
Text Indexing and Searching in Sublinear Time1

J. Ian Munro2

Cheriton School of Computer Science, University of Waterloo3

imunro@uwaterloo.ca4

Gonzalo Navarro5

CeBiB — Center of Biotechnology and Bioengineering, Department of Computer Science,6

University of Chile7

gnavarro@dcc.uchile.cl8

Yakov Nekrich9

Department of Computer Science, Michigan Technological University10

yakov.nekrich@googlemail.com11

Abstract12

We introduce the first index that can be built in o(n) time for a text of length n, and can also be13

queried in o(q) time for a pattern of length q. On an alphabet of size σ, our index uses O(n log σ)14

bits, is built in O(n log σ/
√

logn) deterministic time, and computes the number of occurrences of the15

pattern in time O(q/ logσ n+ logn logσ n). Each such occurrence can then be found in O(logn) time.16

Other trade-offs between the space usage and the cost of reporting occurrences are also possible.17

2012 ACM Subject Classification Theory of computation → Data structures design and analysis18

Keywords and phrases data structures, string indexes19

Digital Object Identifier 10.4230/LIPIcs...20

Funding Gonzalo Navarro: Funded with Basal Funds FB0001, Conicyt, Chile21

mailto:imunro@uwaterloo.ca
mailto:gnavarro@dcc.uchile.cl
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs...

1 Introduction22

We address the problem of indexing a text T [0..n− 1], over alphabet [0..σ − 1], in sublinear23

time on a RAM machine of w = Θ(logn) bits. This is not possible when we build a classical24

index (e.g., a suffix tree [42] or a suffix array [26]) that requires Θ(n logn) bits, since just25

writing the output takes time Θ(n). It is also impossible when log σ = Θ(logn) and thus just26

reading the n log σ bits of the input text takes time Θ(n). On smaller alphabets (which arise27

frequently in practice, for example on DNA, protein, and letter sequences), sublinear-time28

indexing becomes possible when the text comes packed in words of logσ n characters and29

we build a compressed index that uses o(n logn) bits. For example, there exist various30

indexes that use O(n log σ) bits [35] (which is asymptotically the best worst-case size we31

can expect for an index on T) and could be built, in principle, in time O(n/ logσ n). Still,32

only linear-time indexing in compressed space had been achieved [3, 6, 30, 32] until the very33

recent result of Kempa and Kociumaka [24].34

When the alphabet is small, one may also aim at RAM-optimal pattern search, that is,35

count the number of occurrences of a (packed) string Q[0..q − 1] in T in time O(q/ logσ n).36

There exist some classical indexes using O(n logn) bits and counting in time O(q/ logσ n+37

polylog(n)) [36, 11], as well as compressed ones [32].38

In this paper we introduce the first index that can be built and queried in sublinear time.39

Our index, as explained, is compressed. It uses O(n log σ) bits and can be constructed in40

deterministic time O(n log σ/
√

logn). Thus the construction time is O(n/
√

logn) when the41

alphabet size is a constant. Our index also supports counting queries in o(q) time: it counts42

in optimal time plus an additive poly-logarithmic penalty, O(q/ logσ n+ logn logσ n). After43

counting the occurrences of Q, any such occurrence can be reported in O(logn) time.44

A slightly larger and slower-to-build variant of our index usesO(n(
√

logn log σ+log σ logε n))45

bits for any constant 0 < ε < 1/2 and is built in time O(n log3/2 σ/ log1/2−ε n). This index46

can report the occ pattern occurrences in time O(q/ logσ n+
√

logσ n log logn+ occ).47

As a comparison (see Table 1), the other indexes that count in time O(q/ logσ n +48

polylog(n)) use either more space (O(n logn) bits) and/or construction time (O(n)) [11, 36,49

32]. The indexes using less space, on the other hand, use as little as O(n log σ) bits but are50

slower to build and/or to query [30, 29, 32, 3, 5, 6, 24]. A recent construction [24] is the51

only one able to build in sublinear time (O(n log σ/
√

logn)) and to use compressed space52

(O(n log σ) bits), just like ours, but it is still unable to search in o(q) time.53

Those compressed indexes can then deliver each occurrence in O(logε n) time, or even54

in O(1) time if a structure of O(n log1−ε σ logε n) further bits is added, though there is no55

sublinear-time construction for those extra structures either [38, 22].56

Our technique is reminiscent to the Geometric BWT [15], where a text is sampled57

regularly, so that the sampled positions can be indexed with a suffix tree in sublinear space.58

In exchange, all the possible alignments of the pattern and the samples have to be checked59

in a two-dimensional range search data structure. To speed up the search, we use a data60

structure for LCE queries. An LCE data structure enables us to compute in constant time61

the longest common prefix of any two text positions. Using this information we can efficiently62

find the locus of each alignment from the previous one.63

2 Preliminaries and LCE Queries64

We denote by |S| the number of symbols in a sequence S or the number of elements in a65

set S. For two strings X and Y , LCP (X,Y) denotes the longest common prefix of X and66

Y . For a string X and a set of strings S, LCP (X,S) = maxY ∈S LCP (X,Y), where we67

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Source Construction time Space (bits) Query time (counting)
Classical [42, 27, 41, 19] O(n) O(n logn) O(q log σ)
Cole et al. [17] O(n) O(n logn) O(q + log σ)
Fischer & Gawrychowski [21] O(n) O(n logn) O(q + log log σ)
Bille et al. [11] O(n) O(n logn) O(q/ logσ n+ log q + log log σ)
Classical + perfect hashing O(n) randomized O(n logn) O(q)
Navarro & Nekrich [36] O(n) randomized O(n logn) O(q/ logσ n+ logεσ n)
Barbay et al. [3] O(n) O(n log σ) O(q log log σ)
Belazzougui & Navarro [6] O(n) O(n log σ) O(q(1 + logw σ))
Munro et al. [30, 29] O(n) O(n log σ) O(q + log log σ)
Munro et al. [32] O(n) O(n log σ) O(q + log logw σ)
Munro et al. [32] O(n) O(n log σ) O(q/ logσ n+ logεσ n)
Belazzougui & Navarro [6] O(n) randomized O(n log σ) O(q(1 + log logw σ))
Belazzougui & Navarro [5] O(n) randomized O(n log σ) O(q)
Kempa and Kociumaka [24] O(n log σ/

√
logn) O(n log σ) O(q(1 + logw σ))

Ours O(n log σ/
√

logn) O(n log σ) O(q/ logσ n+ logn · logσ n)

Table 1 Previous and our results for index construction on a text of length n and a search
pattern of length q, over an alphabet of size σ, on a RAM machine of w bits, for any constant ε > 0.
Grayed rows are superseded by a more recent result in all aspects we consider. Note that O(n)-time
randomized construction can be replaced by O(n(log logn)2) deterministic constructions [39].

