Statistical Encoding of Succinct Data Structures

Rodrigo Gonzalez * and Gonzalo Navarro **

Department of Computer Science, University of Chile.
{rgonzale,gnavarro}@dcc.uchile.cl

Abstract. In recent work, Sadakane and Grossi [SODA 2006] intro-
duced a scheme to represent any sequence S = s182 ... Sn, over an alpha-
bet of size o, using nHy(S) + O(ﬁ(k log o 4 log log n)) bits of space,
where Hj(S) is the k-th order empirical entropy of S. The representation
permits extracting any substring of size ©(log, n) in constant time, and
thus it completely replaces S under the RAM model. This is extremely
important because it permits converting any succinct data structure re-
quiring o(]S|) = o(nlogo) bits in addition to S, into another requiring
nH(S) + o(nlogo) (overall) for any k = o(log, n). They achieve this
result by using Ziv-Lempel compression, and conjecture that the result
can in particular be useful to implement compressed full-text indexes.
In this paper we extend their result, by obtaining the same space and time
complexities using a simpler scheme based on statistical encoding. We
show that the scheme supports appending symbols in constant amortized
time. In addition, we prove some results on the applicability of the scheme
for full-text self-indexing.

1 Introduction

Recent years have witnessed an increasing interest on succinct data structures,
motivated mainly by the growth over time on the size of textual information.
This has triggered a search for less space-demanding data structures bounded
by the entropy of the original text. Their aim is to represent the data using as
little space as possible, yet efficiently answering queries on the represented data.
Several results exist on the representation of sequences [11,16], trees [13,3,4],
graphs [13], permutations and functions [12,14], texts [5,7,6,9], etc.

Several of those succinct data structures are built over a sequence of symbols
S[1,n] = s182...5y, from an alphabet A of size o, and require only o(]S|) =
o(nlogo) additional bits in addition to S itself (S requires mlogo bitst). A
more ambitious goal is a compressed data structure, which takes overall space
proportional to the compressed size of S and still is able to recover any substring
of S and manipulate the data structure.

A very recent result by Sadakane and Grossi [18] gives a tool to convert any
succinct data structure on sequences into a compressed data structure. More
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precisely, they show that S can be encoded using nH(S) + O(log" —(klogo +

loglogn)) bits of space?, where Hj(S) is the k-th order empirical entropy of
S [10]. (H(S) is a lower bound to the space achieved by any statistical com-
pressor based on k-th order modeling.) Their structure permits retrieving any
substring of S of ©(log, n) symbols in constant time. Under the RAM model of
computation this is equivalent to having S in explicit form.

In particular, for sufficiently small & = o(log, n), the space is H(S) +
o(nlogo). Any succinct data structure that requires o(nlog o) bits in addition
to S can thus be replaced by a compressed data structure requiring nHy(S) +
o(nlog o) bits overall, where any access to S is replaced by an access to the novel
structure. Their scheme is based on Ziv-Lempel encoding.

In this paper we show how the same result can be achieved by much simpler
means. We present an alternative scheme based on semi-static k-th order model-
ing plus statistical encoding, just as a normal semi-static statistical compressor
would process S. By adding some extra structures, we are able of retrieving any
substring of S of O(log, n) symbols in constant time. Although any statistical
encoder works, we obtain the best results (matching exactly those of [18]) using
Arithmetic encoding [1]. Furthermore, we show that we can append symbols to S
without changing the space complexity, in constant amortized time per symbol.

In addition, we study the applicability of this technique to full-text self-
indexes. Compressed self-indexes replace a text T'[1,n] by a structure requir-
ing O(nHy(T)) or O(nH(T)) bits of space. In order to provide efficient pat-
tern matching over T, many of those structures [5, 15, 6] achieve space propor-
tional to nHy(T') by first applying the Burrows-Wheeler Transform [2] over T,
S[1,n] = bwt(T), and then struggling to represent S in efficient form. An ad-
ditional structure of o(|S]|) bits gives the necessary functionality to implement
the search. One could thus apply the new structure over S, so that the overall
structure requires nHy(S) + o(|S|) bits. Yet, the relation between Hj(S) and
Hy(T) remains unknown. In this paper we move a step forward by proving a
positive result: H1(S) < Hy(T)logo+o(1) for small k = o(log, n). Thus we can,
for example, achieve essentially the same result of the Run-Length FM-Index [9]
just by using the new structure on S, without the involved techniques they use.

