Indexing Text with Approximate g-grams

Gonzalo Navarro'*, Erkki Sutinen?, Jani Tanninen?, and Jorma Tarhio?
! Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl
2 Dept. of Computer Science, University of Joensuu, Finland.
{sutinen, jtanni,tarhio}@cs.joensuu.fi

Abstract. We present a new index for approximate string matching.
The index collects text g-samples, i.e. disjoint text substrings of length
g, at fixed intervals and stores their positions. At search time, part of the
text is filtered out by noticing that any occurrence of the pattern must
be reflected in the presence of some text g-samples that match approxi-
mately inside the pattern. We show experimentally that the parameteri-
zation mechanism of the related filtration scheme provides a compromise
between the space requirement of the index and the error level for which
the filtration is still efficient.

1 Introduction

Approximate string matching is a recurrent problem in many branches of com-
puter science, with applications to text searching, computational biology, pat-
tern recognition, signal processing, etc. The problem is: given a long text 77, of
length », and a (comparatively short) pattern P; ,, of length m, both sequences
over an alphabet X of size o, retrieve all the text substrings (or “occurrences”)
whose edit distance to the pattern is at most k. The edit distance between two
strings A and B, ed(A4, B), is defined as the minimum number of character in-
sertions, deletions and replacements needed to convert A into B or vice versa.
We define the “error level” as o = k/m.

In the on-line version of the problem, the pattern can be preprocessed but
the text cannot. The classical solution uses dynamic programming and is O(mn)
time [23]. It is based in filling a matrix Co. m,0..n, Wwhere C; ; is the minimum
edit distance between Py ; and a suffix of Ty ;. Therefore all the text positions
J such that Cp, ; < k are the endpoints of occurrences of P in T' with at most k
errors. The matrix is initialized at the borders with C; o = ¢ and Co; = 0, while
its internal cells are filled using

Ciyj = if Pi:Tj then Ci—l,j—l else 1—I—min(Ci_lyj,C'i_lyj_l,C’iyj_l)

which extends the previous alignment when the new characters match, and oth-
erwise selects the best choice among the three alternatives of insertion, deletion

* Work developed during postdoctoral stay at the University of Helsinki, partially
supported by the Academy of Finland and Fundacién Andes. Also supported by
Fondecyt grant 1-000929.

and replacement. Figure 1 shows an example. In an on-line searching only the
previous column C, ;_; is needed to compute the new one C, ;, so the space
requirement is only O(m).

Wi =[N O(or

dq|o|d|B|E |0
U ih|W|IN[H|O
DY ihlWINFROO|n
W NHIOIRIOo|ae
WO ~lOlR
N == Ol
NN W= OlR
N W W W oI

Fig. 1. The dynamic programming matrix to search the pattern "survey" inside the
text "surgery". Bold entries indicate matching text positions when k& = 2.

A number of algorithms improved later this result [20]. The lower bound of
the on-line problem (proved and reached in [7]) is O(n(k +log, m)/m), which is
of course £2(n) for constant m.

If the text is large even the fastest on-line algorithms are not practical, and
preprocessing the text becomes necessary. However, just a few years ago, index-
ing text for approximate string matching was considered one of the main open
problems in this area [27, 3]. Despite some progress in the last years, the indexing
schemes for this problem are still rather immature.

There are two types of indexing mechanisms for approximate string match-
ing, which we call “word-retrieving” and “sequence-retrieving”. Word retrieving
indexes [18,5, 2] are more oriented to natural language text and information re-
trieval. They can retrieve every word whose edit distance to the pattern wordis at
most k. Hence, they are not able to recover from an error involving a separator,
such as recovering the word "flowers' from the misspelled text "flo wers",
if we allow one error. These indexes are more mature, but their restriction can
be unacceptable in some applications, especially where there are no words (as in
DNA), where the concept of word is difficult to define (as in oriental languages)
or in agglutinating languages (as Finnish).

Our focus in this paper is sequence retrieving indexes, which put no restric-
tions on the patterns and their occurrences. Among these, we find three types
of approaches.