compare lengths to take the maximum. We assume that the concepts associated with suffix68

trees [42] are known. The longest common extension (LCE) query on S asks for the length69

of the longest common prefix of suffixes S[i..] and S[j..], LCE(i, j) = |LCP (S[i..], S[j..])|.70

LCE queries were introduced by Landau and Vishkin [25]. Several recent publications71

demonstrate that LCE data structures can use o(n) space and/or can be constructed in o(n)72

time [40, 31, 24, 12]. The following result will play an important role in our construction.73

I Lemma 1. [24] Given a text T of length n over an alphabet of size σ, we can build an74

LCE data structure using O(n log σ) bits of space in O(n/ logσ n) time. This data structure75

supports LCE queries on T in O(1) time.76

3 The General Approach77

We divide the text T [0..n−1], over alphabet [0..σ−1], into blocks of r = O(logσ n) consecutive78

symbols (to avoid tedious details, we assume that both r and logσ n are integers and that79

n is divisible by both). The set S ′ consists of all the suffixes starting at positions ir, for80

i = 0, 1, . . ., n/r − 1; these are called selected positions. Our data structure consists of the81

following three components.82

1. The suffix tree T ′ for the suffixes starting at the selected positions, using O((n/r) logn)83

bits. Thus T ′ is a compacted trie for the suffixes in S ′. Suffixes are represented as84

strings of meta-symbols where every meta-symbol corresponds to a substring of logσ n85

consecutive symbols. Deterministic dictionaries are used at the nodes to descend by the86

meta-symbols in constant time. Predecessor structures are also used at the nodes, to87

descend when less than a metasymbol of the pattern is left. Given a pattern Q, we can88

identify all selected suffixes starting with Q in O(|Q|/ logσ n) time, plus an O(log logn)89

additive term coming from the predecessor operations at the deepest node.90

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2. A data structure on a set Q of points. Each point of Q corresponds to a pair (indi, revi)91

for i = 1, . . . , (n/r) − 1 where indi is the index of the i-th selected suffix of T in the92

lexicographically sorted set S ′ and revi is an integer that corresponds to the reverse block93

preceding that i-th selected suffix in T . Our data structure supports two-dimensional94

range counting and reporting queries on Q.95

3. A data structure for suffix jump queries on T ′. Given a string Q[0..q − 1], its locus node96

u, and a positive integer i ≤ r − 1, a (suffix) i-jump query returns the locus node of97

Q[i..q − 1], or it says that Q[i..q − 1] does not prefix any string in S ′. The suffix jump98

structure has essentially the same functionality as the suffix links, but we do not store99

suffix links explicitly in order to save space and improve the construction time.100

As described, T ′ is a compact trie over an alphabet of meta-symbols corresponding to101

strings of length logσ n. Therefore, whenever we speak of a node u ∈ T ′, we refer indistinctly102

to an explicit or an implicit node (i.e., in the middle of an edge, coming from compacting a103

unary path). Further, we cannot then properly speak of the “locus node” of a string Q, even104

if we identify meta-symbols with their forming strings, because |Q| might not be a multiple105

of logσ n. Rather, the locus of Q will be denoted u[l..s], where u ∈ T ′, called its locus node,106

is the deepest node whose string label is a prefix of Q and [l..s] is the maximal interval such107

that the string labels of the children ul, . . . , us of u are prefixed by Q.108

Using our structure, we can find all the occurrences in T of a pattern Q[0..q−1] whenever109

q > r. Occurrences of Q are classified according to their positions relative to selected symbols.110

An occurrence T [f..f + q − 1] of Q is an i-occurrence if T [f + i] (corresponding to the i-th111

symbol of Q) is the leftmost selected symbol in T [f..f + q − 1].112

First, we identify all 0-occurrences by looking for Q in T ′: We traverse the path corres-113

ponding to Q in T ′ to find Q0 = LCP (Q,S ′), the longest prefix of Q that is in T ′, with114

locus u0[l0..s0]. Let q0 = |Q0|; if q0 = q, then u0[l0..s0] is the locus of Q and we count or115

report all its 0-occurrences as the positions of suffixes in the subtrees of u0[l0..s0].1 If q0 < q,116

there are no 0-occurrences of Q.117

Next, we compute a 1-jump from u0 to find the locus of Q0[1..] = Q[1..q0 − 1] in T ′.118

If the locus does not exist, then there are no 1-occurrences of Q. If it exists, we traverse119

the path in T ′ for Q1 starting from that locus, not redoing the path from the root. Let120

Q1 = Q[1..q1 − 1] = LCP (Q[1..q − 1],S ′) be the longest prefix of Q[1..q − 1] found in T ′,121

with locus u1[l1..s1]. If q1 < q, then again there are no 1-occurrences of Q. If q1 = q, then122

u1[l1..s1] is the locus of Q[1..q − 1]. In this case, every 1-occurrence of Q corresponds to123

an occurrence of Q1 in T that is preceded by Q[0]. We can identify them by answering124

a two-dimensional range query [ind1, ind2]× [rev1, rev2] where ind1 (ind2) is the leftmost125

(rightmost) leaf in the subtrees of u1[l1..s1] and rev1 (rev2) is the smallest (largest) integer126

value of any reverse block that starts with Q[0].127

We proceed and consider i-occurrences for i = 2, . . . , r−1 using the same method. Suppose128

that we have already considered the possible j-occurrences of Q for j = 0, . . . , i− 1, so we129

have computed all the loci uj [lj ..sj] of Qj = Q[j..qj − 1] = LCP (Q[j..q − 1],S ′). Further,130

let q′j ≤ qj be j plus the string depth of uj , measured in symbols. This is the maximum131

number of symbols we can read from Qj so that we reach a node of T ′. Let t be such that132

q′t = max(q′0, . . . , q′i−1). We then compute the (i − t)-jump from ut. If Q[i..q′t − 1] is not133

found in T ′, then it is enough for us to know that qi < q′t without actually finding the locus134

of Qi. If Q[i..q′t − 1] is found with locus node u, we traverse from u downwards to complete135

1 For fast counting, each node may also store the cumulative sum of its preceding siblings.

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

the path for Q[i..q− 1]. We then find the locus ui[li..si] of Q[i..qi− 1] = LCP (Q[i..q− 1],S ′).136

If qi = q, then Q[i..q − 1] is found, so we count or report all i-occurrences by answering a137

two-dimensional query as described above.138

Analysis. The total query time is O(q/ logσ n+ r(log logn+ tq + ts)), where tq and ts are139

the times to answer a range query and to compute a suffix jump, respectively.140

All the downward steps in the suffix tree amortize to O(q/ logσ n+ r): we advance q′t by141

logσ n units in each downward step, but q′t can be (logσ n)− 1 units less than the maximum142

position qt we have reached up to now on Q (i.e., we take the suffix jump from ut, whereas143

the actual locus with string depth qt is ut[lt..st]). In addition we perform a predecessor step144

to find the ranges [lj ..sj] of the locus of each Qj , which adds O(r log logn) time. As said,145

the suffix tree (point 1) uses O((n/r) logn) bits.146

The data structure of point 2 is a wavelet tree [14, 23, 34] built on t = O(n/r) points.147