Several indexes, however, compress S = bwt(T') by means of a wavelet tree
[7] on S, wt(S). This is a balanced tree storing several binary sequences. Each
such sequence B can be represented using |B|Hy(B) bits of space. If we call
nHo(wt(S)) the overall resulting space, it turns out that nHo(wt(S)) = nHy(S).
A natural idea advocated in [18] is to use a k-th order representation for the
binary sequences B, yielding space nHy(wt(S)). Thus the question about the
relationship between Hj(wt(S)) and Hy(S) is raised. In this paper we exhibit
examples where either is larger than the other. In particular, we show that when
moving from wt(S) to S, the k-th order entropy grows at least by a factor of
O(logk).

2 The term klog o appears as k in [18], but this is a mistake [17]. The reason is that
they take from [8] an extra space of the form ©(kt+t) as stated in Lema 2.3, whereas
the proof in Theorem A.4 gives a term of the form ktlogo + O(t).



2 Background and notation

Hereafter we assume that S[1,n] = S1, = s152...s, is the sequence we wish
to encode and query. The symbols of S are drawn from an alphabet A =
{ai1,...,a,} of size 0. We write |w| to denote the length of sequence w.

Let B[1,n] be a binary sequence. Function ranky (B, ) returns the number of
times b appears in the prefix B[1,i]. Function selecty(B, %) returns the position
of the i-th appearance of b within sequence B. Both rank and select can be
computed in constant time using o(n) bits of space in addition to B [11].

2.1 The k-th order empirical entropy

The empirical entropy resembles the entropy defined in the probabilistic setting
(for example, when the input comes from a Markov source). However, the empir-
ical entropy is defined for any string and can be used to measure the performance
of compression algorithms without any assumption on the input [10].

The empirical entropy of k-th order is defined using that of zero-order. This
is defined as

Hy($) = — 3 " logy("S) ()

a€cA

with n¢ the number of occurrences of symbol a in sequence S. This definition
extends to k > 0 as follows. Let A¥ be the set of all sequences of length k
over A. For any string w € A*, called a context of size k, let wg be the string
consisting of the concatenation of characters following w in S. Then, the k-th
order empirical entropy of S is

H(S) = 3 [wslHo (us). @)

we Ak

The k-th order empirical entropy captures the dependence of symbols upon
their context. For k > 0, nHy(S) provides a lower bound to the output of
any compressor that considers a context of size k to encode every symbol of
S. Note that the uncompressed representation of S takes nlogo bits, and that
0 < Hp(S) < Hp—1(S) <... < H(S) < Hy(S) < logo.

Note that a semi-static k-th order modeler that yields the probabilities p1, po,

.., pp, for the symbols s1, sa, . . ., 8,,, will actually determine p; =~ P(s;|8;—k - .. Si—1)

using the formula p; = where w = s;_ ... 8;—1. It is not hard to see, by

nws
[ws]?

grouping all the terms with the same w in the summation [10, 7], that

— > pilogp; = nH(S). (3)
i=ht1



2.2 Statistical encoding

We are interested in the use of semi-static statistical encoders in this paper.
Thus, we are given a k-th order modeler as described above, which will yield
the probabilities pi,ps,...,p, for each symbol in S, and we will encode the
successive symbols of S trying to use —p; logp; bits for s;. If we reach exactly
—p; log p; bits, the overall number of bits produced will be nH(S) + O(klogn),
according to Eq. (3).

