preorder, writing an opening parenthesis (a bit 1) when we first arrive at a node, and a closing one
(a bit 0) when we leave its subtree. For example, a leaf looks like “10”. The following primitives
can be defined on P :

– access(i) = P [i], the bit at position i.

– rank0|1(i) = | {1 ≤ j ≤ i;P [j] = 0|1} |, the number of 0|1s up to position i.

– excess(i) = rank1(i)− rank0(i), the number of open parentheses minus closing parentheses up
to position i.

– select0|1(i) = min({j; rank0|1(j) = i} ∪ {∞}), the position of the i-th 0|1.

– leaf-rank(i) = rank10(i) = | {1 ≤ j ≤ i− 1;P [j] = 1 ∧ P [j + 1] = 0} |, the number of leaves up
to position i.

– leaf-select(i) = select10(i) = min({j; leaf-rank(j + 1) = i} ∪ {∞}), the position of the open
parenthesis of the j-th leaf.

– fwd-search(i, d) = min({j > i; excess(j) = excess(i) + d)} ∪ {∞}), the least we have to move
forward from i for the excess to grow by d units.

– bwd-search(i, d) = max({j < i; excess(j) = excess(i)+d)}∪{−∞}), the least we have to move
backward from i for the excess to grow by d units.

– min-excess(i, j) = min({excess(k)− excess(i− 1); i ≤ k ≤ j}), the minimum excess in P [i, j].

These primitives suffice to implement a large number of tree navigation operations, and can
all be supported in constant time using o(t) bits on top of P [30]. These include the opera-
tions needed by suffix trees. For example, interpreting nodes v as the position of their opening
parenthesis in P , it holds that tree-depth(v) = excess(v), next-sibling(v) = fwd-search(v,−1) + 1,
lca(v, u) = parent(fwd-search(v − 1,min-excess(v, u)) + 1), parent(v) = level-ancestor(v, 1), and
level-ancestor(v, d) = bwd-search(v,−d− 1) + 1.

4

2.2 Compressed Suffix Arrays (CSAs)

Compressed Suffix Arrays (CSAs) [33] represent a text T and its suffix array A within O(n lg σ)
bits, and often in space close to that of a compressed representation of T . They provide access
to the suffix array and its inverse (i.e., return any A[i] and A−1[j]), to the text (i.e., return any
T [i, j]), and often access to a novel array, Ψ[i] = A−1[(A[i] mod n) + 1], which lets us move from
a text suffix T [j, n] to the next one, T [j + 1, n], working at their positions in A: if A[i] = j, then
A[Ψ[i]] = j + 1. CSAs usually support queries count(S) (returning the number of times S occurs
as a substring in T) and locate(S) (returning the positions of those occurrences).

The most effective of these indexes can be classified into two groups. The first group [34, 35]
takes advantage of properties of the array Ψ to compress it. It also stores samples of A and A−1

taken at every s-th text position, so as to recover the original values in O(s) time using their
interplay with Ψ: for A we sample all values of the form A[i] = s · j, so if we want to recover A[i],
we apply Ψ iteratively until we get to a sampled position A[Ψk[i]], and then A[i] = A[Ψk[i]] − k.
To compute A−1[j] we start from the sampled value A−1[j′], for j′ = bj/sc · s and then have
A−1[j] = Ψj′−j [A−1[j′]].

The indexes of the second group [36] are called FM-indexes. One of the most successful imple-
mentations [37] of these indexes uses access and rank queries on the Burrows Wheeler Transform
(BWT), a permutation TBWT of the characters of T such that TBWT [i] = T [A[i] − 1] (and $ if
A[i] = 1), that is, the character preceding each suffix in lexicographic order. The index is built on
TBWT and the same samplings to compute A and A−1. Instead of the function Ψ, it computes the
function LF (i) = Ψ−1[i] using rank and access on TBWT , and thus the sampling mechanism works
analogously. Operations access and rank typically take time O(lg σ).

2.3 Repetition-aware CSAs

Both classes of CSAs use space bounded by the statistical entropy of T , which is however insensitive
to the its repetitiveness. Repetitions in T generate long runs of equal letters in TBWT , and also
long runs of consecutive increasing values in Ψ. Considering these runs to further compress the
indexes gives birth to repetition-aware CSAs. One is the Run-Length CSA (RLCSA) [32], which
run-length compresses the runs of 1s in the differential Ψ array, DΨ[i] = Ψ[i] − Ψ[i − 1], and
stores absolute values of Ψ at sampled runs. Another is the Run-Length FM-Index (RLFMI) [38],
which run-length compresses TBWT and stores additional structures to translate the access and
rank queries on TBWT .

Both structures use O(r lg n) bits, r being the number of runs, and count in time O(m lg n).
Further, they can access A and A−1 in O(s lg n) time using O((n/s) lg n) extra bits for the sampling.
When T is repetitive, r is small and the space for the sampling of A and A−1 becomes dominant.

An attempt to break the space/time barrier of the sampling is the Locally Compressed Suffix
Array (LCSA) [39]. It uses Re-Pair [40] to grammar-compress the differential suffix array, DA[i] =
A[i] − A[i − 1]. The compression succeeds on repetitive texts because, if DΨ[k + 1] = 1 on a run
i ≤ k ≤ j, then DA[k + 1] = DA[Ψ[k] + 1] for all i ≤ k ≤ j becomes a repetition that a grammar
compressor can capture. With some care, one can obtain a grammar of size O(r lg(n/r)) that
extracts any symbol of A and A−1 in time O(lg(n/r)) [24], though in practice Re-Pair produces
much smaller grammars.

Another very recent attempt [41] compresses A using Relative Lempel-Ziv [42] on DA. They
sample a suitable reference from DA and represent the array as a sequence of pointers to the
reference, which ensures fast access and good compression if T is repetitive.

5

2.4 Compressed Suffix Trees (CSTs)

Sadakane [14] designed the first CST, on top of a CSA, using |CSA|+O(n) bits and solving all the
suffix tree operations in time O(polylog n). He makes up a CST from three components: a CSA, for
which he uses his own proposal [35]; a BP representation of the suffix tree topology, using at most
4n+o(n) bits; and a compressed representation of LCP , which is a bitvector H[1, 2n] encoding the
array PLCP [i] = LCP [A−1[i]] (i.e., the LCP array in text order). A recent implementation [15] of
this index requires about 10 bits per character and takes a few microseconds per operation.

Russo et al. [18] managed to use just o(n) bits on top of the CSA, by storing only a sample of
the suffix tree nodes. An implementation of this index [18] uses as little as 5 bits per character,
but the operations take milliseconds, nearly as slow as running in secondary storage.

Fischer et al. [16] also obtain o(n) on top of a CSA, by getting rid of the tree topology and
expressing the tree operations on the corresponding suffix array intervals. The operations now use
primitives on the LCP array: find the previous/next smaller value (psv/nsv) and find minima in
ranges (rmq). They also noted that bitvector H contains 2r runs, and used this fact to run-length
compress H. Abeliuk et al. [17] designed a practical version of this idea, obtaining about 8 bits per
character and getting a time performance of hundreds of microseconds per operation, an interesting
tradeoff between the other two options.

2.5 Repetition-aware CSTs

Abeliuk et. al [17] also presented the first CST for repetitive collections. They built on the third
approach above [16], so they do not represent the tree topology. They use the RLCSA [32] and a
grammar compression on the differential LCP array, DLCP [i] = LCP [i]−LCP [i−1]. The nodes of
the parse tree (obtained with Re-Pair [40]) are enriched with further data to support the operations
psv/nsv and rmq. To speed up simple LCP accesses, the bitvector H is also stored. Their index uses
1–2 bits per character on repetitive collections. It is rather slow, however, operating within (many)
milliseconds. Gagie et al. [24] show that O(r lg(n/r)) space can be guaranteed for this design if
one uses a particular Run-Length Context-Free Grammars [43] on DLCP , DA and DA−1, while
supporting most operations in O(lg n) time. Still, heuristic grammar constructions such as Re-Pair
work better in practice.

Navarro and Ordóñez [26] include again the tree topology. Since text repetitiveness induces
isomorphic subtrees in the suffix tree, they grammar-compress the BP representation. The nonter-
minals are enriched to support the tree navigation operations. Since they do not need psv/nsv/rmq
operations on LCP, they just use the bitvector H, which has a few runs and thus is very small.
Their index uses slightly more space, closer to 2 bits per character, but it is up to 3 orders of
magnitude faster than that of Abeliuk et al. [17]: their structure operates in tens to hundreds of
microseconds per operation, getting closer to the times of general-purpose CSTs.

