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Abstract

Converting a set of sequencing reads into a lossless compact data structure that encodes all the
relevant biological information is a major challenge. The classical approaches are to build the string
graph or the de Bruijn graph (dBG) of some order k. Each has advantages over the other depending
on the application. Still, the ideal setting would be to have an index of the reads that is easy to
build and can be adapted to any type of biological analysis. In this paper we propose rBOSS, a new
data structure based on the Burrows-Wheeler Transform (BWT), which gets close to that ideal. Our
rBOSS simultaneously encodes all the dBGs of a set of sequencing reads up to some order k, and for
any dBG node v, it can compute in O(k) time all the other nodes whose labels have an overlap of
at least m characters with the label of v, with m being a parameter. If we choose the parameter
k equal to the size of the reads (assuming that all have equal length), then we can simulate the
overlap graph of the read set. Instead of storing the edges of this graph explicitly, rBOSS computes
them on the fly as we traverse the graph. As most BWT-based structures, rBOSS is unidirectional,
meaning that we can retrieve only the suffix overlaps of the nodes. However, we exploit the property
of the DNA reverse complements to simulate bi-directionality. We implemented a genome assembler
on top of rBOSS to demonstrate its usefulness. The experimental results show that, using k = 100,
our rBOSS-based assembler can process ∼500K reads of 150 characters long each (a FASTQ file of
185 MB) in less than 15 minutes and using 110 MB in total. It produces contigs of mean sizes over
10,000, which is twice the size obtained by using a pure de Bruijn graph of fixed length k.
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27:2 Simulating the DNA overlap graph in succinct space

1 Introduction

Obtaining and extracting the relevant information from a collection of DNA sequencing
reads2, for assembly and other analysis purposes, usually requires a lot of time and space.
The techniques for compressed indexing developed in recent years (see [27] for a full review)
have significantly contributed to reduce the computational costs. There is still no technique,
however, that can preprocess the reads and represent all the relevant information in succinct
space so that it can be used effectively.

The classical plain, and lossless, data structure to analyze reads is the overlap graph. In
this model, each node represents a particular read, and two nodes v and v′ are connected by
an edge with weight o ≥ m if o is the maximum length of a suffix of v that matches a prefix
of v′, where m is a parameter to filter out spurious overlaps. Computing the overlap graph
from a set of reads is not difficult: it can be built from the suffix tree of the set or even
from its Burrows-Wheeler Transform (BWT) [8, 33] or the Longest Common Prefix array
(LCP) [4]. Representing the graph, however, is expensive: a quadratic number of edges may
have to be stored. A popular solution is to perform structural compression over the graph by
removing the transitive edges. The resulting graph is usually called the string graph [25, 34]
or the irreductible overlap graph [24]. This approach, however, limits the applications of the
data strucutre, because it removes information from the graph that can be useful.

Historically, string graphs have been used mainly in the context of genome assembly
[12, 25, 36], but as sequencing datasets have grown over the years, they have been discarded
in favor of other lossy, but more succinct, representations. The most famous of these
representations is the de Bruijn graph (dBG). This data structure encodes the relationship
between all the substrings of length k in the set. A dBG is easy to construct and it can
be represented succinctly [6]. Besides, it encodes the context of the substrings of length
k − 1 in its topology. Thus, for instance, if a substring of length k − 1 appears in several
contexts of the set, then its dBG node will have several edges. As for the string graph, the
first application of the dBG was the assembly of genomes [2, 21, 31, 35], but through the
years its use has been extended to other kind of analyses [7, 16].

The disadvantage of dBGs, however, is that they are lossy, because the information we
can retrieve from them is limited by k. A way to overcome some of the restrictions imposed
by k is to add variable-order functionality to the dBG, that is, to encode several dBGs with
different values for k at the same time. The contexts of the graph can then be shortened or
lengthened on demand, depending on the need to have more or less edges from a node. Some
succinct dBG representations supporting variable-order functionality up to some maximum
order k have been proposed [5], but they increase the space requirements by a log k factor.
Besides, even using variable-order functionality, the data structure remains lossy, because
the order of the graph can be lengthened only up to k. By choosing k equal to the size of
the reads, the variable-order dBG becomes lossless, and equivalent to the overlap graph, but
the log k factor becomes significant for the typical read sizes.

Almost every analysis over DNA sequencing data can be reduced to looking for suffix-
prefix overlaps between the reads, and in this regard the dBG has adapted well to many
bioinformatic applications because it is a lightweight (lossy) representation of the overlaps.
Still, searching for biological signals in a dBG requires the detection of complex graph
substructures such as bubbles, super bubbles, tips, and so on, and those can be expensive to
find. The overlap graph, on the other hand, is a much simpler model. It can be adapted

2 A string that represents the inferred sequence of base pairs in a segment of a DNA molecule.
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to different applications other than assembly in the same way as the dBG, but it has the
advantage of being lossless and not requiring too much preprocessing after its construction.
The problem, as stated before, is the space to encode the edges of the graph. A better
approach would be to have a compact data structure that can quickly compute the overlaps
(i.e., the edges) on the fly instead of storing them explicitly. Such a solution would require a
moderate preprocessing of the read set, would retain all the information, and would use a
reasonable amount of space.

Our contribution. We address the problem of succinctly representing and analyzing a
collection R of sequencing reads. To this end, we define a new compact data structure we
call rBOSS. It is an intermediate structure between a dBG and an overlap graph, because
it can compute the context of the sequences in the same way a dBG does, but it can also
compute on the fly the overlaps between different substrings of R. The rBOSS index is based
on BOSS [6], a BWT-based representation of dBGs, which is augmented with a tree we call
the overlap tree. This tree increases the size of the data structure by 4n+ o(n) bits, where n
is the number of nodes in the dBG encoded by BOSS. By choosing k equal to the length of
the reads (which we assume to have all the same length), we can simulate in compressed
space an overlap graph whose edges have a weight o ≥ m, where m is given as a parameter.
The simulation of the graph builds on the basic primitives nextcontained and buildL. Our
overlap tree reduces their time complexity from O(k2) to O(1) and O(k), respectively.
In addition to rBOSS, we also formalize the idea of weighting the overlap graph edges

according to transitive connections, and explain how this new weighting scheme can be used
to solve biological problems other than assembly. To our knowledge, this is the first time a
measure of this kind is proposed for overlap graphs. Finally, we demonstrate the usefulness
of rBOSS by implementing a genome assembler on top of it. Our experimental results show
that, by using k = 100, the assembler can process ∼500K reads of 150 characters long each
in less than 15 minutes and using 110 MB in total. It produces contigs of mean sizes over
10,000, which is twice the size obtained by using a pure dBG of fixed length k.

