
Indexing Text with Approximate q-gramsGonzalo Navarro1?, Erkki Sutinen2, Jani Tanninen2, and Jorma Tarhio21 Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl2 Dept. of Computer Science, University of Joensuu, Finland.fsutinen,jtanni,tarhiog@cs.joensuu.fiAbstract. We present a new index for approximate string matching.The index collects text q-samples, i.e. disjoint text substrings of lengthq, at �xed intervals and stores their positions. At search time, part of thetext is �ltered out by noticing that any occurrence of the pattern mustbe re
ected in the presence of some text q-samples that match approxi-mately inside the pattern. We show experimentally that the parameteri-zation mechanism of the related �ltration scheme provides a compromisebetween the space requirement of the index and the error level for whichthe �ltration is still e�cient.1 IntroductionApproximate string matching is a recurrent problem in many branches of com-puter science, with applications to text searching, computational biology, pat-tern recognition, signal processing, etc. The problem is: given a long text T1::n oflength n, and a (comparatively short) pattern P1::m of length m, both sequencesover an alphabet � of size �, retrieve all the text substrings (or \occurrences")whose edit distance to the pattern is at most k. The edit distance between twostrings A and B, ed(A;B), is de�ned as the minimum number of character in-sertions, deletions and replacements needed to convert A into B or vice versa.We de�ne the \error level" as � = k=m.In the on-line version of the problem, the pattern can be preprocessed butthe text cannot. The classical solution uses dynamic programming and is O(mn)time [23]. It is based in �lling a matrix C0::m;0::n, where Ci;j is the minimumedit distance between P1::i and a su�x of T1::j. Therefore all the text positionsj such that Cm;j � k are the endpoints of occurrences of P in T with at most kerrors. The matrix is initialized at the borders with Ci;0 = i and C0;j = 0, whileits internal cells are �lled usingCi;j = if Pi = Tj then Ci�1;j�1 else 1 +min(Ci�1;j; Ci�1;j�1; Ci;j�1)which extends the previous alignment when the new characters match, and oth-erwise selects the best choice among the three alternatives of insertion, deletion? Work developed during postdoctoral stay at the University of Helsinki, partiallysupported by the Academy of Finland and Fundaci�on Andes. Also supported byFondecyt grant 1-000929.

and replacement. Figure 1 shows an example. In an on-line searching only theprevious column C�;j�1 is needed to compute the new one C�;j, so the spacerequirement is only O(m). s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Fig. 1. The dynamic programming matrix to search the pattern "survey" inside thetext "surgery". Bold entries indicate matching text positions when k = 2.A number of algorithms improved later this result [20]. The lower bound ofthe on-line problem (proved and reached in [7]) is O(n(k+ log�m)=m), which isof course
(n) for constant m.If the text is large even the fastest on-line algorithms are not practical, andpreprocessing the text becomes necessary. However, just a few years ago, index-ing text for approximate string matching was considered one of the main openproblems in this area [27,3]. Despite some progress in the last years, the indexingschemes for this problem are still rather immature.There are two types of indexing mechanisms for approximate string match-ing, which we call \word-retrieving" and \sequence-retrieving". Word retrievingindexes [18,5, 2] are more oriented to natural language text and information re-trieval. They can retrieve every word whose edit distance to the pattern word is atmost k. Hence, they are not able to recover from an error involving a separator,such as recovering the word "flowers" from the misspelled text "flo wers",if we allow one error. These indexes are more mature, but their restriction canbe unacceptable in some applications, especially where there are no words (as inDNA), where the concept of word is di�cult to de�ne (as in oriental languages)or in agglutinating languages (as Finnish).Our focus in this paper is sequence retrieving indexes, which put no restric-tions on the patterns and their occurrences. Among these, we �nd three typesof approaches.Neighborhood Generation. This approach considers that the set of strings match-ing a pattern with k errors (called Uk(P), the pattern \k-neighborhood") is �nite,and therefore it can be enumerated and each string in Uk(P) can be searchedusing a data structure designed for exact searching. The data structures usedhave been the su�x tree [16, 1] and DAWG [9, 6] of the text. These data struc-tures allow a recursive backtracking procedure for �nding all the relevant textsubstrings (or su�x tree / DAWG nodes), instead of a brute-force enumeration