Recent work by Farruggia et al. [44] builds on Relative Lempel-Ziv [42] to compress the suffix
trees of the individual sequences (instead of that of the whole collection). They showed to be time-
and space-competitive against the CSTs mentioned, but their structure offers a different function-
ality (useful for other problems). Belazzougui and Cunial’s [25] CST based on the CDAWG [45]
(a minimized automaton that recognizes all the substrings of T), also supports most operations in
time O(lg n). However, experiments [24] using CDAWG show that it uses significantly more space
than other repetition-aware techniques.

Very recently, Boucher et al. [46] build a CST for repetitive collections based on prefix-free
parsing, which aims to parse the text consistently so as to obtain a small list of different factors
and represent the text as a concatenation of those. This allows them to build the CST on very

6

Algorithm 1 Accessing P [i] with the Block Tree of P , invoked as access(root, i, |P |).
Function access(v, i, b)

if v is a LeafBlock then return v.blk[i] ;
if v is a BackBlock then

if v.off + i ≤ b then return access(v.ptr, i+ v.off, b) ;
else return access(v.ptr.next, i+ v.off− b, b) ;

return access(v.child[b(i− 1)/κc+ 1], ((i− 1) mod κ) + 1, b/κ)

large text collections fast and using little extra space, which is their focus and a weakness of many
other CSTs. The resulting CST, however, is typically 5–10 times larger than the CST we present
in this article, and also significantly slower for most operations, according to their experiments.

3 Block Trees

A Block Tree [28] is a full κ-ary tree that represents a (repetitive) sequence P [1, p] in compressed
space while offering access and other operations in logarithmic time. The nodes at depth d (the
root being depth 0), left to right, represent a partition of P into blocks of length b = |P |/κd (we pad
P to ensure these numbers are integers). A node v, representing some block v.blk = P [i, i+ b− 1],
can be of three types:

LeafBlock: If b ≤ ll, where ll is a parameter, then v is a leaf of the Block Tree, and it stores the
string v.blk explicitly.

BackBlock: Otherwise, if P [i− b, i+ b− 1] and P [i, i+ 2b− 1] are not their leftmost occurrences
in P , then the block is replaced by its leftmost occurrence in P : node v then stores a pointer
v.ptr = u to the node u such that the first occurrence of v.blk starts inside u.blk = P [j, j+b−1].
If it occurs at P [j + o, j + o+ b− 1], this offset inside u.blk is stored in v.off = o. Node u also
stores a pointer u.next to its following node, which is necessary to access the content of v.blk.
Node v, and its block, are not anymore considered at deeper levels.

InternalBlock: Otherwise, the block is split into κ equal parts, handled in the next level by the
children of v. The node v then stores pointers to its κ children, in v.children.

Figure 1 illustrates a Block Tree (some field names are introduced later). The key property of
the Block Tree is that, if a BackBlock v points leftwards to u, then node u is an InternalBlock. The
Block Tree can then return any symbol P [i] in time proportional to the height of the Block Tree,
by starting at position i in the root block. Recursively, the position i is translated in constant time
into an offset inside a child node (for InternalBlocks), or inside a leftward node in the same level
(for BackBlocks), at most once per level. At leaves, the symbol is stored explicitly. Algorithm 1
gives the pseudocode.

If the sequence P is parsed by the Lempel-Ziv algorithm into z phrases, then the Block Tree has
O(κz lgκ(n/z)) nodes, which for constant κ matches the best space guarantee offered by grammar-
based compressors. Further, the Block Tree was shown to be of size O(κδ lgκ(n/δ)), where δ ≤ z is
a stricter measure of repetitiveness for P ; this bound cannot be reached by context-free grammars
[47]. A root-to-leaf traversal in the Block Tree (e.g., to access P [i] with Algorithm 1) takes time
O(lgκ(n/ll)).

More recently [48], the Block Tree construction was optimized without affecting its worst-case
time and space guarantees: some InternalBlocks are converted into BackBlocks even if they do

7

Figure 1: Block Tree for a bit sequence representing the BP of a tree topology. Nodes have been
put on top of the substrings they represent, and the child pointers were eliminated for clarity. We
represent various fields of BackBlock v, which occurs between the red dashed lines, and of node
u. Note that node w is not a BackBlock even when w.blk is not a leftmost occurrence, because
its sibling contains a leftmost occurrence. On the other hand, the children of w are BackBlocks
because, concatenated with their neighbors, they do not contain leftmost occurrences.

not satisfy the stated conditions, as long as they are not referenced by other BackBlocks to the
right. In the same work, the author studies a number of compact representations of Block Trees;
we use the one recommended in there for our implementation. In particular, all the first levels not
containing BackBlocks are removed to speed up traversals, and various pointers are eliminated by
using a levelwise deployment and bitvectors to mark the block types.

4 Our Block-Tree Compressed Topology (BT-CT)

This section describes our main data structure, the Block-Tree Compressed Topology (BT-CT),
which compresses a parentheses sequence and supports navigation on the tree topology it represents.

4.1 Block Tree augmentation

To support the primitive operations we start from a simple Block Tree representing a BP sequence
P , supporting only access, and introduce a number of additional fields. Many of those fields can be
computed from others, so we divide the description into stored fields, which are actually stored in
the compact representation of BT-CT and fields computed on the fly, which are inferred from the
stored fields.

Stored fields

– For every node v that represents the block v.blk = P [i, i+ b− 1]:

– rank1, the number of 1s in v.blk, i.e., rank1(P, i+ b− 1)− rank1(P, i− 1).

– lrank (leaf rank), the number of 10s (i.e., leaves in BP) that finish inside v.blk, i.e.,
leaf-rank(P, i+ b− 1)− leaf-rank(P, i− 1).

– lbreaker (leaf breaker), a bit telling whether the first symbol of v.blk is a 0 and the
preceding symbol in P is a 1, i.e., whether P [i− 1, i] = 10.

8

– mexcess, the minimum excess in v.blk, i.e., min-excess(P, i, i+ b− 1).

– For every BackBlock node v that represents v.blk = P [i, i + b − 1] and points to its first
occurrence O = P [j + o, j + o+ b− 1] inside u.blk = P [j, j + b− 1] with offset v.off = o:

– fb-rank1, the number of 1s in the prefix of O contained in u.blk (O ∩ u.blk, the 1st block
spanned by O), i.e., rank1(P, j + b− 1)− rank1(P, j + o− 1).

– fb-lrank, the number of 10s that finish in O ∩ u.blk, i.e., leaf-rank(P, j + b − 1) −
leaf-rank(P, j + o− 1).

– fb-lbreaker, a bit telling whether the first symbol of O is a 0 and the preceding symbol
is a 1, i.e., whether P [j + o− 1, j + o] = 10.

– fb-mexcess, the minimum excess reached in O∩u.blk, i.e., min-excess(P, j+ o, j+ b− 1).

– m-fb, a bit telling whether the minimum excess of u.blk is reached in O ∩ u.blk, i.e.,
whether min-excess(P, i, i+ b− 1) = min-excess(P, j + o, j + b− 1).

Fields computed on the fly

– For every node v that represents v.blk = P [i, i+ b− 1]:

– rank0, the number of 0s in v.blk, i.e., b− v.rank1.

– excess, the excess of 1s over 0s in v.blk, i.e., v.rank1 − v.rank0 = 2 · v.rank1 − b.

– For every BackBlock node v that represents v.blk = P [i, i + b − 1] and points to its first
occurrence O = P [j + o, j + o+ b− 1] inside u.blk = P [j, j + b− 1] with offset v.off = o:

– fb-rank0, the number of 0s in O ∩ u.blk, i.e., (b− o)− v.fb-rank1.

– pfb-rank0|1, the number of 0s|1s in the prefix of u.blk that precedes O (u.blk − O), i.e.,
u.rank0|1 − v.fb-rank0|1.

– fb-excess, the excess in O ∩ u.blk, i.e., v.fb-rank1 − v.fb-rank0.

– sb-excess, the excess in O − u.blk (2nd block spanned by O), i.e., v.excess− v.fb-excess.

– pfb-lrank, the number of 10s that finish in u.blk−O, i.e., u.lrank− v.fb-lrank.

– sb-mexcess, the minimum excess in O−u.blk, i.e., min-excess(P, j+ b, j+ b+ o− 1). We
store either v.fb-mexcess or v.sb-mexcess, the one that differs from v.mexcess. To deduce
the non-stored field we use mexcess, fb-excess and m-fb.

– Mexcess-suf, fb-Mexcess-suf, and sb-Mexcess-suf. They are the analogous to the mexcess
fields but considering the maximum reached in a right-to-left scan or suffix of the cor-
responding zone. Note that these fields can be computed from the corresponding excess
and mexcess fields, because the maximum in a suffix is reached exactly next to the po-
sition where the minimum in a prefix is reached: v.Mexcess-suf = v.excess− v.mexcess,
v.fb-Mexcess-suf = v.fb-excess − v.fb-mexcess, and v.sb-Mexcess-suf = v.sb-excess −
v.sb-mexcess.

