
Succinct Suffix Arrays

based on Run-Length Encoding

Veli Mäkinen1 ⋆ and Gonzalo Navarro2 ⋆⋆

1 AG Genominformatik, Technische Fakultät
Universität Bielefeld, Germany.

veli@cebitec.uni-bielefeld.de
2 Center for Web Research

Dept. of Computer Science, University of Chile.
gnavarro@dcc.uchile.cl

Abstract. A succinct full-text self-index is a data structure built on a
text T = t1t2 . . . tn, which takes little space (ideally close to that of the
compressed text), permits efficient search for the occurrences of a pattern
P = p1p2 . . . pm in T , and is able to reproduce any text substring, so the
self-index replaces the text. Several remarkable self-indexes have been
developed in recent years. They usually take O(nH0) or O(nHk) bits,
being Hk the kth order empirical entropy of T . The time to count how
many times does P occur in T ranges from O(m) to O(m log n).

We present a new self-index, called run-length FM-index (RLFM index),
that counts the occurrences of P in T in O(m) time when the alphabet
size is σ = O(polylog(n)). The index requires nHk log

2
σ + O(n) bits of

space for small k. We then show how to implement the RLFM index in
practice, and obtain in passing another implementation with different
space-time tradeoffs. We empirically compare ours against the best ex-
isting implementations of other indexes and show that ours are fastest
among indexes taking less space than the text.

1 Introduction

The classical problem in string matching is to determine the occ occurrences of
a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn. Text and pattern
are sequences of characters over an alphabet Σ of size σ. Actually one may want
to know the number occ of occurrences (this is called a counting query), the
text positions of those occ occurrences (a locating query), or also a text context
around them (a context query). When the same text is queried several times with
different patterns, the text can be preprocessed to build an index structure that
speeds up searches.

⋆ Funded by the Deutsche Forschungsgemeinschaft (BO 1910/1-3) within the Computer
Science Action Program.

⋆⋆ Funded by Millennium Nucleus Center for Web Research, Grant P01-029-F, Mide-
plan, Chile.

To allow fast searches for patterns of any size, the index must allow access to
all suffixes of the text (the ith suffix of T is titi+1 . . . tn). These kind of indexes
are called full-text indexes. The suffix tree [24] is the best-known full-text index,
requiring O(m) time for counting and O(occ) for locating.

The suffix tree, unfortunately, takes O(n log n) bits of space, while the text
takes n log σ bits1. In practice the suffix tree requires about 20 times the text
size. A smaller constant factor, close to 4 in practice, is achieved by the suffix
array [16]. Yet, the space complexity is still O(n log n) bits.

Many efforts to reduce these space requirements have been pursued. This has
evolved into the concept of a self-index, a succinct index that contains enough
information to reproduce any text substring. Hence a self-index replaces the text.
Several self-indexes that require space proportional to the compressed text have
been proposed recently [10, 3, 22, 19, 8, 5].

Some structures [8, 5] need only nHk + o(n) bits of space, which is cur-
rently the lowest asymptotic space requirement that has been achieved. Here Hk

stands for the kth order entropy of T [17]. Using a recent sequence representa-
tion technique [6], the structure in [5] supports counting queries in O(m) time
on alphabets of size O(polylog(n)). Other self-indexes require either more time
for counting [22, 8, 19, 5], or O(nH0) bits of space [23].

In this paper we describe how run-length encoding of Burrows-Wheeler trans-
formed text [1], together with the backward search idea [3], can be used to
obtain a self-index, called RLFM index for “run-length FM-index”, requiring
nHk log σ + O(n) bits of space, which answers counting queries in O(m) time
on alphabets of size O(polylog(n)). Just as for other indexes [8, 5], the space
formula is valid for any k ≤ α logσ n, for any constant 0 < α < 1. The index is
interesting in practice as well. We give several considerations to implement the
RLFM index, which are of interest by themselves and also yield an implementa-
tion for a simpler index, which we call SSA for “succinct suffix array”. We show
experimentally on an English text collection that the RLFM index and the SSA
take less space than the text, and among such indexes, they are the fastest in
counting queries.