Different encoders provide different approximations to the ideal —p;logp;
bits. The simplest encoder is probably Huffman coding [1], while the best one,
from the point of view of the number of bits generated, is Arithmetic coding [1].

Given a statistical encoder E and a semi-static modeler over sequence S[1,n]
yielding probabilities p1,po,...,pn, we call E(S) the bitwise output of E for
those probabilities, and |E(S)| its bit length. We call fi(E,S) = |E(S)| —
(—>-1<;<npilogp;) the extra space in bits needed to encode S using E, on
top of the entropy of the model. For example, the wasted space of Huffman en-
coding is bounded by 1 bit per symbol, and thus fi(Huffman,S) < |S| (tighter
bounds exist but are not useful for this paper [1]). On the other hand, Arithmetic
encoding approaches —p; log p; as closely as desired, requiring only at most two
extra bits to terminate the whole sequence [1, Section 5.2.6 and 5.4.1]. Thus
fx(Arithmetic, S) < 2. Again, we can relate the model entropy of p1,pa,...,pn
with the empirical entropy of S using Eq. (3), achieving that, say, Arithmetic
coding encodes S using at most nHy(S) + O(klogn) + 2 bits.

Arithmetic coding essentially expresses S using a number in [0, 1) which lies
within a range of size P = p1 - pa---pn. We need —logP = — 5 logp; bits
to distinguish a number within that range (plus two extra bits for technical
reasons). Thus each new symbol s;, which appears within its context np; times,
requires — log p; bits to be encoded. This totalizes —n > p; logp; + 2 bits.

There are usually some limitations to the near-optimality achieved by Arith-
metic coding in practice [1]. One is that many bits are required to manipulate
P, which can be cumbersome. This is mainly alleviated by emitting the most
significant bits of the final number as soon as they are known, and thus scaling
the remainder of the number again to the range [0,1) (that is, dropping the
emitted bits from our number). Still, some symbols with very low probability
may require many bits. To simplify matters, fixed precision arithmetic is used
to approximate the real values, and this introduces a very small (yet linear) in-
efficiency in the coding. In our case, we never run into this problem because, as
seen later, we do not encode any sequence that requires more than @% bits. As
soon as those bits are not precise enough to represent the encoding, we switch
to plain symbol-wise encoding.

Another limitation applies to adaptive encoding, where some kind of aging
technique is used to let the model forget symbols that have appeared many
positions away in the sequence. In our case this does not apply, as we use semi-
static encoding. Finally, we notice that we run into no efficiency problems at all
at decoding time, as we will use the 10%—bit compressed stream as an index to
a precomputed table that will directly yield the uncompressed symbols.



2.3 Implementing succinct full-text self-indexes

A succinct full-text index provides fast search functionality using a space pro-
portional to that of the text itself. A less space-demanding index, in particular,
using space proportional to that of the compressed text is known as a compressed
full-text index. Those indexes that contain sufficient the information to recreate
the original text are known as self-indezes. An example of the latter is the FM-
index family [5,6,9] based on the Burrows-Wheeler Transform (BWT) [2]. The
BWT of a text T, T""* = bwt(T), is a reversible transformation from strings
to strings. For this paper, it is enough to say that T°** is a permutation of the
characters of T which is easier to compress by local optimization methods [10].

Full-text indexes need essentially to perform symbol rank queries over T
Occ (T, i) is the number of occurrences of character ¢ in T°**[1,4]. This can be
done in constant time for very small alphabets [5], but to handle larger alphabets
[6] a tool called the wavelet tree [7] of S = T"" is used.

Given a sequence S[1,n] the wavelet tree wt(S) [7] built on S is a per-
fect binary tree of height [logo], built on the alphabet symbols, such that the
root represents the whole alphabet and each leaf represents a distinct alpha-
bet symbol. If a node v represents alphabet symbols in the range AY = [i, j],
then its left child v; represents A = [i, HTJ] and its right child v, represents
Avr = [H'TJ + 1, j]. We associate to each node v the subsequence SV of S formed
by the characters in A”. However, sequence SV is not really stored at the node.
Instead, we store a bit sequence B telling whether characters in SV go left or
right, that is, By = 1 iff S € A*r.