Neighborhood Generation. This approach considers that the set of strings match-
ing a pattern with k errors (called Uy (P), the pattern “k-neighborhood”) is finite,
and therefore it can be enumerated and each string in Ui (P) can be searched
using a data structure designed for exact searching. The data structures used
have been the suffix tree [16,1] and DAWG [9, 6] of the text. These data struc-
tures allow a recursive backtracking procedure for finding all the relevant text
substrings (or suffix tree / DAWG nodes), instead of a brute-force enumeration

and searching of all the strings in Uy (P). The approaches [12,15,26, 8] differ
basically in the traversal procedure used on the data structure.

Those indexes take O(n) space and construction time, but their construction
is not optimized for secondary memory and is very inefficient in this case (see,
however, [10]). Moreover, the structure is very inefficient in space requirements,
since it takes 12 to 70 times the text size (see, e.g. [11]). The simpler search
approaches [12] can run over a suffix array [17,13], which takes 4 times the text
size. With respect to search times, they are asymptotically independent on n,
but exponential in m or k. The reason is that |Ug(P)| = O(min(3™, (mo)¥) [26].
Therefore, neighborhood generation is a promising alternative for short patterns
only.

Reduction to Ezact Searching. These indexes are based on adapting on-line fil-
tering algorithms. Filters are fast algorithms that discard large parts of the text
checking for a necessary condition (simpler than the matching condition). Most
such filters are based on finding substrings of the pattern without errors, and
checking for potential occurrences around those matches. The index is used to
quickly find those pattern substrings without errors.

The main principle driving these indexes is that, if two strings match with %
errors and k+ s non-overlapping samples are extracted from one of them, then at
least s of these must appear unaltered in the other. Some indexes [24, 21] use this
principle by splitting the pattern in & 4+ s nonoverlapping pieces and searching
these in the text, checking the text surrounding the areas where s pattern pieces
appear at reasonable distances. These indexes need to be able to find any text
substring that matches a pattern piece, and are based on suffix trees or indexing
all the text g-grams (i.e. substrings of length g¢).

In another approach [25], the index stores the locations of all the text g-grams
with a fixed interval h; these g-grams are called “g-samples”. The distance h
between samples is computed so that there are at least k£ + s ¢g-samples inside
any occurrence. Thus, those text areas are checked where s pattern g-grams
appear at reasonable distances among each other. Related indexes [15,14] are
based on the intersections of two sets of ¢g-grams: that in the pattern and that
in its potential occurrence.

These indexes can also be built in linear time and need O(n) space. De-
pending on g they achieve different space-time tradeoffs. In general, filtration
indexes are much smaller than suffix trees (1 to 10 times the text size), although
they work well for low error levels a: their search times are sublinear provided
a = O(1/log, n). A particularly interesting index with respect to space re-
quirements is [25], because it does not index all the text g-grams. Rather, the
g-samples selected are disjoint and there can be even some space among them.
Using this technique the index can take even less space than the text, although
the acceptable error level is reduced.

Intermediate Partitioning. Somewhat between the previous approaches are [19,
22], because they do not reduce the search to exact but to approximate search of
pattern pieces, and use a neighborhood generating approach to search the pieces.

The general principle is that if two strings match with at most % errors and j
disjoint substrings are taken from one of them, then at least one of these appears
in the other with |k/j| errors. Hence, these indexes split the pattern in j pieces,
each piece is searched in the index allowing |k/j| errors and the approximate
matches of the pieces are extended to complete pattern occurrences. The existing
indexes differ in how j is selected (be it by indexing-time constraints [19] or by
optimization goals [22]), and in the use of different data structures used to search
the pieces with a neighborhood generating approach. They achieve search time
complexities of O(n*), where A < 1 for low enough error levels (a < 1 —e/+/7,
a limit shown to be probably impossible to surpass in [4]).