4.2 Operations

We now describe how the operations described in Section 2.1 are implemented on our augmented
Block Trees.

9

Algorithm 2 Computing rankc(P, i) on the Block Tree of P , invoked as rank(root, i, c, |P |).
Function rank(v, i, c, b)

if v is a LeafBlock then return the number of cs in v.blk[1, i] (by brute force) ;
if v is a BackBlock then

if v.off + i ≤ b then return rank(v.ptr, i+ v.off, c, b)− v.pfb-rankc ;
else return rank(v.ptr.next, i+ v.off− b, c, b) + v.fb-rankc ;

d← b(i− 1)/κc
p← 0
for k ← 1 to d do p← p+ v.child[k].rankc ;
return p+ rank(v.child[d+ 1], ((i− 1) mod κ) + 1, c, b/κ)

Algorithm 3 Computing selectc(P, j) on the Block Tree of P , invoked as select(root, j, c, |P |).
Function select(v, j, c, b)

if v is a LeafBlock then return the position of the j-th c in v.blk (by brute force) ;
if v is a BackBlock then

if j ≤ v.fb-rankc then return select(v.ptr, j + v.pfb-rankc, c, b)− v.off ;
else return select(v.ptr.next, j − v.fb-rankc, c, b) + b− v.off ;

k ← 1
while j > v.child[k].rankc do

j ← j − v.child[k].rankc
k ← k + 1

return (k − 1) · (b/κ) + select(v.child[k], j, c, b/κ)

4.2.1 Rank and select of bits and leaves

Algorithms 2 and 3 show how operations rankc and selectc are implemented, for c = 0 or 1, in time
O(κ lgκ(n/ll) + ll). The pseudocode is self-explanatory (see Figure 1 again).

The implementations of leaf-rank and leaf-select are analogous to those of rankc(i) and selectc(i),
respectively, using the field lrank instead of rankc. The other difference is that we must correct
the counts to consider 10s at block borders: (1) in LeafBlocks, we use the field lbreaker to check
whether the block starts with a leaf (so as to increase the leaf count); (2) in BackBlocks we consider
fields lbreaker and fb-lbreaker to check whether we have to increment or decrement the leaf count
when moving to a leftward node; and (3) in InternalBlocks we use the lbreaker of the children to
correct the cumulative sum of leaves.

4.2.2 Forward and backward searches

We describe in detail how to solve fwd-search(i, d) for d ≤ 0; the case d > 0, as well as bwd-search(i, d),
are solved analogously. We then aim to find the smallest position j > i where the excess of P [i+1..j]
is d. We describe our solution as a recursive procedure fwd-search(v, i, j, b, d) on the current node
v and b = |v.blk|, with a global excess variable e that is updated as we traverse v.blk[i, j]. The
procedure is initially called with fwd-search(root, i + 1, n, n, d) and e ← 0. The general idea is to
traverse the range of the current node v left to right, using the fields v.mexcess, v.fb-mexcess and
v.sb-mexcess to speed up the procedure when possible. If at some point e becomes d, we have found
the answer to the search.

Algorithm 4 shows the pseudocode for fwd-search(v, i, j, b). Some observations are in order:

– In general, we can skip a block if its minimum excess exceeds d. For example, we first test if

10

Algorithm 4 Computing fwd-search(P, i, d) on the Block Tree of P , invoked as fwd-search(root, i+
1, |P |, |P |, d) with global variable e← 0.

Function fwd-search(v, i, j, b, d)

if j − i = b and e+ v.mexcess > d then
e← e+ v.excess ; return ∞

if v is a LeafBlock then
for k ← i to j do

if v.blk[k] = 0 then e← e− 1 ;
else e← e+ 1 ;
if e = d then return k;

if v is a BackBlock then
if v.off + i ≤ b then

if i = 1 and j ≥ b− v.off and e+ v.fb-mexcess > d then
e← e+ v.fb-excess

else
f ← fwd-search(v.ptr, v.off + i,min(v.off + j, b), b, d)
if f 6=∞ then return f − v.off ;

if v.off + j > b then
if j = b and i ≤ b− v.off and e+ v.sb-mexcess > d then

e← e+ v.sb-excess
else

f ← fwd-search(v.ptr.next,max(v.off + i− b, 1), v.off + j − b, b, d)
if f 6=∞ then return f − v.off + b;

if v is an InternalBlock then
k1 ← b(i− 1)/κc; k2 ← b(j − 1)/κc
p← (k1 − 1) · (b/κ)
for k ← k1 to k2 do

f ← fwd-search(v.child[k],max(i, p+ 1)− p,min(j, p+ b/κ)− p, b/κ, d)
if f 6=∞ then return p+ f ;
p← p+ b/κ

return ∞

the search range spans the entire block v.blk (i.e., j− i = b) and the answer cannot be reached
inside v (i.e., e+ v.mexcess > d). If so, we simply increase e by v.excess and return ∞.

– If v is a BackBlock we translate the query to its original block O, which starts at offset v.off
in u.blk, where u = v.ptr. We first consider O ∩ u.blk (if not empty). We attempt to skip
it, asking if the translated query covers O ∩ u.blk (i.e., if i = 1 and j ≥ b − v.off) and if
e+ v.fb-mexcess > d. If not, we recursively call fwd-search on O∩u.blk. If this does not yield
an answer, we try on O∩u.next.blk, if it is not empty. We also try to skip this second block, if
it is contained in the translated query (i.e., j = b and i ≤ b− v.off) and e+ v.sb-mexcess > d.
If we cannot skip it, we recursively call fwd-search again on O ∩ u.next.blk.

– If v is an InternalBlock, we identify the children of v that contain v.blk[i, j] and scan them
left to right until finding the answer. Note that, although we call fwd-search recursively on
the children, those that are completely contained in the query and do not contain the answer
are processed in O(1) time due to the guard in the first line of the pseudocode. Thus, at most
two of those recursive calls are nontrivial.

11

Figure 2: On the left, fwd-search is queried on a suffix of an InternalBlock v with a cumulative
excess of e = 5. The query is translated to a suffix of the first child of v, which returns no answer
and changes the cumulative excess to e = 2. Then the query continues, covering the second and
third children of v completely, where it instantly (using the fields mexcess and excess) returns no
answer and updates the corresponding cumulative excess. Finally, the original query returns no
answer. On the right, fwd-search is queried on a substring of a BackBlock u with a cumulative
excess of e = 1. The query is translated to a suffix of the first pointed block, where it returns no
answer and changes the cumulative excess to e = 2. Then the query continues to a prefix of the
second pointed block, where the answer is found and relocated to the original node u.

Figure 2 exemplifies the execution of the fwd-search algorithm.
Note that, although we look for various opportunities to use precomputed data to skip parts

of the query, the operation fwd-search (as well as bwd-search and min-excess) is not guaranteed
to work proportionally to the height of the Block Tree. The instances we built that break this
time complexity, however, are unlikely to occur; see Figure 3. Our experiments will show that the
algorithms perform well in practice.

For bwd-search(i, d) we aim to find the largest j < i where the excess of P [j+1..i] is −d ≥ 0. The
idea is to traverse the range of the current node v right to left, updating e with the negative excess
differences we scan, and looking for the position where e = d, while using the fields v.Mexcess-suf,
v.fb-Mexcess-suf and v.sb-Mexcess-suf to try to speed up the procedure. For example, we can skip
the whole v if j − i + 1 = b and e + v.Mexcess-suf < −d. Upon BackBlocks, we first try with
v.ptr.next (skipping it if j = b, i ≤ b − v.off, and e + v.sb-Mexcess-suf < −d) and, if the answer is
not found in there, with v.ptr (skipping it if i = 1, j ≥ b− v.off, and e+ v.fb-Mexcess-suf < −d).

4.2.3 Finding the minimum excess

Operation min-excess(P, i, j) seeks the minimum excess in P [i..j]. It is implemented in Algorithm 5
with the recursive procedure min-excess(root, i, j, |P |), with a global excess variable e. The idea
is analogous to that of fwd-search: traverse the node left to right and use the excess and mexcess
fields to speed up the traversal. Note that, again, only the first and last of the calls to the children
of an InternalNode can take more than O(1) time. Figure 4 shows two examples of the execution
of the algorithm.

5 Our Repetition-Aware Compressed Suffix Tree

Following the scheme of Sadakane [14] we propose a three-component structure to implement a new
CST tailored to highly repetitive inputs.