The RLFM index motivated the work in [5, 6]. The latter supersedes our
original idea [15] in theory, yet in practice the RLFM index is still appealing.

2 Basic Concepts

We denote by T = t1t2 . . . tn our text string. We assume that a special endmarker
tn = $ has been appended to T , such that “$” is smaller than any other text
character. We denote by P = p1p2 . . . pn our pattern string, and seek to find
the occurrences of P in T . For clarity, we assume that P and T are drawn over
alphabet Σ = {$, 1, . . . , σ}.

Empirical kth Order Entropy. Let nc denote the number of occurrences in
T of character c ∈ Σ. The zero-order empirical entropy of string T is H0(T) =

1 By log we mean log
2

in this paper.

−
∑

c∈Σ
nc

n
log nc

n
, where 0 log 0 = 0. If we use a fixed codeword for each character

in the alphabet, then nH0(T) bits is the smallest encoding we can achieve for
T . If the codeword is not fixed, but it depends on the k characters that precede
the character in T , then the smallest encoding one can achieve for T is nHk(T)
bits, where Hk(T) is the kth order empirical entropy of T . This is defined [17]
as

Hk(T) =
1

n

∑

W∈Σk

|WT |H0(WT),

where WT is the concatenation of all characters tj such that Wtj is a substring
of T . String W is the k-context of each such tj . We use H0 and Hk as shorthands
for H0(T) and Hk(T).

The Burrows-Wheeler Transform (BWT). The BWT [1] of a text T pro-
duces a permutation of T , denoted by T bwt. Recall that T is assumed to be
terminated by the endmarker “$”. String T bwt is the result of the following
transformation: (1) Form a conceptual matrix M whose rows are the cyclic
shifts titi+1 . . . tnt1t2 . . . ti−1 of the string T , call F its first column and L its last
column; (2) sort the rows ofM in lexicographic order; (3) the transformed text
is T bwt = L.

The main step to reverse the BWT is to compute the LF mapping, so that
LF (i) is the position of character L[i] in F . This is computed as LF (i) =
C[L[i]] + Occ(L, L[i], i), where C[c] is the number of occurrences of characters
{$, 1, . . . , c−1} in T , and Occ(L, c, i) is the number of occurrences of character c

in the prefix L[1, i]. Then T can be obtained backwards from T bwt by successive
applications of LF .

We note that matrixM is essentially the suffix array A[1, n] of T , as sorting
the cyclic shifts of T is the same as sorting its suffixes, given the endmarker “$”:
A[i] = j if and only ifM[i] = tjtj+1 . . . tn−1$t1 . . . tj−1.

The FM-Index. The FM-index [3, 4] is a self-index based on the Burrows-
Wheeler transform. It solves counting queries by finding the interval of A that
contains the occurrences of pattern P . The FM-index uses the array C and
function Occ(L, c, i) defined before. Figure 1 shows the counting algorithm. It
maintains the invariant that, at the ith phase, variables sp and ep point, respec-
tively, to the first and last row ofM prefixed by P [i, m].

Note that while array C can be explicitly stored in little space, implementing
Occ(T bwt, c, i) is problematic. The first solution [3] implemented Occ(T bwt, c, i)
by storing a compressed representation of T bwt plus some additional tables.
With this representation, Occ(T bwt, c, i) could be computed in constant time
and therefore the counting algorithm required O(m) time.

The representation of T bwt required O(nHk) bits of space, while the addi-
tional tables required space exponential in σ. Assuming that σ is constant, the
space requirement of the FM-index is 5nHk + o(n). In a practical implementa-
tion [4] this exponential dependence on σ was avoided, but the constant time
guarantee for answering Occ(T bwt, c, i) was no longer valid.

Algorithm FMcount(P [1, m],T bwt[1, n])
(1) i← m;
(2) sp← 1; ep← n;
(3) while (sp ≤ ep) and (i ≥ 1) do

(4) c← P [i];

(5) sp← C[c] + Occ(T bwt, c, sp− 1)+1;

(6) ep← C[c] + Occ(T bwt, c, ep);
(7) i← i− 1;
(8) if (ep < sp) then return “not found”

else return “found (ep− sp + 1) occurrences”.