Its height is the logarithm of the y-coordinate range, h = log(σr) = O(r log σ), and it uses148

O(t · h) = O(n log σ) ⊆ O((n/r) logn) bits. Such structure answers range counting queries in149

time tq = O(h) = O(r log σ), thus r · tq = O(r2 log σ), and reports each point in the range in150

time O(h) = O(r log σ).151

In Sections 4 and 5 we show how to implement all the r suffix jumps (point 3) in time152

r · ts = O(q/ logσ n+ r log logn), with a structure that uses O((n/r) logn) further bits.153

Section 6 shows that the deterministic construction time of the structures of point 1 is154

O(n(log logn)2/r) and of point 3 is O(n/r). The wavelet tree of point 2 can be built in time155

O(t · h/
√

log t) = O(n log σ/
√

logn) [33, 2].156

Finally, since a pattern shorter than r may not cross a block boundary and thus we157

could miss occurrences, Section 7 describes a special index for small patterns. Its space and158

construction time is within those of point 3 for r ≤ (1/4) logσ n. This yields our first result.159

I Theorem 2. Let 0 < r < (1/4) logσ n be a parameter. Given a text T of length n over160

an alphabet of size σ, we can build an index using O((n/r) logn) bits in deterministic time161

O(n((log logn)2/r + log σ/
√

logn)), so that it can count the number of occurrences of a162

pattern of length q in time O(q/ logσ n + r2 log σ + r log logn), and then report each such163

occurrence in time O(r log σ).164

If we set r = Θ(logσ n), we obtain a data structure with optimal asymptotic space usage.165

I Corollary 3. Given a text T of length n over an alphabet of size σ, we can build an index166

using O(n log σ) bits in deterministic time O(n log σ/
√

logn), so that it can count the number167

of occurrences of a pattern of length q in time O(q/ logσ n + logn logσ n), and then report168

each such occurrence in time O(logn).169

We can improve the time of reporting occurrences by slightly increasing the construction170

time. Appendix A shows how to construct a range reporting data structure (point 2) that,171

after tq = O(log logn) time, can report each occurrence in constant time. The space of this172

structure is O(n log σ logε n) bits and its construction time is O((n · r · log2 σ)/ log1−ε n), for173

any constant 0 < ε < 1/2. If we plug in this range reporting data structure into our index174

(i.e., replacing point 2 above), we obtain our second result.175

I Theorem 4. Let 0 < r < (1/4) logσ n be a parameter. Given a text T of length n over176

an alphabet of size σ, we can build an index using O((n/r) logn + n log σ logε n) bits in177

deterministic time O(n((log logn)2/r + (r log2 σ)/ log1−ε n)), for any constant 0 < ε < 1/2,178

so that it can count the occurrences of a pattern of length q in time O(q/ logσ n+ r log logn),179

and then report each in O(1) time.180

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

One interesting trade-off is when r =
√

logσ n. In this case the index usesO(n(
√

logn log σ+181

log σ logε n)) bits, can be constructed in O((n log3/2 σ)/ log1/2−ε n) time, and reports the occ182

occurrences of a pattern of length q in time O(q/ logσ n+
√

logσ n log logn+ occ).183

4 Suffix Jumps184

Now we show how suffix jumps can be implemented. The solution described in this section185

takes O(logn) time per jump O((n/r) logn) extra bits of space; it is used when |Q| ≥ log3 n.186

This already provides us with an optimal solution because, in this case, the time of the r187

suffix jumps, O(logn logσ n), is subsumed by the time O(q/ logσ n) to traverse the pattern.188

In the next section we describe an appropriate method for short patterns.189

Given a substring Qt[0..qt − 1] of the original query Q, with known locus ut[lt..st], we190

find the locus v[l..s] of Qt[i..] or determine that it does not exist.191

We compute the locus of Qt[i..] by applying Lemma 1 O(logn) times; note that we192

know the text position f1 of an occurrence of Qt because we know its locus ut[lt..st] in T ′;193

therefore Qt[i..] = T [f1 + i..]. By binary search among the sampled suffixes (i.e., leaves of194

T ′), we identify in O(logn) time the suffix Sm that maximizes |LCP (Qt[i..], Sm)|, because195

this measure decreases monotonically in both directions from Sm. At each step of the binary196

search we compute ` = |LCP (Qt[i..], S)| for some suffix S ∈ S ′ using Lemma 1 and compare197

their (`+ 1)th symbols to decide the direction of the binary search. Once Sm is obtained198

we find, again with binary search, the smallest and largest suffixes S1, S2 ∈ S ′ such that199

|LCP (S1, Sm)| = |LCP (S2, Sm)| = |LCP (Qt[i..], Sm)|; note S1 ≤ Sm ≤ S2.200

Finally let v be the lowest common ancestor of the leaves that hold S1 and S2 in T ′. It then201

holds that LCP (Qt[i..],S ′) = LCP (Qt[i..], Sm), and v is its locus node. Further, the locus is202

v[l..s], where S1 and S2 descend by the lth and sth children of v, respectively (we can find l203

and s in O(1) time with level ancestor queries on T ′). If |LCP (Sm, Qt[i..])| = qt−i = |Qt[i..]|,204

then v[l..s] is also the locus of Qt[i..]; otherwise Qt[i..] prefixes no string in S ′.205

I Lemma 5. Suppose that we know Qt[0..qt − 1] and its locus in T ′. We can then compute206

LCP (Qt[i..qt − 1],S ′) and its locus in T ′ in O(logn) time, for any 0 ≤ i ≤ r − 1.207

5 Suffix Jumps for Short Patterns208

In this section we show how r suffix jumps can be computed in O(|Q|/ logσ n+ r log logn)209

time when |Q| ≤ log3 n. Our basic idea is to construct a set X0 of selected substrings with210

length up to log3 n. These are sampled at polylogarithmic-sized intervals from the sorted set211

S ′. We also create a superset X ⊃ X0 that contains all the substrings that could be obtained212

by trimming the first i ≤ r − 1 symbols from strings in X0. Using lexicographic naming213

and special dictionaries on X , we pre-compute answers to all suffix jump queries for strings214

from X0. We start by reading the query string Q and trying to match Q, Q[1..], Q[2..] in215

X0. That is, for every Q[i..q− 1] we find LCP (Q[i..q− 1],X0) and its locus in T ′. With this216

information we can finish the computation of a suffix jump in O(log logn) time, because the217

information on LCP s in X0 will narrow down the search in T ′ to a polylogarithmic sized218

interval, on which we can use the binary search of Section 4.219

Data Structure. Let S ′′ be the set obtained by sorting suffixes in S ′ and selecting every220

(log10 n)th suffix. We denote by X the set of all substrings T [i + f1..i + f2] such that the221

suffix T [i..] is in the set S ′′ and 0 ≤ f1 ≤ f2 ≤ log3 n. We denote by X0 the set of substrings222