The wavelet tree of S requires nHy(S) + O(nloglogn/ log, n) bits of space.

3 A new entropy-bound succinct data structure

Given a sequence S[1,n] over an alphabet A of size o, we encode S into a
compressed data structure S’ within entropy bounds. To perform all the original
operations over S under the RAM model, it is enough to allow extracting any
b= %logor n consecutive symbols of S, using S’, in constant time.

3.1 Data structures for substring decoding

We describe our data structure to represent S in essentially nHy(S) bits, and to
permit the access of any substring of size b = |4 log, n| in constant time. This
structure is built using any statistical encoder E as described in Section 2.2.

Structure. We divide S into blocks of length b = L% log, n] symbols. Each
block will be represented using at most b’ = |3 logn] bits (and hopefully less).
We define the following sequences indexed by block number ¢ = 0,..., |n/b]:

— S; = S[bi+1,b(i + 1)] is the sequence of symbols forming the i-th block of
S.



C; = S[bi — k + 1,bi] is the sequence of symbols forming the k-th order
context of the i-th block (a dummy value is used for Cy).
E; = E(S;) is the encoded sequence for the i-th block of S, initializing the
k-th order modeler with context Cj.
¢; = |E;| is the size in bits of F;.

- S; if 4; > v
i {El otherwise
— 0; = |E;| <min(V,£;) is the size in bits of E;.

oSl

, is the shortest sequence among E; and S;.

The idea behind E; is to ensure that no encoded block is longer than b’ bits
(which could happen if a block contains many infrequent symbols). These special
blocks are encoded explicitly.

Our compressed representation of S stores the following information:

— W10, |n/b]]: A bit array such that
. 0if ¢; > v
Wil = { 1 otherwise’
with the additional o(n/b) bits to answer rank queries over W in constant
time [11].
— C[L,rank(W, [n/b])]: Clrank(W,i)] = C;, that is, the k-th order context for
the i-th block of S iff £; < ¥, with 1 <7 < [n/b].
- U = EyE, ...ELn/bJ: A bit sequence obtained by concatenating all the
variable-length E;.

T Ak x 25— 9b: A table defined as T[a, 8] = 7, where « is any context
of size k, 3 represents any encoded block of b’ bits at most, and ~ represents
the decoded form of 3, truncated to the first b symbols (as less than the v’
bits will be usually necessary to obtain the b symbols of the block).

— Information to answer where each E; starts within U. We group together
every ¢ = [logn] consecutive blocks to form superblocks of size ©(log?n)
and store two tables:

e R0, [n/(bc)]] contains the absolute position of each superblock.
e R;[0, |n/b]] contains the relative position of each block with respect to
the beginning of its superblock.

3.2 Substring decoding algorithm

We want to retrieve ¢ = S[i,i+ b — 1] in constant time. To achieve this, we take
the following steps:

1. We calculate j =i div b and j' = (i + b — 1) div b.
2. We calculate h = j div ¢, ' = (j+1) div ¢ and u = U[R4[h]+ Ri[j], Rg[W'] +
R[j + 1] — 1], then
— if W[j] = 0 then we have S; = u.
— if W[j] = 1 then we have S; = T'[Clrank(W, j)], u'], where v’ is u padded
with o' — |u| dummy bits.



We note that |u| <" and thus it can be manipulated in constant time.
3. If j/ # j then we repeat Step 2 for ;' = j 4+ 1 and obtain Sj. Then, ¢ =
Sili — jb+1,b] Sj[1,i— jb] is the solution.

Lemma 1. For a given sequence S[1,n] over an alphabet A of size o, we can
access any substring of S of b symbols in O(1) time using the data structures
presented in Section 3.1.

3.3 Space requirement
Let us now consider the storage size of our structures.

— We use the constant-time solution to answer the rank queries [11] over W,
totalizing loznn (14 o(1)) bits.