2 Preliminaries

DNA strings. A DNA sequence R is a string over the alphabet Σ = {a, c, g, t} (which we map
to [2..σ]), where every symbol represents a particular nucleotide in a DNA molecule. The
DNA complement is a permutation π[2..σ] that reorders the symbols in Σ exchanging a with
t and c with g. The reverse complement of R, denoted Rrc, is a string transformation that
reverses R and then replaces every symbol R[i] by its complement π(R[i]). For technical
convenience we add to Σ the so-called dummy symbol $, which is always mapped to 1.

De Bruijn graphs. A de Bruijn Graph (dBG) [11] of order k of a set of strings R =

{R1, R2, . . . , Rr}, DBGR,k, is a labeled directed graph G = (V,E) where every node v ∈ V
is labeled by a distinct substring of R of length k − 1, and every edge (v, u) ∈ E represents
the substring S[1..k] of R such that v is labeled by the prefix S[1..k− 1], u is labeled by the
suffix S[2..k], and the label of (v, u) is the symbol S[k]. We identify a node with its label.

A variable-order dBG (vo-dBG) [5], voDBGR,k, is formed by the union of all the graphs
DBGR,k′ , with 1 ≤ k′ ≤ k. Each DBGR,k represents a context of voDBGR,k. In addition
to the (directed) edges of each DBGR,k, two nodes v ∈ DBGR,k′ and v

′
∈ DBGR,k′′ , with

k
′
> k

′′, are connected by an undirected edge (v, v′) if v′ is a suffix of v. Following the edge
(v, v′) or (v′, v) is called a change of order. We then identify node order with length.

CPM 2019



27:4 Simulating the DNA overlap graph in succinct space

BOSS representation for de Bruijn graphs. BOSS [6] is a succinct data structure, similar
to the FM-index [13], for encoding dBGs. In BOSS, the nodes are represented as rows in a
matrix of k − 1 columns, and are sorted in reverse lexicographical order (i.e., reading the
labels right to left). All the edge (one-symbol) labels of the graph are stored in a unique
sequence E sorted by the BOSS order of the source nodes, so the symbols of the outgoing
edges of each node fall in a contiguous range. A bitmap B of size e = ∣E∣ marks the last
outgoing symbol in E of every dBG node. Finally, an array C[1..σ] stores in C[i] the
number of node labels that end with a symbol lexicographically smaller than i.
Prefixes in R of size d < k are artificially represented in BOSS as strings of length k

padded at the left with k−d symbols $. Equivalently, suffixes of size d < k are represented as
strings of length k padded at the right with k − d symbols $. For this work, however, suffixes
of size d < k are not necessary. Strings formed only by symbols $ are also called dummy.

The complete index is thus composed of the vectors E, C, and B. It can be stored
in e(H0(E) + H0(B))(1 + o(1)) + O(σ logn) bits, where H0 is the zero-order empirical
entropy [26, Sec 2.3]. This space is reached with a Huffman-shaped Wavelet Tree [23] for E,
a compressed bitmap [32] for B (as it is usually very dense), and a plain array for C.

BOSS supports several navigational queries, most of them within O(log σ) time or less.
The most relevant ones for us are:

outdegree(v): number of outgoing edges of v.
forward(v, a): node reached by following an edge from v labeled with symbol a.
indegree(v): number of incoming edges of v.
backward(v): list of the nodes with an outgoing edge to v.

Boucher et al. [5] noticed that by considering just the last k′ − 1 columns in the BOSS
matrix, with k′ ≤ k, the resulting nodes are the same as those in the dBG of order k′. To
allow changing the order of the dBG in BOSS, they augmented the data structure with
the longest common suffix (LCS) array. The LCS array stores, for every node of order k,
the size of the longest suffix shared with its predecessor node in the BOSS matrix. They
called this new index the variable-order BOSS (VO-BOSS), which supports the following
additional operations:

shorter([i, j], k′): range of the nodes suffixed by the last k′ characters of v.
longer([i, j], k′): list of the nodes of length k′ that end with v.
maxlen([i, j], a): a node in the index suffixed by v, and that has an outgoing edge labeled
a.

Where [i, j] is the range of rows in the BOSS matrix suffixed by the label of a vo-
dBG node v. By using a Wavelet Tree [15], the LCS can be stored in n log k + o(n log k)
bits, the function shorter([i, j], k′) can be answered in O(log k) time and the function
longer([i, j], k′) in O(∣U∣ log k) time, where U is the set of rows of the BOSS matrix
contained within the range [i − 1..j], and whose LCS values are below k

′. The function
maxlen([i, j], a) is implemented using the arrays B and E from BOSS, and hence it is
answered in O(log σ) time.

Succinct representation of ordinal trees. An ordinal tree T with n nodes can be stored
succinctly as a sequence of balanced parentheses (BP ) encoded as a bit vector B[1..2n].
Every node v in T is represented by a pair of parentheses (..) that contain the encoding of
the subtree rooted at v. Every node of T can be identified by the position in B of its open
parenthesis. Many navigational operations over T can be simulated over B in constant time,
by using a structure that requires o(n) bits on top of B [29].
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3 rBOSS

Basic definitions. Let R = {R1...Rr} be a collection of r reads (strings) of length z and let
Rrc be a collection, also of r strings, every R′i ∈ Rrc being the reverse complement of one
Rj ∈ R. Aditionally, we define the set R∗

= R ∪Rrc. Let us denote G = DBGR∗,k and
G
′
= voDBGR∗,k. A traversal P over G, or G′, is a sequence (v0, e0, v1...vt−1, et, vt) where

v0, v1, ...vt−1, vt are nodes and e1..et are edges, ei connecting vi−1 with vi. P will be a path
if all the nodes are different, except possibly the first and the last. In such case, P is said to
be a cycle. P is unary if the nodes (v0..vt−1) have outdegree 1 and the nodes (v1..vt) have
indegree 1. P will be a right traversal over G or G′ if all its edges ei are directed from vi−1
to vi, and a left traversal if all its edges ei are directed from vi to vi−1. The string formed by
the concatenation of the edge symbols of P is referred to as its label. P will be safe if it
is a path or a cycle and its label appears in R∗ as a substring of some read or if it can be
generated by overlapping two or more Ri..Rj ∈ R∗ in tandem and then taking the string
that results from the union of those reads. The overlaps between the reads have to be of
minimum size m.