12

(a) Case 1: prefix query, starting at the top right node

(b) Case 2: suffix query, starting at the top right node

Figure 3: A schematic example of a bad instance for our fwd-search algorithm. Case 1 corresponds
to a search covering a prefix of a block, while case 2 corresponds to a search covering a suffix of
a block. Each of those cases is transformed into one instance of each case in the next level of the
tree, generating an exponential blowup in the levels (thus linear in the number of nodes of the tree)
by repeating the same argument. Note that, for this to happen, we first need to visit a BackBlock,
transforming the query into a substring that it is not a prefix nor a suffix, and then we need to
visit another BackBlock, which separates the query again into the corresponding cases.

– We represent the tree topology using BP, and use our BT-CT structure of Section 4 to exploit
its repetitiveness.

– For the LCP, we use the compressed version of the bitvector H [16].

– We use the RLCSA [32] as our CSA, and replace its sampling by a grammar- or Block-Tree-
compressed representation of the suffix array and its inverse.

We call Block-Tree CST (BT-CST) the resulting compressed suffix tree. Our choice for accessing
A and A−1 give rise to variants we call BT-CST-X-Y , where X refers to the implementation of A
and Y to A−1. Their values are NONE if we retain the sampling mechanism of the RLCSA, LCSA
if we use grammar compression, and DABT if we use Block-Tree compression, as detailed next.
The variant BT-CST-NONE-NONE is called just BT-CST.

5.1 Enhanced RLCSA

Recall from Section 2.2 that the RLCSA uses O(r lg n) bits of space and can support access to the
suffix array A with the help of a regular sampling of O((n/s) lg n) bits, where s is the sampling
rate. If A[i] is queried, we iteratively apply Ψ until we get that Ψk[i] is a sampled position, and
return the sample minus k. Access to the inverse array A−1 is solved in a similar way, using a
sampling on A−1 and applying Ψ to reach the requested position. Finally, the iterated Ψ function,

13

Algorithm 5 Computing min-excess(P, i, j) on the Block Tree of P , invoked as
min-excess(root, i, j, |P |) with global variable e← 0.

Function min-excess(v, i, j, b)

if j − i = b then
e← e+ v.excess
return v.mexcess

m← 1
if v is a LeafBlock then

e′ ← e
for k ← i to j do

if v.blk[k] = 0 then e← e− 1 ;
else e← e+ 1 ;
if e− e′ < m then m← e− e′;

if v is a BackBlock then
if v.off + i ≤ b then

if i = 1 and j ≥ b− v.off then
e← e+ v.fb-excess
m← v.fb-mexcess

else
m← min-excess(v.ptr, v.off + i,min(v.off + j, b), b)

if v.off + j > b then
if j = b and i ≤ b− v.off then

e← e+ v.sb-excess
m′ ← v.sb-mexcess

else
m′ ← min-excess(v.ptr.next,max(v.off + i− b, 1), v.off + j − b, b)

m← min(m, v.fb-excess +m′)

if v is an InternalBlock then
k1 ← b(i− 1)/κc; k2 ← b(j − 1)/κc
e′ ← e
p← (k1 − 1) · (b/κ)
for k ← k1 to k2 do

m′ ← min-excess(v.child[k],max(i, p+ 1)− p,min(j, p+ b/κ)− p, b/κ)
if m′ + (e− e′) < m then m← m′ + (e− e′);
p← p+ b/κ

return m

Ψd, required by the operation letter, is answered by applying Ψ d times, unless d is greater than
2s, in which case the operation is solved by using A and A−1, Ψd[i] = A−1[A[i] + d].

The samplings in the RLCSA have been very hard to compress [32], so we try replacing these
samplings by compressed encodings of A and A−1. Since their differential encodings DA and DA−1

inherit the repetitiveness of its input [16] we use structures based on grammar compression and
Block Trees. For the grammar compression we make improvements on the Locally Compressed
Suffix Array (LCSA) [39]. We note that this is a general representation of differential encodings
(not specific to A), and we add fields to speed up its access queries. For Block Trees we show how
to adapt the rank query for answering access to the original array in a differential encoding of it.

14

Figure 4: On the left, min-excess is queried on a prefix of an InternalBlock v with a cumulative
excess of e = −2. The query is translated to the first child of v, which is completely covered,
returning −2 instantly and changing the cumulative excess to e = 1 (using the fields mexcess and
excess). Then the query continues to a prefix of the second child of v, where it returns −6 and
changes the cumulative excess to e = −2. Finally, the minimum from the second child is chosen
and readjusted to −3. On the right, min-excess is queried on a suffix of a BackBlock u with a
cumulative excess of e = 1. The query is translated to a suffix of the first pointed block, where it
returns −3 and changes the cumulative excess to e = 2. Then the query continues to the prefix
of the second block corresponding to the second part of u.blk, where it instantly returns −2 and
updates the cumulative excess to e = 4 (using the fields sb-mexcess and sb-excess). Finally, the
minimum from the first pointed block is chosen and returned.

5.1.1 LCSA optimizations

The Locally Compressed Suffix Array (LCSA) [39] is a grammar-compressed representation of the
suffix array A, where Re-Pair [40] is used to compress the differential encoding DA and a sampling
of A with sampling rate r, A′[1, dn/re], is added on top. To recover a particular cell A[i] they take
the nearest sample to the left and add all the symbols between the sample and i, of the compressed
differential representation DA, because A[i] = A[s] +

∑i
j=s+1DA[j]. They also add a bitvector

L[1, n] indicating the positions in A where each symbol of the initial rule S → C[1] · · ·C[c] starts.
More formally, the process to recover a particular cell A[i] of the suffix array is as follows:

1. Identify the nearest sample to the left of i : A′[k = b(i− 1)/rc+ 1] = A[s = (k − 1)r + 1].

2. Decompress DA[s+ 1], . . . , DA[i] from the grammar and add it to A[s]:

a. Identify the symbols C[x] and C[y] containing DA[s+ 1] and DA[i], respectively. For this,
rank on L is used.

b. Expand C[x], . . . , C[y] and get the desired values from this expansion.

The authors note that, if x 6= y, it is not necessary to completely expand C[y], because they do a
left-to-right expansion of rules. That this, for the Re-Pair rules A→ BC they first expand B and
then C, so they do not expand C in case DA[i] was already expanded by B. We note we could
apply the same optimization on C[x] if we do a right-to-left expansion. What we call LCSA in this
paper already includes this optimization.

Still, it could happen that the sample and i fall in the same symbol C[x = y], and in this case
none of the optimizations apply. To handle this case, we propose our second improvement, which
consists in attaching the length of the expansions at every rule. With these lengths we can decide
beforehand when an expansion is necessary. We call LCSA-lengths this optimization.

15

Algorithm 6 Computing daccess(DA, i) on the Block Tree of P , invoked as daccess(root, i, |P |).
Function daccess(v, i, b)

if v is a LeafBlock then return the sum of the symbols in v.blk[1, i] (by brute force) ;
if v is a BackBlock then

if v.off + i ≤ b then return daccess(v.ptr, i+ v.off, b)− v.pfb-sum ;
else return daccess(v.ptr.next, i+ v.off− b, b) + v.fb-sum ;

d← b(i− 1)/κc
p← 0
for k ← 1 to d do p← p+ v.child[k].partial-sum ;
return p+ daccess(v.child[d+ 1], ((i− 1) mod κ) + 1, b/κ)

Note that, although these solutions were built to represent suffix arrays and their inverses, they
can represent any array A whose consecutive differences are repetitive.

5.1.2 Block Tree adaptation (DABT)

We use Block Trees to compress the differential encoding of an array A and change the node fields
used to answer rank by fields storing the sum of the sequence of differences they represent.

More formally, we compress the differential encoding of an array A with a Block Tree and in
the nodes v of the Block Tree we replace:

– v.rankc by v.partial-sum, which is the sum of the symbols of v.blk.

– v.fb-rankc by v.fb-sum, which is the sum of the symbols in the maximal suffix of v.ptr.blk
overlapping with the first occurrence of v.blk.

– v.pfb-rankc by v.pfb-sum, which is the sum of the symbols in the maximal prefix of v.ptr.blk
not overlapping with the first occurrence of v.blk.

With these changes, an access query in the Block Tree corresponds to access on the differential
array DA, and Algorithm 6, using these new fields, corresponds to an access to the original array
A. This access takes time O(κ lgκ(n/ll) + ll).

We call this adaptation DABT (Differential Array Block Tree).

6 Experiments and Results

We measured the time/space performance of our compressed topology BT-CT (Section 4), different
strategies for replacing the sampling in the RLCSA (Section 5.1) of our new BT-CST (Section 5),
and compared them with the state of the art. Our code is publicly available at https://github.

com/elarielcl/MinimalistBT-CST.