Fig. 1. FM-index algorithm for counting the occurrences of P in T .

The method to locate pattern occurrences or to show contexts around them
also employs the Occ() function, but we omit the details here.

Succinct Data Structures for Binary Sequences. Given a binary sequence
B = b1b2 . . . bn, we denote by rankb(B, i) the number of times bit b appears in the
prefix B[1, i], and by selectb(B, i) the position in B of the ith occurrence of bit b.
By default we assume rank(B, i) = rank1(B, i) and select(B, i) = select1(B, i).
There are several results [12, 18, 2] that show how B can be represented using
n + o(n) bits so as to answer rank and select queries in constant time. The
best current results [20, 21] answer those queries in constant time using only
nH0(B) + o(n) bits of space.

Wavelet Trees. Sequences S = s1s2 . . . sn on general alphabets of size σ can
also be represented using nH0(S) + o(n log σ) bits by using a wavelet tree [8].
This tree retrieves any si in O(log σ) time. Within the same time bounds, it also
answers generalized rank and select queries.

The wavelet tree is a perfectly balanced binary tree where each node corre-
sponds to a subset of the alphabet. The children of each node partition the node
subset into two. A bitmap Bv at the node v indicates to which children does
each sequence position belong. Each child then handles the subsequence of the
parent’s sequence corresponding to its alphabet subset. The leaves of the tree
handle single alphabet characters and require no space.

To answer query rankc(S, i), we first determine to which branch of the root
does c belong. If it belongs to the left, then we recursively continue at the left
subtree with i← rank0(Broot, i). Otherwise we recursively continue at the right
subtree with i← rank1(Broot, i). The value reached by i when we arrive at the
leaf that corresponds to c is rankc(S, i). The character si is obtained similarly,
this time going left or right depending on whether Bv[i] = 0 or 1 at each level,
and finding out which leaf we arrived at. Query selectc(S, i) is answered by
traversing the tree bottom-up.

If every bitmap in the wavelet tree is represented using a data structure
that takes space proportional to its zero-order entropy, then it can be shown
that the whole wavelet tree requires nH0(S) + o(n log σ) bits of space [8]. When
σ = O(polylog(n)), a generalization of wavelet trees takes nH0(S) + o(n) bits
and answers all those queries in constant time [6].

3 RLFM: A Run-Length-based FM-Index

We studied in [14] the relationship between the runs in the Burrows-Wheeler
transformed text and the kth order entropy. We summarize the main result in
the following.

Theorem 1. The length nbw of the run-length encoded Burrows-Wheeler trans-
formed text T bwt[1, n] is at most n min(Hk(T), 1)+σk, for any k ≥ 0. In partic-
ular, this is nHk(T) + o(n) for any k ≤ α logσ n, for any constant 0 < α < 1.2

We aim in this section at indexing only the runs of T bwt, so as to obtain
an index, called run-length FM-index (RLFM), whose space is proportional to
nHk. We exploit run-length compression to represent T bwt as follows. An array
S contains one character per run in T bwt, while an array B contains n bits and
marks the beginnings of the runs.

Definition 1. Let string T bwt = cℓ1
1 cℓ2

2 . . . c
ℓn

bw

nbw
consist of nbw runs, so that

the ith run consists of ℓi repetitions of character ci. Our representation of T bwt

consists of the string S = c1c2 . . . cnbw
of length nbw, and of the bit array B =

10ℓ1−110ℓ2−1 . . . 10ℓn
bw

−1.

It is clear that S and B contain enough information to reconstruct T bwt:
T bwt[i] = S[rank(B, i)]. Since there is no useful entropy bound on B, we assume
that rank is implemented in constant time using some succinct structure that
requires n + o(n) bits [2, 18]. Hence, S and B give us a representation of T bwt

that permit us accessing any character in constant time.
The problem, however, is not only how to access T bwt, but also how to com-

pute C[c]+Occ(T bwt, c, i) for any c and i (recall Figure 1). This is not immediate,
because we want to add up all the run lengths corresponding to character c up
to position i.