Let BOSS(G) and V O-BOSS(G′) be the BOSS and VO-BOSS indexes, respectively, for
the graphs G and G′. In both cases, the matrix with the (k−1)-length node labels is referred
to as MR∗,k, or just M when the context is clear. In V O-BOSS(G′), the range of rows in
M suffixed by v is denoted qv .

Rows of M representing substrings of size k − 1 in R∗ are called solid nodes and rows
representing artificial (k − 1)-length strings padded with dummy symbols from the left, and
that represent prefixes in R∗, are called linker nodes. For a linker node v, the function
llabel(v) returns the non-$ suffix of v. A solid node that appears as a suffix in R is called
an s-node and a solid node that appears as a prefix in R∗ is called a p-node. A linker node v
is said to be contained within another node v′ (solid or linker) if llabel(v) is a suffix of v′.

An overlap of size o between two solid nodes v and v′, denoted v ⊕o
v
′, occurs when the

o-length suffix of v is equal to the o-length prefix of v′. Relative to v, v ⊕o
v
′ is a forward

overlap and v′ ⊕o
v is a backward overlap. An overlap v ⊕o

v
′ is valid if (i) m ≤ o < k − 2,

m being some parameter, and v′ is a p-node, or (ii) o = k − 2 and v′ is a solid node of any
kind. Notice that case (ii) is equivalent to the definition of two dBG nodes connected by an
edge. The overlap v ⊕o

v
′ is considered transitive if there is another solid node v′′ with valid

overlaps v ⊕o
′

v
′′ and v′ ⊕o

′′

v
′′, with o′ > o′′. If there is only one v′′, then v ⊕o

′

v
′ is transitive

and unique. If such v′′ does not exist, then v ⊕o
v
′ is irreductible. The string formed by the

union of the solid nodes v and v′ is denoted label(v ⊕o
v
′).

Link between variable-order and overlaps. Overlaps between reads in R∗ can be com-
puted using V O-BOSS(G′) as follows: extend a unary path using solid nodes as much as
possible, and if a solid node v without outgoing edges is reached, then decrease its order with
shorter to retrieve the vo-dBG nodes that represent both a suffix of v and a prefix of some
read in R. From these nodes, retrieve the overlapping solid nodes of v by using forward and
continue the graph right traversal from one of them.

In VO-BOSS, however, shorter does not ensure that the label of the output node appears
as a prefix in R∗. The next lemma precises the condition that must hold to ensure this.

▶ Lemma 1. In VO-BOSS, applying the operation shorter to a node v of order k′ ≤ k will
return a node u of order k′′ < k

′ that encodes a forward overlap for v iff q
u [1] is a linker

node contained by v.

CPM 2019



27:6 Simulating the DNA overlap graph in succinct space

Proof. If all the left contexts in q
u are non-dummy strings, then u does not appear as a

prefix in R∗, and hence, following none of its edges will lead to a valid overlap of v. On
the other hand, if a suffix u of v appears as a prefix in R∗, then there is a node v′ in G′ at
order k whose label is formed by the concatenation of a dummy string and u, and that by
definition is a linker node contained by v. Since elements in qu are sorted by the left contexts,
v
′ is placed in qu [1], because the dummy string is always the lexicographically smallest. ◀

Lemma 1 allows us to find overlapping nodes that are not directly linked via edges in the
dBG, by looking in smaller dBG orders. We formalize this operation as follows, where we
look for the longest valid suffix, that is, the one with maximum lexicographic index.

nextcontained(v): returns the greatest linker node v′, in lexicographical order, whose
llabel represents both a suffix of v and a prefix of some other node in G′.

▶ Theorem 2. There is an algorithm that solves nextcontained in O(k2 log σ) time.

Proof. Incrementally decrease the order of v by one until reaching a node u with qu ⊃
q
v ,

and that satisfies Lemma 1. If such u exists, return it. If the order of v decreases below m

before finding u, then v does not contain any linker node v′ with ∣llabel(v′)∣ ≥ m. In such
case, a dummy vo-dBG node is returned. The function reduces the order up to k − 2 times.
In each iteration, the operations shorter and llabel (to check Lemma 1) are used, which
take O(log k) and O(k log σ) time, respectively. Thus, the total time is O(k2 log σ). ◀

Notice, however, that a vo-dBG node in G′ might have more than one contained linker
node, and those linkers whose llabel is of length ≥ m represent edges in the overlap graph.
A useful operation is to build a set L with all those relevant linkers. We can then follow the
outgoing edges of every l ∈ L to infer the solid nodes that overlap v by at least m symbols.

buildL(v,m): the set of all the linker nodes contained by v that represent a suffix of v
of length ≥ m.

Function buildL applies nextcontained iteratively until reaching a node u that contains
a linker node whose llabel has length below m. The rationale is that if v contains v′, and in
turn v′ contains v′′, then v also contains v′′. Algorithm 1 (in Appendix C) shows the details.

Note that, if we chose k = z + 1 to build VO-BOSS(G′), then we are simulating the full
overlap graph in compressed space. The edges are not stored explicitly, but computed on the
fly by first obtaining L = buildL(v,m), and then following the dBG outgoing edges of every
l ∈ L. Still, the complexities of the involved operations nextcontained makes VO-BOSS
slow for exhaustive traversals, which is our main interest. We design a faster scheme in which
follows; Figure 1 exemplifies the various concepts.