6.1 Setup and Datasets

Our experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407 @ 2.40GHz with 256GB of
RAM and 10MB of L3 cache. The operating system is GNU/Linux, Debian 2, with kernel 4.9.0-8-
amd64. The implementations use a single thread and all of them are coded in C++ and use the
sdsl library [49] for their internal components. The compiler is gcc 6.3.0, with -O9 optimization.

16

https://github.com/elarielcl/MinimalistBT-CST
https://github.com/elarielcl/MinimalistBT-CST

Dataset n σ Type p7zip (bps)

dna0.001 106 5 Synthetic DNA 0.041

dna0.01 106 5 Synthetic DNA 0.044

dna0.1 106 5 Synthetic DNA 0.061

dna1.0 106 5 Synthetic DNA 0.188

influenza 155 15 Real DNA 0.135

escherichia 112 15 Real DNA 0.621

einstein 93 117 English text 0.009

kernel 259 160 Program code 0.205

Table 2: Summary table of the repetitive datasets. Length n is measured in millions (and rounded).
Compression by p7zip is shown in bits per symbol (bps).

In our experiments we use repetitive datasets obtained from the Repetitive Corpus of the
Pizza&Chili platform1. We artificially create repetitive dna sequences: dna0.001, dna0.01, dna0.1,
and dna1.0, where dnap is built taking a 1MB prefix of the dna sequence in the corpus, copying it
100 times, and mutating each copied base with probability p/100. The 1MB prefix of dna used as
base for the construction was obtained from the Gutenberg Project2.

We also use two real DNA sequences: influenza, a collection composed of 78,041 sequences
of Haemophilus Influenzae; and escherichia, a collection of sequences of different Escherichia
Coli individuals. Both sequences come from the NCBI3. Besides, we use two non-DNA sequences,
einstein, containing all the versions (up to January 12, 2010) of the German Wikipedia Article
of Albert Einstein; and kernel, a set of 36 versions of the Linux Kernel. Table 2 gives their main
characteristics, including an estimation of their repetitiveness through the Lempel-Ziv compression
program p7zip4

For each of those collections, we build its suffix tree and represent its topology with parentheses
(BP, see Section 2.1).

6.2 Compressed Topologies

6.2.1 Structures and Tests

We compare the following structures:

SADA. The classical BP implementation using the rmM-Tree [30]. We use the implementation
of the sdsl, cst sada, with its default configuration. We only consider the part of the imple-
mentation dedicated to answer tree topology operations.

GCT. The Grammar-Compressed Topology used as part of the Grammar-Compressed Suffix
Tree [26]. We use the same implementation used in its original publication, but only consid-
ering the topology space. We vary parameters rule-sampling and C-sampling as the authors
suggest.

1http://pizzachili.dcc.uchile.cl/repcorpus
2http://www.gutenberg.org/
3https://www.ncbi.nlm.nih.gov/
4http://p7zip.sourceforge.net/

17

http://pizzachili.dcc.uchile.cl/repcorpus
http://www.gutenberg.org/
https://www.ncbi.nlm.nih.gov/
http://p7zip.sourceforge.net/

BT-CT. Our Block Tree based topology. We vary the parameters κ ∈ {2, 4, 8} (arity) and ll ∈
{16, 32, 64, 128, 256, 512} (leaf length).

We run the queries first-child, tree-depth, next-sibling, parent, level-ancestor and lca. Data
points are the average of 100,000 random queries, doing as in previous work on Compressed Suffix
Trees [17, 26] to choose the nodes on which the operations are called: For first-child, tree-depth,
next-sibling and parent we collect the nodes in leaf-to-root paths starting from random leaves. For
level-ancestor we choose random leaves v whose tree-depth(v) = td ≥ 10, and choose a random
d ∈ [1, td − 1]. For lca we choose random leaf pairs. We show only the Pareto-optimal results of
each structure.

6.2.2 Results and Discussion

In the Appendix we show a graph for each operation on each input, the x-coordinate representing
the space in bps (bits per symbol) and the y-coordinate the time per operation in microseconds;
the input BP and the operation are indicated in the title.

Our experiments show that BT-CT is, in general, one order of magnitude faster than GCT, and
similar to SADA. The latter uses about 1.4 bps independently of the repetitiveness of its input.
GCT is the smallest structure, using from half to an order of magnitude less space than BT-CT
depending on the input. BT-CT, in turn, uses from a half to an order of magnitude less space
than SADA, depending on repetitiveness. For example, for einstein GCT uses 0.03–0.35 bps and
BT-CT uses 0.11–0.25 bps.

Figures 7 and 8 show the operations first-child and tree-depth, which use the basic access and
rank primitives. SADA solves these primitives using techniques for plain bitvectors, and thus it is
an order of magnitude faster than BT-CT (which solves them on the Block Tree) and two orders
faster than GCT (which solves them on grammars).

Figures 9, 10 and 11 show the operations next-sibling, parent and level-ancestor, which are
solved by using the primitives fwd-search and bwd-search. Those are solved by SADA using the
so-called rmM-tree, whose implementation offers logarithmic times. For these operations BT-CT
obtains times very similar to SADA, both being an order of magnitude faster than GCT. That is,
even when we could not offer good theoretical bounds for these primitives, BT-CT works in time
similar to the rmM-tree while using repetitiveness-aware space.

Figure 12 shows the operation lca, which uses the primitives min-excess, bwd-search and fwd-search.
In this case, the BT-CT obtains time very similar to SADA again, but this time GCT gets closer
(less than one order of magnitude of difference) on its fastest versions.

To summarize, BT-CT offers a new topology representation, with times competitive with SADA,
the fastest known compressed representation, while using space that decreases significantly with
higher repetitiveness. GCT is able to use considerably less space, but it is typically an order of
magnitude slower than BT-CT.

6.3 Differential Arrays

6.3.1 Structures and Tests

We run access experiments on the suffix array A and its inverse A−1. Our experiments build the
corresponding arrays for each of the inputs and average 100,000 random access queries on each of
them. We compare the following structures:

LCSA, LCSA-lengths. Our adaptations of LCSA [39]. We vary sampling-rate ∈ {16, 32, 64, 128,
256, 512, 1024, 2048}, for the sampling of the absolute values.

18

Table 3: Recommended structures depending on the accessed array and the repetitiveness of the
input sequence.

Repetitive Highly repetitive

A RLCSA LCSA-lengths

A−1 RLCSA DABT

DABT. Our adaptation of Block Trees to access differential arrays. We vary the parameters
κ ∈ {2, 4, 8} (arity) and ll ∈ {4, 8, 16, 32, 64, 128} (leaf length).

RLCSA. The same RLCSA [32] implementation used by Ordóñez el al. [26]; access to A and
A−1 is done with the help of a sampling on A. We vary its parameters sa-sampling ∈
{32, 64, 128, 256} and block-size ∈ {16, 32, 64}.

We only show the Pareto-optimal results of each structure.

6.3.2 Results and Discussion

The Appendix shows the time/space tradeoffs obtained for accessing A and A−1.
Figure 13 shows that DABT is the fastest alternative, but it is also the largest, never using

less than 5 bps. RLCSA is the structure achieving the least space, except for the most repetitive
inputs, where the sampling component is a barrier for further reducing space. LCSA can be up to
two orders of magnitude slower than LCSA-lengths, which shows that the length field we added
handles the bad cases of traditional LCSA. In general, LCSA-lengths can be nearly as fast as DABT
while using considerably less space, and up to an order of magnitude faster than RLCSA. It is not
clear why the Block-Tree-based DABT representation of the differential suffix array is considerably
larger than the corresponding grammar-based representation.

Figure 14 shows that DABT uses much less space for representing the differential array A−1

than for A (the array A−1 is known to preserve the repetitiveness of the input better than A [24]).
Since the LCSA variants and RLCSA use a space similar as for A, DABT becomes an interesting
variant for highly repetitive inputs, where it is of comparable size and 1–2 orders of magnitude faster
than the RLCSA and LCSA-lengths (LCSA, in turn, is considerably slower). When repetitiveness
is lower, DABT becomes again too large to be of interest, and RLCSA becomes the best option.

Table 3 summarizes the recommended structures depending on the accessed array and the
repetitiveness of the input sequence.

6.4 Compressed Suffix Trees

We now combine the previous structure to build various variants of our structure, BT-CST, and
compare it with previous work.

6.4.1 Structures and Tests

We compare the following structures:

CST SADA, CST SCT3, CST FULLY. Adaptation and improvements from the sdsl library on the
indexes of Sadakane [14], Fischer et al. [16] and Russo et al. [18], respectively. CST SADA
maximizes speed using Sadakane’s CSA [35] and a non-compressed version of bitvector H.
CST SCT3 uses instead a Huffman-shaped wavelet tree of the BWT as the suffix array, and a
compressed representation [50] for bitvector H and those of the wavelet tree. This bitvector

19

representation exploits the runs and makes the space sensitive to repetitiveness, but it is
slower. CST FULLY uses the same BWT representation. For all these suffix arrays we set
sa-sampling = 32 and isa-sampling = 64.

