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Abstract

Leapfrog Triejoin (LTJ) is arguably the most practical and popular

worst-case-optimal (wco) algorithm for solving basic graph patterns

in graph databases. Its main drawback is that it needs the database

triples (subject, predicate, object) represented as paths in a trie,

for each of the six orders of subject, predicate, and object. The

resulting blowup in space makes most systems disregard LTJ or

implement it only partially, and their corresponding algorithms

be non-wco. In this paper we show that, by using compact data

structures, it is possible to build an index that at the same matches

the query time performance of the fastest classic wco index, and

uses half the space of non-wco indices (which are much slower).

Concretely, we make use of compact tree representations to store

functional tries using one bit per trie edge, instead of one pointer.

The resulting structure, called compactLTJ, uses 25% of the space

of classic wco implementations and 45%–65% of classic non-wco

systems. At solving queries, it is on par with the fastest classic wco

system, and two orders of magnitude faster than non-wco systems.

We further incorporate improved query resolution strategies into

compactLTJ, which makes it considerably faster than any other

alternative to display the first query results.
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1 Introduction

Natural joins are fundamental in the relational algebra, and gen-

erally the most costly operations. A bad implementation choice

can lead to unaffordable query times, so they have been a concern

since the beginnings of the relational model. Apart from efficient

algorithms to join two tables (i.e., solve pair-wise joins), database

management systems sought optimized strategies (e.g., [26]) to

solve joins between several tables (i.e., multijoins), as differences

between good and bad plans could be huge in terms of efficiency.

A query plan for a multijoin was a binary expression tree where

the leaves were the tables to join and the internal nodes were the

pair-wise joins to perform.

After half a century of revolving around this pairwise-join-based

strategy, it was found that it had no chance to be optimal [4], as

it could generate intermediate results (at internal nodes of the

expression tree) that were much larger than the final output. The

concept of a worst-case optimal (wco) algorithm [4] was coined to

define a multijoin algorithm taking time �̃� (𝑄∗), where 𝑄∗
is the

largest output size on some database instance with the same table

sizes of the given one (�̃� (𝑄∗) allows multiplying 𝑄∗
by terms that

do not depend, or depend only logarithmically, on the database

size). Several wco join algorithms were proposed since then [14, 22–

25, 28].

Leapfrog Triejoin (LTJ) [28] is probably the simplest and most

popular wco algorithm. At a high level, it can be regarded as re-

ducing the multijoin by one attribute at a time, instead of by one

relation at a time as in the classical query plans. LTJ chooses a suit-

able order in which the joined attributes will be eliminated (which
means finding all their possible values in the output and branching

on the subset of the output matching each such value). To proceed

efficiently, LTJ needs the rows of each relation stored in a trie (or

digital tree) where the root-to-leaf attribute order is consistent with

the chosen attribute elimination order. Even though LTJ is wco

with any elimination order, it turns out that, just like with the tradi-

tional query plans, there can be large performance differences when

choosing different orders [11, 28]. This means, first, that choosing

a good order is essential and, second, that LTJ needs tries storing

each relation in every possible order of its attributes, that is, 𝑑! tries
for a relation with 𝑑 attributes.

https://doi.org/10.1145/3661304.3661898
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This high space requirement shows up, in one form or another,

in all the existing wco algorithms, and has become an obstacle to

their full adoption in database systems. Wco algorithms are of par-

ticular interest in graph databases, which can be regarded as labeled

graphs, or as a single relational table with three attributes: source

node, label, and target node. Standard query languages for graph

databases like SPARQL [10] feature most prominently basic graph
patterns (BGPs), which essentially are a combination of multijoins

and simple selections. The concept of wco algorithms, as well as

LTJ, can be translated into solving BGPs on graph databases [11].

This is very relevant because typical BGPs correspond to large and

complex multijoins [1, 11, 13, 25], where non-wco algorithms can

be orders of magnitude slower than wco ones [1]. Still, LTJ needs

3! = 6 copies of the database in the form of tries, which even for

three attributes is sufficiently space-demanding to discourage its

full implementation.

The implementation of various wco indices for graph databases

seems to confirm that large space usage will be the price for fea-

turing wco query times. For example, a wco version of Jena [11]

doubles the space of the original non-wco version. Efficient wco

implementations like Jena LTJ [11] and MillenniumDB [30] use

around 14 times the space required to store the graph triples in raw

form. The most popular systems for graph databases, like Jena [11],

Virtuoso [7], RDF-3X [21], or Blazegraph [27], for example, give up

on worst-case optimality in order to use “only” 5 to 7.5 times the

size of a plain triple storage.

1.1 Our contribution

In this paper we show that, by using compact data structures, it is

possible to achieve at the same time worst-case optimality—with an

index that is as fast as the fastest classical ones and sometimes even

faster—, while using much less space than the (orders of magnitude

slower) classic indices—just 3.3 times the space of the raw triple

data. More in detail:

(1) We show how to implement the 6-trie wco LTJ algorithm in

little space by adapting compact data structures for ordinal

trees [12], in a way that requires only one bit, instead of

one pointer, per trie edge. The resulting structure, which

we call compactLTJ, uses about 25% of the space of classic

LTJ implementations that store the 6 tries (MillenniumDB,

Jena LTJ), and 45%–65% of the space used by other non-wco

systems (Virtuoso, RDF-3X, Blazegraph). Our index matches

the query time performance of the fastest wco system (Mil-

lenniumDB), while outperforming the others—particularly

the non-wco systems—by two orders of magnitude.