T [i..i+ f] such that the suffix T [i..] is in the set S ′′ and 0 ≤ f ≤ log3 n. Thus X0 contains all223

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

prefixes of length up to log3 n for all suffixes from S ′′ and X contains all strings that could224

be obtained by suffix jumps from strings in X0.225

We assign unique integer names to all substrings in X : we sort X and then traverse the226

sorted list assigning a unique integer num(S) to each substring S ∈ X . Our goal is to store227

pre-computed solutions to suffix jump queries. To this end, we keep three dictionaries:228

Dictionary D0 contains the names num(S) for all S ∈ X0, as well as their loci in T ′.229

Dictionary D contains the names num(S) for all substrings S ∈ X . For every entry x ∈ D,230

with x = num(S), we store (1) the length `(S) of the string S, (2) the length `(S′) and231

the name num(S′) where S′ is the longest prefix of S satisfying S′ ∈ X0, (3) for each j,232

1 ≤ j ≤ r− 1, the name num(S[j..]) of the string obtained by trimming the first j leading233

symbols of S if S[j..] is in X .234

Dictionary Dp contains num(Sα) for all pairs (x, α), where x is an integer and α is a235

string, such that the length of α is at most logσ n, x = num(S) for some S ∈ X , and the236

concatenation Sα is also in X . Dp can be viewed as a (non-compressed) trie on X .237

Using Dp, we can navigate among the strings in X : if we know num(S) for some S ∈ X ,238

we can look up the concatenation Sα in X for any string α of length at most logσ n. The239

dictionary D enables us to compute suffix jumps between strings in X : if we know num(S[0..])240

for some S ∈ X , we can look up num(S[i..]) in O(1) time.241

The set S ′′ contains O(n
r log10 n

) suffixes. The set X contains O(log6 n) substrings for242

every suffix in S ′′. The space usage of dictionary D is O(n/ log4 n) words, dominated by243

item (3). The space of Dp is O(n logσ n/(r log4 n)) words, given by the number of strings in244

X times logσ n. This dominates the total space of our data structure, O(n/ log3 n) bits.245

Suffix Jumps. Using the dictionary D, we can compute suffix jumps within X0.246

I Lemma 6. For any string Q with r ≤ |Q| ≤ log3 n, we can find the strings Pi =247

LCP (Q[i..],X0), their lengths pi and their loci in T ′, for all 1 ≤ i ≤ r − 1, in time248

O(|Q|/ logσ n+ r log logσ n).249

Proof. We find P0 = LCP (Q[0..q− 1],X0) in O(|P0|/ logσ n+ log logσ n) time: suppose that250

Q[0..x] occurs in X0. We can check whether Q[0..x + logσ n] also occurs in X0 using the251

dictionaries Dp and D0. If this is the case, we increment x by logσ n. Otherwise we find252

with binary search, in O(log logσ n) time, the largest f ≤ logσ n such that Q[0..x+ f] occurs253

in X0. Then P0 = Q[0..x+ f] ∈ X0, and its locus in T ′ is found in D0.254

When P0, of length p0 = |P0|, and its name num(P0) are known, we find P1 =255

LCP (Q[1..],X0): first we look up v = num(P0[1..]) in component (3) of D, then we look up256

in component (2) of D the longest prefix of the string with name v that is in X0. This is the257

1-jump of P0 in X0; now we descend as much as possible from there using Dp and D0, as258

done to find P0 from the root. We finally obtain num(P1); its length p1 and locus in T ′ are259

found in D (component (1)) and D0, respectively.260

We proceed in the same way as in Section 3 and find LCP (Q[i..],X0) for i = 2, . . ., r− 1.261

The traversals in Dp amortize analogously to O(|Q|/ logσ n+ r), and we have O(r log logσ n)262

further time to complete the r traversals. J263

With all LCP (Q[i..],X0) and their loci in T ′, we can compute suffix jumps in S ′.264

I Lemma 7. Suppose that we know Pi = LCP (Q[i..q − 1],X0) and its locus in T ′ for all265

0 ≤ i ≤ r − 1. Assume we also know that Qt[0..qt − 1] = Q[t..t+ qt − 1] prefixes a string in266

S ′ and its locus node ut ∈ T ′. Then, given j ≤ r − 1, we can compute LCP (Qt[j..],S ′) and267

its locus in T ′, in O(log logn) time.268

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Proof. Let v′[l′..s′] be the locus of LCP (Qt[j..],X0) = LCP (Q[t + j..],X0) in T ′ and let269

` = |LCP (Qt[j..],X0)|. If ` = qt − j, then v′[l′..s′] is the locus of Qt[j..] in T ′. Otherwise270

let v+ denote the child of v′ in T ′ that descends by Q[t+ j + `..t+ j + `+ logσ n− 1]. If271

v+ does not exist, then v′ is the locus node v of LCP (Qt[j..],S ′). We only have to find its272

children interval [l..s] (which could expand [l′..s′]) by a predecessor search on its children.273

If v+ exists, then the locus of LCP (Qt[j..],S ′) is in the subtree Tv+ of T ′ rooted at v+.274

By definition, Tv+ does not contain suffixes from X0. Hence Tv+ has O(log10 n) leaves. We275

then find LCP (Qt[j..],S ′) among suffixes in Tv+ using the binary search method described276

in Section 4: we find S1, Sm, and S2 in time O(log log10 n) = O(log logn). The locus v[l..s]277

of LCP (Qt[j..],S ′) is then the lowest common ancestor of the leaves that hold S1 and S2; l278

and s are the children S1 and S2 descend from. J279

I Lemma 8. Suppose that |Q| ≤ log3 n. Then we can find all the existing loci of Q[i..] in280

T ′, for 0 ≤ i ≤ r − 1, in time O(|Q|/ logσ n+ r log logn), using O(n/ log3 n) bits of space.281

6 Construction282

Sampled suffix tree. We can view T as a string T of length n/r over an alphabet of size σr.283

Since T consists of O(n/r) meta-symbols and each meta-symbol fits in a Θ(logn)-bit word,284

we can sort all meta-symbols in O(n/r) time using RadixSort [18]. Thus we can generate T285

and construct its suffix tree T ′ in O(n/r) time [19]. Further, we need O((n/r)(log logn)2)286

time to build the deterministic dictionaries and the predecessor data structures storing the287

children of each node [39, 4].288

Suffix jumps. The lowest common ancestor and level ancestor structures [10, 8], which are289

needed in Section 4, are built in time O(|T ′|) = O(n/r).290

The sets of substrings and dictionaries D, D0, and Dp described in Section 5 can be291

constructed as follows. Let m = O(n/r) be the number of selected suffixes in S ′. The292

number of suffixes in S ′′ is O(m/ log10 n). The number of substrings associated with each293

suffix in S ′′ is O(log6 n) and their total length is O(log9 n). The total number of strings in294

