On Self-Indexing Images —
Image Compression with Added Value

Veli Makinen * Gonzalo Navarro
Dept. of Computer Science Dept. of Computer Science
University of Helsinki, Finland University of Chile, Chile
vmakinen@cs.helsinki.fi gnavarro@dcc.uchile.cl

Abstract

Recent advances in compressed data structures have led to the new concept
of self-indexing; it is possible to represent a sequence of symbols compressed
in a form that enables fast queries on the content of the sequence. This paper
studies different analogies of self-indexing on images. First, we show that a key
ingredient of many self-indexes for sequences, namely the wavelet tree, can be
used to obtain both lossless and lossy compression with random access to pixel
values. Second, we show how to use self-indexes for sequences as a black-box
to provide self-indexes for images with filtering-type query capabilities. Third,
we develop a tailor-made self-index for images by showing how to compress
two-dimensional suffix arrays. Experimental results are provided to compare
the compressibility to standard compression methods.

1 Introduction

In the compression of one-dimensional data, a new intriguing possibility has emerged:
One can compress the data into a representation that works as a flexible index struc-
ture for the content of the data [8]. The indexing functionalities range from the
random access to data elements to pattern search cababilities. These compressed
representations are often called self-indezes as they replace the original data, and can
thus be considered as compression methods with some added value.

A natural question arises: Would it be possible to find analogous representations
for two-dimensional data? This is not only of theoretical interest. Random access
to pixel values can be valuable in hierarchical memories, where a large image can
be stored compressed in a big but slow memory level (e.g. main memory) and its
portions can be decompressed and copied into a faster memory level (e.g. graphics
card cache); or in an image server that wishes to transmit portions of images.

Another appealing application is image retrieval by content. A typical query
scenario in multimedia search engines is one where a sample image is pointed by the
user and all similar ones in the database are retrieved. A self-index for the database
of images would solve this problem in the special case of exact searching. A more

*Funded by the Academy of Finland under grant 119815.
"Funded by Yahoo! Research grant “Compact Data Structures”.

realistic scenario is to use self-indexes as filters; significant small features can be
extracted from the query template and their rotated/scaled/altered occurrences can
be sought for exactly using the self-indexes.

In this paper we show that a key ingredient of many self-indexes for sequences,
namely the wavelet tree, can be used to obtain both lossless and lossy compression
with random access to pixel values. The method can be seen as an improvement over
the classical bit-plane encoding, as confirmed by our experiments. Connection to the
popular wawvelet transform is also discussed. We also show how to use a self-index for
sequences as a black-box to provide self-indexing for images with filtering-type query
capabilities. Finally, we develop a tailor-made self-index for images by showing how
to compress two-dimensional suffiz arrays. We report some encouraging preliminary
experiments on the implementation of this method.

2 Wavelet trees for image compression

We develop an image representation that stores it in compressed form and allows
random acces to its pixels. The representation is progressive, in the sense that a
given detail level can be chosen when accessing the pixel values. Alternatively, one
can ignore the least significant bits and achieve lossy compression.

The basic tool used in the representation is the bit-vector rank operation: query
rank(B,i) = rank;(B,i) returns the number of bits set in the prefix B[1,i] of a
bit vector B[l,n]. Symmetrically, ranko(B,i) = i — rank;(B,i). The dual query
to rank; is select(B, j), giving the position of the j-th bit set in B. All those can
be supported in constant time and little space. We will use one [9] that in addition
compresses B to nHy(B)+o(n) bits, where Hy is the zero-order entropy of B: Hy(B) =
"0 log 7=+ 2 log o, being ng (n1) the number of Os (1s) in B (log = log, henceforth).

In the sequel, let us consider an nxn image I, where each I[i, j] € {0,1,...,0—1}.
For example, on an 8-bit grayscale image we would have o = 256, and on a 24-bit
RGB image we would have o = 16,777,216. In the latter case, we assume that the
RGB values are interleaved so that their most significant bits form the three most
significant bits of the 24-bit value, and so on. For this section it is enough to consider
the image row-by-row. Let A =a; ---a, be a row under consideration.