A compact data structure to compute overlaps. The function buildL can be regarded
as a bottom-up traversal of the trie T induced by the (k − 1)-length labels of M read in
reverse. Every trie node t corresponds to a vo-dBG node v whose order is the string depth
of t. The traversal starts in the trie leaf t corresponding to the vo-dBG node v given to
buildL, and continues upward until finding the last ancestor t′ of t with string depth ≥ m.
The movement from t to t′ can be regarded as a sequence of applications of nextcontained.
In each such application, we move from a node t to its nearest ancestor t′ that is maximal
(i.e., has more than one child) and whose leftmost child edge is labeled by a $.

Since non-maximal nodes in T are not relevant for building L, the function nextcontained
can be reimplemented using the topology of the compact trie T (i.e., collapsing unary paths)
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Figure 1 A segment of rBOSS for the set R={atttggagta,gtattggaaa,agtattggaa,caatactcca},
with parameters k = 11 and m = 2. The computation of the forward overlaps for R1 = R[1] are also
shown. A) range of M that includes the solid node v that represents sequence R1 (sequence in bold
in row 8) and its contained nodes (grayed rows). B) subtree of T ′ that maps the range of M in A).
The black leaf maps v in T ′ and the gray leaves map the linker nodes contained by v. The array of
parentheses below represents the same subtree in BP . The rank of every leaf (leafrank) is shown
above its relative position in the BP array (leafselect). Each dashed arrow represents a call of
the function nextcontained and all the arrows together stand for the function buildL. C) Forward
overlaps of v. Gray sequences in italic are those reads where the reverse complement matches with v.

represented with BP (see Section 2) instead of using shorter. In this way, we can get rid of
the LCS structure of VO-BOSS.

The resulting rBOSS index can be built in linear time, as detailed in Appendix D.
Replacing the LCS with the topology of T in BP poses two problems, though. First, it

is not possible to define a minimum dBG order m from which overlaps are not allowed, and
second, Lemma 1 cannot be checked. Both problems arise because, unlike the LCS, the BP
data structure does not encode the string depths of the tree nodes (and thus, the represented
node lengths). Still, the topology of T can be reduced to precisely the nodes of interest for
nextcontained, and thus avoid any check. We call this structurally-compressed version of
T the overlap tree.

▶ Theorem 3. There is a structure using 4 + o(1) bits per dBG node that implements the
function nextcontained in O(1) time and the function buildL in time O(k).

Proof. The structure is the BP encoding of a tree T ′ that is obtained by removing some
nodes from the compact trie T (T has one leaf per dBG node, and less than 2 nodes per dBG
node because it is compact). First, all the internal nodes of T with string depth below m are
discarded, and the subtrees left are connected to the root of T ′. Second, every internal node
t
′
∈ T whose leftmost-child edge is not labeled by a dummy string is also discarded, and its

children are recursively connected to the parent of t′. Note that all the leaves of T are in T ′.
Therefore, T ′ has precisely the nodes of interest for operation nextcontained(v). We

simply find the ith left-to-right leaf t in T ′, where i is the row of M corresponding to v (note
that rows of M and leaves of T and T ′ are in the same order). Then, we move to the parent
t
′ of t and return its leftmost child. An exception occurs if the leftmost child of t′ is precisely
t, which means that v is a linker node and thus its next contained node is the leftmost child
of the parent of t′. Finally, we return the rank of the desired leftmost leaf.

Algorithm 2 (in Appendix C) shows the details. All its operations are implemented
in constant time in BP , and thus nextcontained(v) is implemented in O(1) time. The
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27:8 Simulating the DNA overlap graph in succinct space

function buildL stays the same, and its cost is dominated by the (at most) k − 2 calls to
nextcontained. ◀

Once the set L with the contained nodes of v is built, we can compute the valid forward
overlaps of v by following the edges of every l ∈ L until finding a p-node. We then define:

foverlaps(v): the set of p-nodes whose prefixes overlap a suffix of v of length ≥ m.

Computing the forward overlaps of v by following the edges of every l ∈ L can be
exponential. We devise a more efficient approach that uses T ′ and the reverse complements
of the node labels. We need to define first the idea of bi-directionality in rBOSS.

Simulating bi-directionality. When building rBOSS on R∗, the reverse complement Rrc
i

of every read Ri ∈ R is also included, because there are several combinations in which two
reads, Ri and Rj , can have a valid suffix-prefix overlap: (Ri, Rj), (Ri, R

rc
j ), (Rrc

i , Rj), or
(Rrc

i , R
rc
j ), and all must be encoded in T

′. An interesting consequence of including the
reverse complements is that the topology of the dBG becomes symmetric.

▶ Lemma 4. The incoming symbols of a node v are the DNA complements of the outgoing
symbols of the node vrc that represents the reverse complement of v. Further, the outgoing
nodes of vrc are the same as the DNA complements of the incoming nodes of v.

Proof. Consider the (k − 1)-length substring bXc of R, and a symbol a that appears at the
left of some occurrences of bXc. For building rBOSS, both substrings abXc and its reverse
complement (abXc)rc

= c
c
X

rc
b

c
a

c are considered. As a result, the dBG node v labeled bXc
will have and incoming symbol a, and the dBG node vrc labeled (bXc)rc

= c
c
X

rc
b

c will have
an outgoing symbol ac. Thus, the label of node forward(vrc, a

c) will be Xrc
b

c
a

c, which is
the reverse complement of string abX, the label of node backward(v,a). ◀

As a result of including the reverse complements of the reads, the cost of computing the
incoming symbols of node v becomes proportional to the cost of computing the position of
v

rc in the BOSS matrix.

▶ Theorem 5. Computing the position in M of vrc takes O(k log σ) time. By augmenting
rBOSS with s log s extra bits, s being the number of solid nodes, the time decreases to O(1).

Proof. First, extract the label lab of v, then compute its reverse complement labrc, and
finally, perform backwardsearch(labrc). The label of v is extracted in time O(k log σ)
with the FM-index, and computing its reverse complement takes O(k) time. The function
backwardsearch, also defined on the FM-index, returns the range of (k − 1)-length strings
in M suffixed by labrc, and it also takes O(k log σ) time. Therefore, computing the position
of vrc in M takes O(k log σ) time. Alternatively, we can store an explicit permutation on the
s solid nodes, so that using s log s bits we find the position of vrc in M in constant time. ◀

Theorem 5 allows us to compute the forward overlaps of v in time proportional to the
size of the label of v.