X0 is O(m/ log7 n) and their total length is O(m
log10 n

· log6 n) = O(m/ log4 n). The number295

of strings in X is k = O((m/ log10 n) · log6 n) = O(m/ log4 n) and their total length is296

t = O((m/ log10 n) · log9 n) = O(m/ logn). We can then collect all the strings S ∈ X from297

T [i+ f1..i+ f2] for every sampled leaf of T ′ pointing to T [i], sort them in O(t) = o(m) time298

with RadixSort (the metasymbols fit in O(logn) bits [18]), remove repetitions, and finally299

assign them lexicographic names num(S). We keep a pointer to S in T for each S ∈ X .300

Next, we construct the dictionary D0 that contains the names num(S) of those S ∈301

X0. For every x = num(S) in D0 we compute its locus v[l..s] in T ′. The locus can be302

found in O(|S|/ logσ n + log logn) time by traversing T ′ from the root. This adds up to303

O(|X0| log3 n) = o(m) time. Finally, D0 is a deterministic dictionary on the keys num(S), so304

it can be constructed in O(|X0|(log logn)2) = o(m) deterministic time [39].305

Similarly,D is a deterministic dictionary on k keys, which can be built inO(k(log logn)2) =306

o(m) time [39]. Since X is prefix-closed, we can use the pointers to the strings S and the307

dictionary D0 to determine the longest prefix S′ ∈ X0 of S by binary search on `(S′), in308

O(k log logn) total time. When we generate strings of X , we also record the information309

about suffix jumps (e.g., we store a pointer from each S to S[1..] before sorting them, so310

later we can obtain num(S[1..]) from S, then num(S[2..]) from S[1..], and so on). We can311

then easily traverse those suffixes to compute all relevant suffix jumps for each string S ∈ X ,312

in total time O(kr) = o(m). We then have items (1)–(3) for all the elements of D.313

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Finally, we construct the dictionary Dp by inserting all strings in X into a trie data314

structure; at every node of this trie we store the name num(S) of the corresponding string S.315

Once X is sorted, the trie is easily built in O(k) total time. Later, along a depth-first trie316

traversal we collect, for each node representing name y, its ancestors x up to distance logσ n317

and the strings α separating x from y. All the pairs (x, α)→ y are then stored in Dp. Since318

X is prefix-closed, the trie contains O(k) nodes, and we include O(k logσ n) pairs in Dp. Since319

Dp is also a deterministic dictionary, it can be built in time O(k logσ n(log logn)2) = o(m).320

The total time to build the data structures for suffix jumps is then O(n/r+m) = O(n/r).321

Range searches. As said, the wavelet tree can be built in time O(n log σ/
√

logn) [33, 2].322

Appendix A shows that the time to build the data structure for faster reporting is O(n · r ·323

log2 σ/ log1−ε n), for any constant 0 < ε < 1/2.324

7 Index for Small Patterns325

The data structure for small query strings consists of two tables. Assume r ≤ (1/4) logσ n. We326

regard the text as an array A[0..n/r] of length-2r (overlapping) strings, A[i] = T [ir..ir+2r−1].327

We build a table Tbl whose entries correspond to all strings of length 2r: Tbl[α] lists all328

the positions i where A[i] = α. Further, we build tables Tblj , for 1 ≤ j ≤ r, containing all329

the possible length-j strings. Each entry Tblj [β], with |β| = j, contains the list of length-2r330

strings α such that Tbl[α] is not empty and β is a substring of α beginning within its first r331

positions (i.e., β = α[i..i+ j − 1] for some 0 ≤ i < r).332

Table Tbl has σ2r = O(
√
n) entries, and overall contains n/r pointers to A, thus its333

total space is O((n/r) logn) bits. Tables Tblj add up to O(σr) = O(n1/4) cells. Since334

each distinct string α of length 2r produces O(r2) distinct substrings, there can be only335

O(σ2rr2) = O(
√
n log2

σ n) pointers in all the tables Tblj , for a total space of o(n/r) bits.336

To report the occurrences of Q[0..q−1], we examine Tblq[Q]. For each string α in Tblq[Q],337

we visit the entry Tbl[α] and report all the positions of Tbl[α] in A (with their offset).338

To build Tbl, we can traverse A and add each i to the list of Tbl[A[i]], all in O(n/r) time.339

We then visit the slots of Tbl. For every α such that Tbl[α] is not empty, we consider all340

the sub-strings β of α starting within its first half and add α to Tbl|β|[β], recording also the341

corresponding offset of β in α (we may add the same α several times with different offsets).342

The time of this step is, as seen for the space, O(σ2rr2) = O(
√
n log2

σ n) = o(n/r).343

To support counting, Tblq[Q] also stores the number of occurrences in T of each string Q.344

I Lemma 9. There exists a data structure that uses O((n/r) logn) bits and reports all occ345

occurrences of a query string Q in O(occ) time if |Q| ≤ r, with r ≤ (1/4) logσ n. The data346

structure also computes occ in O(1) time and can be built in time O(n/r).347

8 Conclusion348

We have described the first text index that can be built and queried in sublinear time.349

On a text of length n and alphabet of size σ, the index is built in O(n log σ/
√

logn) time,350

on a RAM machine of Θ(logn) bits. This is sublinear for log σ = o(
√

logn). An index351

that is built in sublinear time must naturally use o(n logn) bits, hence our index is also352

compressed: our data structure has the asymptotically optimal space usage, O(n log σ)353

bits. Indeed, our index is the first one that simultaneously achieves three goals: sublinear354

construction time, asymptotically optimal space usage, and substring counting in nearly355

optimal time O(q/ logσ n+ logn logσ n) where q is the substring length. Previously described356

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

data structures with optimal (or even O(n logn)) space usage either require Ω(n) construction357

time or Ω(q) time to count the occurrences of a substring.358

We know no lower bound that prevents us from aiming at an index using the least possible359

space, O(n log σ) bits, the least possible construction time for this space in the RAM model,360

O(n/ logσ n), and the least possible counting time, O(q/ logσ n). Our index is the first one361

in breaking the Θ(n) construction time and Θ(q) query time barriers simultaneously, but it362

is open how close we can get to the optimal space and construction time.363

A Range Reporting364

In this section we prove a result on two-dimensional orthogonal range reporting queries.365

Our method builds upon previous work on wavelet tree construction [33, 2], applications of366

wavelet trees to range predecessor queries [7], and compact range reporting [14, 13].367

I Theorem 10. For a set of t = O(n/r) points on a t× σO(r) grid, where r ≤ (1/4) logσ n,368

and for any constant 0 < ε < 1/2, there is an O(n log σ logε n)-bit data structure that can369

be built in O(n · r · log2 σ/ log1−ε n) time and supports orthogonal range reporting queries in370

time O(log log t+ pocc) where pocc is the number of reported points.371

A.1 Base data structure372

We are given a set Q of t = O(n/r) points in [0..t− 1]× [0..σO(r)]. First we sort the points373

by x-coordinates (this is easily done by scanning the leaves of T ′, which are already sorted374

lexicographically by the selected suffixes), and keep the y-coordinates of every point in a375

sequence Y . Each element of Y can be regarded as a string of length O(r) over an alphabet376

of size σ, or equivalently, an h-bit number where h = O(r log σ). Next we construct the377

range tree for Y using a method similar to the wavelet tree [23] construction algorithm.378