The idea of intermediate partitioning has given excellent results [22] and
was shown to be an optimizing point between the extremes of neighborhood
generating (that worsens as longer pieces are searched) and reduction to exact
searching (that worsens as shorter pieces are searched). However, it has only
been exploited in one direction: taking the pieces from the pattern. The other
choice is to take text g-samples ensuring that at least 7 of them lie inside any
match of the pattern, and search the pattern g-grams allowing |k/j| errors in
the index of text g-samples. This idea has been indeed proposed in [25] as an
on-line filter, but it has never evolved into an indexing approach.

This is our main purpose. We first improve the filtering condition of [25] and
then show how an index can be designed based upon this principle. We finally
implement the index and show how it performs. The index has the advantage
of taking little space and being an alternative tradeoff between neighborhood
generation and reduction to exact searching. By selecting the interval kA between
the g-samples, the user is able to decide which of the two goals is more rlevant:
saving space by a higher A or better performance for higher error levels, ensured
by a lower h.

In particular, the scheme allows us to handle the problem posed by high error
levels in a novel way: by adjusting parameters, we can do part of the dynamic
programming already in the filtration phase, thus restricting the text area to be
verified. In certain cases, this gives a better overall performance compared to
the case where a weaker filtration mechanism results in a larger text area to be
checked by dynamic programming.

2 The Filtration Condition

A filtration condition can be based on locating approximate matches of pattern
g-grams in the text. In principle, this leads to a filtration tolerating higher error
level as compared to the methods applying exact g-grams: an error breaking
pattern g-gram u yields one error on it. Thus, the modified g-gram v’ in an
approximate match is no more an exact g-gram of the pattern, but an approx-
imate g-gram of it. Hence, while «' cannot be used in a filtration scheme based
on exact g-grams, it gives essential information for a filtration scheme based on
approximate g-grams.

This is the idea we pursue in this section. We start with a lemma that is used
to obtain a necessary condition for an approximate match.

Lemma 1. Let A and B be two strings such that ed(A,B) < k. Let A =
Az Aszy...xj_1Aj, for strings A; and x; and for any j > 1. Then, at least
one string A; appears in B with at most |k/j]| errors.

Proof: since at most k edit operations (errors) are performed on A to convert it
into B, at least one of the 4;’s get no more than |k/j] of them. Or put in another
way, if each A; appears inside B with not less than |k/j| 4+ 1 > k/j errors, then
the whole A needs strictly more than j - k/j = k errors to be converted into B.

This shows that an approximate match for a pattern implies also the approx-
imate match of some pattern pieces. It is worthwhile to note that it is possible
that j-|k/j| < k, so we are not only “distributing” the errors across pieces but
also “removing” some of them. Figure 2 illustrates.

Al 1 A2 x2 A3

A] e———--—-———————
AL A A3
B T %% NNNAANNAANN/

Fig. 2. Tllustration of Lemma 1, where ¥ = 5 and 7 = 3. At least one of the A4;’s has
at most one error (in this case A4;).

Lemma 1 is used by considering that the string B is the pattern and the
string A is its occurrence in the text. Hence, we need to extract j pieces from
each potential pattern occurrence in the text.

Given some ¢ and h > ¢, we extract one text g-gram (called a “g-sample”)
each h text characters. Let us call d, the g-samples, di,ds, .. "dL%J’ where d, =
Thir—1)41..h(r=1)4¢-

We need to guarantee that there are at least j text samples inside any oc-
currence of P. As an occurrence of P has minimal length m — k, the resulting

condition on A is . .
h< {uJ (1)
J

(note that h has to be known at indexing time, when m and %k are unknown, but
in fact one can use a fixed h and adjust j at query time).

Figure 3 illustrates the idea, pointing out another fact not discussed until
now. If the pattern P matches in a text area containing a test sequence of g-
samples D, = d,_jy1...d,, then d,_j; must match inside a specific substring
Q; of P. These pattern blocks are overlapping substrings of P, namely Q; =
Pl 1yhit. ibtg—14k-

A cumulative best match distance is computed for each D,, as the sum of the
best distances of the involved consecutive text samples d,_;; inside the @Q,’s.