(2) We explore the use of adaptive variable elimination orders in

LTJ, which recompute the best order as the join proceeds and

better estimations are available. We further use an estimator

for the next variable to bind that turns out to be more accu-

rate. The combination obtains the first million results faster

than the traditional global-order strategy, making the com-
pactLTJ index, for example, twice as fast as MillenniumDB

to obtain the first 1000 results.

Recent research [3] has shown that it is possible to go further in

space reduction, so as to simulate the LTJ data structures within 0.6

to 1.0 times the size of the raw triple data. This significant reduction

has a cost in terms of time performance, however: we show in the

experiments that compactLTJ is also two orders of magnitude faster

than these compressed data structures. We also show that other

recent indices that offer beyond-wco query time guarantees, like

Graphflow [18], ADOPT [31], and EmptyHeaded [1], do outperform

compactLTJ on particularly difficult queries, but again use 2–4 times

more space. The techniques we develop in this paper could be used

to develop more compact versions of those more powerful indices

as well. Current limitations of our scheme, like being main-memory

based and static, are discussed in the Conclusions.

2 Preliminary concepts

2.1 Graph joins

2.1.1 Edge-Labeled Graphs Let U be a totally ordered, countably

infinite set of constants, which we call the universe. In the RDF

model [17], an edge-labeled graph is a finite set of triples 𝐺 ⊆ U3
,

where each triple (𝑠, 𝑝, 𝑜) ∈ U3
encodes the directed edge 𝑠

𝑝
−→ 𝑜

from vertex 𝑠 to vertex 𝑜 , with edge label 𝑝 . We call dom(𝐺) =

{𝑠, 𝑝, 𝑜 | (𝑠, 𝑝, 𝑜) ∈ 𝐺} the subset of U used as constants in 𝐺 . For

any element 𝑢 ∈ U, let 𝑢 + 1 denote the successor of 𝑢 in the total

order U. We also denote𝑈 = max dom(𝐺). For simplicity, we will

assume that the constants inU have been mapped to integers in

the range [1 . .𝑈 ], and will even assumeU = [1 . .𝑈 ].

2.1.2 Basic Graph Patterns (BGPs) A graph 𝐺 is often queried

to find patterns of interest, that is, subgraphs of 𝐺 that are ho-

momorphic to a given pattern 𝑄 . Unlike the graph 𝐺 , which is

formed only by constants inU, a pattern 𝑄 can contain also vari-
ables, formally defined as follows. LetV denote an infinite set of

variables, such that U ∩ V = ∅. Then, a triple pattern 𝑡 is a tu-

ple (𝑠, 𝑝, 𝑜) ∈ (U ∪ V)3, and a basic graph pattern is a finite set

𝑄 ⊆ (U ∪ V)3 of triple patterns. Each triple pattern in 𝑄 is an

atomic query over the graph, equivalent to equality-based selec-

tions on a single ternary relation. Thus, a basic graph pattern (BGP)

corresponds to a full conjunctive query (i.e., a join query plus simple

selections) over the relational representation of the graph.

Let vars(𝑄) denote the set of variables used in pattern 𝑄 . The

evaluation of 𝑄 over a graph 𝐺 is then defined to be the set of

mappings 𝑄 (𝐺) := {𝜇 : vars(𝑄) → dom(𝐺) | 𝜇 (𝑄) ⊆ 𝐺}, called
solutions, where 𝜇 (𝑄) denotes the image of 𝑄 under 𝜇, that is, the

result of replacing each variable 𝑥 ∈ vars(𝑄) in 𝑄 by 𝜇 (𝑥).

2.2 Worst-case optimal joins

2.2.1 The AGM bound A well-established bound to analyze join al-

gorithms is the AGM bound, introduced by Atserias et al. [4], which
sets a limit on the maximum output size for a natural join query.

Let 𝑄 denote such a query and 𝐷 a relational database instance.

The AGM bound of𝑄 over 𝐷 , denoted𝑄∗
, is the maximum number

of tuples generated by evaluating 𝑄 over any database instance 𝐷′

containing a table 𝑅′ for each table 𝑅 of 𝐷 , with the same attributes

and |𝑅′ | ≤ |𝑅 | tuples. Though BGPs extend natural joins with self

joins, constants inU, and the multiple use of a variable in a triple

pattern, the AGM bound can still be applied to them by regarding

each triple pattern as a relation formed by the triples that match its

constants [11].
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Figure 1: A labeled graph𝐺 ′
with its string to integermapping

and tries for orders pso and pos.

Given a join query (or BGP) 𝑄 and a database instance 𝐷 , a join
algorithm enumerates 𝑄 (𝐷), the solutions for 𝑄 over 𝐷 . A join

algorithm is worst-case optimal (wco) if it has a running time in

�̃� (𝑄∗), which is 𝑂 (𝑄∗) multiplied by terms that do not depend, or

depend only polylogarithmically, on |𝐷 |. Atserias et al. [4] proved
that there are queries𝑄 for which no plan involving only pair-wise

joins can be wco.

This paper focuses on wco algorithms, precisely on the one

described next, which is the one most frequently implemented.

2.2.2 Leapfrog TrieJoin (LTJ) We describe the Leapfrog Triejoin

algorithm [28], originally designed for natural joins in relational

databases, as it is adapted for BGP matching on labeled graphs [11].

