Approximating Optimal Bidirectional Macro Schemes

Luís M. S. Russo*, Ana D. Correia*, Gonzalo Navarro ${ }^{\dagger}$, Alexandre P. Francisco*
*INESC-ID, Dept. of Computer
Science and Engineering
Instituto Superior Técnico
Universidade de Lisboa, Portugal.
luis.russo@tecnico.ulisboa.pt
ana.duarte.correia@tecnico.ulisboa.pt
aplf@tecnico.ulisboa.pt
${ }^{\dagger}$ Millennium Institute for
Foundational Research on Data (IMFD), Dept. of Computer Science, University of Chile, Chile.
gnavarro@dcc.uchile.cl

Abstract

Lempel-Ziv is an easy-to-compute member of a wide family of so-called macro schemes; it restricts pointers to go in one direction only. Optimal bidirectional macro schemes are NP-complete to find, but they may provide much better compression on highly repetitive sequences. We consider the problem of approximating optimal bidirectional macro schemes. We describe a simulated annealing algorithm that usually converges quickly. Moreover, in some cases, we obtain bidirectional macro schemes that are provably a 2 -approximation of the optimal. We test our algorithm on a number of artificial repetitive texts and verify that it is efficient in practice and outperforms Lempel-Ziv, sometimes by a wide margin.

Introduction

In 1976, Lempel and Ziv [1] proposed a technique to measure the complexity of finite sequences that later became a popular compression algorithm. It is a greedy left-to-right parse of the sequence into "phrases" that, at each step, extends the current phrase as much as possible as long as the sequence contains another occurrence of the phrase starting before it. Then, it adds one more symbol to the phrase (which makes it unique in the sequence seen so far). Such a so-called Lempel-Ziv parse can be computed in linear time [2], which has made it a very popular compression method.

Storer and Szymanski [3] studied a much wider class of so-called "macro schemes". In particular, the smallest "bidirectional macro scheme" partitions the sequence into a sequence of phrases such that each phrase is either an explicit symbol or it can be copied from somewhere else in the text, as long as cycles are not introduced in the copying process. Such schemes can produce parsings up to $\Theta(\log n)$ times smaller than Lempel-Ziv [4] (on a text of length n), but unfortunately finding the optimal bidirectional macro scheme is NP-complete [5]. This has hampered its popularity.

In this paper we describe an algorithm to efficiently compute a small (bidirectional) macro scheme. Our algorithm uses simulated annealing and usually converges

[^0]

Figure 1: Example of a valid macro scheme.
in a very small number of steps to a local minimum, which, in some cases, is provably a 2-approximation to the smallest macro scheme for the sequence. We show experimentally that the algorithm can obtain macro schemes that are much smaller than those obtained by Lempel-Ziv, and that it is efficient in practice thanks to the use of appropriate data structures. To test the algorithm we devise a method for generating highly repetitive strings whose optimal macro scheme is known. We also experiment with families of highly compressible and uncompressible strings.

For practicality, we consider a slightly simpler class of macro schemes, which makes them closer to the output of Lempel-Ziv parsings: the text is parsed into a sequence of phrases, each of which has an explicit symbol at the end.

Figure 1 shows an example of a valid macro scheme. An encoding of this scheme is $(6,6, b),(16,4, a),(0,0, b),(9,8, \$)$, where each tuple describes a phrase by giving a pointer to another position where the phrase occurs, the length of the phrase and the letter that ends the phrase. For technical convenience, we use a special terminator letter in the last phrase. Notice that the first and second phrases actually point forward in the string, which would be invalid in the Lempel-Ziv encoding. This macro scheme is valid because all the letters can be decoded without falling in loops.

The Problem

Our challenge is to find a small valid macro scheme. Consider again the macro scheme in Figure 1. This macro scheme is valid because it is possible to decode every letter of the encoded string by using the pointers in the encoding. For example to decode the letter at position 4 we can follow the corresponding pointers to 9,17 and finally to 12 , which contains an explicit letter.