▶ Theorem 6. The function foverlaps can be computed in O(k log σ) time.

Proof. First, create Lv = buildL(v), and then obtain the reverse complement of the linker
node l = Lv[∣Lv∣], that is, the one representing the smallest suffix of v. Second, compute lrc

and search for the range [i..j] in M of the (k − 1)-length strings suffixed by lrc. From the
edge symbols in [i..j] follow the dBG path pvrc that spells the label of vrc. Finally, every
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Figure 2 Example of the computation of the forward and backward overlaps for sequence
R3 = R[3] of the example of Figure 1. A) Sequence R2 is a forward overlap for R3 and sequences
R4 and R1 are backward overlaps. B) The upper matrix represents the range in M that includes
the solid node that represents R3 (row in bold), and its contained nodes (grayed row) and the lower
matrix is the range of M that includes the solid node of the reverse complement of R3, R

rc
3 (row in

bold and italic), and its contained nodes (gray rows in italic). Gray symbols to the right of every
matrix are the outgoing symbols retrieved from applying foward from every contained node until
reaching the next solid node. For the case of Rrc

3 , these solid nodes are Rrc
4 and Rrc

1 , the reverse
complements of R4 and R1, respectively.

time a solid node v′ is reached during the traversal of pvrc , report its reverse complement
as a forward overlap for v. Computing L takes O(k) time. Both searching for [i..i] and
traversing pvrc take O(k log σ) time. All the shifts between reverse complements take O(1)
time if we use permutations. ◀

Figure 2 exemplifies the overlap function. Note that backward overlaps can be obtained
by computing foverlaps for the reverse complement of v. The complexity of foverlaps is
the same obtained by Simpson and Durbin [34].

By using T ′ and Lemma 4 we can access the topology of the overlaps, and to retrieve
extra information from the data that irreductible overlap graphs or dBGs do not have. We
formalize this idea as weighted irreductible overlaps.

Weighting irreductible overlaps. Given an irreductible overlap v ⊕o
v between solid nodes

v and v′, we can use the number of unique transitive overlaps between them as a measure
of confidence, weight(v ⊕o

v
′) < o −m, for label(v ⊕o

v
′). In Figure A.1 we show different

examples in which weight(v⊕o
v
′) can be helpful to detect patterns in the data. The function

foverlaps(v) in our scheme can be modified to return the list of irreductible overlaps for v,
with their weights included. The idea is as follows: once the range [i..j] is obtained, we form
an array Y with the dBG nodes in [i..j] that are not contained by any other node within
the same range. The set Y will represent the possible irreductible overlaps of v. Y is built in
one scan over [i..j] by checking which T ′ leaves are not the leftmost children of their parent.
The weight of every y ∈ Y is computed as its depth minus the depth of its closest ancestor
in T ′ with more than two children. We do the subtraction because only unique transitive
connections count as weights. Every y ∈ Y and its weighting nodes form a subrange qy in
[i, j]. We perform a right traversal starting from the outgoing edges of qy to retrieve pvrc as
before. In the process, however, one or more elements of Y can be discarded or their weights
decreased if they do have a branch spelling the reverse complement of some l ∈ Lv. Figure 3
exemplifies the process.
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Figure 3 Computation of weighted forward overlaps as described in Section 3. A) Sequence R1,
represented by dBG node v (bold row in M), and its irreductible overlaps, R2 and R3 (asterisks),
represented by dBG nodes v′ and v′′ respectively. The transitive overlaps that weight every irreductible
overlap are shown with arrows to the right of M . The dashed box in the upper left corner of M is
lab = llabel(Lv[∣Lv∣]). The left side of B) is the range [i..j] in M resulting from searching the
range of (k − 1)-length strings suffixed by labrc. The right side of B) is the subtree in T ′ induced by
the dBG nodes in [i..j]. Dashed leaves in the subtree are those that are (probably) irreductible
overlaps of v (elements in Y ). The gray dashed leaf of the subtree corresponds to an element y′ that
was originally added to Y but then discarded because none of the branches starting in its outgoing
edges spell the reverse complement of some l ∈ Lv. Gray leaves are the ones that contribute to the
weight of y′. The element y′ and its weighting nodes are also represented in the range [i..j] as gray
rows. Subranges of [i..j] whose outgoing branches lead to weighted irreductible overlaps of v are
shown in curly brackets.

4 Experiments

We implemented rBOSS as a C++ library, using the SDSL library [14] as a base. In
Section 2 we stated that vector E can be represented using a Huffman-shaped Wavelet
Tree, but our implementation uses run-length encoding [23] to exploit repetitions in the
reads. We also include an extra bitmap S[1..n] that marks the position of every solid
node in M , which speeds up iterating over the solid nodes. We did not include the per-
mutation to compute the reverse complements of the dBG nodes in constant time. In-
stead, we use backwardsearch as stated in Theorem 5. Additionally, we implemented
the VO-BOSS data structure by modifying our rBOSS implementation and merging it
with segments of the code3 from Boucher et al. [5]. Our complete code is available at
https://bitbucket.org/DiegoDiazDominguez/eboss-dt/src/master/. The compilation
flags we used were -msse4.2 -O3 -funroll-loops -fomit-frame-pointer -ffast-math.

We used wgsim [22] to simulate a sequencing dataset (in FASTQ format) from the E.coli
genome with 15x coverage. A total of 549,845 reads were generated, each 150 bases long,
yielding a dataset of 185 MB. The input parameters for building rBOSS are k and m. We
used a minimum value of 50 for k, and increased it up to 110 in intervals of 5. For every k,
we used 6 values of m, from 15 to 40, also in intervals of 5. This makes up 72 indexes. We
also built equivalent VO-BOSS instances using the same values for k.

Space and construction time. The sizes of the resulting rBOSS indexes are shown in
Figure 4.A, which grow fairly linearly with k, at 0.29 + 0.036k bits per input symbol (i.e.,

3 https://github.com/cosmo-team/cosmo
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Figure 4 Index size statistics. The x-axis gives the values of k and the y-axis is the size of the
index in MB. A) Sizes of the rBOSS indexes. Shapes denote the different values of m. B) Index size
comparison between rBOSS and VO-BOSS, building the rBOSS indexes with m = 30.
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Figure 5 Stacked barplot with the percentage that each substructure uses in rBOSS. The x-axis
shows the value of k and the numbers on top of the plot are the m values.