More formally, we compute for D,
Y bed(dr—jivi, Qi)
1<i<y

where

bed(u, Q) = min ed(u, Q")

(where < denotes substring of). That is, bed(u, Q) gives the best edit distance
between u and a substring of Q. The text area corresponding to D, is examined
only if its cumulative best match distance is at most k.

o [IQ | IQS | | Q4 |

Fig. 3. Searching using g-samples, showing how the four relevant text samples at each
position are aligned with the corresponding pattern blocks.

The algorithm works as follows. Each counter M, , corresponding to the se-
quence D, =d,_;41...d,, indicates the number of errors produced by D,. The
counters are initialized to M, = j(e + 1), were ¢ > e > |k/j| is unspecified by
now. That is, we start by assuming that each text g-sample yields enough errors
to disallow a match. Later, we can concentrate only on those that can be found
in the pattern with at most e errors.

Now, for each pattern block @;, we obtain its “g-gram e-environment”, de-
fined as

US(@:) = {u € 29 bed(u, Q) < e}

which is the set of possible g-grams that appear inside Q; with at most e errors.
Now, each d, € UZ(Q;) represents a text g-sample that matches inside pattern
block @Q;. Therefore, we update all the counters

MT-I-j—i — Mr+j—i - (6 + 1) + bed(dra Qz)

Finally, all the text areas whose counter M, < k are checked with dynamic
programming. Of course, it is not necessary to maintain all the counters M,
since they can implicitly be assumed to be initialized at j(e + 1) until a text
g-sample participating in D, is found in some UZ2(Q;).

3 Finding Approximate ¢g-Grams

In this section we focus on the problem of finding all the text g-samples that
appear inside a given pattern block @;, that is, find all the r such that d, €
UZ2(Q;). The first observation is that it is not necessary to generate all UJ(Q;),
since we are interested only in the text g-samples (more specifically, in their
positions). Rather, we generate

19(Q:) = {r € 1..|n/h), bed(d,, Q;) < e}

The idea is to store all the different text g-samples in a trie data structure,
where the leaves store the corresponding r values. A backtracking approach is
used to find all the leaves of the trie that are relevant for a given pattern block
Q;, i.e. those that match inside Q; with at most e errors.

From now on we use @ = Q; and use i for other purposes. If considering
a specific text g-sample S = s;...s, (corresponding to some d,), the problem
is solved by the use of the dynamic programming algorithm explained in the
Introduction, where the text is the pattern block @ and the pattern is the text
g-sample S. That is, we fill a matrix Cy_ 4 0..|0| such that C; ; is the smallest edit
distance between S; ; and a suffix of @ ;. When this matrix is filled, we have
that the text g-sample S is relevant if and only if C,,; < e for some £ (in other
words, S matches somewhere inside @ with at most e errors). In a trie traversal
of the g-samples, the characters of S are obtained one by one, so this matrix will
be filled row-wise instead of the typical on-line column-wise filling.

The algorithm works as follows. We perform an exhaustive search on the
trie, starting at the root and entering into all the children of each node. At each
moment, if we are in a trie node representing a prefix S’ of some text g-samples,
we keep C|s ¢ for all £, i.e. the current row of the dynamic programming matrix.
Upon entering into the children of the current node following an edge labeled
with the letter ¢, a new row of C is computed from the current one using c as
the next pattern letter. When we reach the leaf nodes of the trie (at depth g¢)
we check in the last row of C' whether there is a cell with value at most e, in
which case the corresponding text g-sample is reported. Note that since we only
store the rows of the ancestors of the current node at each time, the total space
requirement for the backtrack is just O(|Q|g) = O(mgq).

As we presented it, it seems that we traverse all the nodes of the trie. How-
ever, some pruning can be done. As all the values from a row to the next are
nondecreasing, we know that if all the values of a row are larger than e then
this will keep true in descendant nodes. Therefore, at that point we can abandon
that branch of the trie without actually considering its subtree.

Figure 4 shows an example, using @ = "surgery" and S = "survey". If
e = 1 then the alternative path shown can be abandoned immediately since all
its entries are larger than 2.