Figure 2 shows an invalid macro scheme, where several letter positions are impossible to decode. Consider, for example, the letter at position 21. By following the pointers in the scheme we obtain the sequence of positions $16,11,6,11, \ldots$ Hence the decoding process gets stuck in a loop that maps between 11 and 6 . We will thus require a data structure that can detect this problem, and a procedure to resolve it.

An important issue in determining the smallest macro scheme is how to select the phrases. Testing every possible configuration is unfeasible. Our approach will instead seek to alter a given configuration by searching for good nearby configurations. This

Figure 2: Example of an invalid macro scheme.

Figure 3: Example of a smaller valid macro scheme.
will amount to merging and splitting phrases. Figure 3 shows a valid configuration that can be obtained by merging the first two phrases in the configuration of Figure 1. Merging phrases reduces their total amount by one, whereas splitting does the opposite. Still, splitting phrases may be essential to avoid loops or as a stepping stone to better configurations.

Like Lempel-Ziv, our algorithm also requires a data structure to locate identical copies of the string inside the phrase; in particular we use a suffix array [6].

An Annealing Algorithm

In this section we describe our general approach. We use the simulated annealing technique [7], where each configuration is a state and a neighbor state can be obtained by merging or splitting phrases. A transition that successfully merges two phrases is always accepted. A transition that splits phrases may be accepted or rejected, depending on the current temperature (t), the increase in the number of phrases (δ) and a random number (p) chosen uniformly from $[0,1]$. If Equation (1) holds the transition is accepted, otherwise its rejected.

$$
\begin{equation*}
\delta \leq-t \ln p \tag{1}
\end{equation*}
$$

At each step the algorithm chooses a phrase uniformly at random and tries to merge it with the next phrase. For example we can choose to merge the first and second phrases in the configuration in Figure 1. In a successful attempt we can obtain the configuration in Figure 3. To determine this configuration we locate another copy of the substring abaababaaba. With the suffix array, we efficiently find that this string occurs at positions 1 and 9 . Choosing a pointer from position 1 to position 1 , would trivially lead to loops in the decoding process. Hence these kinds of pointers are always rejected. Fortunately, pointing to position 9 yields a valid macro scheme.

As a more involved example, assume that the current configuration is the one in Figure 4 and that we decide to merge the first and second phrases. We now need to select a pointer for the new phrase. We use the suffix array to search for the string $a b a a b a$. The resulting positions are $1,6,9,14$, where 1 corresponds to the trivial loop and is therefore excluded. We then select between 6, 9 and 14 uniformly at random.

Figure 4: Example of a complex phrase merge.

If we end up selecting 6, then the configuration is the one presented in Figure 2. As explained before, this configuration is invalid, thus some additional process is necessary to obtain a valid configuration. First we try to sample again from the possible pointers, 6,9 and 14 . If a valid configuration is obtained, then the transition is passed to the simulated annealing process and subsequently accepted. If, after 4 attempts, the process keeps on generating invalid macro schemes, we proceed to splitting phrases.

Let us assume that the configuration in Figure 2 was obtained after 4 failed attempts. As illustrated, the letter at position 21 cannot be decoded, because it gets captured in a loop involving 11 and 6 . However, when we select a new pointer, we only need to try to decode the letters inside the newly created phrase, and not all the letters in the text. This means that 21 is not tested by this process. Instead, position 1 is, and it will expose the underlying issue, because it also gets captured into the cycle formed by 11 and 6 . We break this cycle by choosing uniformly between the positions in the cycle, in our case 11 and 6 . The selected position becomes an explicit letter. Note that we do not consider position 1: even though it was the position that revealed the loop, it is not inside the cycle and therefore cannot be selected. Note that solving the cycle will solve the problem for position 1 and also for other positions. For example the letter at position 21 will also become decodable. The selected position becomes an explicit letter and thus splits the phrase that contains it. For example, if 11 is selected, the resulting configuration is shown in Figure 5.