In the following we show that the above can be computed by means of a
bit array B′, obtained by reordering the runs of B in lexicographic order of the
characters of each run. Runs of the same character are left in their original order.
The use of B′ will add other n+ o(n) bits to our scheme. We also use CS , which
plays the same role of C, but it refers to string S.

2 The original analysis [14] has constant 2 multiplying nHk(T). We later noticed that
the analysis can be tightened to give constant 1. This comes from showing that
−(x/(x + y)) log(x/(x + y)) − (y/(x + y)) log(y/(x + y)) ≥ 2x/(x + y) for any
x, y ≥ 0, while in Eq. (4) of [14] the expression at the right of the inequality was
x/(x + y).

Definition 2. Let S = c1c2 . . . cnbw
of length nbw, and B = 10ℓ1−110ℓ2−1 . . .

10ℓn
bw

−1. Let d1d2 . . . dnbw
be the permutation of [1, nbw] such that, for all 1 ≤

i < nbw, either cdi
< cdi+1

, or cdi
= cdi+1

and di < di+1. Then, bit array B′ is

defined as B′ = 10ℓd1
−110ℓd2

−1 . . . 10ℓdn
bw

−1. Let also CS [c] = |{i, ci < c, 1 ≤
i ≤ nbw}|.

We now prove our main results. We start with two general lemmas.

Lemma 1. Let S and B′ be defined for a string T bwt. Then, for any c ∈ Σ it
holds

C[c] + 1 = select(B′, CS [c] + 1).

Proof. CS [c] is the number of runs in T bwt that represent characters smaller than
c. Since in B′ the runs of T bwt are sorted in lexicographic order, select(B′, CS [c]+
1) indicates the position in B′ of the first run belonging to character c, if any.
Therefore, select(B′, CS [c]+1)−1 is the sum of the run lengths for all characters
smaller than c. This is, in turn, the number of occurrences of characters smaller
than c in T bwt, C[c]. Hence select(B′, CS [c] + 1)− 1 = C[c].

Lemma 2. Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ

and 1 ≤ i ≤ n, such that i is the final position of a run in B, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1.

Proof. Note that rank(B, i) gives the position in S of the run that finishes at
i. Therefore, Occ(S, c, rank(B, i)) is the number of runs in T bwt[1, i] that rep-
resent repetitions of character c. Hence it is clear that CS [c] < CS [c] + 1 +
Occ(S, c, rank(B, i)) ≤ CS [c + 1] + 1, from which follows that select(B′, CS [c] +
1 + Occ(S, c, rank(B, i))) points to an area in B′ belonging to character c, or
to the character just following that area. Inside this area, the runs are ordered
as in B because the reordering in B′ is stable. Hence select(B′, CS [c] + 1 +
Occ(S, c, rank(B, i))) is select(B′, CS [c] + 1) plus the sum of the run lengths
representing character c in T bwt[1, i]. That sum of run lengths is Occ(T bwt, c, i).
The argument holds also if T bwt[i] = c, because i is the last position of its
run and therefore counting the whole run T bwt[i] belongs to is correct. Hence
select(B′, CS [c]+1+Occ(S, c, rank(B, i))) = select(B′, CS [c]+1)+Occ(T bwt, c, i),
and then, by Lemma 1, select(B′, CS [c]+ 1+Occ(S, c, rank(B, i)))− 1 = C[c]+
Occ(T bwt, c, i).

We now prove our two fundamental lemmas that cover different cases in the
computation of C[c] + Occ(T bwt, c, i).

Lemma 3. Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ

and 1 ≤ i ≤ n, such that T bwt[i] 6= c, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1.

Proof. Let i′ be the last position of the run that precedes that of i. Since
T bwt[i] 6= c in the run i belongs to, we have Occ(T bwt, c, i) = Occ(T bwt, c, i′)
and also Occ(S, c, rank(B, i)) = Occ(S, c, rank(B, i′)). Then the lemma follows
trivially by applying Lemma 2 to i′.

