
Reporting Consecutive Substring Occurrences
Under Bounded Gap Constraints

Gonzalo Navarro1 ? and Sharma V. Thankachan2

1Center of Biotechnology and Bioengineering,
Department of Computer Science,

University of Chile, Chile.
gnavarro@dcc.uchile.cl

2 School of Computational Science and Engineering,
Georgia Institute of Technology, USA.

sharma.thankachan@gatech.edu

Abstract. We study the problem of indexing a text T [1 . . . n] such that
whenever a pattern P [1 . . . p] and an interval [α, β] comes as a query,
we can report all pairs (i, j) of consecutive occurrences of P in T with
α ≤ j − i ≤ β. We present an O(n logn) space data structure with
optimal O(p+ k) query time, where k is the output size.

1 Introduction

Detecting consecutive occurrences of a pattern in a text is a problem
that arises, in various forms, in computational biology applications [1–
3]. For example, a tandem repeat is an occurrence of the form PP of a
given string P [1 . . . p] inside a sequence T [1 . . . n]. Due to mutations and
experimental errors, one may relax the condition that the occurrences
appear exactly one after the other, and allow for a small range of distances
between the two occurrences of P [1, Sec. 9.2]. Other variants of the
problem are to find P closely followed by its reverse complemented version
in tRNA sequences, which is useful to identify the positions where the
tRNA molecule folds into a cloverleaf structure defined by stems (the two
occurrences of P) and loops (the string between them) [1, Sec. 11.9, Ex.
42]; this process is also called RNA interference [2, Sec. 6,4].

Several related combinatorial problems stem from these motivations.
For example, Iliopoulos and Rahman [4] consider the problem of finding
all the k occurrences of two patterns P1 and P2 (of total length p) sep-
arated by a fixed distance α known at indexing time. They gave a data
structure using O(n logε n) space and query time O(p + log log n + k),
for any constant ε > 0. Bille and Gørtz [5] retained the same space

? Funded with Basal Funds FB0001, Conicyt, Chile.

and improved the time to the optimal O(p+ k).1 The problem becomes,
however, much messier when we allow the distance between P1 and P2

to be in a range [α, β], even if these are still known at indexing time.
Bille et al. [6] obtained various tradeoffs, for example O(n) space and
O(p+σβ log log n+k) time, where σ is the alphabet size; O(n log n logβ n)
space and O(p+ (1 + ε)β log log n+ k) time; and O(σβ

2
n logβ log n) space

and O((p+ β)(β − α) + k) time.
These problems, however, are more general than necessary for the

applications we described, where P1 = P2 = P (or P2 is the reverse
complement of P1, a case that can be handled in the solution we will
give). For this case, some related problems have been studied. Keller et
al. [7] considered the problem of, given an occurrence of P in T , find the
next one to the right. They obtained an index using O(n logε n) space
and O(log log n) time. Another related problem they studied was to find
a maximal set of nonoverlapping occurrences of P . They obtained the
same space and O(log log n + k) time. Muthukrishnan [8] considered a
document-based version of the problem: T is divided into documents,
and we want to report all the k documents where two occurrences of P
appear at distance at most β. For β fixed at indexing time, he obtained
O(n) space and optimal O(p+k) time; the space raises to O(n log n) when
β is given as a part of the query. Finally, Brodal et al. [9] considered the
related pattern mining problem: find the all z maximal patterns P that
appear at least twice in T , separated by a distance in [α, β]. They obtain
O(n log n+ z) time, within O(n) space.

In this paper we focus on what is perhaps the cleanest variant of the
problem, which (somewhat surprisingly) has not been considered before:
find the positions in T where two occurrences of P appear, separated by
a distance in the range [α, β]. It is formally stated as follows.

Problem 1 Index a text T [1 . . . n], such that whenever a pattern P [1 . . . p]
and a range [α, β] comes as a query, we can report all pairs (i, j) of con-
secutive occurrences of P in T with α ≤ j − i ≤ β.

We obtain the following result.

Theorem 1 There exists an O(n log n) space data structure with query
time O(p+ k) for Problem 1, where k is the output size.