An alternative way to consider the problem is to model the search with a
non-deterministic automaton (NFA). Consider the NFA for e = 2 errors shown
in Figure 5. It is built for a fixed pattern block @ and is fed with the characters

s|julr|g|le|r |y
olofoflofoflo]o]o
s|tjof1[1[1]1]1]1
ul2|1]0]1]2]2]2]2
r|3|21]o0]1]2]2]3
v]ia[3]2[1]1]2]3]3
e|5[4[3[2]2]1[2]3
yl6[5]4]3]3]2]2]2

Fig. 4. The dynamic programming algorithm run over the trie of text g-samples. We
show just one path and one additional link.

of a text g-gram S. Every row denotes the number of errors seen (the first
row zero, the second row one, etc.). Every column represents matching a prefix
of S. Horizontal arrows represent matching a character (i.e. if the characters
of S and @ match, we advance in S and in Q). All the others increment the
number of errors (move to the next row): vertical arrows insert a character in
S (we advance in @ but not in §), solid diagonal arrows replace a character
(we advance in Q and S), and dashed diagonal arrows delete a character from
S (they are e-transitions, since we advance in S without advancing in Q). The
initial set of e-transitions allow a match of S to start anywhere inside Q. The
g-gram prefix S’ of S matches inside Q as long as there is an active state after
considering all the characters of S’.

1error

2 errors

Fig.5. An NFA for approximate string matching inside the pattern block Q =
"surgery" with two errors. The shaded states are those active after considering the
text g-sample "survey".

In [4,22] it is shown that this NFA can be simulated using bit-parallelism,
mapping each state to a bit in a computer word and updating all the states of
a single computer word in O(1) operation. The total time needed is O(|Q|e/w)
per node of the trie, where w is the number of bits in the computer word (cf. the
dynamic programming O(|@|) time per trie node). The only change necessary
to the simulation technique used in [22] is to start with all the states active to
account for the initial e-transitions, absent in [22]. Checking that there is an
active state in the automaton is easily done (so the branch of the trie can be
abandoned if there are no more active states). Finally, checking the exact number
of errors of a match (i.e. finding the smallest row with an active state) is easily
done in O(e) time using bit masks. We use this simulation in our implementation.

4 The Parameters of the Problem

The value of e has been left unspecified in the previous development. This is
because there is a tradeoff involved. If we use a small e value, then the search
of the e-environments will be cheaper, but as we have to assume that the text
g-samples not found have only e + 1 errors (which may underestimate the real
number of errors it has), so some unnecessary verifications will be carried out.
On the other hand, using larger e values gives more exact estimates of the actual
number of errors of each text g-sample and hence reduces unnecessary verifica-
tions in exchange for a higher cost to search the e-environments.

As the cost of this search grows exponentially with e, the minimal e = | &/ |
can be a good choice. With the minimal e the sequences D,_;; are assumed to
have j(|k/j| + 1) errors, which can get as low as k + 1. In that particular case
we can avoid the use of counters, since every text g-gram d,_;; found inside @;
will trigger a verification in D,.

It is interesting to consider the interplay between the different remaining
parameters h, ¢ and j. Equation (1) relates these parameters, introducing also
m and k in the condition. In general m and & are not known at index construction
time, while h and ¢ have to be determined at that moment. Therefore, 7 must be
adjusted at search time in order to make Eq. (1) hold. For a given query, j has
a maximum acceptable value. As j grows, longer test sequences with less errors
per piece are used, so the cost to find the relevant g-samples decreases but the
amount of text verification increases.

So 7 and e permit finding the best compromise between both parts of the
search. On the other hand, ¢ and h determine the space usage of the index,
which is in the worst case O(c? 4+ n/h). Having a smaller index puts restrictions
in the allowed j values and, indirectly, on e.

5 Experimental Results

In the following experiments, the texts have been generated according to the
symmetric Bernoulli model where each character occurs at the same probability,
independently of other characters, like its predecessors.