Let 𝑄 = {𝑡1, . . . , 𝑡𝑞} be a BGP and vars(𝑄) = {𝑥1, . . . , 𝑥𝑣} its

set of variables. LTJ uses a variable elimination approach, which

extends the concept of attribute elimination. The algorithm carries

out 𝑣 = |vars(𝑄) | iterations, handling one particular variable of

vars(𝑄) at a time. This involves defining a total order ⟨𝑥𝑖1 , . . . , 𝑥𝑖𝑣 ⟩
of vars(𝑄), which we call a VEO for variable elimination order.

Each triple pattern 𝑡𝑖 is interpreted as a relation that will be

joined, and associated with a suitable trie 𝜏𝑖 . The root-to-leaf path

in 𝜏𝑖 must start with the constants that appear in 𝑡𝑖 , and the rest of

its levels must visit the variables of 𝑡𝑖 in an order that is consistent

with the VEO chosen for 𝑄 (this is why we need the 3! = 6 tries).

Fig. 1 shows an example graph and the corresponding mapping of

the constants inU to integers. We also show two tries representing

the graph triples using the orders pso (i.e., predicate, subject, object)

and pos. For example, we must use the trie pso to handle a triple

pattern (𝑥, 8, 𝑦) if the VEO is ⟨𝑥,𝑦⟩, and the trie pos if the VEO is

⟨𝑦, 𝑥⟩. If 𝑄 has a second triple pattern (𝑦, 7, 𝑥), then we need both

tries no matter the VEO we use.

The algorithm starts at the root of every 𝜏𝑖 and descends by the

children that correspond to the constants in 𝑡𝑖 . We then proceed to

the variable elimination phase. Let 𝑄 𝑗 ⊆ 𝑄 be the triple patterns

that contain variable 𝑥𝑖 𝑗 . Starting with the first variable, 𝑥𝑖1 , LTJ

finds each 𝑐 ∈ dom(𝐺) such that for every 𝑡 ∈ 𝑄1, if 𝑥𝑖1 is replaced

by 𝑐 in 𝑡 , the evaluation of the modified triple pattern 𝑡 over 𝐺 is

non-empty (i.e., there may be answers to 𝑄 where 𝑥𝑖1 is equal to 𝑐).

If the trie 𝜏 of 𝑡 is consistent with the VEO, then the children of its

current node contain precisely the suitable values 𝑐 for variable 𝑥𝑖1 .

During the execution, we keep a mapping 𝜇 with the solutions of

𝑄 . As we find each constant 𝑐 suitable for 𝑥𝑖1 , we bind 𝑥1 to 𝑐 , that
is, we set 𝜇 = {(𝑥1 := 𝑐)} and branch on this value 𝑐 . In this branch,

we go down by 𝑐 in all the virtual tries 𝜏 such that 𝑡 ∈ 𝑄1. We now

repeat the same process with 𝑄2, finding suitable constants 𝑑 for

𝑥𝑖2 and increasing the mapping to 𝜇 = {(𝑥1 := 𝑐), (𝑥2 := 𝑑)}, and so
on. Once we have bound all variables in this way, 𝜇 is a solution for

𝑄 (this happens many times because we branch on every binding

to 𝑐 , 𝑑 , etc.). When it has considered all the bindings 𝑐 for some

variable 𝑥𝑖 𝑗 , LTJ backtracks and continues with the next binding

for 𝑄 𝑗−1. When this process finishes, the algorithm has reported

all the solutions for 𝑄 .

Operationally, the values 𝑐 , 𝑑 , etc. are found by intersecting the
children of the current nodes in all the tries 𝜏𝑖 for 𝑡𝑖 ∈ 𝑄 𝑗 . LTJ

carries out the intersection using the primitive leap(𝜏𝑖 , 𝑐), which
finds the next smallest constant 𝑐𝑖 ≥ 𝑐 within the children of the

current node in trie 𝜏𝑖 ; if there is no such value 𝑐𝑖 , leap(𝜏𝑖 , 𝑐) returns
a special value ⊥.

2.3 Variable Elimination Orders (VEOs)

Veldhuizen [28] showed that if leap() runs in polylogarithmic time,

then LTJ is wco no matter the VEO chosen, as long as the tries used

have the right attribute order. In practice, however, the VEO plays a

fundamental role in the efficiency of the algorithm [11, 28]. A VEO

yielding a large number of intermediate solutions that are later

discarded during LTJ execution, will be worse than one that avoids

exploring many such alternatives. One would prefer, in general, to

first eliminate selective variables (i.e., the ones that yield a smaller

candidate set when intersecting).

A heuristic to generate a good VEO in practice [3, 11, 30] com-

putes, for each variable 𝑥 𝑗 , its minimum weight

𝑤 𝑗 = min{𝑤𝑖 𝑗 | 𝑥 𝑗 appears in triple 𝑡𝑖 }, (1)

where𝑤𝑖 𝑗 is the weight of 𝑥 𝑗 in 𝑡𝑖 . The VEO sorts the variables in

increasing order of𝑤 𝑗 , with a couple of restrictions: (i) each new

variable should share some triple pattern with a previous variable,

if possible; (ii) variables appearing only once in 𝑄 (called lonely)
must be processed at the end.

To compute 𝑤𝑖 𝑗 , we (temporarily) choose a trie 𝜏 𝑗 where 𝑥 𝑗
appears right after the constants of 𝑡𝑖 , and descend in 𝜏 𝑗 by the con-

stants. The number of children of the trie node 𝑣 we have reached

is the desired weight𝑤𝑖 𝑗 . This is the size of the list in 𝜏𝑖 to intersect

when eliminating 𝑥 𝑗 .