The representation uses a structure called wavelet tree [4], which is is a balanced
binary tree whose leaves represent the symbols in the alphabet. The root is associated
with the whole sequence A = a; - --a, (a row of the image), its left child with the
subsequence of A obtained by concatenating all positions ¢ having a; < /2, and its
right child with the complementary subsequence (symbols a; > ¢ /2). This subdivision
is continued recursively, until each leaf contains a repeat of one symbol. The sequence
at each internal node is represented by a bit vector that tells which positions (those
marked with 0) go to the left child, and which (marked with 1) go to the right child.
Those bit vectors alone are enough to determine the original sequence: To recover a;,
start at the root and go left or right depending on the bit vector value B; at the root.
When going to the left child, replace i < rankq(B, i), and similarly i « rank;(B,1)
when going right. When arriving at the leaf of symbol ¢ it must hold that the original

a; is ¢. This requires O(log o) rank queries over bit vectors.

The spaces needed to represent each bit vector in compressed form to have constant-
time rank queries [9] add up to nHy(A)+o(nlog o) bits [4]. Added over the whole im-
age of n? = N cells, one achieves N Hy(I)+o(N log o), where Ho(I) = > .., 3¢ log NﬁC,
where [has N, cells of color ¢. Note that N logo is the space to store I in raw form.

We experimented with the wavelet tree without the sublinear rank structures to
see how well the wavelet tree manages for plain compression. In practice adding rank
structures allow for a flexible space/time tradeoff. The wavelet tree is easy to adjust
to provide lossy compression; just stop the encoding at certain level of the tree.

Since the first levels of the tree are expected to contain long runs of 0s or 1s, we
consider encoding those runs using Elias d-encoding. Each level of the tree is encoded
either with d-encoding, with identifier coding [9], or uncompressed, depending on
which takes less space. All encodings permit to attach the sublinear structures to
support rank. We divided the colors in the wavelet trees so as to leave half of the
different colors in each child. Table 2 shows the compression achieved.

Comparison to bit-plane encoding. Pruning the last wavelet tree levels is equiv-
alent to dropping the least significant bit planes. Hence, the method can be seen as a
new variant of the classical bit-plane encoding, which encodes each bit plane indepen-
dently using methods for bit vector compression. The difference is that now the order
of the bits in a bit plane is determined by its parent bit plane: We put together the
second plane of the cells that share the same first plane, which should take advantage
of the local homogeneity. Table 2 shows that compression actually improves.

Wavelet tree and wavelet transform. The popular wavelet transform used, e.g.,
in the JPEG-2000 standard can be seen as a generic variant of wavelet tree compres-
sion. In both, the original data is transformed into a data stream whose tail can
be cut losing only the least significant bits of the message. They also share their
recursive nature, where a child receives a shuffled message from its parent.

However, wavelet transforms represent a much richer family of compressors, tak-
ing into account more than just simple spatial features. Hence, the proposed method
cannot compete with the best wavelet-transform-based methods in terms of compress-
ibility. Yet, its added value is the random access to pixel values, and more notably,
the possibility of adding search capabilities to the representation, explored next.

3 Self-indexing for filtering image searching

We will briefly sketch how to use the existing (one-dimensional) full-text self-indexes
as filters for the two-dimensional case of images.

Full-text self-indexes. We start with a classical full-text index for a text string
T[1,n]. The suffiz array A[l,n] of T is an array of pointers to all the suffixes of T’
in lexicographic order [7]. Assume 7' is terminated by a unique endmarker “$”, so
that lexicographic comparisons are well defined. A[i] points to text suffix T'[Ali], n] =
taftAp+1 - - - tn, and it holds T'[A[i],n] < T[A[i + 1], n] in lexicographic order.

Given A and T, the occurrences of a pattern P = p1ps...p, can be counted in
O(mlogn) time, or even O(m + logn) using extra longest common prefix (lcp) infor-
mation. The occurrences form an interval A[sp, ep] such that suffixes ¢ st ajij11 - - - tn,
for all sp <1 < ep, contain the pattern P as a prefix. This interval can be searched
for using two binary searches. Once the interval is obtained, the occurrence positions
are located by listing all its pointers in constant time each.