and searching of all the strings in Uk(P). The approaches [12,15, 26, 8] di�erbasically in the traversal procedure used on the data structure.Those indexes take O(n) space and construction time, but their constructionis not optimized for secondary memory and is very ine�cient in this case (see,however, [10]). Moreover, the structure is very ine�cient in space requirements,since it takes 12 to 70 times the text size (see, e.g. [11]). The simpler searchapproaches [12] can run over a su�x array [17, 13], which takes 4 times the textsize. With respect to search times, they are asymptotically independent on n,but exponential in m or k. The reason is that jUk(P)j = O(min(3m; (m�)k) [26].Therefore, neighborhood generation is a promising alternative for short patternsonly.Reduction to Exact Searching. These indexes are based on adapting on-line �l-tering algorithms. Filters are fast algorithms that discard large parts of the textchecking for a necessary condition (simpler than the matching condition). Mostsuch �lters are based on �nding substrings of the pattern without errors, andchecking for potential occurrences around those matches. The index is used toquickly �nd those pattern substrings without errors.The main principle driving these indexes is that, if two strings match with kerrors and k+s non-overlapping samples are extracted from one of them, then atleast s of these must appear unaltered in the other. Some indexes [24, 21] use thisprinciple by splitting the pattern in k + s nonoverlapping pieces and searchingthese in the text, checking the text surrounding the areas where s pattern piecesappear at reasonable distances. These indexes need to be able to �nd any textsubstring that matches a pattern piece, and are based on su�x trees or indexingall the text q-grams (i.e. substrings of length q).In another approach [25], the index stores the locations of all the text q-gramswith a �xed interval h; these q-grams are called \q-samples". The distance hbetween samples is computed so that there are at least k + s q-samples insideany occurrence. Thus, those text areas are checked where s pattern q-gramsappear at reasonable distances among each other. Related indexes [15,14] arebased on the intersections of two sets of q-grams: that in the pattern and thatin its potential occurrence.These indexes can also be built in linear time and need O(n) space. De-pending on q they achieve di�erent space-time tradeo�s. In general, �ltrationindexes are much smaller than su�x trees (1 to 10 times the text size), althoughthey work well for low error levels �: their search times are sublinear provided� = O(1= log� n). A particularly interesting index with respect to space re-quirements is [25], because it does not index all the text q-grams. Rather, theq-samples selected are disjoint and there can be even some space among them.Using this technique the index can take even less space than the text, althoughthe acceptable error level is reduced.Intermediate Partitioning. Somewhat between the previous approaches are [19,22], because they do not reduce the search to exact but to approximate search ofpattern pieces, and use a neighborhood generating approach to search the pieces.