Lemma 4. Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ

and 1 ≤ i ≤ n, such that T bwt[i] = c, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + Occ(S, c, rank(B, i)))

+ i − select(B, rank(B, i)).

Proof. Let i′ be the last position of the run that precedes that of i. Then, by
Lemma 2, C[c] + Occ(T bwt, c, i′) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i′)))
−1. Now, rank(B, i′) = rank(B, i) − 1, and since T bwt[i] = c, it follows that
S[rank(B, i)] = c. Therefore, Occ(S, c, rank(B, i′)) = Occ(S, c, rank(B, i)−1) =
Occ(S, c, rank(B, i))−1. On the other hand, since T bwt[i′′] = c for i′ < i′′ ≤ i, we
have Occ(T bwt, c, i) = Occ(T bwt, c, i′) + (i− i′). Thus, the outcome of Lemma 2
can now be rewritten as C[c] + Occ(T bwt, c, i) − (i − i′) = select(B′, CS [c] +
Occ(S, c, rank(B, i))) − 1. The only remaining piece to prove the lemma is that
i− i′ − 1 = i− select(B, rank(B, i)), that is, select(B, rank(B, i)) = i′ + 1. But
this is clear, since the left term is the position of the first run i belongs to and
i′ is the last position of the run preceding that of i.

Since functions rank and select can be computed in constant time, the only
obstacle to complete the RLFM using Lemmas 3 and 4 is the computation of
Occ over string S. This can be done in constant time using a new sequence
representation technique [6], when the alphabet size is O(polylog(n)). This needs
a structure of size |S|H0(S) + o(|S|). Using Theorem 1, this is no more than
nHkH0(S) + o(n) for k ≤ α logσ n, for constant 0 < α < 1.3

The representation of our index needs the bit arrays B and B′, plus the
sublinear structures to perform rank and/or select over them, and finally the
small array CS . These add 2n + o(n) bits, for a grand total of n(Hk(H0(S) +
o(1)) + 2) + o(n) bits. As Hk actually stands for min(1, Hk),and H0(S) ≤ log σ,
we can simplify the space complexity to nHk log σ + O(n) bits.

Theorem 2. The RLFM index, of size n min(Hk, 1) log σ+2n+o(n) = nHk log σ+
O(n) bits for any k ≤ α logσ n, for any constant 0 < α < 1, can be built on a
text T [1, n] with alphabet size σ = O(polylog(n)), so that the occurrences of any
pattern P [1, m] in T can be counted in time O(m).

The RLFM index can easily be extended to support reporting and context
queries. We defer the details to the journal version of this paper.

3 This can also be solved in nHkH0(S)+O(n) space, with the same restrictions, using
older techniques [23]. The final complexity changes only in small details.

4 Practical Considerations

The most problematic aspect to implement our proposal is the use of a technique
to represent sequences in a space proportional to its zero-order entropy [6]. This
technique has not yet been implemented, and this will require considerable addi-
tional effort. The same is true with the alternative technique that could be used
[23] to obtain similar time and space complexity.

Yet, previous structures supporting rank on binary sequences in n+o(n) bits
[18, 2] are very simple to implement. So an alternative is to use a wavelet tree
built on the S string of the RLFM index (that is, the run heads). The wavelet
tree is simple to implement, and if it uses structures of n+o(n) bits to represent
its binary sequences, it requires overall |S| logσ(1 + o(1)) = nHk log σ(1 + o(1))
bits of space to represent S. This is essentially the same space we achieved using
the theoretical approach.

With the wavelet tree, the O(1) time to compute Occ(S, c, i) = rankc(S, i),
becomes O(log σ). Therefore, a RLFM index implementation based on wavelet
trees counts in O(m log σ) time.

The same idea can also be applied without run-length encoding. Let us call
SSA (for “succinct suffix array”) this implementation. We notice that the SSA
can be considered as a practical implementation of a previous proposal [23]. It
has also been explicitly mentioned as a simplified version in previous work [5],
with the same O(m log σ) time complexity.