In this paper we explore the use of adaptive VEOs, which are

defined progressively as the query processing advances, and may

differ for each different binding of the preceding variables. ADOPT

[31] is the first system combining LTJ with adaptive VEOs. The

next variables to bind are chosen using reinforcement learning,

by partially exploring possibly upcoming orders, and balancing

the cost of exploring with that of the obtained improvements. Our

adaptive VEOs will be computed, instead, simply as a variant of the

formula presented above for global VEOs [11].

Other systems go even further in this beyond-wco path. Build-

ing on the well-known Yannakakis’ instance-optimal algorithm

for acyclic queries [33], EmptyHeaded [1] applies a so-called Gen-

eralized Hypertree Decomposition [9], which decomposes cyclic

queries into a tree where the nodes are cyclic components, so as
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Figure 2: The LOUDS representation of the trie pso of Fig. 1.

Besides each node, with 𝑑 children, we show its encoding 0
𝑑
1.

On the bottom left, the levelwise concatenation of the encod-

ings. The LOUDS representation concatenates all the levels.

On the bottom right, we show our shorter representation,

which uses 0
𝑑−1

1 instead of 0
𝑑
1 and removes the leaves.

to solve the nodes using a wco algorithm [23] and then apply Yan-

nakakis’ algorithm on the resulting acyclic query on the interme-

diate results. Graphflow [18], Umbra [8], and Free Join [32] are

examples of systems that integrate wco joins with pairwise joins in

order to generate hybrid plans for evaluating graph queries. Other

approaches like Tetris [14] and Panda [2] also go beyond wco.

3 CompactLTJ: LTJ on compact tries

We now introduce our compact representation of the LTJ tries, and

combine them with techniques that improve the performance of

the original proposal. Our index, compactLTJ, represents separately
the trie topology and the edge labels.

3.1 Trie topology

The Level-Order Unary Degree Sequence (LOUDS) [12] is a repre-

sentation of 𝑛-node tree topologies using just 2𝑛 + 𝑜 (𝑛) bits. It is
obtained by traversing the tree levelwise (with each level traversed

left to right). We append the encoding 0𝑑1 of each traversed node

to a bit sequence 𝑇 , where 𝑑 is the number of children of the node.

The final sequence 𝑇 represents the tree using two bits per node:

a 0 in the encoding of its parent and a 1 to terminate its own en-

coding. A bitvector representation of 𝑇 then needs 2𝑛 + 𝑜 (𝑛) bits,
and allows navigating the tree in constant time. See Fig. 2 for an

example (ignoring the bottom-right part for now).

Our trie topologies are particular in that all the leaves have the

same depth, 3. Therefore, every internal node at depths 0–2 have

children, and thus we can reduce their encoding to 0𝑑−11. The
leaves need not be encoded, which further saves space: we spend

exactly one bit per trie edge, that is, 𝑛 bits for a trie of 𝑛 nodes,

halving the original space [12]. The bottom-right of Fig. 2 shows

our more compact representation.

Our encoding also simplifies the traversal compared to the orig-

inal LOUDS [12]. We will use the position preceding the encod-

ing of a node as its trie identifier 𝑣 ≥ 0. In Fig. 2, for example,

the identifier of the root is 𝑣 = 0 and that of its second child is

𝑢 = 7. The identifier of the 𝑖th child of 𝑣 , for 𝑖 ≥ 1, is computed as

child(𝑣, 𝑖) = select1 (𝑇, 𝑣 + 𝑖), which is the position of the (𝑣 + 𝑖)th
occurrence of bit 1 in 𝑇 . Operation select can be supported in 𝑂 (1)
time using just 𝑜 (𝑛) additional bits of space on top of 𝑇 [6, 19].

The formula works because 𝑇 simultaneously enumerates, in

levelwise order, the trie edges (one bit per edge) and their target

nodes (one 1-terminated encoding per node, leaves omitted). The

number of children of 𝑣 can also be computed in 𝑂 (1) time as

degree(𝑣) = selectnext1 (𝑇, 𝑣 + 1) − 𝑣 , where selectnext1 (𝑇, 𝑣 + 1)
is the position of the leftmost occurrence of 1 in 𝑇 [𝑣 + 1 . .] and
can also be computed in 𝑂 (1) time using 𝑜 (𝑛) additional bits of
space. For example, the second (𝑖 = 2) child of the root (𝑣 = 0) is

found with 𝑢 = child(0, 2) = select1 (𝑇, 0 + 2) = 7. The encoding

of 𝑢 = 7 is at 𝑇 [𝑢 + 1 . . 𝑢 + degree(𝑢)] = 𝑇 [8 . . 8] = 1. Its only
child is 𝑤 = child(7, 1) = select1 (𝑇, 7 + 1) = 13. Node 𝑤 = 13 has

degree(13) = selectnext(14) − 13 = 5 children.

3.2 Edge labels

The edge labels are stored in a compact array 𝐿, each label using

⌈lg𝑈 ⌉ bits. The labels in 𝐿 are deployed in the same levelwise

order of the edges 𝑇 , so the labels corresponding to the children of

node 𝑣 are all consecutive, in 𝐿[𝑣 + 1 . . 𝑣 + degree(𝑣)]. This allows
implementing leap() efficiently by using exponential search from

the current position.