CST SADA RLCSA, CST SCT3 RLCSA. Same as the preceding implementations but (further) adapted
to repetitive collections: We replace the suffix array by the RLCSA [32] and use a run-length-
compressed representation of bitvector H [16].

GCST. The Grammar-based Compressed Suffix Tree [26]. We vary parameters rule-sampling and
C-sampling as they suggest.

BT-CST-{LCSA, DABT, NONE}-{LCSA, DABT, NONE}. Our new Compressed Suffix Tree with
the described components. For the BT-CT component we vary κ ∈ {2, 4, 8} (arity) and
ll ∈ {4, 8, 16, 32, 64, 128, 256} (leaf length). For the versions NONE, the RLCSA uses a sam-
pling of s = 128 for both A and A−1. For the versions LCSA we use LCSA-lengths to get
better time performance and set the sweet point sampling-rate = 128. For DABT, we use a
low-space configuration, that is, κ = 2 and ll = 16. We only present the results for BT-CST-
NONE-NONE (as BT-CST), BT-CST-LCSA-NONE (as BT-CST-LCSA), BT-CST-LCSA-LCSA,
and BT-CST-LCSA-DABT, since the others are pretty similar or dominated by these versions.

For all the CSTs using the RLCSA, we fix their parameters to 32 for the sampling of Ψ and 128 for
the text sampling. We only show the Pareto-optimal results of each structure. We do not include
the CST of Abeliuk et al. [17] in the comparison because it was already outperformed by several
orders of magnitude by GCST.

In addition to the six topology operations tested in Section 6.2 (which some CSTs simulate
without storing the tree topology at all), we study four specific suffix tree operations: suffix-link,
string-depth, string-ancestor and child. On those, data points are also averaged over 100,000 random
queries, following the scheme used in previous work on Compressed Suffix Trees [17, 26] to choose
the nodes on which the operations are called. For suffix-link we collect the nodes on traversal
starting from random leaves, and taking suffix-links until reaching the root. For string-ancestor we
choose random leaves v whose string-depth(v) = sd ≥ 10, and choose a random d ∈ [1, sd− 1]. For
child we choose random leaves and collect the nodes in the traversals to the root(), discarding the
nodes with less than 3 children, and we choose the initial letter of a random child of the node.

Maximal Exact Matches (MEMs) We also compare the suffix trees in solving a typical bioin-
formatic problem. We test all of the above implementations except CST FULLY, because of its poor
time performance.

The MEM problem is as follows. Given a pattern string S[1,m], we want to find all its maximal
substrings appearing in T , where maximal means that, if we extend them left or right by a single
symbol, they do not appear anymore in T . This problem can be solved in O(m) time using the
suffix tree of T to find the requested substrings. We implement the same algorithm as in previous
work [26]. The algorithm maintains two pointers, which indicate the limits of the current substring
of S, S[i, j], and a current suffix tree node. Initially we have i = 1, j = 0, and the root node. The
algorithm works by iteratively applying the following two steps:

1. Try to increase j by descending in the suffix tree by the letter S[j + 1]. The algorithm
descends from the current node as much as possible and then outputs the corresponding
maximal substring, S[i, j], if i < j.

20

2. Increase i by the minimum necessary amount. The algorithm takes successive suffix links
from the current node until it can descend again from it by S[j + 1]. If i > j during this
process, it sets j = i− 1.

This iteration of two steps is repeated until j reaches m, the end of S.
We use the same setup of the GCST publication [26], that is, influenza from Pizza&Chili as

our larger sequence and a substring of size m (m = 3000 and m = 2MB) of another influenza

sequence taken from https://ftp.ncbi.nih.gov/genomes/INFLUENZA. BT-CST uses BT-CT with
κ = 2 and ll = 128 and GCST uses rule-sampling = 1 and C-sampling = 210. The tradeoffs refer to
sa-sampling ∈ {64, 128, 256} for the RLCSAs. Data points are the average of 100 executions of the
algorithm.

Time and peak memory in construction We also measure the time and peak memory usage
for the constructions on all of the above implementations, except for CST FULLY, on the same
sequence influenza and parameters used for the MEMs problem. Data points are the average of
10 executions of the constructions.

6.5 Results and Analysis

The Appendix shows the plots for the 10 suffix tree operations. The smallest structure, by a
wide margin, is always GCST, except on dna1.0 and escherichia (two of the least repetitive
sequences), where CST FULLY is smaller. The next smallest indexes are BT-CST, CST FULLY
and, on the less repetitive sequences, CST SCT3 RLCSA. The compressed indexes not designed for
repetitive collections use 1–4 bps less if combined with a RLCSA. The variant BT-CST-LCSA is
larger than BT-CST, and in turn smaller than BT-CST-LCSA-DABT.

From the BT-CST space, component H takes just 2%–9%, the RLCSA takes 23%–47%, and the
rest is the BT-CT (using a sweetpoint configuration).

In operations first-child and tree-depth (Figures 15 and 16), which use the basic access and rank
primitives, CST SADA[RLCSA] use techniques of plain bitvectors, which yields an order of magni-
tude of advantage over BT-CST and two orders over GCST. CST SCT3[RLCSA] and CST FULLY are
orders of magnitude slower in these operations, because they do not explicitly store the topology.

In operations next-sibling, parent and level-ancestor (Figures 17, 18, and 19), which rely more
heavily on the suffix tree topology, our BT-CT component building on Block Trees makes BT-CST
excel in time: The operations take nearly one microsecond (µsec), at least 10 times less than the
grammar-based topology representation of GCST. CST FULLY is three orders of magnitude slower
on this operation, taking over a millisecond. Interestingly, the larger representations, including
those where the tree topology is represented using 2.8 bits per node (CST SADA[RLCSA]), are
only marginally faster than BT-CST, whereas the indexes CST SCT3[RLCSA] are a bit slower than
CST SADA[RLCSA] because they do not store the tree topology explicitly.

Operation lca (Figure 20), which on BT-CST involves essentially the primitive min-excess, is
costlier, taking around 10 µsec in almost all the indexes including ours. This includes again those
where the tree topology is represented using 2.8 bits per node (CST SADA[RLCSA]). Thus, although
we cannot prove upper bounds on the time of min-excess, it is, in practice, as fast as on structures
where it can be proved to be logarithmic-time. The variants CST SCT3[RLCSA] also require an
operation very similar to min-excess, so they perform almost like CST SADA[RLCSA]. For this
operation, CST FULLY is equally fast, owing to the fact that operation lca is a basic primitive in
this representation. Only GCST is several times slower than BT-CST, taking several tens of µsec.

21

https://ftp.ncbi.nih.gov/genomes/INFLUENZA

Note that for tree topology operations (first-child, tree-depth, next-sibling, parent, level-ancestor,
and lca), the times of our BT-CST variants are the same, because they differ only in their under-
lying CSA, which is not used for those operations. The same occurs between CST SADA and
CST SADA RLCSA, and between CST SCT3 and CST SCT3 RLCSA.

Operation suffix-link (Figure 21) involves primitive min-excess and several others on the topol-
ogy, but also the operation Ψ on the corresponding CSA. Since the latter is relatively fast on the
RLCSA, all the BT-CST variants take nearly 10 µsec, whereas the additional operations on the
topology drive GCST over 100 µsec, and CST FULLY over the millisecond. This time the topology
representations that are blind to repetitiveness are several times faster than BT-CST, taking a few
µsec, possibly because they take more advantage of the smaller ranges for min-excess involved
when choosing random nodes (most nodes have small ranges). The CST SCT3[RLCSA] variants
also solve this operation with a fast and simple formula.

Operations string-depth and string ancestor (Figures 22 and 23) are solved by combinations of
topology operations and access to the suffix array A, being the latter the costliest for the indexes
using the RLCSA. For this reason, the time difference between BT-CST and GCST is reduced in
these operations. The impact in the use of A is also shown in the comparison between CST SADA
and CST SADA RLCSA, and between CST SCT3 and CST SCT3 RLCSA. CST FULLY is an order
of magnitude slower in these operations. Our variants using the LCSA encoding of A yield about
an order of magnitude time improvement over the plain BT-CST, which uses the slower RLCSA
sampling.