We propose now another simple wavelet tree variant that permits us repre-
senting the SSA using n(H0 + 1)(1 + o(1)) bits of space, and obtains on average
O(H0) rather than O(log σ) time for the queries on the wavelet tree. Instead
of a balanced binary tree, we use the Huffman tree of T to define the shape of
the wavelet tree. Then, every character c ∈ Σ, of frequency nc, will have its
corresponding leaf at depth hc, so that

∑
c∈Σ hcnc ≤ n(H0 + 1) is the number

of bits of the Huffman compression of T .

Consider the size of this tree. Note that each text occurrence of each character
c ∈ Σ appears exactly in hc bit arrays (those found from the root to the leaf that
corresponds to c), and thus it takes hc bits spread over the different bit arrays.
Summed over all the occurrences of all the characters we obtain the very same
length of the Huffman-compressed text,

∑
c∈Σ hcnc. Hence the overall space is

n(H0 + 1)(1 + o(1)) bits.

Note that the time to retrieve T bwt[i] is proportional to the length of the
Huffman code for T bwt[i], which is O(H0) if i is chosen at random. In the case
of Occ(T bwt, c, i) = rankc(T

bwt, i), the time corresponds again to T bwt[i] and is
independent of c. Under reasonable assumptions, one can say that on average
this version of the SSA counts in O(H0m) time.

Finally, we note that the Huffman-shaped wavelet tree can be used for the
RLFM index. This lowers its space requirement again to nHkH0(S), just like
the theoretical version. It also reduces the average time to compute rankc(S, i)
or S[i] to O(H0(S)), which is no worse than O(log σ).

5 Experiments

We compare our SSA and RLFM implementations against others. We used an 87
MB text file (ziff collection from trec-3) and randomly chose 10,000 patterns
of each length from it. We compared counting times against the following in-
dexes/implementations: FM [4] (0.36), Navarro’s implementation of FM-index,
FM-Nav [19] (1.07), CSA [22] (0.39-1.16), LZ [19] (1.49), CompactSA [13] (2.73),
CCSA [14] (1.65), our n⌈log n⌉-bits implementation of the suffix array, SA [16]
(4.37), and our implementation of a sequential search algorithm, BMH [11] (1.0).
The last three, not being self-indexes, are included to test the value of compressed
indexing. The values in parantheses tell the space usage of each index as a frac-
tion of the text size. Our indexes take SSA (0.87) and RLFM (0.67). We applied
the ideas of Section 4, and also optimized rank/select implementations [7] for
all the indexes. The codes for FM-Nav, CSA, and LZ indexes are available at
http://www.dcc.uchile.cl/~gnavarro/software and the codes for the other
indexes at http://www.cs.helsinki.fi/u/vmakinen/software.

Only the CSA has a tradeoff in counting time and space usage. We denote
by CSAX the tradeoffs (X is the sampling rate for absolute Ψ -values). The
sizes of CSA10, CSA16, CSA32, and CSA256, are 1.16, 0.86, 0.61, and 0.39,
respectively. Figure 2 shows the times to count pattern occurrences of length
m = 5 to m = 60. We omit CSA10 and CSA16, whose performace is very
similar to CSA32. It can be seen that FM-Nav is the fastest self-index, but it
is closely followed by our SSA, which needs 20% less space (0.87 times the text
size). The next group is formed by our RLFM and the CSA, both needing space
around 0.6. Actually RLFM is faster, and to reach its performance we need
CSA10, which takes space 1.16. For long patterns CCSA becomes competitive
in this group, yet it needs as much space as 1.65 times the text size. Compared
to non-self-indexes (that take much more space), we see that self-indexes are
considerably fast for counting, especially for short patterns. For longer ones,
their small space consumption is paid in a 10X slowdown for counting. Yet, this
is orders of magnitude faster than a sequential search, which still needs more
space as the text has to be in uncompressed form for reasonable performance.
Figure 3 illustrates the space/time tradeoff, for m = 30.