— Table C requires at most loznnkloga bits.

— Let us consider table U. |U| = Z}Zébj |E;| < ZiLZébJ |E;| = nHi(S) +
O(klogn) + Z}Zébj fx(E,S;), which depends on the statistical encoder F
used. For example, in the case of Huffman coding, we have fj(Huffman, S;) <
b, and thus we achieve nHy(S) + O(klogn) + n bits. For the case of Arith-
metic coding, we have fj(Arithmetic, S;) < 2, and thus we have nHy(S) +
O(klogn) + 22— bits, as described in Section 2.2.

log, n ,
— The size of T is 0*2¥ blogo = o n'/? lo% bits.
— Finally, let us consider tables R, and R;. Table R, has [n/(bc)] entries of size
[logn], totalizing 22— bits. Table R; has [n/b] entries of size [log(b'c)],

log, n
totalizing % bits.

By considering that any substring of ©(log, n) symbols can be extracted in
constant time by applying O(1) times the procedure of Section 3.2, we have the
final theorem.

Theorem 1. Let S[1,n] be a sequence over an alphabet A of size o. Our data
structure uses nHy(S) + O(=2— (klog o + loglogn)) bits of space for any k <

log, n
(1—¢€)log, n and any constant 0 < € < 1, and it supports access to any substring
of S of size O(log, n) symbols in O(1) time.

Note that, in our scheme, the size of T' can be neglected only if k < (% —
€)log, n, but this can be pushed as close to 1 as desired by choosing b = % log, n

for constant s > 2.

Corollary 1. The previous structure takes space nHy(S) + o(nlogo) if k =
o(log, n).

These results match exactly those of [18], once one corrects their k to klogo
as explained. Note that we are storing some redundant information that can
be eliminated. The last characters of block S; are stored both within Ei and
as Cj+1. Instead, we can choose to explicitly store the first k& characters of all
blocks S;, and encode only the remaining b — k symbols, S;[k + 1,b], either in
explicit or compressed form. This improves the space in practice, but in theory
it cannot be proved to be better than the scheme we have given.



4 Supporting appends

We can extend our scheme to support appending symbols, maintaining the same
space and query complexity, with each appended symbol having constant amor-
tized cost. Assume our current static structure holds n symbols. We use a buffer
of n’ = n/logn symbols where we store symbols explicitly. When the buffer is
full we use our entropy-bound data structure (EBDS, Section 3) to represent
those n/ symbols and then we empty the buffer. We repeat this until we have
logn EBDS. At this moment we reencode all the structures plus our original n
symbols, generating a new single EBDS, and restart the process with 2n symbols.

Data structures. We describe the additional structures needed to append
symbols to the EBDS.

— BF|[1,n/] is the sequence of at most n’ = n/logn uncompressed symbols.

— AP; is the i-th EBDS, with 0 < i < N. N < logn is the number of EBDS we
currently have. We call AS; the sequence AP; represents. AP, is the original
EBDS. So |ASp| =n and |AS;| = n/logn, i > 0.

Substring decoding algorithm. We want to retrieve ¢ = S[i,i + b — 1]. To
achieve this, we take the following steps:

— We algebraically calculate the indexes 0 < ¢ < < N+1 where the positions
it (for t) and i +b — 1 (for t') belong; N + 1 represents BF'. The case when
part of ¢ belongs to BF is trivially solved because the symbols are explicitly
represented in BF'.

— If t =t/ we obtain ¢ as in Section 3.2. Otherwise, we calculate the local
indexes tof¢ and t/, £f where ¢ starts in structure AP; and finishes in AP,
respectively. We decode ¢; as the last n’ —t,¢f + 1 < b symbols of AP; and
2 as the first ¢/ i< b symbols of APy . Finally, we obtain ¢ = q1¢o.