Table 1 shows how the error level increases the number of processed columns,
in cases of random text in 4- and 20-character alphabets. The behavior in other
alphabets is similar but a bigger alphabet implies a higher tolerated error level.
Note that some fluctuations in the number of processed columns are due to the
change in the value of e.

oc=4 o=20

k| j| el Columns| Columns
0...3] 5| 0 0.0 0.0
4| 5| 0 7.5 0.0
5 5| 1 0.0 0.0
6| 4| 1 33.9 0.0
7] 4| 1 93.7 0.1
8 4| 2 97.0 0.0
9| 4| 2 100.0 0.0
10| 4| 2 100.0 0.2
11| 4| 2 100.0 9.0
12| 3| 4 100.0 99.9
13| 3| 4 100.0 100.0

Table 1. Processed columns (in per cent) for m = 40, ¢ = h = 6, and n = 100, 000.

Altering the number of g-samples in test sequences D,, i.e., the value of j,
is related to changes in the values of A and ¢g. This phenomenon lets us also to
achieve more efficient filtration for higher error levels. Compare the results in
Table 2 to those in Table 1.

k| h| q| j el Cols
6| 7| 7| 4] 1 6.0
7] 8| 8| 3| 2| 44.2
8 8| 8| 3| 2| 95.6

Table 2. Processed columns (in per cent) for ¢ = 4, m = 40, and n = 100,000, for
different values of h, ¢ and j.

Table 3 shows how our scheme allows to do part of the dynamic programming
already in the filtration phase, by traversing the trie structure and evaluating
minimum edit distances between ¢g-samples and substrings of pattern blocks. This
is based on increasing the value of e. Although the results seem promising at the
first sight, one has to remember that a small portion of processed columns does
not necessarily imply a shorter processing time. In fact, the optimal setting for

e depends on several factors, like the length of the text and the implementation
of the trie.

Columns| Traversed nodes

e

1 33.3 8,061
2 11.6 19,304
3 9.6 21,500
4 7.1 21,544
5 4.9 21,544
6 2.1 21,544

Table 3. Processed columns (in per cent) and the number of traversed nodes of the
g-sample trie for o = 4, m =40,k =6, g = h = 6, § = 4, and n = 100, 000, for different
values of e.

The distance h between the g-samples is crucial for the space requirement of
the index. Table 4 shows that a lower interval A, and thus, a larger index, yields
a more efficient filtration, as indicated, for example, in the number of processed
columns.

j| Columns
1 100.0
8 99.8
6 90.7
5
4

1

14.2
0.1

[A e

Table 4. Processed columns (in per cent) with a decreasing h, for o = 4, m = 40,
k=5,qg =3, e =3, n = 100,000. Note that the parameter 5 has to be adjusted
according to h.

Since the index of the presented approach only stores non-overlapping g-
samples, its space requirement is small, and can be kept below the size of the
text [25]. This should be kept in mind when the performance is compared to other
related approaches. Table 5 shows that the new approach works for a small error
level almost as efficiently as its competitor [22] which, however, consumes more
space; in fact, four times as much as the text does. It is obvious that an index
which stores only a fraction of text portions cannot compete with one with more
information on the text.

Let us conclude by briefly discussing how the space consumption of our index
depends on the sampling interval h. The standard implementation of a g-gram
index stores all the locations of all the g-grams of the text. Since the number

k[Alg. A] Alg. B
4 0.0 1.0
5 0.3 1.0
6 5.3 1.1
71 302 1.2
8| 8Ll 229
9| 995 236

Table 5. Processed columns (in per cent) for relatively low error levels. The new
approach, denoted as A, collects non-overlapping g-samples, and an intermediate par-
titioning approach [22], denoted by B, stores all the text pieces which need to be
searched for. The parameters are as follows: o = 4, m = 40, ¢ = h = 6 for algorithm
A, 3 =4, e =6, and n = 100, 000.

of g-grams in a text of length n is n — ¢ 4+ 1 and storing a position takes logn
bits (without compression), the overall space consumption is nlogn (g is small
compared to n). Let us define a space saving factor v, as the space requirement
ratio between our method and the standard approach, i.e.