The general principle is that if two strings match with at most k errors and jdisjoint substrings are taken from one of them, then at least one of these appearsin the other with bk=jc errors. Hence, these indexes split the pattern in j pieces,each piece is searched in the index allowing bk=jc errors and the approximatematches of the pieces are extended to complete pattern occurrences. The existingindexes di�er in how j is selected (be it by indexing-time constraints [19] or byoptimization goals [22]), and in the use of di�erent data structures used to searchthe pieces with a neighborhood generating approach. They achieve search timecomplexities of O(n�), where � < 1 for low enough error levels (� < 1� e=p�,a limit shown to be probably impossible to surpass in [4]).The idea of intermediate partitioning has given excellent results [22] andwas shown to be an optimizing point between the extremes of neighborhoodgenerating (that worsens as longer pieces are searched) and reduction to exactsearching (that worsens as shorter pieces are searched). However, it has onlybeen exploited in one direction: taking the pieces from the pattern. The otherchoice is to take text q-samples ensuring that at least j of them lie inside anymatch of the pattern, and search the pattern q-grams allowing bk=jc errors inthe index of text q-samples. This idea has been indeed proposed in [25] as anon-line �lter, but it has never evolved into an indexing approach.This is our main purpose. We �rst improve the �ltering condition of [25] andthen show how an index can be designed based upon this principle. We �nallyimplement the index and show how it performs. The index has the advantageof taking little space and being an alternative tradeo� between neighborhoodgeneration and reduction to exact searching. By selecting the interval h betweenthe q-samples, the user is able to decide which of the two goals is more rlevant:saving space by a higher h or better performance for higher error levels, ensuredby a lower h.In particular, the scheme allows us to handle the problem posed by high errorlevels in a novel way: by adjusting parameters, we can do part of the dynamicprogramming already in the �ltration phase, thus restricting the text area to beveri�ed. In certain cases, this gives a better overall performance compared tothe case where a weaker �ltration mechanism results in a larger text area to bechecked by dynamic programming.2 The Filtration ConditionA �ltration condition can be based on locating approximate matches of patternq-grams in the text. In principle, this leads to a �ltration tolerating higher errorlevel as compared to the methods applying exact q-grams: an error breakingpattern q-gram u yields one error on it. Thus, the modi�ed q-gram u0 in anapproximate match is no more an exact q-gram of the pattern, but an approx-imate q-gram of it. Hence, while u0 cannot be used in a �ltration scheme basedon exact q-grams, it gives essential information for a �ltration scheme based onapproximate q-grams.

This is the idea we pursue in this section. We start with a lemma that is usedto obtain a necessary condition for an approximate match.Lemma 1. Let A and B be two strings such that ed(A;B) � k. Let A =A1x1A2x2:::xj�1Aj , for strings Ai and xi and for any j � 1. Then, at leastone string Ai appears in B with at most bk=jc errors.Proof: since at most k edit operations (errors) are performed on A to convert itinto B, at least one of the Ai's get no more than bk=jc of them. Or put in anotherway, if each Ai appears inside B with not less than bk=jc+ 1 > k=j errors, thenthe whole A needs strictly more than j � k=j = k errors to be converted into B.This shows that an approximate match for a pattern implies also the approx-imate match of some pattern pieces. It is worthwhile to note that it is possiblethat j � bk=jc < k, so we are not only \distributing" the errors across pieces butalso \removing" some of them. Figure 2 illustrates.
A

B

A2 A3x2x1A1

A3’A2’A1’Fig. 2. Illustration of Lemma 1, where k = 5 and j = 3. At least one of the Ai's hasat most one error (in this case A1).Lemma 1 is used by considering that the string B is the pattern and thestring A is its occurrence in the text. Hence, we need to extract j pieces fromeach potential pattern occurrence in the text.Given some q and h � q, we extract one text q-gram (called a \q-sample")each h text characters. Let us call dr the q-samples, d1; d2; : : : ; dbnh c, where dr =Th(r�1)+1::h(r�1)+q .We need to guarantee that there are at least j text samples inside any oc-currence of P . As an occurrence of P has minimal length m � k, the resultingcondition on h is h � �m � k � q + 1j � (1)(note that h has to be known at indexing time, when m and k are unknown, butin fact one can use a �xed h and adjust j at query time).Figure 3 illustrates the idea, pointing out another fact not discussed untilnow. If the pattern P matches in a text area containing a test sequence of q-samples Dr = dr�j+1 : : :dr, then dr�j+i must match inside a speci�c substringQi of P . These pattern blocks are overlapping substrings of P , namely Qi =P(i�1)h+1:::ih+q�1+k .A cumulative best match distance is computed for each Dr, as the sum of thebest distances of the involved consecutive text samples dr�j+i inside the Qi's.