Construction time Just after we reencode everything we have that n/2 sym-
bols have been reencoded once, n/4 symbols twice, n/8 symbols 3 times and so
on. The total number of reencodings is Y-, n4 = 2n. On the other hand, we
are using a semi-static statistical encoder, which takes O(1) time to encode each
symbol. Thus each symbol has a worst-case amortized appending cost of O(1).

Space requirement. Let us now consider the storage of the appended struc-
tures.

— Table BF requires n/log, n bits
— Bach AP, is an EBDS, using | A8;|Hy(AS;)+O0(1 254 (klog o+log log | AS;]))
bits of space.



Lemma 2. The space requirement of all AP;, for 0 < ¢ < N, is
Elogn |AP;| < |S ASy... ASN|H(S ASq .. ASN)+O(log —(klog o+loglogn))

+0(c*+1 1log? n) + O(klog® n) bits, where n = |S| < |S AS; ... ASy|/2.
Proof. Consider summing any two entropies (recall Egs. (1) and (2)).
|A51|Hk(A51) + |AS2|Hk(ASQ) =
= 2wear [was [Ho(was,) + 2 e ar [was,[Ho(was,)

< lo lwas, | lo |was,|

Zwéf*’“( 8 (s, 1t 1o, ) 108 (e | ppest s () )+
O(c**1logn)

< lo [wass [ Tlwas, | O(c*+1logn

- E“’E‘M & (| nils |+\”A52\ \”AslH‘”AsQL "nA51‘+InA52‘) O &n)

< |ASlASQ|Hk(ASlASQ) + O(c**11logn) + O(klogn)
where O(c**1logn) comes from the relationship between the zero-order
entropy and the combinatorials, and O(klogn) comes from considering the
symbols in the border between AS; and ASs. Note that o*t!logn = o(n) if
k < (1 —€)log, n. Then the lemma follows by adding up the N < logn EBDSs.

Theorem 2. The structure of Theorem 1 supports appending symbols in con-
stant amortized time and retains the same space and query time complezities,
being n the current length of the sequence.

5 Application to full-text indexing

In this section we give some positive and negative results about the application
of the technique to full-text indexing, as explained in the Introduction. We have
a text T[1,n] over alphabet A and wish to compress a transformed version X of
T with our technique. Then, the question is how does Hy(X) relate to Hy(T).

5.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform, S = bwi(T'), is used by many compressed
full-text self-indexes [5,6,9]. We have introduced it in Section 2.3.

We show that there is a relationship between the k-th order entropy of a text
T and the first order entropy of S = bwt(T'). For this sake, we will compress S
with a first-order compressor, whose output size is an upper bound to nHi(.S).

A runin S is a maximal substring formed by a single letter. Let r{(S) be the
number of runs in S. In [9] they prove that rl(S) < nH(T) + o* for any k. Our
first-order encoder exploits this property, as follows:

— If i > 1 and s; = s;_1 then we output bit 0.
— Otherwise we output bit 1 followed by s; in plain form (log o bits).

Thus we encode each symbol of S by considering only its preceding symbol.
The total number of bits is n + rl(S)logo < n(1l + Hi(S)logo + o 1Og") The
latter term is negligible for k < (1 — €)log, n, for any 0 < € < 1. On the other
hand, the total space obtained by our first-order encoder cannot be less than
nH1(S). Thus we get our result:



Lemma 3. Let S = bwt(T), where T[1,n] is a text over an alphabet of size o.
Then Hy(S) < 14+ Hg(T)logo+0(1) for any k < (1—¢)log, n and any constant
0<e<l.

We can improve this upper bound if we use Arithmetic encoding to encode
the 0 and 1 bits that distinguish run heads. Their zero-order probability is p =
H(T) + %k, thus the 1 becomes —plogp — (1 — p) log(1l — p) < 1. Likewise, we
can encode the run heads s; up to their zero-order entropy. These improvements,
however, do not translate into clean formulas.

This shows, for example, that we can get (at least) about the same results of
the Run-Length FM-Index [9] by compressing bwt(T") using our structure.