50–100 MB for our dataset), and do not depend much on m. Figure A.2 shows elapsed times
and memory peaks during construction. These are also linear in k; for example with m = 20
(the most demanding value) the rBOSS index for our dataset is built in 4–6 minutes with
a memory peak around 2.5 GB. Figure 4.B compares the sizes of VO-BOSS and rBOSS,
showing that rBOSS is more than 20% smaller on average. The space breakdown of our
index is given in Figure 5, and further statistics in Table A1. The most expensive data
structure in terms of space (50%–65%) is the BP representation of T ′. The sequence E uses
20%–35%, and the rest are the bitmaps B and S.

Time for the primitives. For every index, we took 1000 solid nodes at random and computed
the mean elapsed time for functions nextcontained, buildL, foverlaps. For the rBOSS
indexes, we also measured the mean elapsed time for reversecomplement. Table 1 shows
the results. Within the rBOSS implementation, nextcontained is the fastest operation,
with a stable time around 1.5 µsec across different values of m and k. Operation buildL
becomes slower as we increase k, but faster as we increase m. This is expected because the
larger k, the longer the traversal through T ′, but if m grows the traversal shortens as well. In
all cases, buildL takes under 10 µsec. The cost of operation foverlaps grows linearly with
k, but also decreases as we increase m, reaching the millisecond. This is much slower than
previous operations, dominated by the time to find the reverse complement of the shortest
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rBOSS VO-BOSS
k m next- buildL foverlaps reverse- next- buildL foverlaps

contained complement contained

50 20 1.49 5.09 389.42 1226.53 225.93 804.81 825.11
50 30 1.53 4.22 352.41 1209.02 216.47 581.31 802.23
50 40 2.00 3.38 255.02 1226.56 191.62 337.95 770.70
70 20 1.55 6.46 601.94 1620.22 311.46 1614.49 1155.22
70 30 1.57 5.82 546.53 1620.78 310.74 1382.25 1115.33
70 40 1.54 5.26 517.43 1621.98 297.23 1083.36 1080.17
90 20 1.73 8.11 828.12 2013.00 374.09 2441.96 1495.37
90 30 1.58 7.35 768.83 2012.36 368.71 2211.05 1444.93
90 40 1.56 6.67 714.42 2016.41 372.76 1871.19 1398.07
110 20 1.67 9.25 1088.41 2411.10 429.86 3491.07 1865.60
110 30 1.77 8.64 1014.32 2410.03 428.17 3226.45 1801.85
110 40 1.64 8.10 942.17 2414.11 436.15 2965.48 1745.31

Table 1 Mean elapsed time, in µseconds, for the functions proposed in this article for both rBOSS
and VO-BOSS.

linker node with backward search. Finally, the time of reversecomplement is also a few
milliseconds, growing steadily with k regardless of m.
Table 1 also compares rBOSS with the VO-BOSS implementation. All the functions are

clearly slower in VO-BOSS, by two orders of magnitude for next-contained and buildL,
and by a factor around 2 for foverlaps.

Genome assembly. We implemented a genome assembler on top of rBOSS to test the
usefulness of the data structure. The algorithm is described in Appendix E. We used the
same E. coli dataset as before, with a minimum value for k of 60, increasing it up to 100 in
intervals of 5 for building the indexes. For each k, we selected 5 values for m, from 30 to 50,
also in intervals of 5. The results are shown in Figure 6; time and space are again linear in k.
Using m = 30, our assembler generates contigs in 7–14 minutes and has a memory peak of
70–105 MB, just 18–21 MB on top of the index itself.

Figure 6.C compares the quality of the assembly using variable k and rBOSS, with m = 30,
versus the corresponding assembly generated with a fixed dBG that uses the same k. The
dBG indexes were built using the bcalm tool [9]. It is clear that the ability to vary the value
of k to compute overlapping sequences as we spell the contigs, also called maximal paths
(MP) in our algorithm, yields an assembly of much higher quality. Figure A.3 gives further
data on the assembly.

5 Conclusions and Further Work

We have introduced rBOSS, a succinct representation for vo-dBGs (of degree up to k) that
avoids the O(log k)-bit penalty factor of previous representations thanks to the use of a
new structure we call the overlap tree. This enables the use of k values sufficiently large so
as to simulate the full overlap graph, which is an essential tool for genome assembly and
other bioinformatic analyses. Our index, for example, can assemble the contigs of 185 MB of
150-base reads, with k = 100, in less than 15 minutes and within 105 MB.

Our index builds fast, yet using significant space (in our experiment, 6 minutes and
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Figure 6 Results of genome assembly experiments. A) The elapsed time for the assembly. B) The
memory peak achieved during the assembly. C) Comparison of the mean contig size in rBOSS (gray
line) versus the mean unitig size of a fixed dBG (black line) using the same k, both with m = 50.

2.5 GB). Future work includes reducing the construction space, even at some increase in
construction time. We also aim to reduce the space of T ′, the most space-demanding
component of our index. Preliminary experiments show that the topology of T ′ is highly
repetitive, and that it can be about halved with a grammar-compressed representation [28].

The rBOSS index can be used for different bioinformatic analyses, not just genome
assembly. An example is the detection of single nucleotide polymorphisms. Polymorphisms
are usually inferred by first aligning a multiset4 of reads to a reference genome and then
looking for mismatches between the aligned reads and the genome. This approach is often
expensive as it requires much preprocessing. As an alternative, we can build a colored
version of the rBOSS index, that is, we color the reads according to the individual they were
generated from, and then search for every read x that meets the following criteria: i) two or
more overlaps with heavy weights, ii) two or more colors, and iii) the overlapping reads share
one or more colors with x, but not among them. Reads meeting these criteria (and their
overlapping sequences) are candidates to map polymorphic sites in the genome. We can then
align them to the reference genome and check the sequencing quality of their characters to
be sure. This idea for inferring SNPs is similar to the one described in [16].