For our trie pso in Fig. 2, the index would then store

𝑇 = 001 000111 1111000010001

𝐿 = 789 134566 3251123451234

where, for example, the second (𝑖 = 2) child of the root (𝑣 = 0)

descends by 𝐿[0+ 2] = 8 (to 𝑢 = 7, as shown before). The only child

of 𝑢, by 𝐿[7 + 1] = 6, leads to𝑤 = 13. The children of𝑤 have labels

𝐿[14 . . 18] = 12345.

3.3 UnCompactLTJ

We also introduce a version called unCompactLTJ, which is a min-

imal non-compact trie representation. The unCompactLTJ index
stores an array 𝑃 [0 . .] of pointers, one per internal node, deployed
in the same order of LOUDS. Pointers are positions in the array

using ⌈lg𝑛⌉ bits. Each internal node 𝑣 stores in 𝑃 [𝑣] a pointer to
its first child, knowing that the others are consecutive. Its number

of children is simply 𝑃 [𝑣 + 1] − 𝑃 [𝑣]. Its array 𝐿 of edge labels is

identical to that of compactLTJ . For our example above we have

𝑃 = ⟨1, 4, 8, 9, 10, 11, 12, 13, 14, 19, 23⟩ (where 23 is a terminator).

In exchange for nearly doubling the space of compactLTJ, un-
CompactLTJ has explicit pointers just like classical data structures,
so it does not spend time in computing addresses. As we show in the

experiments, unCompactLTJ still uses half the space of Jena LTJ [11],
a classic index that supports LTJ using the six tries (implemented

as B+-trees).

4 Improved Variable Elimination Orders

Our second contribution is the study of improved VEOs on our com-

pact LTJ tries, which deviate from the VEO defined in Section 2.3.

The first improvement is the use of adaptive VEOs; the second is

on the use of the𝑤𝑖 𝑗 estimator.
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4.1 Adaptive VEOs

In previous work using the VEO described in Section 2.3, the VEO

is fixed before running LTJ. The selectivity of each variable 𝑥 𝑗 is

estimated beforehand, by assuming it will be the first variable to
eliminate. In this case, Eq. (1) takes the minimum of the number of

children in all the trie nodes we must intersect, as an estimation of

the size of the resulting intersection. The estimation is much looser

on the variables that will be eliminated later, because the children

to intersect can differ a lot for each value of 𝑥 𝑗 .

We then consider an adaptive version of the heuristic: we use

the described technique to determine only the first variable to elim-

inate. Say we choose 𝑥 𝑗 . Then, for each distinct binding 𝑥 𝑗 := 𝑐 , the

corresponding branch of LTJ will run the VEO algorithm again in

order to determine the second variable to eliminate, now consid-

ering that 𝑥 𝑗 has been replaced by 𝑐 in all the triples 𝑡𝑖 where it

appears. This should produce a much more accurate estimation of

the intersection sizes.

In the adaptive setting, we do not check anymore that the new

variable shares a triple with a previously eliminated one; this aimed

to capture the fact that those triples would be more selective when

some of their positions were bound, but now we know exactly the

size of those progressively bound triples. The lonely variables are

still processed at the end.

4.2 Computing the VEO predictors

The compactLTJ index uses the original estimator based on the

number of children of 𝑣 , which is easily computed in constant time

as 𝑤𝑖 𝑗 = degree(𝑣). We now define an alternative version, com-
pactLTJ*, which computes𝑤𝑖 𝑗 as the number of leaf descendants

of 𝑣 . This is computed as 𝑤𝑖, 𝑗 = 𝑛 if 𝑣 is in the first level, and

𝑤𝑖, 𝑗 = degree(𝑣) if 𝑣 is in the third level. For the second level, we

compute in constant time𝑤𝑖 𝑗 = child(𝑣 +degree(𝑣), 1) −child(𝑣, 1).
We argue that the number of descendants may be amore accurate

estimation of the total work that is ahead if we bind 𝑥 𝑗 in 𝑡𝑖 , as

opposed to the children, which yield the number of distinct values

𝑥 𝑗 will take without looking further.

5 Experimental results

We compare our compact indexing schemes with various state-of-

the-art alternatives, in terms of space usage and time for evaluating

various types of BGPs.

Our experiments ran on an Intel(R) Xeon(R) CPU E5-2630 at

2.30GHz, with 6 cores, 15 MB cache, and 378 GB RAM.

5.1 Datasets and queries

We run two benchmarks over the Wikidata graph [29], which we

choose for its scale, diversity, prominence, data model (i.e., labeled

edges) and real-world query logs [5, 16]. The graph features 𝑛 =

958,844,164 triples, which take 10.7 GB if stored in plain form using

32 bits for the identifiers.

We consider a real-world query log [16]. In search of challenging

examples, we downloaded queries that gave timeouts, and selected

queries with a single BGP, obtaining 1,295 unique queries. Those

are classified into three categories: (I) 520 BGPs formed by a single

triple pattern, which mostly measure the retrieval performance of

the index; (II) 580 BGPs with more than one triple but only one

System Space Average (msec) Median (msec)

(bpt) Global Adaptive Global Adaptive

CLTJ 40.90 381 331 0.5 0.5

CLTJ∗ 40.90 175 43 0.5 0.5

UnCLTJ 57.66 347 327 0.5 0.5

UnCLTJ∗ 57.66 157 40 0.5 0.5

Table 1: Space and query times of the compact LTJ variants,

limiting results to 1000, with global and adaptive VEOs.

variable appearing in more than one triple, which measure the

performance of joins but do not distinguish good from bad VEOs

(as long as the join variable is eliminated first, of course); (III) 195

complex BGPs, where the performance of different VEOs can be

compared.