Our solution makes use of heavy-path decompositions on suffix trees
and geometric data structures. In the Conclusions we comment on the
implications of this result on related problems.

1 This is optimal in the RAM model if we assume a general alphabet of size O(n).

2 Notation and Preliminaries

The ith leftmost character of T is denoted by T [i], where 1 ≤ i ≤ n. The
sub-string starting at location i and ending at location j is denoted by
T [i . . . j]. A suffix is a substring that ends at location n and a prefix is a
string that starts at location 1.

The suffix tree (ST) of T is a compact representation of all suffixes
of T ◦ $, except $, in the form of a compact trie [10]. Here $ a special
symbol that does not appear anywhere in T and T ◦$ is the concatenation
of T and $. The number of leaves in ST is exactly n. The degree of an
internal node is at least two. We use `i to represent the ith leftmost leaf in
ST. The edges are labeled with characters and the concatenation of edge
labels on the path from root to a node u is denoted by path(u). Then,
path(`i) corresponds to the ith lexicographically smallest suffix of T , and
its starting position is denoted by SA[i]. The locus of a pattern P in T ,
denoted by locus(P), is the highest node u in ST, such that P is a prefix
of path(u). The set of occurrences of P in T is given by SA[i] over all i’s,
where `i is in the subtree of locus(P). The space occupied by ST is O(n)
words and the time for finding the locus of an input pattern P is O(|P |).
Additionally, for two nodes u and v, we shall use lca(u, v) to denote their
lowest common ancestor.

We now describe the concept of heavy path and heavy path decompo-
sition. The heavy path of ST is the path starting from the root, where
each node u on the path is the child with the largest subtree size (ties
broken arbitrary). The heavy path decomposition is the operation where
we decompose each off-path subtree of the heavy path recursively. As a
result, any path(·) in ST will be partitioned into disjoint heavy paths.
Sleator and Tarjan [11] proved the following property; we will use log n
to denote logarithm in base 2.

Lemma 1 The number of heavy paths intersected by any root to leaf path
is at most log n, where n is the number of leaves in the tree.

Each node belongs to exactly one heavy path and each heavy path
contains exactly one leaf node. The heavy path containing `i will be
called the i-th heavy path (and identified simply by the number i). For
an internal node u, let hp(u) be the unique heavy path that contains u.

Definition 1 The set Hi is defined as the set of all leaf identifiers j,
where the path from root to `j intersects with the i-th heavy path. That
is, Hi = {j | hp(lca(`j , `i)) = i}.

Lemma 2
∑n

i=i |Hi| ≤ n log n.

Proof. For any particular j, path from root to `j can intersect at most
log n heavy paths, by Lemma 1. Therefore, j cannot be a part of more
than log n sets. �

3 The Data Structure

The key idea is to reduce our pattern matching problem to an equivalent
geometric problem. Specifically, to the orthogonal segment intersection
problem.

Definition 2 (Orthogonal Segment Intersection) A horizontal seg-
ment (xi, x

′
i, yi) is a line connecting the 2D points (xi, yi) and (x′i, yi). A

segment intersection problem asks to pre-process a given set S of horizon-
tal segments into a data structure, such that whenever a vertical segment
(x′′, y′, y′′) comes as a query, we can efficiently report all the horizontal
segments in S that intersect with the query segment. Specifically, we can
output the following set: {(xi, x′i, yi) ∈ S | xi ≤ x′′ ≤ x′i, y′ ≤ yi ≤ y′′}.

There exists an O(|S|) space and O(log |S| + k) time solution for
segment intersection problem using a persistent binary tree, where k is
the output size [12]. We now proceed to describe the reduction.

3.1 Reduction

One of the main components of our data structure is the suffix tree ST of
T , and is used only for finding the locus of P . Based on the heavy path
on which the locus node is, we categorize the queries in different types.

Definition 3 A query with input pattern P is type-h if h = hp(locus(P)).