5.2 The wavelet tree

Several FM-Index variants [9,6] use wavelet trees to represent S = bwit(T),
while others [7] use them for other purposes. As explained in Section 2.3, wt(S)
is composed of several binary sequences. By compressing each such sequence B
to | B|Ho(B) bits, one achieves nH(S) bits overall. The natural question is, thus,
whether we can prove any bound on the overall space if we encode sequences B
to |B|Hy(B) bits. We present next two negative examples.

— First we show a case where Hi(S) < Hg(wt(S)). We choose S =
(akakakakaf)™, then

vy = (1k:0k:0k1k:0k:)n

0 1
wt(S) =
apaq azas3
v = (1k0k0k)n vy = (1k0k)n

Let us compute Hy(S) according to Section 2.1. Note that Hyo(ws) = 0 for

all contexts except w = alg, where wg = az(azaz)" 1$, being “$” a sequence
terminator. Thus |wg| = 2n and Hp(wg) = —4=log g — Z-llog -1 —

o log ot = 1+ O(*%22). Therefore Hy(S) ~ =

2 1 logk
On the other hand, Hy(wt(S)) = Z?:o Hy(v;) ~ 5—klogk+ T + (;’)gk , as
—_—— ———
10) 1%

Hk(l/g) ~ 0.
Therefore, in this case, Hi(S) < Hy(wt(S)), by a O(log k) factor.

— Second, we show a case where H(S) > Hi(wt(S)). Now we choose S =
(akakakak)™, then

vy = (Oklkoklk)n
0 1
wt(S) =
apay asas
v = (Okok)n Vo = (1k0k)n



In this case, Hy(S) ~ 2 and Hy(wt(S)) = Yoy He(v;) = O(1%E%). Thus
Hy(S) > Hi(wt(S)) by a factor of @(n/(klogn)).

Lemma 4. The ratio between the k-th order entropy of the wavelet tree
representation of a sequence S, Hyp(wt(S)), and that of S itself, Hy(S), can
be at least $2(logk). More precisely, Hy(wt(S))/Hr(S) can be 2(logk) and
Hy(S)/Hi(wt(S)) can be 2(n/(klogn)).

What is most interesting is that Hy(wt(5)) can be O(log k) times larger than
H,(S). We have not been able to produce a larger gap. Whether Hy(wt(S)) =
O(H(S)logk) remains open.

6 Conclusions

We have presented a scheme based on k-th order modeling plus statistical en-
coding to convert any succinct data structure on sequences into a compressed
data structure. This structure permits retrieving any string of S of @(log, n)
symbols in constant time. This is an alternative to the first work achieving the
same result [18], which is based on Ziv-Lempel compression. We also show how
to append symbols to the original sequence within the same space complexity
and with constant amortized cost per appended symbol. This method also works
on the structure presented in [18].

We also analyze the behavior of this technique when applied to full-text
self-indexes, as advocated in [18]. Many compressed self-indexes achieve space
proportional to nHy(T) by first applying the Burrows-Wheeler Transform [2]
over T, S[1,n] = bwt(T). In this paper, we show a relationship between the
entropies of Hy(S) and Hy(T). More precisely, H1(S) < Hy(T)logo + o(1) for
small k& = o(log, n). On the other hand, several indexes represent S = bwt(T')
as a wavelet tree [7] on S, wt(S). We show in this paper that Hj(wt(S)) can
be at least ©(log k) times larger than Hy(S). This means that, by applying the
new technique to compress wavelet trees, we have no guarantee of compressing
the original sequence more than nmin(Hy(S), O(Hy(T)logk)). Yet, we do have
guarantees if we compress S directly.

There are several future challenges on k-th order entropy-bound data struc-
tures: (i) making them fully dynamic (we have shown how to append symbols);
(77) better understanding how the entropies evolve upon transformations such
bwt or wt; (i4i) testing them in practice.

Acknowledgment. We thank K. Sadakane and R. Grossi for providing us
article [18] and for confirming the correctness of Footnote 2.
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