All queries are run with a timeout of 10 minutes and a limit of

1000 results (as originally proposed for WGPB [11]). This measures

the time the systems need to display a reasonable number of results.

We also compare the systems without the limit of results, which

measures throughput in cases where we need all the results. The

space of the indices is measured in bytes per triple (bpt); a plain

32-bit storage requires 12 bpt.

5.2 Compact LTJ variants

Table 1 compares the indices compactLTJ, compactLTJ*, and un-
CompactLTJ described in Section 3), calling them respectively CLTJ,
CLTJ∗, and UnCLTJ. All of them compute the VEO in traditional

(“global VEO”) and in adaptive form (Section 4.1). No variant gave

any timeout.

The space of the CLTJ index is just 3.4 times the size of the raw

data encoded as a set of 𝑛 32-bit triples, whereas UnCLTJ uses 4.8
times the size (i.e., 40% more than CLTJ). The reward for using

that 40% extra space is not significant, which shows that the space

reduction obtained with CLTJ comes at essentially no loss in time

performance.

While the medians of all the different variants are similar, half a

millisecond per query, the averages show that some query strate-

gies yield much more stable times, and thus a lower average. The

large difference between average and median query times shows

that, although many queries are solved fast, there are others that

take much longer, and it is important to better deal with them.

In particular, combining adaptive VEOs with the modified VEO

predictor (Section 4.2) reduces the average query times by almost

an order of magnitude, to around 40 milliseconds. Using adaptive

VEOs alone produces a very modest improvement, and using the

modified VEO predictor with global VEOs only halves the time.

In the sequel we will use only the variants CLTJ∗ and UnCLTJ∗
with adaptive VEOs.

5.3 Comparison with other systems

We now put our results in context by comparing our compact LTJ

indices with various graph database systems:

• Ring [3], a recent compressed in-memory representation that

simulates all the 6 tries in a single data structure. Ring-large
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and Ring-small correspond to the versions called Ring and

C-Ring, respectively, in their paper.

• MillDB [30]: A recently developed open-source graph data-

base. We use here a specialized version that stores six tries

in the form of B+-trees and supports full LTJ, with a sophis-

ticated (yet global) VEO. We run MillDB over a RAM disk to

avoid using external memory.

• Jena LTJ [11]: An implementation of LTJ on top of Apache

Jena TDB. All six different orders on triples are indexed in

B+-trees, so the search algorithm is always wco.

• RDF-3X [21]: Indexes a single table of triples in a compressed

clustered B+-tree. The triples are sorted and those in each

tree leaf are differentially encoded. RDF-3X handles triple

patterns by scanning ranges of triples and features a query

optimizer using pair-wise joins.

• Virtuoso [7]: The graph database hosting the public DBpedia

endpoint, among others. It provides a column-wise index

of quads with an additional graph (𝑔) attribute, with two

full orders (psog, posg) and three partial indices (so, op, gs)

optimized for patterns with constant predicates. It supports

nested loop joins and hash joins.

• Blazegraph [27]: The graph database system hosting the

official Wikidata Query Service [16]. We run the system in

triples mode, with B+-trees indexing orders spo, pos, and

osp. It supports nested-loop joins and hash joins.

The code was compiled with g++ with flags -std=c++11 and -O3;

some alternatives have extra flags to enable third party libraries.

Systems are configured per vendor recommendations.

We exclude Graphflow [18], ADOPT [31], and EmptyHeaded [1]

because we have not enough memory to build them. Section 5.5

compares them on a smaller graph.

Table 2 shows the resulting time, space, and timeouts. A first

observation is that, while the Ring variants use considerably less

space than CLTJ (3.4–5.5 times less space, even less than the raw

data), this comes at a considerable price in time performance: the

Ring variants are 2 orders of magnitude slower than CLTJ∗ on

average, and 1–2 in the median. While its small space can be crucial

to operate in main memory where other representations do not

fit, CLTJ∗ is a much faster alternative when it fits in main memory.

Interesting, CLTJ∗ and UnCLTJ∗ are faster than classic wco systems

that use 6 tries represented in classic form: MillDB and Jena LTJ.

The faster one, MillDB, uses 4 times the space of CLTJ∗ and is twice
as slow on average and 50 times slower in the median. The non-

wco classic systems are somewhat smaller—47% to 126% larger than

CLTJ∗—but two orders of magnitude slower.

Table 3 shows how the times distribute across the three query

types, for the best systems. It is interesting that MillDB is much

slower than CLTJ∗ and UnCLTJ∗ only for query types I and II, which
are the easy ones, whereas the average times on the hardest queries,

of type III, are closer (yet CLTJ∗ is still faster). This suggests that
MillDB is not intrinsically slower, but rather performs some internal

setup per query that requires several tens of milliseconds.We return

to this point next.

System Space Average Median Timeouts

(bpt) (msec) (msec) (> 10 min)

Ring-small 7.30 3056 24 5

Ring-large 12.15 2256 8 3

CLTJ∗ 40.90 43 0.5 0

UnCLTJ∗ 57.66 40 0.5 0

MillDB 156.78 96 27 0

Jena LTJ 168.84 1930 162 1

Virtuoso 60.07 4880 50 8

RDF-3X 85.73 8230 126 13

Blazegraph 90.79 9220 54 14
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Table 2: Space and query times of various systems, limiting

results to 1000. The plot shows the space/time tradeoff.