Splitting a phrase is simpler than merging because we do not need to select new pointers. In our example, the phrase that got split was the second. This division did not produce two sub-phrases, only the left one. Left sub-phrases always retain their pointer, in this case to position 3. If there was a right sub-phrase it would point to position $7=3+4$, where 3 is the original pointer and 4 the size of the left sub-phrase.

Note that the configuration in Figure 5 is still not a valid macro scheme: several positions still form cycles, for example 4 and 9 . The remaining cycles will be identified by trying to decode the letters in the merged phrase, that is, positions from 1 to 6 . In particular the cycle 4,9 is found by checking position 4 . In total there are four cycles in the configuration of Figure 2, which means adding four phrases to that configuration. Since this process started by merging two phrases, the overall difference in the number of phrases is 3 . Hence, this transition is passed to the simulated annealing algorithm, which decides whether to accept or reject the transition, according to Equation (1).

Data Structures and Optimizations

In this section we discuss some details concerning the data structures that we used for the implementation.

Figure 5: Example of a phrase split.

Figure 6: A forest representing the decoding paths of text positions of the macro scheme in Figure 1. Black circles represent positions that contain explicit letters; they are also roots. Double circles are used for positions that mark the beginning of blocks. Edges leaving double circles represent explicit links. Dotted edges are used to highlight edges that need to be altered when attempting to represent the scheme of Figure 2.

The Link Cut Tree Data Structure

Checking whether any of the symbols of a merged phrase can fall into a loop may take considerable time, since the decompressing paths can be long. Instead, we use the link cut tree data structure [8], which detects loops in only $O(\log n)$ amortized time per letter. Since, in a valid macro scheme, it is possible to decode the letters at every position, the decoding paths can be represented as a forest, where the roots of the trees correspond to the positions that store explicit letters.

Figure 6 shows the forest corresponding to the macro scheme of Figure 1. Notice that this representation contains all the pointers in the macro scheme. We have that 1 points to 6 , that 8 points to 16 , and that 14 points to 9 . These starting positions of the phrases are shown with double line circles in the figure. Hence the link cut tree representation contains all the information in the macro scheme except for the explicit letters. Moreover, the forest contains all the implicit links that result from phrase pointers, for example the pointer of the second phrase, from position 8 to 16 , also induces the implicit links $(9,17) ;(10,18) ;(11,19)$, shown as dotted arrows.

The link cut tree data structure supports edge insertion and removal, provided the representation remains a forest at all times. Let us discuss how this structure changes when phrases are split or merged. Splitting phrases is simple and efficient. Consider the configuration in Figure 7, which results from splitting the configuration in Figure 1 by adding the letter at position 14. In the link cut tree representation this amounts to removing the edge that links 14 in the path to its parent, that is, the edge $(14,9)$. In general, splitting a phrase requires cutting a single edge.

Merging phrases requires more extensive modifications to the tree structure. In particular, changing the pointer of a phrase implies altering all the induced edges we mentioned above. Consider for example that we want to change the configuration in Figure 1 to that of Figure 2. This requires changing all the pointers of the second
phrase. We first consider the positions inside this phrase, that is, $8,9,10$, and 11 . We cut the edges leaving these nodes, so they become roots in their trees. These edges are drawn with dotted lines in Figure 6. Then we need to add the new edges $(8,3) ;(9,4) ;(10,5) ;(11,6)$. However, it is necessary to check if this change does not introduce a cycle into the forest. This is supported by the link cut tree data structure in $O(\log n)$ amortized time. So we first check if there is a path from 3 to 8 . In fact, there is a direct edge, so it is not possible to add the edge $(8,3)$, because it would result in an invalid macro scheme. The link cut tree data structure supports selecting an edge from this path in $O(\log n)$ amortized time, which combined with the cut operation can be used to implement the procedure that splits a phrase that contains a position in the underlying cycle. A similar process is used for the remaining edges.