Let Gh be the data structure handling type-h queries, where Gh is a
structure over a set Ih of horizontal segments, that can efficiently answer
segment intersection queries. The set Ih is generated from Hh using the
following steps for each j ∈ Hh:

1. Let Pj = path(lca(`h, `j))
2. Let suc(j) be the first occurrence of Pj after the position SA[j] in
T and let pre(j) be the last occurrence of Pj before the position
SA[j] in T . Clearly, neither in [(pre(j) + 1) . . . (SA[j] − 1)], nor in
[(SA[j] + 1) . . . (suc(j)− 1)], Pj has an occurrence.

Pj

j|P |
hj

locus()P

P

P’j

j

T
P

ba

j

j|P’|

b−a

α

β

|P|

Fig. 1. Illustration of the main concepts of our data structure.

3. Now, obtain two segments w.r.t. j as follows:

(a) Let P ′j be the shortest prefix of Pj without any occurrence in
[(pre(j) + 1) . . . (SA[j] − 1)]. Then, create segment (xi, x

′
i, yi) =

(|P ′j |, |Pj |,SA[j]− pre(j)) and associate the pair (pre(j), SA[j]) of
consecutive occurrences of Pj as satellite information.

(b) Similarly, let P ′′j be the shortest prefix of Pj without any oc-
currence in [(SA[j] + 1) . . . (suc(j) − 1)]. Then, create segment
(xi, x

′
i, yi) = (|P ′′j |, |Pj |, suc(j)−SA[j]) and associate it to the pair

(SA[j], suc(j)) of consecutive occurrences of Pj as satellite infor-
mation.

Clearly, |Ih| = 2|Hh|. The central idea of our solution is summarized
below. Figure 1 illustrates the idea.

Lemma 3 Let P and [α, β] be the input parameters of a query in prob-
lem 1 and let h = hp(locus(P)). Then, the set of satellite information
associated with all those horizontal segments in Ih, which are stabbed by
a vertical segment (p, α, β) (i.e., the segment connecting the points (p, α)
and (p, β)) forms the output to Problem 1.

Proof. First we prove that any satellite information (a, b) reported by the
geometric query on Gh is an answer to the original query. Let [s, e] be
the x-interval corresponding to the reported satellite information (a, b).
Then, s ≤ p ≤ e and α ≤ b−a ≤ β. Here the condition e ≥ p ensures that
both `SA−1[a] and `SA−1[b] are leaves in the subtree of locus(P). Therefore
a and b are occurrences of P . The condition s ≤ p ensures that there

exists no occurrence of P in any location which is after a, but before b
(i.e., a and b are consecutive occurrences of P). Finally the y-coordinate
ensures that α ≤ b− a ≤ β.

Now we prove that for every output (a, b) of Problem 1, there exists a
segment (s, e, b− a) in Ih with s ≤ p ≤ e and satellite information (a, b).
Without loss of generality, let lca(`h, `SA−1[a]) be either lca(`h, `SA−1[b]) or

an ancestor of it. Then, let j = SA−1[a]. Since P occurs at position a, the
leaf j descends from the subtree of locus(P), and since this node belongs
to the heavy path h, we have that lca(`h, `j) descends from locus(P), thus
e ≥ p. Since there is no occurrence of P between a and b, it holds s ≤ p.
Then, a segment of the form (s, e, b − a) will indeed be created while
processing j ∈ Hh during the construction of Ih. �

In the light of Lemma 3, we have the following result.

Lemma 4 There exists an O(n log n) space and O(p + log n + k) query
time solution for Problem 1, where k is the output size.

Proof. The space of ST is O(n) and the space required for maintaining the
segment intersection structure over Ih, for all values of h, is O(

∑
h |Ih|) =

O(
∑

h |Hh|) = O(n log n). Thus, the total space is O(n log n) words. To
answer a query, we first find the locus of P in ST in O(p) time, and then
query Gh, where h = hp(locus(P)), in O(log n + k) time. Therefore, the
query time is O(p+ log n+ k). �

The query time in Lemma 4 is optimal if p ≥ log n. To handle queries
where p is shorter than log n, we use a different approach.