System Space Type I Type II Type III

(bpt) Avg Med Avg Med Avg Med

Ring-small 7.30 12 8.0 380 36 6620 88

Ring-large 12.15 3.7 4.0 97 8.0 2448 28

CLTJ∗ 40.90 1.8 0.2 12 0.8 243 2.8

UnCLTJ∗ 57.66 1.8 0.3 12 0.8 228 2.4

MillDB 156.78 50 20 79 27 267 73

Table 3: The best performing indices, separated by query

type, limiting outputs to 1000 results. Times are in msec.

5.4 Not limiting the number of results

The case without limits in the number of answers is shown in

Table 4. The times are much higher and thus the scale measures

seconds. An important difference is that adaptiveness has almost

no impact on the times. One reason for this is that now the cost to

report so many results dominates the overall query time, thereby

reducing the relative impact of using better or worse techniques to

produce them. Indeed, our times limited to 1000 results suggest that

adaptive VEOs produce results sooner along the query process than

global VEOs. To confirm this intuition, Fig. 3 shows the time queries
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System Space Average Median Timeouts

(bpt) Gl Ad Gl Ad Gl Ad

CLTJ 40.90 12.2 13.2 0.05 0.06 15 17

CLTJ∗ 40.90 14.7 13.4 0.06 0.06 17 17

UnCLTJ 57.66 12.4 13.0 0.05 0.06 15 17

UnCLTJ∗ 57.66 14.5 13.2 0.06 0.06 17 17

Table 4: Space and query times (in sec) of compact LTJ vari-

ants, with Gl(obal) and Ad(aptive) VEOs, not limiting the

results. Timeouts count queries exceeding 10 min.
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Figure 3: Average time per query until it returns a given

number of solutions, for both variants of CLTJ∗. We measure

type III queries, as long as there are at least 10 active queries

to average; the curve is not always increasing because queries

disappear from the set once they deliver all their results.

System Space Average Median Timeouts

(bpt) (sec) (sec) (> 10 min)

Ring-small 7.30 83.6 2.9 101

Ring-large 12.15 46.8 0.9 59

CLTJ∗ 40.90 13.4 0.06 17

UnCLTJ∗ 57.66 13.2 0.06 17

MillDB 156.78 12.0 0.05 16

Table 5: Space and query times of the best systems, not limit-

ing the results.

take until they deliver a certain number of results, for CLTJ∗ with
global and adaptive VEOs. As it can be seen, the adaptive variant is

much faster to deliver the first few million results, but the global

VEO takes over—by a slight margin—since then.

Tables 5 and 6 show the results of the best performing variants,

globally and by query type. MillDB fares better than with the limit,

becoming similar to CLTJ∗/UnCLTJ∗ and outperforming them on

queries of type I and II, arguably because of the better locality of

reference of the B+-trees to report many results. On queries of type

III, where the query plan matters most, CLTJ∗ and UnCLTJ∗ are

slightly faster.

5.5 Beyond wco systems

The alternative systems we have compared either are not wco, or

use the basic LTJ with some global VEO. In this section we compare

System Space Type I Type II Type III

(bpt) Avg Med Avg Med Avg Med

Ring-small 7.30 25.9 0.112 106.7 7.93 157.1 21.79

Ring-large 12.15 10.5 0.044 53.1 2.57 107.7 7.53

CLTJ∗ 40.90 1.2 0.001 14.0 0.20 44.4 0.60

UnCLTJ∗ 57.66 1.1 0.001 13.8 0.19 43.4 0.59

MillDB 156.78 0.3 0.013 9.7 0.17 50.0 0.65

Table 6: The best performing indices, separated by query type,

without limiting the results. Times are given in seconds.

our new compact indices, with their improved query resolution

strategies, against systems that use more sophisticated ones:

• Graphflow [18]: A graph query engine that indexes property

graphs using in-memory sorted adjacency lists and supports

hybrid plans blending wco and pairwise joins.

• ADOPT [31]: The first wco algorithm using adaptive VEOs

on LTJ. It uses exploratory search and reinforcement learning

to find near-optimal orders, using actual execution times as

feedback on the suitability of orders. We include variants

using one and 70 threads.

• EmptyHeaded [1]: An implementation of a more general

algorithm than LTJ, which applies a generalized hypertree

decomposition [9] on the queries and uses a combination of

wco algorithms [23] and Yannakakis’ algorithm [33]. Triples

are stored in 6 tries (all orders) in main memory.

Those systems use too much memory on our Wikidata graph.

For example, Graphflow stores one structure per predicate, which

makes it usable with few predicates only: on a subset containing

< 10% of ourWikidata graph [3], it failed to build even in a machine

with 730 GB of Java heap space. ADOPT did not build correctly

either. EmptyHeaded runs but it uses 1810 bpt, over 10 times more

than Jena LTJ.

In this section we compare them over an even smaller graph used

in previous work [25], soc-LiveJournal1, the largest from the

Stanford Large Network Dataset Collection [15], with 68,993,773 un-
labeled edges. We test different query shapes (see previous work for

a detailed description [25]) including trees (1-tree, 2-tree, 2-comb),
paths (3-path, 4-path), paths connecting cliques (2-3-lollipop, 3-4-
lollipop), cliques (3-cliques, 4-cliques), and cycles (3-cycles, 4-cycles).
We include 10 queries for each tree, path, and lollipop, and 1 for

each clique and cycle. This is the same benchmark used for ADOPT

[31], except that we do not force the clique and cycle variables to

be different, and we choose for the constant any random value such

that the query has occurrences. We set a 30-minute timeout and do

not limit the number of results.