More formally, we compute for DrX1�i�j bed(dr�j+i; Qi)where bed(u;Q) = minQ0<Q ed(u;Q0)(where < denotes substring of). That is, bed(u;Q) gives the best edit distancebetween u and a substring of Q. The text area corresponding to Dr is examinedonly if its cumulative best match distance is at most k.
q q q q

P

T

Q1
Q2

Q3
Q4

h h h hFig. 3. Searching using q-samples, showing how the four relevant text samples at eachposition are aligned with the corresponding pattern blocks.The algorithm works as follows. Each counter Mr , corresponding to the se-quence Dr = dr�j+1 : : :dr, indicates the number of errors produced by Dr . Thecounters are initialized to Mr = j(e + 1), were q � e � bk=jc is unspeci�ed bynow. That is, we start by assuming that each text q-sample yields enough errorsto disallow a match. Later, we can concentrate only on those that can be foundin the pattern with at most e errors.Now, for each pattern block Qi, we obtain its \q-gram e-environment", de-�ned as U qe (Qi) = fu 2 �q ; bed(u;Qi) � egwhich is the set of possible q-grams that appear inside Qi with at most e errors.Now, each dr 2 U qe (Qi) represents a text q-sample that matches inside patternblock Qi. Therefore, we update all the countersMr+j�i Mr+j�i � (e+ 1) + bed(dr; Qi)Finally, all the text areas whose counter Mr � k are checked with dynamicprogramming. Of course, it is not necessary to maintain all the counters Mr ,since they can implicitly be assumed to be initialized at j(e + 1) until a textq-sample participating in Dr is found in some U qe (Qi).

3 Finding Approximate q-GramsIn this section we focus on the problem of �nding all the text q-samples thatappear inside a given pattern block Qi, that is, �nd all the r such that dr 2U qe (Qi). The �rst observation is that it is not necessary to generate all U qe (Qi),since we are interested only in the text q-samples (more speci�cally, in theirpositions). Rather, we generateIqe (Qi) = fr 2 1::bn=hc; bed(dr; Qi) � egThe idea is to store all the di�erent text q-samples in a trie data structure,where the leaves store the corresponding r values. A backtracking approach isused to �nd all the leaves of the trie that are relevant for a given pattern blockQi, i.e. those that match inside Qi with at most e errors.From now on we use Q = Qi and use i for other purposes. If consideringa speci�c text q-sample S = s1 : : : sq (corresponding to some dr), the problemis solved by the use of the dynamic programming algorithm explained in theIntroduction, where the text is the pattern block Q and the pattern is the textq-sample S. That is, we �ll a matrix C0::q;0::jQj such that Ci;` is the smallest editdistance between S1::i and a su�x of Q1::`. When this matrix is �lled, we havethat the text q-sample S is relevant if and only if Cq;` � e for some ` (in otherwords, S matches somewhere inside Q with at most e errors). In a trie traversalof the q-samples, the characters of S are obtained one by one, so this matrix willbe �lled row-wise instead of the typical on-line column-wise �lling.The algorithm works as follows. We perform an exhaustive search on thetrie, starting at the root and entering into all the children of each node. At eachmoment, if we are in a trie node representing a pre�x S0 of some text q-samples,we keep CjS0j;` for all `, i.e. the current row of the dynamic programming matrix.Upon entering into the children of the current node following an edge labeledwith the letter c, a new row of C is computed from the current one using c asthe next pattern letter. When we reach the leaf nodes of the trie (at depth q)we check in the last row of C whether there is a cell with value at most e, inwhich case the corresponding text q-sample is reported. Note that since we onlystore the rows of the ancestors of the current node at each time, the total spacerequirement for the backtrack is just O(jQjq) = O(mq).As we presented it, it seems that we traverse all the nodes of the trie. How-ever, some pruning can be done. As all the values from a row to the next arenondecreasing, we know that if all the values of a row are larger than e thenthis will keep true in descendant nodes. Therefore, at that point we can abandonthat branch of the trie without actually considering its subtree.Figure 4 shows an example, using Q = "surgery" and S = "survey". Ife = 1 then the alternative path shown can be abandoned immediately since allits entries are larger than 2.An alternative way to consider the problem is to model the search with anon-deterministic automaton (NFA). Consider the NFA for e = 2 errors shownin Figure 5. It is built for a �xed pattern block Q and is fed with the characters