Finally, operation child (Figure 24) is the most expensive, requiring one application of string-
depth and several of next-sibling and letter, thereby heavily relying on the CSA. CST SCT3[RLCSA]
binary search the children; the others scan them linearly. The indexes using a CSA that adapts to
repetitiveness require nearly one millisecond on large alphabets, whereas those using a larger and
faster CSA are up to 10 (CST SCT3) and 100 (CST SADA) times faster. On DNA, instead, most of
the indexes take nearly 100 µsec, except for CST SADA, which is several times faster; GCSA, which
is a few times slower; and CST FULLY, which stays near the millisecond. Our variants of BT-CST
behave differently depending on the input sequence: on dna texts, the major time improvement
(about one order of magnitude) is given by the presence of a differential encoding of A, because in
this case the costliest operation is the string-depth done at the beginning. However, for inputs with
large alphabets, such as einstein and kernel, the presence of a differential encoding of A−1 is more
important (one order of magnitude improvement), as in this case nodes have more children, and
then more applications of letter are required. Although we recommended the DABT over LCSA
for A−1, the difference in time or space between BT-CST-LCSA-LCSA and BT-CST-LCSA-DABT
is very small. The former is likely to be preferable in general because it behaves better when the
repetitiveness is not so high.

Maximal Exact Matches Figure 5 shows the results for the MEMs problem, giving the time
per symbol of S. Our basic version, BT-CST, sharply dominates an important part of the Pareto-
curve, including the sweet point at 3.5 bps and 200-300 µsec per symbol. The other structures
for repetitive collections take either much more time and slightly less space (GCST, 1.5–2.5 times
slower), or significantly more space and slightly less time (CST SCT3, 45% more space and around
200 µsec). CST SADA is around 10 times faster, just as its CSA for solving the dominant operation
child, but also about 3 times faster. Our BT-CST variants using a differential encoding of A present
significant time improvements, yet at the cost of considerably more space. Other indexes are never
Pareto-optimal.

22

Figure 5: Performance of CSTs when solving the MEMs problem. The y-axis is time in microseconds
per base in the smaller sequence (of length m).

Figure 6: Time and peak memory of CST constructions. The y-axis is time in minutes in log-scale.
The x-axis is the peak memory consumption in gigabytes.

Construction Figure 6 shows the behavior of the construction algorithms both in time and
peak memory consumption. The CSTs blind to repetitiveness (CST SADA and CST SCT3) are the
fastest (less than 10 minutes) and most space efficient (∼ 5 GBs) to build. Their variants using the
RLCSA (CST SADA RLCSA and CST SCT3 RLCSA) have the same peak memory, indicating that
the space usage of the construction of the RLCSA is less than the other components. However, the
construction time of the variants using the RLCSA increases by one order of magnitude (around
100 minutes depending on the sa-sampling). In our BT-CSTs, a significant part of the time is used
by the construction of the BT-CT (around 60 minutes). The peak memory usage of our BT-CSTs is
1–5 GBs larger than CST SADA RLCSA and CST SCT3 RLCSA because of the construction of the
BT-CT, and the space used by DABT and Re-Pair (LCSA) on the differential representations of A
and A−1. The peak memory usage of GCST is significantly larger than the other indexes (nearly
16 GBs) because of the space used by Re-Pair to compress the BP topology.

We recommend to use the low-space version of our index, BT-CST, unless we require operations
that access the suffix array. In this case, BT-CST-LCSA uses more space but it achieving orders
of magnitude improvements on operations involving A. In the case of highly repetitive inputs on
large alphabets, like einstein, we recommend BT-CST-LCSA-LCSA, which is the fastest compared
to its relatives and less sensitive to repetitiveness than BT-CST-LCSA-DABT.

23

7 Conclusions and Future Work

We have introduced the Block-Tree Compressed Suffix Tree (BT-CST), a new compressed suffix
tree aimed at indexing highly repetitive text collections. Its main feature is the BT-CT component,
which uses Block Trees to represent the parentheses-based topology of the suffix tree and exploit the
repetitiveness it inherits from the text collection. Block Trees [28] are a novel technique to represent
a sequence in space close to its Lempel-Ziv complexity (with a logarithmic-factor penalty), but in a
way that direct (logarithmic-time) access to any element is supported. The BT-CT enhances Block
Trees with the more complex operations needed to simulate tree navigation on the parentheses
sequence, as needed by the suffix tree operations.

Our experimental results show that the BT-CST requires 1–3 bits per symbol in highly repet-
itive text collections, which is slightly larger than the best previous alternatives [26], but also
significantly faster (often by an order of magnitude). Our structure dominated a significant part of
the space/time tradeoff map when finding Maximal Exact Matches on a DNA repository, a typical
problem in Bioinformatics.

In particular, the BT-CT component uses 0.3-1.5 bits per node on these suffix trees and it takes
a few microseconds to simulate the tree navigation operations, which is close to the time obtained
by the classical 2.8-bit-per-node representation that is blind to repetitiveness [30]. This structure
may be interesting for other repetitive trees beyond compressed suffix trees, such as XML datasets.

Although we have shown that in practice they perform as well as their classical counterpart
[30], an interesting open problem is whether the operations fwd-search, bwd-search, and min-excess
can be supported in polylogarithmic time on Block Trees. This was possible on perfectly balanced
trees [30] and even on balanced-grammar parse trees [26], but the ability of Block Trees to refer to
a prefix or a suffix of a block makes this more challenging. We note that the algorithm described by
Belazzougui et al. [28] claiming logarithmic time for min-excess does not really solve the operation.5

We also use grammar and Block Tree-based representations of the suffix array and its inverse
to enhance the RLCSA and improve the time performance of BT-CST in the operations using
its CSA. We obtain improvements of one order of magnitude on these operations. Grammars
compress considerably better than Block Trees in this case, unless repetitiveness is very high; we
do not have a clear explanation to this observation. In any case, we note that this enhancement of
the RLCSA could be applied to any CST using RLCSAs, for example, GCST, CST SADA RLCSA
or CST SCT3 RLCSA, which gives a new range of possibilities.

The most relevant challenge ahead for making these repetition-aware CSTs of wide use is to
build them within low space and time on huge collections (which take relatively small space once
compressed). The CSTs based on prefix-free parsing [46], though not yet achieving compression
ratios (and usually, query times) comparable to our BT-CSTs, are an important step in this di-
rection, being the only CSTs for repetitive text collections that can be built on gigabytes of data
using reasonable time and main memory. Can we build a significantly smaller CST, for example
the BT-CST, on huge collections, possibly making use of the prefix-free-parsing concept?

References

[1] Peter Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium on
Switching and Automata Theory (FOCS), pages 1–11, 1973.

[2] Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(2):262–272, 1976.

5As checked with coauthor T. Gagie.

24

[3] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[4] Alberto Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words, pages 85–96. Springer, 1985.

[5] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

[6] Maxim Mozgovoy, Kimmo Fredriksson, Daniel White, Mike Joy, and Erkki Sutinen. Fast
plagiarism detection system. In Proc. 12th International Symposium on String Processing and
Information Retrieval (SPIRE), pages 267–270, 2005.

[7] Dell Zhang and Wee Sun Lee. Extracting key-substring-group features for text classification.
In Proc. 12th Annual International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 474–483, 2006.

[8] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-efficient
frameworks for top-k string retrieval. Journal of the ACM, 61(2):9:1–9:36, 2014.

[9] Stefan Kurtz. Reducing the space requirement of suffix trees. Software Practice and Experience,
29(13):1149–1171, 1999.

[10] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. In Proc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 383–391, 1996.

[11] Paolo Ferragina and Roberto Grossi. The string B-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM, 46(2):236–280, 1999.

[12] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

[13] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[14] Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

[15] Enno Ohlebusch, Johannes Fischer, and Simon Gog. CST++. In Proc. 17th International
Conference on String Processing and Information Retrieval (SPIRE), pages 322–333, 2010.

[16] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded compressed
suffix trees. Theoretical Computer Science, 410(51):5354–5364, 2009.

[17] Andrés Abeliuk, Rodrigo Cánovas, and Gonzalo Navarro. Practical compressed suffix trees.
Algorithms, 6(2):319–351, 2013.

[18] Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed suffix trees.
ACM Transactions on Algorithms, 7(4):53:1–53:34, 2011.

[19] Sarah A. Tishkoff and Kenneth K. Kidd. Implications of biogeography of human populations
for ‘race’ and medicine. Nature Genetics, 36:S21–S27, 2004.

[20] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theoretical Computer Science, 483:115–133, 2013.

25

[21] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Transactions
on Information Theory, 22(1):75–81, 1976.

[22] John C. Kieffer and En-Hui Yang. Grammar-based codes: a new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000.

[23] Gonzalo Navarro. Indexing highly repetitive collections. In Proc. 23rd International Workshop
on Combinatorial Algorithms (IWOCA), pages 274–279, 2012.

[24] T. Gagie, G. Navarro, and N. Prezza. Fully-functional suffix trees and optimal text searching
in BWT-runs bounded space. Journal of the ACM, 67(1):article 2, 2020.