Self-indexes [8] replace the suffix array (and also the text) with a structure using
O(nlog o) bits instead of the O(nlogn) bits required by the suffix array. For example,
the self-index in [6] consists of three parts: (1) Wavelet tree of the Burrows-Wheeler
2] transform (BWT) of text T'. (2) Array C storing for each symbol ¢ the number of
occurrences of symbols smaller than ¢ in 7. (3) Some sub-linear data structures to
support access to regularly sampled suffix array values.

This structure is shown to take space close to high-order entropy [6]. It can be
used to find the suffix array interval A[sp, ep] containing pattern occurrences in time

O(m(log’ignﬂ. Locating each occurrence takes O(log'™*n) time, for any constant

€ > 0. Reproducing any text substring of length ¢ takes time O(ﬁ(log’ignw +log' ™ n).

Applying full-text self-index for images. We can apply the structure described
above to an image I by concatenating all rows of I (appending the endmarker to
each) into a sequence of length N = n?. To search for an m x m pattern P, we search
for each of its rows independently using the self-index of concatenated I. Let occ(i)
be the set of occurrence positions for pattern row i. The occurrence positions of the
whole pattern P in T are then given by occ(1) N (occ(2) —n) N (oce(3) —2n) N -+ N
(occ(m) — (m — 1)n), where occ(i) —x = {y —x | y € occ(i)}.

The time requirement of the method depends on intermediate results, i.e., on the
sizes of oce(i). Typical heuristics can be used to improve the filtering efficiency, but
in the worst case the overall size of the occ(i)’s can be mn. The scheme can obviously
be extended to rectangular images and patterns, and to handle image collections.

Coping with large alphabets. A problem with this approach is that self-indexes
have not been designed for extremely large alphabets. For example, parts (1) and (3)
described above work well with alphabets of any size, but part (2) poses a problem.
The array C' (used in some form in all suffix-array-based self-indexes we know of [8])
requires o log N bits, which on RGB images can be much more than Nlogo (on a
large image collection of total size N this might not be a problem).

A solution is to implement C' as a bitmap Cy[1, N] where only the bits at posi-
tions C|c| are set; hence C|c] = select(Cy, ¢). This bitmap requires N + o(N) bits,
compressible to o7 log Uﬂ] + o(N) [9], where oy < min(o, N) is the number of different
colors appearing in the images. We also need another bitmap C¢[1, 0| to mark those
or colors. Hence, we work all the time on mapped colors (i.e., color ¢ is represented
as ¢ = rank(Cg¢,c)): search patterns must first be mapped using rank on C¢, and
any color ¢ displayed by the self-index must be converted back to the original value
¢ = select(Ce,) in order to show it. The space for C¢x is o + o(o) bits. For the
reduced functionality we need from it (i.e., only rank(C¢,c) where Co[c] = 1, and
select) it can be represented using just oy log = + o(o;) + O(loglog o) bits [9].

4 A self-index based on 2-dimensional suffix arrays

In this section we move forward towards a self-indexing technique that gives worst-
case time guarantees on the search time. We build on a well-known technique to index
images based on so-called L-suffixes (e.g. [3, 5]) The idea is that each position I, j]
of an image defines a 2-dimensional suffiz, whose successive characters are L-shaped
bands of increasing size which start at (¢, 7) and grow towards larger i and j values.
More formally, the ¢-th “character” of the suffix starting at (¢,), for £ > 0, is the
sequence (taken as a single symbol) I[i,j+ €| I[i+ 1,7+ I[i+2,5+ ... I[i+{—
Lj+ 01+ Ili+ 0,5+ 1) I[i+£,j+2]...I[i + £, j + {] (the reading order has
been chosen at our convenience, see later). Figure 1 (left) illustrates. If we reach the
border of an image, the suffix ends there, although one assumes that the image has an
additional row and column of unique values, so as to ensure that any lexicographical
comparison among different suffixes will finish before exceeding the image area.