Since there are no labels, the Ring variants need not store the

data for predicates, and the compact LTJ solutions store only two

orders, pso and pos. Graphflow is tested on the cliques and cycles

only because the implementation does not support constants in the

BGPs.

Table 7 shows spaces and times. Interestingly, CLTJ∗ and UnCLTJ∗
get close to the space of the compressed Ring solutions. Graphflow,

ADOPT and EmptyHeaded use 2, 3, and over 4 times more space,

respectively. The tree and path queries are solved in microseconds
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System Space 1-tree 2-tree 2-comb 3-path 4-path 2-3-lolli 3-4-lolli 3-clique 4-clique 3-cycle 4-cycle
Ring-small 5.52 71.0E–4 296E–4 54.6E–4 90.7E–5 365E–4 5.89 535 timeout timeout timeout timeout

Ring-large 7.59 28.6E–5 66.4E–4 15.2E–4 30.1E–5 101E–4 1.61 135 timeout timeout timeout timeout

CLTJ∗ 6.46 4.57E–5 6.44E–4 1.46E–4 8.89E–5 7.14E–4 0.116 10.4 565 timeout 457 timeout

UnCLTJ∗ 6.55 2.83E–5 6.49E–4 1.50E–4 5.11E–5 6.76E–4 0.113 10.2 558 timeout 452 timeout

Graphflow 13.54 83.3 975 80.9 timeout

ADOPT-1 20.09 0.817 1.67 1.03 1.28 1.15 6.52 timeout 1337 timeout 885 timeout

ADOPT-70 20.09 0.837 1.75 1.21 1.12 1.56 3.60 105 105 timeout 106 timeout

EmptyHeaded 28.65 5.76E–5 1.32 9.68E–4 45.5E–5 0.506 11.0 315 14.0 326 13.1 1006
Table 7: Space in bpt and median time in seconds (timeout is 1800) for various systems on graph soc-LiveJournal1.

by CLTJ∗/UnCLTJ∗, while the slowest Ring is up to 25–50 times

slower. ADOPT is 4–5 orders of magnitude slower in these queries

(parallelization does not help in this case). EmptyHeaded is from

twice as slow to 3–4 orders of magnitude slower.

The lollipop shapes are harder, but CLTJ∗/UnCLTJ∗ still handle
them in at most 10 seconds, being 1–2 orders of magnitude faster

than ADOPT and EmptyHeaded. The parallel ADOPT is 3 times

faster than EmptyHeaded in these shapes.

EmptyHeaded finally takes over on the hardest shapes, cliques

and cycles, where it is 3–6 times faster than Graphflow, 7–8 times

faster than the parallel ADOPT, and 35–40 times faster than CLTJ∗/
UnCLTJ∗. We note that the latter are still twice as fast as sequential

ADOPT.

6 Conclusions

Wehave shown that it is possible to implement the Leapfrog Triejoin

(LTJ) algorithm,which solves Basic Graph Patterns on graph databases

in worst-case-optimal (wco) time, within affordable space usage and

without giving up on time performance. Precisely, we introduced

a representation we call compactLTJ, which uses one bit per trie

edge instead of one pointer, while supporting trie navigation func-

tionality in time similar to a classic pointer-based representation.

The fastest classic LTJ implementation we are aware of, Millen-

niumDB [30], uses about 14 times the space needed to represent the

graph triples in plain form (i.e., each as three 32-bit integers). Our

compactLTJ reduces this factor to 3.3—a four-fold space reduction—

while retaining MillenniumDB’s time performance, and surpassing

it in many cases. Other classic representations, many of which are

non-wco, use 1.5 to 2.3 times the space used by compactLTJ and are
two orders of magnitude slower.

These results can change the landscape of indices for graph

databases, as they show that it is feasible to implement the wco

LTJ algorithm in memory within reasonable space—less than what

is used by popular non-wco systems. We have also explored some

techniques—adaptive variable elimination orders and new predic-

tors of the cost of choosing a variable—that speed up compactLTJ
considerably for retrieving the first million results. This is relevant

in applications that are interactive or where obtaining some results

suffices.

More sophisticated “beyond-wco” indices, like Graphflow [18],

ADOPT [31], and EmptyHeaded [1], instead, are faster than LTJ

on some query shapes that are very hard to handle. A promising

future work direction is to implement those query strategies on

top of compact data structures, which could lead to even stronger

indices that are space-affordable.

We remark that our compact indices run in main memory and

would not be disk-friendly. While their compactness make them fit

in memory for larger datasets, a relevant future work direction is

to design compact representation formats for disk or distributed

memory, where compactness translates into fewer I/Os or commu-

nication at query resolution time.

Another limitation of our compact indices is that they do not

currently support updates. These can be easily accommodated by

replacing our bitvectors and arrays with their corresponding dy-

namic data structures [20]. This may entail a slowdown of about an

order of magnitude, however, considering that constant-time op-

erations now become nearly logarithmic. Such a slowdown might

make our scheme slower than MillDB, but it would still be an or-

der of magnitude faster than the other schemes. When updates

are infrequent, one might opt for maintaining (comparatively few)

inserted and deleted tuples in a classic data structure and consider

them when solving queries, periodically rebuilding the static data

structure when the classic one becomes too large.
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