[25] Djamal Belazzougui and Fabio Cunial. Representing the suffix tree with the CDAWG. In Proc.
28th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 7:1–7:13, 2017.

[26] Gonzalo Navarro and Alberto Ordóñez. Faster compressed suffix trees for repetitive collections.
ACM Journal of Experimental Algorithmics, 21(1):1–8, 2016.

[27] Rajeev Raman and S. Srinivasa Rao. Succinct representations of ordinal trees. In Space-
Efficient Data Structures, Streams, and Algorithms, pages 319–332. Springer, 2013.

[28] Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto Ordónez,
Simon J Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In Data Compression
Conference (DCC), 2015, pages 83–92, 2015.

[29] Alberto Ordóñez. Statistical and repetition-based compressed data structures. PhD thesis,
Universidade da Coruña, 2016.

[30] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Transactions on Algorithms, 10(3):16, 2014.

[31] Diego Arroyuelo, Francisco Claude, Sebastian Maneth, Veli Mäkinen, Gonzalo Navarro, Kim
Nguy˜̂en, Jouni Sirén, and Niko Välimäki. Fast in-memory xpath search using compressed
indexes. Software Practice and Experience, 45(3):399–434, 2015.

[32] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

[33] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1), 2007.

[34] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with ap-
plications to text indexing and string matching. SIAM Journal on Computing, 35(2):378–407,
2005.

[35] Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays. Journal
of Algorithms, 48(2):294–313, 2003.

[36] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):552–581, 2005.

[37] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed rep-
resentations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):20,
2007.

26

[38] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, March 2005.

[39] Rodrigo González, Gonzalo Navarro, and Héctor Ferrada. Locally compressed suffix arrays.
ACM Journal of Experimental Algorithmic, 19:1.1:1.1–1.1:1.30, 2015.

[40] N. Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Proceedings of
the IEEE, 88(11):1722–1732, 2000.

[41] Simon J. Puglisi and Bella Zhukova. Relative Lempel-Ziv compression of suffix arrays. In Proc.
27th International Symposium on String Processing and Information Retrieval (SPIRE), pages
89–96, 2020.

[42] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In Proc. 17th International Conference on String
Processing and Information Retrieval (SPIRE), pages 201–206, 2010.

[43] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Fully
Dynamic Data Structure for LCE Queries in Compressed Space. In Proc. 41st International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 72:1–72:15,
2016.

[44] Andrea Farruggia, Travis Gagie, Gonzalo Navarro, Simon J. Puglisi, and Jouni Sirén. Relative
suffix trees. The Computer Journal, 61(5):773–788, 2018.

[45] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Com-
posite repetition-aware data structures. In Proc. 26th Annual Symposium on Combinatorial
Pattern Matching (CPM), pages 26–39, 2015.

[46] Christina Boucher, Ondrej Cvacho, Travis Gagie, Jan Holub Giovanni Manzini, Gonzalo
Navarro, and Massimiliano Rossi. PFP compressed suffix trees. In Proc. 23rd Workshop
on Algorithm Engineering and Experiments (ALENEX), 2021. To appear.

[47] Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure of
repetitiveness. In Proc. 14th Latin American Symposium on Theoretical Informatics (LATIN),
2020. To appear.

[48] Manuel Cáceres. Compressed Suffix Trees for Repetitive Collections Based on Block Trees.
MSc. Thesis, University of Chile, 2019.

[49] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Proc 13th Symposium on Experimental Algorithms
(SEA), pages 326–337. Springer, 2014.

[50] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4):43, 2007.

A Time/Space Plots

27

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

GQD�������4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

GQD������4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

GQD�����4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

HVFKHULFKLD��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

LQ5XHQ]D��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

HLQVWHLQ��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

NHUQHO��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 7: Performance of first-child in different BP representations. The y-axis is time in microsec-
onds in log-scale.

28

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

GQD�������WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

GQD������WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� � ��� �
����

���

�

��

���

����

��N
%7�&7

*&7

6$'$

HVFKHULFKLD��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

LQ5XHQ]D��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

HLQVWHLQ��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
����

���

�

��

���

����
%7�&7

*&7

6$'$

NHUQHO��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 8: Performance of tree-depth in different BP representations. The y-axis is time in microsec-
onds in log-scale.

29

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

GQD�������QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD������QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

HVFKHULFKLD��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

LQ5XHQ]D��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

HLQVWHLQ��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

NHUQHO��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 9: Performance of next-sibling in different BP representations. The y-axis is time in mi-
croseconds in log-scale.

30

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

GQD�������SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

GQD������SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

GQD�����SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

HVFKHULFKLD��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

LQ5XHQ]D��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

HLQVWHLQ��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

NHUQHO��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 10: Performance of parent in different BP representations. The y-axis is time in microseconds
in log-scale.

31

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

GQD�������OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

GQD������OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

HVFKHULFKLD��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

LQ5XHQ]D��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

HLQVWHLQ��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

NHUQHO��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 11: Performance of level-ancestor in different BP representations. The y-axis is time in
microseconds in log-scale.

32

� ��� � ��� �
�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�������OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD������OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
�

��

���

����

��N
%7�&7

*&7

6$'$

GQD�����OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
�

��

���

����

��N
%7�&7

*&7

6$'$

HVFKHULFKLD��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
�

��

���

����

��N
%7�&7

*&7

6$'$

LQ5XHQ]D��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
���

�

��

���

����
%7�&7

*&7

6$'$

HLQVWHLQ��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� ��� � ��� �
�

��

���

����

��N
%7�&7

*&7

6$'$

NHUQHO��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 12: Performance of lca in different BP representations. The y-axis is time in microseconds
in log-scale.

33

Figure 13: Performance of access in different representations of the suffix array. The y-axis is time
in microseconds in log-scale.

34

Figure 14: Performance of access in different representations of the inverse suffix array. The y-axis
is time in microseconds in log-scale.

35

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
����

���

�

��

���

����
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��4UVW�FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 15: Performance of first-child in different CSTs. The y-axis is time in microseconds in
log-scale.

36

� � � � � ��
����

���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
����

���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
����

���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��WUHH�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 16: Performance of tree-depth in different CSTs. The y-axis is time in microseconds in
log-scale.

37

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��QH[W�VLEOLQJ

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 17: Performance of next-sibling in different CSTs. The y-axis is time in microseconds in
log-scale.

38

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��SDUHQW

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 18: Performance of parent in different CSTs. The y-axis is time in microseconds in log-scale.

39

� � � � � ��
���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��OHYHO�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 19: Performance of level-ancestor in different CSTs. The y-axis is time in microseconds in
log-scale.

40

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��OFD

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 20: Performance of lca in different CSTs. The y-axis is time in microseconds in log-scale.

41

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��VX][�OLQN

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 21: Performance of suffix-link in different CSTs. The y-axis is time in microseconds in
log-scale.

42

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��VWULQJ�GHSWK

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 22: Performance of string-depth in different CSTs. The y-axis is time in microseconds in
log-scale.

43

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
���

�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��VWULQJ�DQFHVWRU

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 23: Performance of string-ancestor in different CSTs. The y-axis is time in microseconds in
log-scale.

44

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�������FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD������FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

GQD�����FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � �� ��
�

��

���

����

��N
%7�&67

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HVFKHULFKLD��FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

LQ5XHQ]D��FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

HLQVWHLQ��FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

� � � � � ��
�

��

���

����

��N
%7�&67

%7�&67�/&6$

%7�&67�/&6$�/&6$

%7�&67�/&6$�'$%7

*&67

&67B6&7�

&67B6$'$

&67B)8//<

&67B6&7�B5/&6$

&67B6$'$B5/&6$

NHUQHO��FKLOG

6SDFH��ESV�

7
LP
H
�S
H
U�
R
S
H
UD
WL
R
Q
��
X
V�

Figure 24: Performance of child in different CSTs. The y-axis is time in microseconds in log-scale.

45

	Introduction
	Preliminaries and Related Work
	Succinct tree representations: BP
	Compressed Suffix Arrays (CSAs)
	Repetition-aware CSAs
	Compressed Suffix Trees (CSTs)
	Repetition-aware CSTs

	Block Trees
	Our Block-Tree Compressed Topology (BT-CT)
	Block Tree augmentation
	Operations
	Rank and select of bits and leaves
	Forward and backward searches
	Finding the minimum excess

	Our Repetition-Aware Compressed Suffix Tree
	Enhanced RLCSA
	LCSA optimizations
	Block Tree adaptation (DABT)

	Experiments and Results
	Setup and Datasets
	Compressed Topologies
	Structures and Tests
	Results and Discussion

	Differential Arrays
	Structures and Tests
	Results and Discussion

	Compressed Suffix Trees
	Structures and Tests

	Results and Analysis

	Conclusions and Future Work
	Time/Space Plots