Suffix Arrays

We use suffix arrays to determine the lexicographic range of all the occurrences of a given phrase. In general this operation requires $O(m \log n)$ time for a phrase of size m. We use two optimizations. First, we cache the searches by storing the resulting suffix array intervals. When a phrase is split, this information is discarded. When two phrases get merged we combine the two intervals in $O(\log n)$ time by using the inverse suffix array and a binary search.

Optimizing the Simulated Annealing

Another important optimization of our algorithm is related to the phrases that cannot be merged with the next phrase because they result in a unique substring. As discussed, this kind of transitions is always rejected, because they induce a trivial loop. Once this is detected for a given phrase, there is no point in reconsidering the phrase in a future iteration, so the phrase gets removed from a list of admissible phrases. The phrase selection procedure selects from this list, instead of from all the existing phrases. This speeds up the algorithm by skipping redundant steps. It does require some maintenance, however. When a phrase is split, its two sub-phrases need to be inserted in the list. Moreover, the phrase before the one being split also needs to be re-inserted into the list, in case it is not present already. This list should not contain repetitions, therefore we store it with a binary search tree. An important side effect of this approach occurs when this list becomes empty. In this case, the algorithm is stuck in a local minimum, which might go unnoticed otherwise. Notice that the algorithm would still terminate as the annealing temperature decreases, however no improvement would result from the extra computation. This particular kind of minimum has important properties, as we show next.

Figure 7: Another example of a phrase split.

Approximation Ratio

Given that our algorithm never starts by splitting phrases, it may get stuck in a local minimum. In fact, this occurred in our experiments. However, the particular structure of the minima turns out to be relevant. In these minima merging any two consecutive phrases results in a phrase that is unique, that is, it occurs only at its position. We will now prove that such a configuration is a 2 -approximation to the optimal macro scheme.

Theorem 1 Any configuration where every pair of consecutive phrases is unique is a 2-approximation to the optimal macro scheme of the sequence.

Proof: Consider the concatenation of any two consecutive phrases, which by hypothesis is unique in the text. Such text substring cannot be inside a phrase of any macro scheme, because in that case it should occur elsewhere. Thus, every two consecutive phrases of our configuration must contain a boundary in any macro scheme.

Figure 8 shows such a configuration and illustrates the approximation argument. Its top string shows a valid macro scheme of 11 phrases for the string, which moreover is a local minimum with the property that merging any two consecutive phrases results in a unique substring. The actual pointers are not relevant for this example. In the middle we consider the configuration where phrase 1 is merged with phrase 2 , phrase 3 is merged with phrase 4 , and so on. Since every substring in the middle is unique, there must be a phrase in any macro scheme that ends within that string. The bottom configuration illustrates this condition with a macro scheme of 8 phrases.

We can prove an even stronger result, related to string attractors [9]. An attractor is a set Γ of text positions such that any text substring must have a copy containing a position in Γ. It is shown that the size γ of the smallest attractor is a lower bound to the size of any macro scheme. Further, finding γ is NP-complete. While it is not known whether we can always encode a text in $O(\gamma)$ space, we show that our approximation also applies to the smallest attractor.

Theorem 2 For any configuration where every pair of consecutive phrases is unique, the set of the final phrase positions (i.e., the positions of the explicit symbols) is an attractor of size at most 2γ.
 aa a a a baa abbaababa@bbabababbb aa a a $\mathbf{a} b a a \mathbf{a} b b a \boldsymbol{a} b a b a \mathbf{a} b b b \boldsymbol{a} b a b b \mathbf{a} b b b b \$$

Figure 8: The top string shows a local minima macro scheme such that merging adjacent phrases creates unique substrings. The middle configuration is obtained by merging pairs of consecutive phrases, it is not a macro scheme and therefore not an optimal configuration. The bottom configuration shows an optimal macro scheme.

Proof: First, the set is an attractor because, by definition of macro scheme, any substring that is completely inside a phrase must have another occurrence containing an explicit symbol position. To see that its size is at most 2γ, consider again the concatenation of any two consecutive phrases, which by hypothesis is unique in the text. Therefore any attractor must contain a position inside the phrase. If there is an odd number of phrases, then there must also be an attractor position at the end of the text to cover the terminator $\$$.