5 4 3 2 2 2 3 4

s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2
s

u

r

v

e

y

aFig. 4. The dynamic programming algorithm run over the trie of text q-samples. Weshow just one path and one additional link.of a text q-gram S. Every row denotes the number of errors seen (the �rstrow zero, the second row one, etc.). Every column represents matching a pre�xof S. Horizontal arrows represent matching a character (i.e. if the charactersof S and Q match, we advance in S and in Q). All the others increment thenumber of errors (move to the next row): vertical arrows insert a character inS (we advance in Q but not in S), solid diagonal arrows replace a character(we advance in Q and S), and dashed diagonal arrows delete a character fromS (they are "-transitions, since we advance in S without advancing in Q). Theinitial set of "-transitions allow a match of S to start anywhere inside Q. Theq-gram pre�x S0 of S matches inside Q as long as there is an active state afterconsidering all the characters of S0.
εεεεε

e

e

Σ

Σ

e

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

ε
ΣΣΣΣΣΣΣ

s u

s

s u

u

g

g

r

r

r

Σ Σ Σ Σ

Σ Σ Σ Σ

g

Σ Σ Σ Σ Σ Σ Σ Σ

Σ

εεεεεε ε

ε

y

y

y

Σ

Σ

r

r

Σ

Σ

r

ε ε ε ε ε ε ε ε

no errors

1 error

2 errors

Fig. 5. An NFA for approximate string matching inside the pattern block Q ="surgery" with two errors. The shaded states are those active after considering thetext q-sample "survey".

In [4, 22] it is shown that this NFA can be simulated using bit-parallelism,mapping each state to a bit in a computer word and updating all the states ofa single computer word in O(1) operation. The total time needed is O(jQje=w)per node of the trie, where w is the number of bits in the computer word (cf. thedynamic programming O(jQj) time per trie node). The only change necessaryto the simulation technique used in [22] is to start with all the states active toaccount for the initial "-transitions, absent in [22]. Checking that there is anactive state in the automaton is easily done (so the branch of the trie can beabandoned if there are no more active states). Finally, checking the exact numberof errors of a match (i.e. �nding the smallest row with an active state) is easilydone in O(e) time using bit masks. We use this simulation in our implementation.4 The Parameters of the ProblemThe value of e has been left unspeci�ed in the previous development. This isbecause there is a tradeo� involved. If we use a small e value, then the searchof the e-environments will be cheaper, but as we have to assume that the textq-samples not found have only e + 1 errors (which may underestimate the realnumber of errors it has), so some unnecessary veri�cations will be carried out.On the other hand, using larger e values gives more exact estimates of the actualnumber of errors of each text q-sample and hence reduces unnecessary veri�ca-tions in exchange for a higher cost to search the e-environments.As the cost of this search grows exponentially with e, the minimal e = bk=jccan be a good choice. With the minimal e the sequences Dr�j+i are assumed tohave j(bk=jc + 1) errors, which can get as low as k + 1. In that particular casewe can avoid the use of counters, since every text q-gram dr�j+i found inside Qiwill trigger a veri�cation in Dr.It is interesting to consider the interplay between the di�erent remainingparameters h, q and j. Equation (1) relates these parameters, introducing alsom and k in the condition. In general m and k are not known at index constructiontime, while h and q have to be determined at that moment. Therefore, j must beadjusted at search time in order to make Eq. (1) hold. For a given query, j hasa maximum acceptable value. As j grows, longer test sequences with less errorsper piece are used, so the cost to �nd the relevant q-samples decreases but theamount of text veri�cation increases.So j and e permit �nding the best compromise between both parts of thesearch. On the other hand, q and h determine the space usage of the index,which is in the worst case O(�q +n=h). Having a smaller index puts restrictionsin the allowed j values and, indirectly, on e.5 Experimental ResultsIn the following experiments, the texts have been generated according to thesymmetric Bernoulli model where each character occurs at the same probability,independently of other characters, like its predecessors.