Let Y (uo) = Y for the root node uo. We classify the elements of Y (uo) according to379

their highest bit and generate the corresponding subsequences of Y (uo), Y (ul) (highest bit380

zero) and Y (ur) (highest bit one), that must be stored in the left and right children of381

u, ul and ur, respectively. Then nodes ul and ur are recursively processed in the same382

manner. When we generate the sequence for a node u of depth d, we assign elements to383

Y (ul) and Y (ur) according to their d-th highest bit. We can exploit bit parallelism and384

pack (logn)/h y-coordinates into one word; therefore we can produce Y (ul) and Y (ur) from385

Y (u) in O(|Y (u)| · h/ logn) time. The total time needed to generate all sequences Y (u) is386

O(t · h · (h/ logn)) = O((n · r · log2 σ)/ logn).387

For every sequence Y (u) we also construct an auxiliary data structure that supports388

three-sided queries. If u is a right child, we create a data structure that returns all elements389

in a range [x1, x2]× [0, h] stored in Y (u). To this end, we divide Y (u) into groups Gi(u) of390

g = (1/2) logn consecutive elements (the last group may contain up to 2g elements). Let391

mini(u) denote the smallest element in every group and let Y ′(u) denote the sequence of392

all mini(u). We construct a data structure that supports three-sided queries on Y ′(u); it393

uses O(|Y ′(u)| logn) = O((|Y (u)|/g) logn) = O(|Y (u)|) bits and reports the k output points394

in O(log logn+ k) time; we can use any range minimum data structure for this purpose [9].395

We can traverse Y (u) and identify the smallest element in each group in O(|Y (u)|h/ logn)396

time, by using small precomputed tables that process (logn)/2 bits in constant time. This397

adds up to O(t · h2/ logn) = O(n · r · log2 σ/ logn) time.398

Since the number of points in Y ′(u) is O(|Y (u)|/g), the data structure for Y ′(u) can be399

created in O(|Y (u)|/g) time and uses O((|Y (u)|/g) logn) = O(|Y (u)|) bits, which adds up400

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

to O((n log σ)/ logn) construction time and O(n log σ) bits of space.401

In order to save space, we do not store the y-coordinates of points in a group. The402

y-coordinate of each point in G = Gi(u) is replaced with its rank, that is, with the number of403

points in G that have smaller y-coordinates. Each group G is divided into (log σ)/(2 log logn)404

subgroups, so that each subgroup contains 2r log logn consecutive points from G. We keep405

the rank of the smallest point from each subgroup of G in a sequence Gt. Since the ranks of406

points in a group are bounded by g and thus can be encoded with log g ≤ log logn bits, each407

subgroup can be encoded with less than 2r(log logn)2 bits. Hence we can store precomputed408

answers to all possible range minimum queries on all possible subgroups in a universal table409

of size O(22r(log logn)2 log2 g) = o(n) bits. We can also store pre-computed answers for range410

minima queries on Gt using another small universal table: Gt is of length (log σ)/(2 log logn)411

and the rank of each minimum is at most g, so Gt can be encoded in at most (log σ)/2 bits.412

This second universal table is then of size O(2(logσ)/2 log2 g) = o(n) bits.413

A three-sided query [x1, x2]× [0, y] on a group G can then be answered as follows. We414

identify the point of smallest rank in [x1, x2]. This can be achieved with O(1) table look-ups415

because a query on G can be reduced to one query on Gt plus a constant number of queries416

on sub-groups. Let x′ denote the position of this smallest-rank point in Y (u). We obtain417

the real y-coordinate of Y (u)[x′] using the translation method that will be described below.418

If the real y-coordinate of Y (u)[x′] does not exceed y, we report it and recursively answer419

three-sided queries [x1, x
′ − 1]× [0, y] and [x′ + 1, x2]× [0, y]. The procedure continues until420

all points in [x1, x2]× [0, y] are reported.421

If u is a left child, we use the same method to construct the data structure that returns422

all elements in a range [x1, x2]× [y,+∞) from Y (u).423

An orthogonal range reporting query [x1, x2]× [y1, y2] is then answered by finding the424

lowest common ancestor v of the leaves that hold y1 and y2. Then we visit the right child425

vr of v, identify the range [x′1, x′2] and report all points in Y (vr)[x′1..x′2] with y-coordinates426

that do not exceed y2; here x′1 is the index of the smallest x-coordinate in Y (vr) that is427

≥ x1 and x′2 is the index of the largest x-coordinate of Y (vr) that is ≤ x2. We also visit the428

left child vl of v, and answer the symmetric three-sided query. Finding x′1 and x′2 requires429

predecessor and successor queries on x-coordinates of any Y (vr); the needed data structures430

are described in Section A.3.431

In total, the basic part of the data structure requires O(n log σ) bits of space and is built432

in time O((n · r log2 σ)/ logn).433

A.2 Translating the answers434

An answer to our three-sided query returns positions in Y (vl) (resp. in Y (vr)). We need an435

additional data structure to translate such local positions into the points to be reported.436

While our wavelet tree can be used for this purpose, the cost of decoding every point would437

be O(h). A faster decoding method [14, 37, 13] enables us to decode each point in O(1) time.438

Below we describe how this decoding structure can be built within the desired time bounds.439

Let us choose a constant 0 < ε < 1/2 and, to simplify the description, assume that logεσ n440

and log σ are integers. We will say that a node u is an x-node if the height of u is divisible441

by x. For an integer x the x-ancestor of a node v is the lowest ancestor w of v, such that442

w is an x-node. Let dk = hkε for k = 0, 1, . . . , d1/εe. We construct sequences UP(u) in443

all nodes u. UP(u) enables us to move from a dk-node to its dk+1-ancestor: Let k be the444

largest integer such that u is a dk-node and let v be the dk+1-ancestor of u. We say that445

Y (u)[i] corresponds to Y (v)[j] if Y (u)[i] and Y (v)[j] represent the y-coordinates of the same446

point. Suppose that a three-sided query has returned position i in Y (u). Using auxiliary447

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

structures, we find the corresponding position i1 in the d1-ancestor u1 of u. Then we find i2448

that corresponds to i1 in the d2-ancestor u2 of u1. We continue in the same manner, at the449

k-th step moving from a dk-node to its dk+1-ancestor. After O(1/ε) steps we reach the root450

node of the range tree.451

It remains to describe the auxiliary data structures. To navigate from a node v to its452

ancestor u, v stores for every i in Y (v) the corresponding position i′ in Y (u) (i.e., Y (v)[i]453

and Y (u)[i′] are y-coordinates of the same point). In order to speed up the construction454

time, we store this information in two sequences. The sequence Y (u) is divided into chunks;455

if u is a dk-node, then the size of the chunk is Θ(2dk). For every element in Y (v) we store456

information about the chunk of its corresponding position in Y (u) using the binary sequence457