Even though this condition is not always attained, it does occurs several times for some classes of strings. For those cases, it is a considerable improvement to the $O(\log n)$ approximation provided by the Lempel-Ziv [4] algorithm.

Experimental Results

We implemented our algorithm to test its performance. We tested the convergence speed with Fibonacci, Thue-Morse and binary de Bruijn sequences, as well as on strings obtained from a generator we developed for this purpose. Fibonacci sequences are binary strings defined as $F_{1}=b, F_{2}=a$, and $F_{n+2}=F_{n+1} \cdot F_{n}$. They have macro schemes of size 3 (using our symbol-terminated kind of phrases) [4], which is optimal with a binary alphabet. Thue-Morse sequences are strings defined as $T_{0}=0$ and then $T_{n+1}=T_{n} \cdot \overline{T_{n}}$, where $\overline{T_{n}}$ means complementing all the bits of T_{n}. Their optimal macro scheme size is unknown, but a lower bound is the number of distinct substrings of size ℓ divided by ℓ, for any ℓ [10]. This is between ${ }^{1} 3$ and $10 / 3$, so we take 3 as a lower bound. Finally, the binary de Bruijn sequence of order t contains all the distinct substrings of length t and is of minimum length, $2^{t}+t-1$. Therefore [10], a lower bound to the size of any macro scheme is $1+\left(2^{t} / t\right)$.

Our generator chooses an alphabet size d and builds a text with a bidirectional macro scheme of size d, which must be optimal because d is a lower bound. We put the distinct characters at random, as phrase terminators, then define the sources of the phrases at random, and check that the scheme is valid. Any resulting valid scheme is then a text whose smallest macro scheme is of known size.

Figure 9 shows the number of iterations of the simulated annealing algorithm versus the number of phrases k in the obtained macro scheme, aggregated over 100 steps. We also show the number of Lempel-Ziv phrases and the size of the smallest macro scheme, or a lower bound if it is not known.

Except on de Bruijn sequences, our algorithm obtains configurations that require much fewer phrases than the Lempel-Ziv parse. In fact, in several executions our algorithm obtains the optimal size. Except for the Thue-Morse strings the algorithm was able to achieve the 2-approximation condition on some runs. For the ThueMorse strings the minimum value obtained by the algorithm was 11 , but this did not achieved the 2-approximation condition. The known lower bound for this sequence was 4 , but this may be below optimal.

[^1]

Figure 9: Iterations of our algorithm $(\times 100)$ versus number k of obtained phrases. The dotted line is the size of the Lempel-Ziv parse and the dashed one the size of the optimal macro scheme (or a lower bound if unknown).

The de Bruijin sequences did obtain the 2-approximation condition. In fact the ratio is even better because the minimum size is 103 and the points obtained are below 200. The ratio is closer to $4 / 3$, which is expected on average for this kind of sequences. To deduce this factor notice that the string in Figure 8 is a prefix of a de Bruijn sequence. In this string any substring of size 5 is unique. Almost all the binary strings of size 5 occur as substrings. The 2-approximation is the worst case. Trying to merge two blocks of size 2 yields a substring of size 5 that is unique. Merging two blocks of size 1 or one block of size 1 and one block of size 2 is always possible. This means that the resulting blocks are essentially random, with sizes ranging from 2 to 4. In general this amounts to choosing random numbers uniformly from $[1 / 2,1]$. The resulting expected value is $3 / 4$, thus explaining the $4 / 3$ approximation.