Another possible application is sequencing error correction. In this case, we search for
reads whose overlaps have small weights. If for a particular read x, all its forward and
backward overlaps have very small weights, say < 2, then it is reasonable to assume that x
contains errors, especially if the sequencing qualities of its characters are low.
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Figure A.1 Different cases in which the weights of the irreductible overlaps can detect patterns
in the data. A) sequence R1 (dBG node v) has only one irreductible overlap, with R5 (dBG node
v
′), and there are 3 transitive overlaps between them (R2,R3 and R4 in gray). In this case, there

is enough evidence (transitive overlaps) to infer that the string formed by the union of R1 and R5
exists in the input DNA. B) sequence R1 has 2 irreductible overlaps, with R4 and R6 (dBG nodes
v
′ and v′′ respectively), but the number of unique transitive overlaps between R1 and R4 is zero

(weight(v ⊕o
v
′) = 0), so the most probable option is that R4 contains a sequencing error (italic

underlined symbol). C) R1 has two irreductible overlaps, with R5 and R7, and both overlaps have a
weight of 2. In this circumstance, it is more probable that R1 belongs to a repeated region or it is
next to a genetic variation, if the reads R5 and R7 come from different individuals.
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Figure A.2 Statistics about the construction of rBOSS. In all the plots, the x-axis represents the
different values used for k, and every shape represents a particular value of m. The y-axis in A) is
the mean elapsed time; in B) it is the memory peak achieved during the construction.
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Figure A.3 Other results of the assembly experiments. In all the figures, the x-axis are the values
for k. In figures A), B), and C), the shapes are the values of m. A) Maximum length achieved for a
contig in each rBOSS index. B) Mean size for contigs in every rBOSS index. C) Difference between
the memory peak and the size of the index, that is, the memory used exclusively for assembly. D)
Comparison of the longest contig in rBOSS (gray line) versus the longest unitig of a fixed dBG
(black line) using the same k, both with m = 50.

B Tables

k m dBG nodes solid nodes linker nodes edges tree nodes tree int nodes

50 20 48.86 9.13 39.73 50.92 78.78 29.92
50 30 48.86 9.13 39.73 50.92 68.47 19.61
50 40 48.86 9.13 39.73 50.92 58.15 9.29
70 20 69.52 9.14 60.38 71.58 120.09 50.57
70 30 69.52 9.14 60.38 71.58 109.78 40.26
70 40 69.52 9.14 60.38 71.58 99.46 29.94
90 20 90.18 9.14 81.04 92.24 161.40 71.22
90 30 90.18 9.14 81.04 92.24 151.08 60.91
90 40 90.18 9.14 81.04 92.24 140.76 50.59
110 20 110.79 9.09 101.69 112.84 202.61 91.82
110 30 110.79 9.09 101.69 112.84 192.30 81.51
110 40 110.79 9.09 101.69 112.84 181.98 71.19

Table A1 Statistics about the different instances of the dBG graphs generated in the experiments.
Except for the first and second column, all the values are expressed in millions. Columns one and
two are the values used for k and m, respectively, in the rBOSS index. Column three contains the
total number of dBG nodes at order k. Column four show the number of solid nodes and column
five the number of linker nodes. Column six is the total number of edges in the dBG (number of
symbols in E). Column seven is the total number of nodes in the overlap tree and column eight is
the number of internal nodes in the overlap tree.
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C Pseudocodes

Algorithm 1 Build set L with the linker nodes contained by v
1: procedure nextcontained(v,m)
2: d← v.order − 1
3: while d ≥ m do
4: u← shorter(v, d)
5: if q

u ⊃
q
v then

6: if isLinker(v′) and ∣llabel(v′)∣ = d then
7: return u

8: v ← u

9: d← d − 1
10: return 0 ▷ dummy node
11: procedure buildL(v,m) ▷ v is a vo-dBG node and m is the minimum suffix size
12: L← ∅
13: c← nextcontained(v,m)
14: while c>0 do
15: L← L ∪ {qc [1]}
16: c← nextcontained(c,m)
17: return L

Algorithm 2 Function nextcontained implemented with the topology of T ′

1: procedure nextcontained(v) ▷ v is a vo-dBG node at order K − 1
2: t← leafselect(T ′, v) ▷ node in T ′ mapping v
3: t

′
← parent(T ′, t)

4: if firstchild(T ′, t′) = t then ▷ t is already the leftmost sibling
5: t

′
← parent(T ′, t′)

6: l ← lchild(T ′, t′)
7: return leafrank(T ′, l) ▷ vo-dBG node mapping l

D Building rBOSS

To build our data structure, we first form the string R = R1$R
rc
1 ..Rr$R

rc
r # over the alphabet

Σ ∪ {$,#}, with size n′ = ∣R∣, and that represents the concatenation of the reads in R∗. In
R, symbol # is the least in lexicographical order. Next, we build the SA, BWT and LCP
arrays for R, the reversal of R. We use R instead of R because the BWT (E in BOSS)
contains the symbols to the left of every suffix (node labels in BOSS), but we actually need
the symbol to the right when we call forward. After building these arrays, we modify LCP
to simulate the padding of the dummy symbols: for every LCP [i], we compute the distance
d between SA[i] and the position in R of the next occurrence of symbol $ after SA[i]. If
d < k − 1 and d < LCP [i], then we set LCP [i] = k − 1. To compute d in constant time, we
can generate a bitmap D, with rank and select support (see Section D.1), that marks in R
the position of every $. Thus, d is computed as select1(D, rank1(D,SA[i]) + 1) − SA[i].

The next step is to build E. To this end, we traverse BWT [i] for increasing i as long as
LCP [i] ≥ k − 1, and in the process we mark in a bitmap S[1..σ] the symbols seen so far.
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When LCP [i] < k − 1, we append the marked symbols of S to E, and also append the same
number of bits to B, all zeros except the last in each step. We then reset S and restart the
traversal of BWT .

The final step is to build T ′. We use an algorithm [3] to build the topology in BP of a
tree, modified to discard on the fly the unnecessary nodes. We first compute the virtual
suffix tree ST from LCP [1], and then traverse it in preorder. For each node v, we write an
opening parenthesis if it satisfies the restrictions, then we recursively traverse its children,
and finally write a closing parenthesis if v satisfied the conditions.