Table 1 shows how the error level increases the number of processed columns,in cases of random text in 4- and 20-character alphabets. The behavior in otheralphabets is similar but a bigger alphabet implies a higher tolerated error level.Note that some
uctuations in the number of processed columns are due to thechange in the value of e. � = 4 � = 20k j e Columns Columns0 . . . 3 5 0 0.0 0.04 5 0 7.5 0.05 5 1 0.0 0.06 4 1 33.9 0.07 4 1 93.7 0.18 4 2 97.0 0.09 4 2 100.0 0.010 4 2 100.0 0.211 4 2 100.0 9.012 3 4 100.0 99.913 3 4 100.0 100.0Table 1. Processed columns (in per cent) for m = 40, q = h = 6, and n = 100; 000.Altering the number of q-samples in test sequences Dr , i.e., the value of j,is related to changes in the values of h and q. This phenomenon lets us also toachieve more e�cient �ltration for higher error levels. Compare the results inTable 2 to those in Table 1. k h q j e Cols6 7 7 4 1 6.07 8 8 3 2 44.28 8 8 3 2 95.6Table 2. Processed columns (in per cent) for � = 4, m = 40, and n = 100; 000, fordi�erent values of h, q and j.Table 3 shows how our scheme allows to do part of the dynamic programmingalready in the �ltration phase, by traversing the trie structure and evaluatingminimum edit distances between q-samples and substrings of pattern blocks. Thisis based on increasing the value of e. Although the results seem promising at the�rst sight, one has to remember that a small portion of processed columns doesnot necessarily imply a shorter processing time. In fact, the optimal setting for

e depends on several factors, like the length of the text and the implementationof the trie. e Columns Traversed nodes1 33.3 8,0612 11.6 19,3043 9.6 21,5004 7.1 21,5445 4.9 21,5446 2.1 21,544Table 3. Processed columns (in per cent) and the number of traversed nodes of theq-sample trie for � = 4,m = 40, k = 6, q = h = 6, j = 4, and n = 100; 000, for di�erentvalues of e.The distance h between the q-samples is crucial for the space requirement ofthe index. Table 4 shows that a lower interval h, and thus, a larger index, yieldsa more e�cient �ltration, as indicated, for example, in the number of processedcolumns. h j Columns7 11 100.06 8 99.85 6 90.74 5 14.23 4 0.1Table 4. Processed columns (in per cent) with a decreasing h, for � = 4, m = 40,k = 5, q = 3, e = 3, n = 100; 000. Note that the parameter j has to be adjustedaccording to h.Since the index of the presented approach only stores non-overlapping q-samples, its space requirement is small, and can be kept below the size of thetext [25]. This should be kept in mind when the performance is compared to otherrelated approaches. Table 5 shows that the new approach works for a small errorlevel almost as e�ciently as its competitor [22] which, however, consumes morespace; in fact, four times as much as the text does. It is obvious that an indexwhich stores only a fraction of text portions cannot compete with one with moreinformation on the text.Let us conclude by brie
y discussing how the space consumption of our indexdepends on the sampling interval h. The standard implementation of a q-gramindex stores all the locations of all the q-grams of the text. Since the number

k Alg. A Alg. B4 0.0 1.05 0.3 1.06 5.3 1.17 30.2 1.28 81.1 22.99 99.5 23.6Table 5. Processed columns (in per cent) for relatively low error levels. The newapproach, denoted as A, collects non-overlapping q-samples, and an intermediate par-titioning approach [22], denoted by B, stores all the text pieces which need to besearched for. The parameters are as follows: � = 4, m = 40, q = h = 6 for algorithmA, j = 4, e = 6, and n = 100; 000.of q-grams in a text of length n is n � q + 1 and storing a position takes log nbits (without compression), the overall space consumption is n log n (q is smallcompared to n). Let us de�ne a space saving factor vr as the space requirementratio between our method and the standard approach, i.e.vr = nh log nhn logn � 1h (for large n):Table 6 shows how the space saving factor decreases with an increasing h.h vr1 1.0002 0.4703 0.3024 0.2205 0.1726 0.1417 0.1198 0.1029 0.09010 0.080Table 6. Space saving factor vr for n = 100; 000.6 ConclusionsWe have introduced a static pattern matching scheme which is based on locatingapproximate matches of the pattern substrings among the q-samples of the text.The mechanism breaks the �xed division of pattern matching into two phases,