For Fibonacci strings and generated sequences our algorithm quickly reaches the optimum number of phrases. For the Thue-Morse sequences, our algorithm produces macro schemes much smaller than Lempel-Ziv, albeit not a guaranteed 2approximation. For the generated strings we did achieve the 2-approximation condition some of the time, notice that when this condition is obtained we terminate the algorithm. Otherwise the algorithm terminates by reaching its maximum number of iterations. This means that the executions that reach a 2 -approximation stop yielding data points after reaching the condition, thus thinning the cloud of points. The data points that fade away are the ones that achieve the 2 -approximation condition. For the De Bruijn sequences this happens on all executions. For the generated sequences several executions obtain the 2-approximation condition. Also several iterations obtain less phrases than the Lempel-Ziv, notice the points below the dotted line. Notice the trend for most of the points to group below this line.

Conclusions and Further Work

We have shown that the smallest macro scheme [3], an NP-hard-to-compute measure of compressibility, can be practically approximated, for some highly repetitive families of strings. On most of our tests we obtain much better approximations than the popular Lempel-Ziv algorithm [1]. This opens the door to stronger compression schemes of highly repetitive sequences.

Our future steps are to devise a more practical version of our compression algorithm. While we have managed to make it practical, running over large files is still a challenge. Because the link cut tree data structure uses one node for each letter in the text. Although the memory usage is linear in the size of the file it is a factor of more than 32. We plan to reduce this overhead by storing fewer nodes, but still supporting the necessary operations. Moreover we also store the suffix array and the inverse suffix array, in plain form, which also uses 16 times the space of the file. Using a compressed representation will require less space; a plethora of such representations is now available [11]. We aim to reduce the size of both these structures so that the amount of extra space necessary to obtain the smallest macro scheme becomes sublinear in the size of the file to compress. Also the initialization of the list of admissible phrases will have to be delayed until it is small enough, otherwise it may require as much space as the previous data structures. A simple solution is to initialize our algorithm with a Lempel-Ziv parsing.

References

[1] A. Lempel and J. Ziv, "On the complexity of finite sequences," IEEE Transactions on Information Theory, vol. 22, no. 1, pp. 75-81, 1976.
[2] M. Rodeh, V. R. Pratt, and S. Even, "Linear algorithm for data compression via string matching," Journal of the ACM, vol. 28, no. 1, pp. 16-24, 1981.
[3] J. A. Storer and T. G. Szymanski, "Data compression via textual substitution," Journal of the ACM, vol. 29, no. 4, pp. 928-951, 1982.
[4] T. Gagie, G. Navarro, and N. Prezza, "On the approximation ratio of Lempel-Ziv parsing," in Proc. 13th Latin American Symposium on Theoretical Informatics (LATIN), 2018, pp. 490-503.
[5] J. K. Gallant, String Compression Algorithms, Ph.D. thesis, Princeton University, 1982.
[6] U. Manber and G. Myers, "Suffix arrays: a new method for on-line string searches," SIAM Journal on Computing, vol. 22, no. 5, pp. 935-948, 1993.
[7] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications, vol. 37 of Mathematics and Its Applications, Springer, 1987.
[8] D. D. Sleator and R. E. Tarjan, "A data structure for dynamic trees," Journal of Computer and Systems Sciences, vol. 26, no. 3, pp. 362-391, 1983.
[9] D. Kempa and N. Prezza, "At the roots of dictionary compression: string attractors," in Proc. 50th Annual Symposium on Theory of Computing (STOC), 2018, pp. 827-840.
[10] T. Kociumaka, G. Navarro, and N. Prezza, "Towards a definitive measure of repetitiveness," CoRR, vol. 1910.02151, 2019.
[11] G. Navarro and V. Mäkinen, "Compressed full-text indexes," ACM Computing Surveys, vol. 39, no. 1, pp. article 2, 2007.

[^0]: The work reported in this article was supported by national funds through Fundação para a Ciência e Tecnologia (FCT) through projects NGPHYLO PTDC/CCI-BIO/29676/2017 and UID/CEC/50021/2019. Funded in part by European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 690941 (project BIRDS). G.N. funded in part by Millennium Institute for Foundational Research on Data (IMFD), Chile.

[^1]: ${ }^{1}$ See https://fr.wikipedia.org/wiki/Suite_de_Prouhet-Thue-Morse and https://oeis.org/A005942.