13:14:15: 16

Figure 1: On the left, the reading order of the consecutive cells of an L-suffix. On the
right, the mechanism to access them with our sampling. Curved arrows correspond to
applications of ¥ to move rightwards in the (virtual) image. Dashed ones are those carried
out to find out where we are in the image and be able to move to other rows. Solid ones are
those carried out to obtain the cell values of interest. Thick vertical lines are the sampled
columns, and dashed straight lines are the steps done with the sampling information. At
this point the front is formed by the suffix array values pointing to the cells labeled 5,6,9.
To obtain the new L-band (shown in thick lines) we obtain cells 10,11,12 by applying ¥
once to each cell in the current front, and then obtain the whole new bottom row.

By building a suffix tree over those L-suffixes (which can be done in linear time)
it is possible to find all the positions where any m x m (square) pattern occurs in
time O(m?), that is, linear in the pattern size.

It is not hard to derive a suffix array technique from the suffix tree. The suffix
array just points to all the (i,j) image positions, in lexicographical order of the
corresponding L-suffixes (seen just as a concatenation of the sequences of pixel values
read in that L-order). It is also possible to index a collection of images using just one
suffix array, so that each suffix array position points to some cell of some image. In this
case, if N is the overall size of the collection (in cells), the search cost is O(m?log N),
which can be reduced to O(m?+log N) by using some extra lcp information [7]. After
this search, the position of each occurrence can be obtained in constant time. The

suffix array (and extra lep structures, if desired) can be built in time O(N log N) [5],
and occupy O(N log N) bits of space. This is too much compared to the N log o bits
to store the raster images, which must also be maintained to permit searching.

In order to reduce space, we use the concepts developed in Sadakane’s Compressed
Suffix Array (CSA) [10]. Let A[1, N] be the suffix array of the collection. We define an
array U[1, N]| as follows: Let A[p] = (n,1, j), meaning the cell (7, j) of image n. Then
U[p] = p’ such that A[p’] = (n,i,7 + 1) (or (n,i,1) if image n has just j columns).
In addition, let C'[c] be the number of cells in all the images whose pixel value is less
than ¢, as before. Finally, we need to sample the images at regular intervals. Let s
be a column sampling step. Then we will store, for each cell I[i, j - s] of each n-th
image, value I.SA[n, 1, j| = p such that A[p] = (n,i,7 - s) (the first and last columns
of each image must be sampled as well). This is a sampled inverse suffix array. Those
chosen p values are also marked in a bitmap B[1, N|. We also store a sampled suffix
array SA[rank(B,p)] = (n,1,j).

These structures are sufficient to replace the suffix array A and the images I of the
collection. We describe next the relevant operations, and later analyze their space.

Searching for subimage patterns. We simulate the binary searches done over the
suffix array, without having it. For this sake, we must be able to read the consecutive
L-shaped sequences that correspond to some A[p| = (n, 1, j) given just p, as we do not
have A nor the image. Note that, because all the 2-dimensional suffixes are sorted first
by their (i,) cell, the color of cell (i, 7) is the ¢ such that C|¢] < p < C[c+ 1], which
is simply rank(Cy, p)'. If we wished to obtain the color of I[i, j+1], I[i, j +2], etc. we
simply have to repeat the procedure for p’ = ¥[p], p” = ¥[p'], and so on. However, in
order to read the L-shaped suffix we need also to be able to move from (i, j) to (i+1, 7).
For this sake, we apply ¥ consecutive (at most s) times, virtually moving rightwards
in some image, until we find a marked column that corresponds to p*, i.e., B[p*] = 1.
We then find where we are with SA[rank(p*)] = (n,i,j*), so we reached position
(i,7*-s) of image n. With this information we consult ISA[n,i+1, j* — 1], which will
give us the ¢* such that A[¢*] = (n,i+1, (j*—1)-s); note that (j*—1)-s < j < j*-s.
From that ¢* we apply ¥ successive times (at most s) until reaching the ¢ that
corresponds to cell (i + 1,7) of the image, as desired. Note that we can use ISA to
move directly to row ¢ + ¢, by starting from ISA[n,i+ ¢, j* — 1].