3.2 Achieving Optimal Query Time

We present an optimal query time data structure for p < log n. Essen-
tially, we associate a data structure D(u) with each node u in ST, whose
string depth (i.e., |path(u)|) is at most log n. Observe that the number
of occurrences of path(u) in T is equal to size(u), where size(u) is the
number of leaves in the subtree of u. Therefore, the number of consecu-
tive occurrences (i, j) of path(u) is size(u) − 1. Each such pair (i, j) can
be mapped to a point (j − i) in one dimension along with the pair (i, j)
as an associated satellite data. We then create a one-dimensional range
reporting data structure over these (size(u)− 1) points and call it D(u).
Whenever the locus of P is u, the answer can be obtained by issuing a
one dimensional range reporting query on D(u) with [α, β] as the input

range. The satellite data associated with each reported corresponds to an
answer to Problem 1.

We use the data structure summarized in Lemma 5, by which queries
can be answered in optimal time and the space of D(u) can be bounded
by O(size(u)) words.

Lemma 5 ([13]) One dimensional range reporting queries over a set of
m points in {0, 1, 2, . . . , 2w} can be answered in optimal time using an
O(m) space data structure, where w is the word size.

Note that the sum of all the size(u) terms for all the nodes u with the
same string depth is n, and added over all the nodes with string depth
up to log n is n log n. Thus the space for the D(·) structures of all the
nodes with string depth up to log n is O(n log n) words. This completes
the proof of Theorem 1.

4 Conclusions

We have addressed what seems to be the cleanest variant of the prob-
lem related to finding close occurrences of a pattern P [1 . . . p] in a text
T [1 . . . n]: find pairs of occurrences that are within a distance range [α, β]
(given at query time). Our data structure uses O(n log n) space and op-
timal O(p+ k) query time.

It is not hard to extend our result to the case where we look for the
occurrence of P followed (or preceded) by some function of P , such as
its reverse complemented string (as motivated in the Introduction). We
can build the geometric structure at each suffix tree node v considering
the function of the string represented by v, instead of the string itself.
However, extending our solution to the general case of two patterns [6]
seems not possible.

Our result opens several interesting questions. A first one is whether
this problem is strictly harder than the restricted variant where α = β.
For this case, the same optimal query time has been obtained within less
space, O(n logε n) [5], even when generalizing the problem to two patterns
P1 and P2. The significantly messier results obtained for the general case
α ≤ β [6] suggest that this general problem is indeed harder. Still, it is
not clear whether our optimal-time result can also be obtained within
o(n log n) space.

A second interesting question is whether our result can be used for
pattern mining, that is, finding those P that appear twice in T separated
by a distance in [α, β]. A direct application of our result, which builds

our structure and then traverses the suffix tree, requires Ω(n log n + z)
time, which is not better than the current result [9]. Yet, there could be
harder pattern mining problems for which our result is a useful tool.

Yet a third interesting question is how our results can be extended to
the document retrieval scenario, that is, listing the documents where P
appears twice and separated by a distance in [α, β]. The current result
[8] is similar to ours in space and time, but it is restricted to the case
α = 0. It is not clear if is the problem is harder, and by how much, for
an arbitrary value of α.

References

1. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

2. Aluru, S., ed.: Handbook of Computational Molecular Biology. CRC Computer
and Information Science Series. Chapman & Hall (2005)

3. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Oldenbusch Verlag (2013)

4. Iliopoulos, C.S., Rahman, M.S.: Indexing factors with gaps. Algorithmica 55
(2009) 60–70

5. Bille, P., Gørtz, I.L.: Substring range reporting. Algorithmica 69 (2014) 384–396
6. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with

wildcards. Theory of Computing Systems 55 (2014) 41–60
7. Keller, O., Kopelowitz, T., Lewenstein, M.: Range non-overlapping indexing and

successive list indexing. In: Proc. 10th International Workshop on Algorithms and
Data Structures (WADS). LNCS 4619 (2007) 625–636

8. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). (2002) 657–
666

9. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs
with bounded gap. In: Proc. 10th Annual Symposium on Combinatorial Pattern
Matching (CPM). LNCS 1645 (1999) 134–149

10. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium
on Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973.
(1973) 1–11

11. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26 (1983) 362–391

12. Tao, Y.: Dynamic ray stabbing. ACM Transactions on Algorithms 11 (2014) 11
13. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimen-

sion. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece. (2001) 476–482