C(v): C(v) contains a 1 for every element Y (v)[i] and a 0 for every chunk in Y (u) (0 indicates458

the end of a chunk). We store in UP(v)[i] the relative value of its corresponding position459

in Y (u). That is, if the element of Y (u) that corresponds to Y (v)[i] is in the jth chunk of460

Y (u), then it is at Y (u)[j · 2dk + UP(v)[i]]. In order to move from Y (v)[i] in a node v to the461

corresponding position Y (u)[ik] in its dk-ancestor u, we compute the target chunk in Y (u),462

j = select1(C(v), i)− i, and set ik = j · 2dk + UP(v)[i]. Here select1 finds the ith 1 in C(v),463

and can be computed in constant time using o(|C(v)|) bits on top of C(v) [16, 28].464

Since the tree contains h/dk−1 levels of t dk−1-nodes, and the UP (v) sequences of465

dk−1-nodes v store numbers up to 2dk , the total space used by all UP (v) sequences for all466

dk−1-nodes v is O(t · (h/dk−1) · dk) = O(t · h1+ε) bits, because dk/dk−1 = hε. For any such467

node v, with dk-ancestor u, the total number of bits in C(v) is |Y (v)|+ |Y (u)|/2dk . There468

are at most 2dk nodes v with the same dk-ancestor u. Hence, summing over all dk−1-nodes469

v, all C(v)s use t(h/dk−1) + t(h/dk) = O(t(h/dk−1)) bits. These structures are stored for all470

values k − 1 ∈ {0, . . . , d1/εe − 1}. Summing up, all sequences C(v) use O(t · h) bits. The471

total space needed by auxiliary structures is then O(t · h1+ε) = O(n log1+ε/2 σ logε/2 n) bits,472

dominated by the sequences UP (v). This can be written as O(n log σ logε n) bits.473

To produce the auxiliary structures, we need essentially that each dk-node u distributes474

its positions in the corresponding C(v) and UP (v) structures in each of the next hε− 1 levels475

of dk−1-nodes below u. Precisely, there are 2l·dk−1 dk−1-nodes v at distance l · dk−1 from u,476

and we use l · dk−1 bits from the coordinates in Y (u)[i] to choose the appropriate node v477

where Y (u)[i] belongs. Doing this in sublinear time, however, requires some care.478

Let us first consider the root u, the only dk-node for k = d1/εe. We consider all the479

dk−1-nodes v (thus, u is their only dk-ancestor). These are nodes of height l · dk−1 for480

l = 1, 2, . . . , hε − 1. In order to construct sequences UP(v) in all nodes v on level l · dk−1 for481

a fixed l, we proceed as follows. The sequence Y [u] is divided into chunks, so that each chunk482

contains 2h consecutive elements. The elements Y (u)[i] within each chunk are sorted with483

key pairs (bits((hε − l) · dk−1, Y (u)[i]),pos(i, u)) where pos(i, u) = i mod 2h is the relative484

position of Y (u)[i] in its chunk and bits(`, x) is the number that consists of the highest `485

bits of x. We sort integer pairs in the chunk using a modification of the algorithm of Albers486

and Hagerup [1, Thm. 1] that runs in O(2h h2

logn) time. Our modified algorithm works in the487

same way as the second phase of their algorithm, but we merge words in O(1) time. Merging488

can be implemented using a universal look-up table that uses O(
√
n) words of space and can489

be initialized in O(
√
n log3 n) time.490

We then traverse the chunks and generate the sequences UP(v) and C(v) for all the nodes491

v on level l · dk−1. For each bit string of length l · dk−1, we say that v is the q-descendant492

of u if the path from u to v is labeled with q. The sorted list of pairs for each chunk of u493

is processed as follows. All the pairs (q,pos(i, u)) (i.e., q = bits((hε − l)dk−1, Y (u)[i])) are494

consecutive after sorting, so we scan the list identifying the group for each value of q; let n(q)495

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

be its number of pairs. Precisely, the points with value q must be stored at the q-descendant496

v of u (the consecutive values of q correspond, left-to-right, to the nodes v on level l · dk−1).497

For each group q, then, we identify the q-descendant v of u and append n(q) 1-bits and one498

0-bit to C(v). We also append n(q) entries to UP(v) with the contents pos(i, u), in the same499

order as they appear in the chunk of u.500

We need time O(2h · h/ logn) to generate the pairs (bits(·),pos(·)) for the 2h coordinates501

of each chunk, and to store the pairs in compact form, that is, O(log(n)/h) pairs per502

word. We can then sort the chunks in time O(2h · h2/ logn). We can generate the parts of503

sequences C(v) and UP(v) that correspond to a chunk for all nodes v on level l · dk−1 in504

O(2h + 2h · h/ logn) = O(2h). Thus the total time needed to generate UP(v) and C(v) for505

all nodes v on level l · dk−1 and some fixed l is O(t log σ), where we remind that t is the total506

number of elements in the root node. The total time needed to construct UP(v) and C(v)507

for all dk−1-nodes v is then O(th2+ε/ logn).508

Now let u be an arbitrary dk-node. Using almost the same method as above, we can509

produce sequences UP(v) and C(v) for all (dk−1)-nodes v, such that u is a dk-ancestor of v.510

There are only two differences with the method above. First, we divide the sequence Y (u)511

into chunks of size 2dk . Second, the sorting of elements in a chunk is not based on the highest512

bits, but on a less significant chunk of bits: the pairs are now (bitval(Y (u)[i]),pos(i, u)). If513

the bit representation of Y (u)[i] is b1b2 . . . bd, then bitval(Y (u)[i]) is the integer with bit514

representation bf+1bf+2 . . . bf+dk
where f is the depth of the node u in the range tree. The515

total time needed to produce C(v) and UP(v) is O(|Y (u)|dk/ logn + |Y (u)|d2
k/ logn), the516

first term to create the pairs and the second to sort the chunks and produce C(v) and517

UP(v). The number of different elements in all dk-nodes is O(t · h/dk), and each produces518

the sequences of hε levels of dk−1-nodes. Hence the time needed to produce the sequences519

for all dk−1-nodes is O((t · h)/dk · hε · d2
k/ logn) = O(t · h1+ε · dk/ logn) = O(t(h2/ logn)hε).520

The complexity stays the same after adding up the 1/ε values of k: O(t · h2+ε/ logn) =521