As we read the L-suffix cells for increasing ¢ in order to carry out a comparison
in our binary search for the pattern, we maintain a front of the values p, such that
Alp,] = (n,i +r,j + ¢). When moving to the next ¢ value, we have just to take
¥ once on each such value, and use the method above to obtain the new py,q, first
corresponding to cell (i4+£¢+1, j), then using ¥ to obtain all the bottom values of the
new L-shape, and finally to reestablish the invariant with A[p,y1] = (i+0+1, j+0+1).
Note that the new bottom row of the L-shape is more expensive to obtain than the
new rightmost column, hence our particular reading order. Figure 1 (right) illustrates.

Thus, the time cost to carry out the search for an m x m pattern, using sampling
step s, is O(m(m+ s)log N) accesses to ¥. At the end we know that the occurrences

f o is small, it might be more practical to represent C[1, 0] as a plain array and use binary
search on it to obtain c.

of the pattern are pointed from the suffix array area A[sp, ep|, thus there are ep—sp+1
occurrences. Note we have not accessed A nor the images.

Locating the occurrences. As we do not have direct access to A, we cannot just
output the occurrence positions A[p|, sp < p < ep, each in constant time. Instead,
for each such p, we must apply ¥ consecutive times until reaching a marked column,
just as done for searching. If we applied ¥ r times until reaching cell (n, i, j - s), then
the occurence is at cell (i,7 - s — r) of the n-th image. This takes O(s) accesses to ¥
to report each occurrence.

Displaying a subimage. The search mechanism already shows how can we obtain
any subimage starting at A[p] provided we know p. In order to display an arbitrary
subimage of size m, X m, starting at (n,,7), we must start from some sampled
position, that is, from p’ = [SA[n,i,|j/s]], and obtain from p’ the slightly larger
subimage of size m, x (m. + (j mod s)) starting at (i, |j/s] - s). Hence the time
required for displaying is O(m,(m. + s)) accesses to V.

Space and compression. The sampling mechanism requires about N+2(N/s) log N
bits for B, ISA, and SA, which can be made, for example, O(N) bits by accepting
a slowdown factor s = O(log N). The color table C' has already been discussed in
Section 3. The most space-consuming structure, however, is W, as in principle it
needs N log N bits, just like A. In [10], it is shown that W can be represented using
NH, space on a linear text of length N and zero-order entropy Hy. However, the
properties that permit proving those space bounds do not hold in the 2-dimensional
case: Because L-suffixes are not suffixes of other L-suffixes, there is no guarantee that
if (4,7) and (7', j') share the same cell, and the suffix starting at (7, j) is lexicograph-
ically smaller than that starting at (i’, '), then the suffix starting at (i,j + 1) will
be lexicographically smaller than that starting at (i, 7' + 1). We expect, however,
that W[p] — ¥[p — 1] will be a small positive number in a fair amount of cases for two
reasons: (1) If the cells at (i,7) and (i, j') are the same but those at (i,7 4+ 1) and
(7,4 + 1) are different, then ¥ will be increasing, as the lexicographical comparison
between (i, j) and (', j') is actually decided depending on that between (7, 5+ 1) and
(¢/,j" 4+ 1). (Note that our reading order is also designed for W, which moves right-
wards, so the second cell we read in an L-suffix is precisely the next to the right.)
(2) Because of spatial homogeneity, the whole L-suffix at (4,) should be similar to
that at (4,7 4+ 1), and those should be close in A. Hence ¥[p| could be close to p, so
consecutive values should not differ by much.

Therefore, we encode V¥ in differential form using an encoding technique that fa-
vors small numbers (see Section 5). Absolute samples are inserted every s’ positions
in U, to permit fast random access. The sampling introduces N + (N/s')log N addi-
tional bits of space (compressible to (N/s")log(Ns')) and O(s") cost to access V. For
example, with s’ = log N we have o(N) extra space and O(log N) slowdown factor.

Note that, obviously, we can also remove some of the least significant planes of the
image before indexing it, and hence those will also be removed from the pattern before
searching for it. This gives some space gains that are shown in the experiments. Any

Collection | Type | Images Cells Plain size | JPG size | Suffix array
Micro Gray 13 | 56,583,672 8 2.935 26
Art RGB 12| 6,551,318 24 1.396 23
Maps RGB 10 | 4,365,440 24 0.842 23
Fonts Gray 9| 1,119,744 8 5.515 21

Table 1: Characteristics of the four image collections used. We show cell type, number of
images, total number of cells, plain raster size (bpc), lossless JPG size (bpc), and size of a
plain suffix array (bpc). To enable classical searching one needs to add the plain and suffix
array sizes. Collection Font is almost black&white.

image shape can be handled, but to search for rectangular patterns we must use the
search algorithm as a filter for maximal squares of the pattern, just as in Section 3.