The SA for R can be built in linear time [17, 20, 19], and so can BWT , [30] LCP [18],
and the virtual ST [1]. Our modifications are obviously linear-time, and therefore the rBOSS
structure can be built in linear time as well.

D.1 Rank and select data structures

Rank and select dictionaries are fundamental in most succinct data structures. Given a
sequence B[1..n] of elements over the alphabet Σ = [1..σ], B.rankb(i) with i ∈ [1..n] and
b ∈ Σ, returns the number of times the element b occurs in B[1..i], while B.selectb(i)
returns the position of the ith occurrence of b in B. For binary alphabets, B can be
represented in n+ o(n) bits so that rank and select are solved in constant time [10]. When
B has m≪ n 1s, a compressed representation using m lg n

m
+O(m)+ o(n) bits, still solving

the operations in constant time, is of interest [32]. This space is o(n) if m = o(n).

E Genome assembly

In this section we briefly describe how to use rBOSS to assemble a genome. We define some
concepts first.

▶ Lemma 7. A solid node v is right-extensible (RE) (respectively left-extensible (LE)) if (i)
it is a non-s-node with outdegree 1 (respectively, a non-p-node with indegree 1) or (ii) it is an
s-node with outdegree ≤ 1 (respectively p-node with indegree ≤ 1) and following its outgoing
edge (if outdegree is 1) and the outgoing edges of every l ∈ Lv (respectively its incoming edge,
if indegree is 1, and the incoming edges of its backward overlaps) leads to a unique solid node
v
′ in at most (k − 1) −m forward operations.

▶ Theorem 8. Computing if a solid node v is RE has O(k + ∣Lv∣(k −m) log σ) worst case
time complexity. Computing if v is LE also has O(k + ∣Lv∣(k −m) log σ) time complexity if
we augment rBOSS with s log s bits, where s is the number of solid nodes.

Proof. When v is not an s-node, testing if it is RE reduces to checking its outdegree. The
other case, when v is a s-node, is harder. First compute Lv = buildL(v), and then perform
a set of operations in batches over the elements of Lv, as follows. Regard Lv as a queue. If
Lv[1], the linker node that represents the greatest suffix of v, has outdegree 0, then remove
it from Lv. After that, check that each Lv[i], with i ∈ [1..∣Lv∣], has outdegree 1 and that
all the outgoing edges are labeled with the same symbol. If some Lv[i] has outdegree > 1 or
two or more different symbols are seen in the outgoing edges of Lv, then return false. If
all outgoing edges in Lv have the same symbol a, then perform Lv[i] = forward(Lv[i], a)
for every i. Repeat the process until Lv becomes empty, if that happens, then return true.
Computing LE is exactly the same process, but first we have to compute vrc, the reverse
complement of v. If we use s log s extra bits to store the permutation with the reverse
complements of the solid nodes, then we can compute vrc in O(1). ◀
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We also define the concept of right and left maximal paths.

▶ Lemma 9. A right-maximal path (respectively, left-maximal) over rBOSS is a path where
all the nodes are RE (respectively, LE) except the rightmost (respectively, leftmost) node. A
maximal-path is the concatenation of a left-maximal and a right-maximal path.

E.1 Marking non-extensible nodes

Computing whether a solid node v is extensible during a graph traversal can be expensive
(Lemma 8), especially if the traversal is exhaustive. The amount of computation can be
reduced, however, by computing beforehand which nodes are non-extensible and marking
them in a bitmap N of size s. Notice that only a small fraction of the nodes will be
non-extensible, so N is highly compressible.

There are four cases in which v is non-extensible; (i) it has outdegree > 1, (ii) there are
two or more different outgoing symbols in Lv, (iii) the outgoing symbol in v differs from
the symbol in Lv, or (iv) the computation of the forward overlaps of v yields two or more
different irreductible overlaps. To detect non-extensible nodes, we use the topology of T ′

instead of directly calling the function foverlaps.
We descend on T ′ in DFS, and every time we reach a leaf t that is the leftmost child

of its parent, we append its edge symbols into a sequence U and the leaf rank of t to an
array I, one append per edge. We also keep track of the different symbols appended into U
so far. If after consuming t there are two or more different symbols in U , we scan U from
right to left until finding the first position i such that U[i] ≠ U[i + 1]. Then, we mark as
non-extensible all the solid nodes that contain any prefix of llabel(I[i + 1]) that in turns
contains any prefix of llabel(I[i]) of length ≥ m. The rationale is that any solid node v
containing I[i + 1] will also contain I[i] (we now this fact because the DFS order). The
problem, however, is that the outgoing symbols of I[i] and I[i + 1] differ. Thus, v is a case
(ii) non-extensible node. It can still happen that one of the prefixes of I[i + 1] is contained
by a solid node v′, and if it does, then it might happen that v′ also contains a prefix of I[i].
In such case, v′ is a case (iv) non-extensible node, because the elements of Lv′ will lead to
I[i] and I[i + 1], which are known to differ in their outgoing edges. To be sure, we must go
backwards in I[i + 1] marking the solid nodes that contain prefixes of I[i + 1], and we stop
when I[i + 1] does not contain any prefix of I[i] of size ≥ m.

When a solid node v is reached during the DFS traversal, we first have to check if it was
already marked. If it is still unmarked, then we check if it has outdegree more than two (v is
a case i), or if it has outdegree 1, but its outgoing symbol differ from the outgoing symbols
in Lv (v is case iii).

E.2 Spelling maximal paths

Once rBOSS and the bitmap N are built, the process of spelling maximal paths can be
implemented as an stream algorithm, which is very space-efficient. For every non-extensible
node v compute the set Ov = overlaps(v). We start a forward traversal from each oi ∈ Ov

and continue until reaching a non-extensible node. During the process, append the edge
symbols to a vector F . After finishing, compute orc

i , start a forward traversal from it and
continue until reaching the next non-extensible node. As with oi, also append the outgoing
edges to a vector R. The final string spelled by the maximal path will be Rrc ⋅ label(oi) ⋅F .
If in either of both traversals, forward or backward, an extensible solid node with outdegree
0 is reached, then call nextcontained and continue through its edges.
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