O((n/r)r2 log2 σ logε n/ logn) = O((n · r · log2 σ/ log1−ε n).522

The data structure supporting select queries on C(v) can be built in O(|C(v)|/ logn)523

time [33, Thm. 5]. This amounts to O(th/ logn) = O(n/ logσ n) further time.524

A.3 Predecessors and successors of x-coordinates525

Now we describe how predecessor and successor queries on x-coordinates of points in Y (u)526

can be answered for any node u in time O(log logn).527

We divide the sequence Y (u) into blocks, so that each block contains logn points. We528

keep the minimum x-coordinate from every block in a predecessor data structure Y b(u). In529

order to find the predecessor of x in Y (u), we first find its predecessor x′′ in Y b(u); then we530

search the block of x′′ for the predecessor of x in Y (u).531

The predecessor data structure finds x′′ in O(log logn) time. We compute the x-coordinate532

of any point in Y (u) in O(1) time as shown above. Hence the predecessor of x in a block is533

found in O(log logn) time too, using binary search. We find the successor analogously.534

The sampled predecessor/successor data structures store O((n/r)(r log σ)/ logn) =535

O(n/ logσ n) elements over all the levels. An appropriate construction [20, Thm. 4.1] builds536

them in linear time (O(n/ logσ n)) and space (O(n log σ) bits), once they are sorted.537

References538

1 S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing.539

Information and Computation, 136(1):25–51, 1997.540

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2 M. Babenko, P. Gawrychowski, T. Kociumaka, and T. Starikovskaya. Wavelet trees meet541

suffix trees. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),542

pages 572–591, 2015.543

3 J. Barbay, F. Claude, T. Gagie, G. Navarro, and Y. Nekrich. Efficient fully-compressed544

sequence representations. Algorithmica, 69(1):232–268, 2014.545

4 D. Belazzougui, P. Boldi, and S. Vigna. Dynamic z-fast tries. In Proc. 17th International546

Symposium on String Processing and Information Retrieval (SPIRE), pages 159–172, 2010.547

5 D. Belazzougui and G. Navarro. Alphabet-independent compressed text indexing. ACM548

Transactions on Algorithms, 10(4):article 23, 2014.549

6 D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.550

ACM Transactions on Algorithms, 11(4):article 31, 2015.551

7 D. Belazzougui and S. J. Puglisi. Range predecessor and Lempel-Ziv parsing. In Proc. 27th552

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2053–2071, 2016.553

8 M. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoretical Computer554

Science, 321(1):5–12, 2004.555

9 M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin American556

Symposiumon Theoretical Informatics (LATIN), pages 88–94, 2000.557

10 M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common558

ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.559

11 P. Bille, I. L. Gørtz, and F. R. Skjoldjensen. Deterministic indexing for packed strings. In560

Proc. 28th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 6:1–6:11,561

2017.562

12 O. Birenzwige, S. Golan, and E. Porat. Locally consistent parsing for text indexing in small563

space. In Proc. 31st ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 607–626,564

2020.565

13 T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal range searching on the RAM,566

revisited. In Proc. 27th ACM Symposium on Computational Geometry (SoCG), pages 1–10,567

2011.568

14 B. Chazelle. A functional approach to data structures and its use in multidimensional searching.569

SIAM Journal on Computing, 17(3):427–462, 1988.570

15 Y.-F. Chien, W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Geometric BWT:571

Compressed text indexing via sparse suffixes and range searching. Algorithmica, 71(2):258–278,572

2015.573

16 D. R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.574

17 R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: Structures for faster575

text indexing. Algorithmica, 72(2):450–466, 2015.576

18 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT577

Press, 3rd edition, 2009.578

19 M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix579

tree construction. Journal of the ACM, 47(6):987–1011, 2000.580

20 G. Feigenblat, E. Porat, and A. Shiftan. Linear time succinct indexable dictionary construction581

with applications. In Proc. 26th Data Compression Conference (DCC), pages 13–22, 2016.582

21 J. Fischer and P. Gawrychowski. Alphabet-dependent string searching with wexponential583

search trees. In Proc. 26th Annual Symposium on Combinatorial Pattern Matching (CPM),584

pages 160–171, 2015.585

22 R. González, G. Navarro, and H. Ferrada. Locally compressed suffix arrays. ACM Journal of586

Experimental Algorithmics, 19(1):article 1, 2014.587

23 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.588

14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.589

24 D. Kempa and T. Kociumaka. String synchronizing sets: Sublinear-time BWT construction590

and optimal LCE data structure. In Proc. 51st Annual ACM SIGACT Symposium on Theory591

of Computing (STOC), pages 756–767, 2019.592

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25 G. M. Landau and U. Vishkin. Fast string matching with k differences. Journal of Computer593

and System Sciences, 37(1):63–78, 1988.594

26 U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM595

Journal on Computing, 22(5):935–948, 1993.596

27 E. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,597

23(2):262–272, 1976.598

28 J. I. Munro. Tables. In Proc. 16th FSTTCS, pages 37–42, 1996.599

29 J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of compressed indexes600

in deterministic linear time. CoRR, abs/1607.04346, 2016.601

30 J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of compressed indexes in602

deterministic linear time. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms603

(SODA), pages 408–424, 2017.604

31 J. I. Munro, G. Navarro, and Y. Nekrich. Text indexing and searching in sublinear time.605

CoRR, abs/1712.07431, 2017.606

32 J. I. Munro, G. Navarro, and Y. Nekrich. Fast compressed self-indexes with deterministic607

linear-time construction. Algorithmica, 82(2):316–337, 2020.608

33 J. I. Munro, Y. Nekrich, and J. S. Vitter. Fast construction of wavelet trees. Theoretical609

Computer Science, 638:91–97, 2016.610

34 G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.611

35 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,612

39(1):article 2, 2007.613

36 G. Navarro and Y. Nekrich. Time-optimal top-k document retrieval. SIAM Journal on614

Computing, 46(1):89–113, 2017.615

37 Y. Nekrich. Orthogonal range searching in linear and almost-linear space. Computational616

Geometry, 42(4):342–351, 2009.617

38 S. S. Rao. Time-space trade-offs for compressed suffix arrays. Information Processing Letters,618

82(6):307–311, 2002.619

39 M. Ruzic. Constructing efficient dictionaries in close to sorting time. In Proc. 35th International620

Colloquium on Automata, Languages and Programming (ICALP A), pages 84–95 (part I),621

2008.622

40 Y. Tanimura, T. Nishimoto, H. Bannai, S. Inenaga, and M. Takeda. Small-space LCE data623

structure with constant-time queries. In Proc. 42nd International Symposium on Mathematical624

Foundations of Computer Science (MFCS), pages 10:1–10:15, 2017.625

41 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.626

42 P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Symposium on Foundations627

on Computer Science (FOCS), pages 1–11, 1973.628

© J. Ian Munro, Gonzalo Navarro, Yakov Nekrich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

	Introduction
	Preliminaries and LCE Queries
	The General Approach
	Suffix Jumps
	Suffix Jumps for Short Patterns
	Construction
	Index for Small Patterns
	Conclusion
	Range Reporting
	Base data structure
	Translating the answers
	Predecessors and successors of x-coordinates