5 Experiments and Discussion

We used four small image collections intended to be representative of different appli-
cations: Micro (microscopic images from NCI Visuals Online), Art (gothic paintings
from WebMuseum Paris), Maps (ancient maps of Japan from NYPL Digital Gallery),
and Fonts (some font images from Identifont). Table 1 shows some of their charac-
teristics? (bpc stands for bits per cell).

Table 2 shows the space required for the ¥ function in Section 4 using different
encoding methods and number of planes (#, 8 is lossless). “Gap” is just the sum of
exact bits required by the numbers; it cannot be decoded without help but serves as
a lower bound to other gap encodings: Elias v- and d-encodings, Rice codes, Dense
codes [1], and Fibonacci codes. Huffman coding is excluded as its symbol table is
too large to make it competitive. Negative numbers are interleaved with the positive
ones. The table also shows the bpc needed by the wavelet tree, wavelet tree over
BWT, and bit plane coding (Sections 2 and 3).

To these numbers, we must add the space for colors and samples. That for color is
insignificant for gray images. For RGB images, using uncompressed bitmaps, it would
add 1.05 bpe, plus about 2 megabytes for the whole collection (the latter must be
divided by 8 for each plane we remove in the lossy case). For sampling the suffix array,
again without compression on the bitmaps, we have 1.05 bpc extra plus a space/time
tradeoff, for example 0.8 bpc if we insert a sample every 64 positions (which yields
reasonable performance). To sample the absolute ¥ values we have other 1.05 bpc
plus another tradeoff, for example 1 bpc if we sample one out of 32 values of V.
Note, on the other hand, that C' is not needed on WT and Plane, as no searching is
provided, and sampling is needed only for BWT if random access is to be provided.

On RGB images, the compression ratios achieved by wavelet trees is comparable

2Sources: Micro: http://visualsonline.cancer.gov, by browsing topic “Pathology — Electron
Microscopy (EM)” and choosing 300 DPI. Arts: http://www.ibiblio.org/wm, collection “Les tres
riches heures du Duc de Berry” in subdirectory rh. Maps: http://digitalgallery.nypl.org,
browsing term “Maps — Japan”. Fonts: http://www.identifont.com/free-fonts.html, all the
fonts in the category “Text serif”.

Coll. | # ¥ encoding (bpc) Wavelet tree (bpc)
Gap | v-code | 6-code | Rice | Dense | Fib. || WT | BWT | Planes
Micro | 8 || 12.60 24.20 20.43 | 17.24 | 17.00 | 17.97 5.98 5.42 6.45
4 7.19 13.39 13.03 | 15.56 | 10.30 | 11.49 2.16 1.94 2.54
2 5.18 9.36 9.76 | 15.52 7.32 | 8.78 0.75 0.79 0.86
1 3.95 6.90 7.61 | 15.20 534 | 6.67 | 0.27] 0.33 0.27
Art 8 || 11.91 22.82 19.66 | 19.70 | 16.23 | 17.21 || 17.00 | 15.97 20.47
4 8.91 16.82 15.58 | 14.84 | 12.67 | 13.69 6.04 5.48 8.47
2 6.40 11.81 11.79 | 14.56 9.17 | 10.46 2.09 2.24 2.87
1 4.77 8.54 9.03 | 14.57 6.65 | 8.14 || 0.78 0.90 0.88
Maps | 8 7.31 13.62 12.88 | 18.01 | 10.24 | 11.43 8.47 7.34 14.75
4 577 | 10.53 | 10.53 | 15.68 8.05 | 945 2.43 2.34 4.58
2 4.68 8.36 8.79 | 15.18 6.43 | 7.90 0.99 | 0.95 1.47
1 3.52 6.03 6.76 | 15.32 4.57 | 5.82 0.28 0.25 0.40
Fonts | 8 4.27 7.54 8.01 | 14.35 5.73 7.12 1.53 1.07 3.99
4 4.27 7.54 8.01 | 14.35 5.73 7.12 1.53 1.06 1.99
2 3.90 6.81 7.54 | 12.97 529 | 6.60 0.90 | 0.72 0.95
1 3.60 6.19 7.08 | 11.59 4.86 6.11 0.45 0.47 0.45