Finally, we notice that SSA gives a good estimate for the efficiency obtainable
with the more succinct index in [5]. That index has potential to be significantly
more space-efficient, but needs a more careful wavelet tree implementation (in
terms of constant terms in space usage) than what we have currently in SSA. This
is needed in order to gain advantage of the compression boosting mechanism.
Also, implementing the sequence representation developed in [6] will probably
improve in practice the performance of the index in [5], as well as that of the
SSA and RLFM index.

6 Conclusions

Inspired by the relationship between the kth order empirical entropy of a text
and the runs of equal characters in its Burrows-Wheeler transform, we have

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

Pattern length (m)

Time to count occurrences

 FM
 FM-Nav
 CSA32

 CSA256
 LZ

 SSA
 CCSA
 RLFM

CompactSA
SA

BMH

Fig. 2. Query times (msec) for counting the number of occurrences.

 0.01

 0.1

 1

 10

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Space (fraction of text)

Space vs counting time for m=30

FM
FM-Nav

CSA
LZ

CCSA
SSA

RLFM

Fig. 3. Space/time tradeoff for counting the number of occurrences.

designed a new index, the RLFM index, that answers counting queries in time
linear in the pattern length for any alphabet whose size is polylogarithmic on
the text length. The RLFM index was the first in achieving this.

We have also considered practical issues of implementing the RLFM index,
obtaining an efficient implementation. We have in passing presented another in-
dex, the SSA, that is larger and faster than the RLFM index. We have compared
both indexes against the existing implementations, showing that ours are com-
petitive and obtain practical space-time tradeoffs that are not reached by any
other implementation.

References

1. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

2. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

Proc. FOCS’00, pp. 390–398, 2000.
4. P. Ferragina and G. Manzini. An experimental study of an opportunistic index.

In Proc. SODA’01, pp. 269–278, 2001.
5. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly

FM-index. In Proc. SPIRE’04, pp. 150–160, 2004.
6. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Succinct representation

of sequences. Technical Report TR/DCC-2004-5, Dept. of CS, Univ. Chile, Aug.
2004.

7. R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical implementa-
tion of rank and select queries. To appear in Proc. WEA’05 (poster).

8. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA’03, pp. 841–850, 2003.

9. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Experi-
ments with compressing suffix arrays and applications. In Proc. SODA’04, pp. 636–
645, 2004.

10. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching. In Proc. STOC’00, pp. 397–406,
2000.

11. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10(6):501–
506, 1980.

12. G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS’89, pp. 549–
554, 1989.

13. V. Mäkinen. Compact suffix array — a space-efficient full-text index. Fundamenta
Informaticae, 56(1–2):191–210, 2003.

14. V. Mäkinen and G. Navarro. Compressed compact suffix arrays. In Proc. CPM’04,
pp. 420–433, 2004.

15. V. Mäkinen and G. Navarro. Run-length FM-index. In Proc. DIMACS Workshop:
“The Burrows-Wheeler Transform: Ten Years Later”, pp. 17–19, Aug. 2004. Also
in New Search Algorithms and Time/Space Tradeoffs for Succinct Suffix Arrays,
Tech. Report. C-2004-20, Univ. Helsinki, Apr. 2004.

16. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

17. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

18. I. Munro. Tables. In Proc. FSTTCS’96, pp. 37–42, 1996.
19. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algo-

rithms, 2(1):87–114, 2004.
20. R. Pagh. Low redundancy in dictionaries with O(1) worst case lookup time. In

Proc. ICALP’99, pp. 595–604, 1999.
21. R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with

applications to encoding k-ary trees and multisets. In Proc. SODA’02, pp. 233–242,
2002.

22. K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Proc. ISAAC’00, pp. 410–421, 2000.

23. K. Sadakane. Succinct representations of lcp information and improvements in the
compressed suffix arrays. In Proc. SODA’02, pp. 225–232, 2002.

24. P. Weiner. Linear pattern matching algorithm. In Proc. IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