3log 3

1
vy = nlogn Ny (for large n).

Table 6 shows how the space saving factor decreases with an increasing h.

UT
1.000
0.470
0.302
0.220
0.172
0.141
0.119
0.102
0.090
0.080

—_
|ocooo\10':cnu>wmp—t|;;~|

Table 6. Space saving factor v, for n = 100, 000.

6 Conclusions

We have introduced a static pattern matching scheme which is based on locating
approximate matches of the pattern substrings among the g-samples of the text.
The mechanism breaks the fixed division of pattern matching into two phases,

filtration and checking, where dynamic programming belongs only to the last
phase. In our approach, it is possible to share dynamic programming between
these phases by setting appropriate parameters. This is an important feature,
since it makes it possible to tune the algorithm according to the particular
problem instance. In some cases, saving space is a critical issue, whereas a high
error level requires a more dense index. At the moment, the presented approach
presumes non-overlapping g-samples (h > ¢). However, this is a question of
parameterization. In the future, we will evaluate the impact of these parameters
in different environments and problem instances, and enhance the scheme to
allow also overlapping g-samples.

References

1. A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag,
New York, 1985.

2. M. Aratdjo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In
Proc. WSP’97, pages 2-20. Carleton University Press, 1997.

3. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer
Congress, volume I, pages 465-476. Elsevier Science, September 1992.

4. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127-158, 1999.

5. R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text
retrieval. J. of the American Society for Information Science (JASIS), 51(1):69—
82, January 2000.

6. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas.
The samllest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31-55, 1985.

7. W. Chang and T. Marr. Approximate string matching and local similarity. In
Proc. CPM’94, LNCS 807, pages 259-273, 1994.

8. A. Cobbs. Fast approximate matching using suffix trees. In Proc. CPM’95, pages
41-54, 1995. LNCS 937.

9. M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63—-86, 1986.

10. M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottle-
neck in suffix tree construction. In Proc. SODA’98, pages 174-183, 1998.

11. R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees.
In Proc. WAE’99, LNCS 1668, pages 30-42, 1999.

12. G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin.
Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.

13. G. Gonnet, R. Baeza-Yates, and T. Snider. Information Retrieval: Data Structures
and Algorithms, chapter 3: New indices for text: Pat trees and Pat arrays, pages
66-82. Prentice-Hall, 1992.

14. N. Holsti and E. Sutinen. Approximate string matching using g-gram places. In
Proc. 7th Finnish Symposium on Computer Science, pages 23-32. University of
Joensuu, 1994.

15. P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in
static texts. In Proc. of MFCS’91, volume 16, pages 240-248, 1991.

16. D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, 1973.

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

U. Manber and E. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, pages 935-948, 1993.

U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In
Proc. USENIX Technical Conference, pages 23-32, Winter 1994.

E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12(4/5):345-374, Oct/Nov 1994.

G. Navarro. A guided tour to approximate string matching. Technical Report
TR/DCC-99-5, Dept. of Computer Science, Univ. of Chile, 1999. To appear
in ACM Computing Surveys. £tp://ftp.dcc.uchile.cl/pub/users/gnavarro/-
survasm.ps.gz.

G. Navarro and R. Baeza-Yates. A practical g-gram index for text retrieval allowing
errors. CLEI Electronic Journal, 1(2), 1998. http://www.clei.cl.

G. Navarro and R. Baeza-Yates. A new indexing method for approximate string
matching. In Proc. CPM’99, LNCS 1645, pages 163-186, 1999.

P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359-373, 1980.

F. Shi. Fast approximate string matching with g-blocks sequences. In Proc.
WSP’96, pages 257-271. Carleton University Press, 1996.

E. Sutinen and J. Tarhio. Filtration with g-samples in approximate string match-
ing. In Proc. CPM’96, LNCS 1075, pages 50-61, 1996.

E. Ukkonen. Approximate string matching over suffix trees. In Proc. CPM’93,
pages 228-242, 1993.

S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83-91, October 1992.