Table 2: Bits per cell to code the different structures proposed.

to W-based compression, although wavelet trees take much more advantage from lossy
compression. On gray levels, wavelet trees are much more efficient, taking even less
space than JPG (see Table 1). In all cases, the compression is superior than that of
bit plane encoding (sometimes even with ¥). On the other hand, the wavelet tree on
the BWT does not significantly improve compression as it does on text documents
(and might do even worse in the lossy case). This is not totally surprising: the wavelet
tree alone exploits local homogeneity; whereas after the transform it exploits row-wise
repetitiveness. The latter is the key to text compression, whereas the former is much
more relevant in image compression. We recall that this BWT offers some subimage
searching capabilities (in which case we have to store structure C, as explained). Note
that the wavelet tree encoder does not need to know the exact color depth in order
to succeed: With Fonts converted to 24-bit RGB images, the wavelet tree encoder
obtained nearly the same compression as before (1.53 bpc became 1.55 bpc), but
bit-plane encoding became much worse (3.99 bpc became 11.97 bpc).

As for W, Dense codes are the best coding choice, as well as easy to program
and fast to decode. Overall, our search-capable lossless image representation takes
6-17 bpc (depending on the image compressibility) plus 4-5 bpc for sampling and
colors. Although not competitive with lossless JPG, it is remarkable that we support
efficient searches using much less spaces than that needed by the suffix array plus the
image, and usually less than just the raster image. Our preliminary timings (which
are optimistic as we still do not compress W; this could make them around 20 times
slower except for construction) on 54MB collection Micro, on a commodity desktop
PC (2-processor Intel Pentium IV, 3 GHz each, 1 MB cache, 4 GB RAM, Linux,
C code, gce compiler, full optimization) are as follows: we build the index (with a
very rudimentary suffix array construction algorithm) in less than 7 sec/MB; we do a
binary search for an existing 10 x 10 pattern in 0.23 msec and 100 x 100 in 5.13 msec;

we locate each occurrence in 4.67 psec; we display any 10 x 10 subimage in 0.05 msec
and 100 x 100 in 2.51 msec. This is for a sampling rate of 64 for the suffix array.
We plan to complete our preliminary prototypes in order to have actual time
performance figures, as well as trying out improvements like coding several image
rows as a single sequence using wavelet trees (to take advantage of vertical spatial
homogeneity, not only horizontal). Besides, we are leaving open some fundamental
questions. One is: is it possible to search with variable precision, which can be chosen
at search, not indexing, time? Another regards the duality between ¥ and the BWT,
well-known in one-dimensional data [8]. It would possibly lead to a self-index with
guaranteed worst-case search time just as that based on W, yet based on the wavelet
tree, which seems to compress better. However, the duality seems to be absent in the
2-dimensional case. Can it be recovered under a suitable definition of suffix?

References

[1] N. Brisaboa, A. Farina, G. Navarro, and J. Parama. Lightweight natural language
text compression. Information Retrieval, 10:1-33, 2007.

[2] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

[3] R. Giancarlo and R. Grossi. Suffix tree data structures for matrices, pages 293—
340. Oxford University Press, 1997. Chapter 11.

[4] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA’03, pages 841-850, 2003.

[5] D. Kim, Y. Kim, and K. Park. Generalizations of suffix arrays to multi-
dimensional matrices. Theoretical Computer Science, 302:401-416, 2003.

[6] V. Mékinen and G. Navarro. Implicit compression boosting with applications to
self-indexing. In Proc. SPIRE’07, LNCS 4726, pages 229-241, 2007.

[7] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. on Computing, 22(5):935-948, 1993.

[8] G. Navarro and V. Mékinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

9] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. SODA’02,
pages 233-242, 2002.

[10] K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
J. of Algorithms, 48(2):294-313, 2003.