�ltration and checking, where dynamic programming belongs only to the lastphase. In our approach, it is possible to share dynamic programming betweenthese phases by setting appropriate parameters. This is an important feature,since it makes it possible to tune the algorithm according to the particularproblem instance. In some cases, saving space is a critical issue, whereas a higherror level requires a more dense index. At the moment, the presented approachpresumes non-overlapping q-samples (h � q). However, this is a question ofparameterization. In the future, we will evaluate the impact of these parametersin di�erent environments and problem instances, and enhance the scheme toallow also overlapping q-samples.References1. A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag,New York, 1985.2. M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. InProc. WSP'97, pages 2{20. Carleton University Press, 1997.3. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World ComputerCongress, volume I, pages 465{476. Elsevier Science, September 1992.4. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,23(2):127{158, 1999.5. R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate textretrieval. J. of the American Society for Information Science (JASIS), 51(1):69{82, January 2000.6. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas.The samllest automaton recognizing the subwords of a text. Theoretical ComputerScience, 40:31{55, 1985.7. W. Chang and T. Marr. Approximate string matching and local similarity. InProc. CPM'94, LNCS 807, pages 259{273, 1994.8. A. Cobbs. Fast approximate matching using su�x trees. In Proc. CPM'95, pages41{54, 1995. LNCS 937.9. M. Crochemore. Transducers and repetitions. Theoretical Computer Science,45:63{86, 1986.10. M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory bottle-neck in su�x tree construction. In Proc. SODA'98, pages 174{183, 1998.11. R. Giegerich, S. Kurtz, and J. Stoye. E�cient implementation of lazy su�x trees.In Proc. WAE'99, LNCS 1668, pages 30{42, 1999.12. G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin.Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.13. G. Gonnet, R. Baeza-Yates, and T. Snider. Information Retrieval: Data Structuresand Algorithms, chapter 3: New indices for text: Pat trees and Pat arrays, pages66{82. Prentice-Hall, 1992.14. N. Holsti and E. Sutinen. Approximate string matching using q-gram places. InProc. 7th Finnish Symposium on Computer Science, pages 23{32. University ofJoensuu, 1994.15. P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching instatic texts. In Proc. of MFCS'91, volume 16, pages 240{248, 1991.16. D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.Addison-Wesley, 1973.

17. U. Manber and E. Myers. Su�x arrays: a new method for on-line string searches.SIAM Journal on Computing, pages 935{948, 1993.18. U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. InProc. USENIX Technical Conference, pages 23{32, Winter 1994.19. E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,12(4/5):345{374, Oct/Nov 1994.20. G. Navarro. A guided tour to approximate string matching. Technical ReportTR/DCC-99-5, Dept. of Computer Science, Univ. of Chile, 1999. To appearin ACM Computing Surveys. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-survasm.ps.gz.21. G. Navarro and R. Baeza-Yates. A practical q-gram index for text retrieval allowingerrors. CLEI Electronic Journal, 1(2), 1998. http://www.clei.cl.22. G. Navarro and R. Baeza-Yates. A new indexing method for approximate stringmatching. In Proc. CPM'99, LNCS 1645, pages 163{186, 1999.23. P. Sellers. The theory and computation of evolutionary distances: pattern recog-nition. J. of Algorithms, 1:359{373, 1980.24. F. Shi. Fast approximate string matching with q-blocks sequences. In Proc.WSP'96, pages 257{271. Carleton University Press, 1996.25. E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string match-ing. In Proc. CPM'96, LNCS 1075, pages 50{61, 1996.26. E. Ukkonen. Approximate string matching over su�x trees. In Proc. CPM'93,pages 228{242, 1993.27. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, October 1992.

