
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Parallel family trees for transfer matrices in the Potts model

Cristobal A. Navarroa,b,∗, Fabrizio Canforab, Nancy Hitschfelda, Gonzalo Navarroa

aDepartment of Computer Science, Universidad de Chile, Santiago, Chile.
bCentro de Estudios Cient́ıficos (CECs), Valdivia, Chile.

Abstract

The computational cost of transfer matrix methods for the Potts model is related to the
question into how many ways can two layers of a lattice be connected?. Answering the question
leads to the generation of a combinatorial set of lattice configurations. This set defines the
configuration space of the problem, and the smaller it is, the faster the transfer matrix can
be computed. The configuration space of generic (q, v) transfer matrix methods for strips is
in the order of the Catalan numbers, which grows asymptotically as O(4m) where m is the
width of the strip. Other transfer matrix methods with a smaller configuration space indeed
exist but they make assumptions on the temperature, number of spin states, or restrict the
structure of the lattice. In this paper we propose a parallel algorithm that uses a sub-Catalan
configuration space of O(3m) to build the generic (q, v) transfer matrix in a compressed form.
The improvement is achieved by grouping the original set of Catalan configurations into a
forest of family trees, in such a way that the solution to the problem is now computed by
solving the root node of each family. As a result, the algorithm becomes exponentially faster
than the Catalan approach while still highly parallel. The resulting matrix is stored in a
compressed form using O(3m×4m) of space, making numerical evaluation and decompression
to be faster than evaluating the matrix in its O(4m × 4m) uncompressed form. Experimental
results for different sizes of strip lattices show that the parallel family trees (PFT) strategy
indeed runs exponentially faster than the Catalan Parallel Method (CPM), specially when
dealing with dense transfer matrices. In terms of parallel performance, we report strong-
scaling speedups of up to 5.7X when running on a 8-core shared memory machine and 28X
for a 32-core cluster. The best balance of speedup and efficiency for the multi-core machine
was achieved when using p = 4 processors, while for the cluster scenario it was in the range
p ∈ [8, 10]. Because of the parallel capabilities of the algorithm, a large-scale execution of the
parallel family trees strategy in a supercomputer could contribute to the study of wider strip
lattices.

Keywords: Potts Model, Deletion Contraction, Parallel Computing, Transfer Matrix, Strip
lattices

1. Introduction

The Potts model [1] has been widely used to study physical phenomena of spin lattices
such as phase transitions [2] in the thermodynamical equilibrium. Lattices such as square,

∗Corresponding author
Email address: crinavar@dcc.uchile.cl (Cristobal A. Navarro)

Preprint submitted to Journal of Computational Physics September 9, 2014

tmfamily.tex

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

triangular, honeycomb and kagome are of high interest and are being studied frequently
[3, 4, 5, 6]. When the number of possible spin states is set to q = 2, the Potts model becomes
the classic Ising model [7], which was solved by Onsager [8] for the infinite-volume limit on
a torus. For higher values of q the problem becomes much harder and no solution has been
found yet. Nevertheless, it is of interest to study the problem in the form of a strip lattice.
Hopefully, the study of sufficiently wide strips could contribute at understanding the physical
properties of such complex systems under different boundary conditions.

An effective technique for obtaining the partition function of strip lattices is to compute
its transfer matrix, denoted M . The transfer matrix technique allows the study of strips that
repeat their lattice structure along one of its dimensions. M can be computed symbolically
or numerically (fully or partial) evaluated on (q, v). When there is enough disk space, we find
that it is more convenient to compute M using polynomials on (q, v). Indeed, computing M
with general (q, v) has an impact on performance and memory, but it gives the advantage
that M will not have to be re-computed many times when doing numerical sweeps for q and
v. Another advantage is that from the general (q, v) transfer matrix one can generate many
partially evaluated instances of the transfer matrix that can be used later for numerical sweeps
on the remaining parameter. For limited computational resources, generating M partially or
fully evaluated is a practical choice.

If the strip lattice represents an infinite band, then analysis can be performed by computing
the eigenvalues of M . If the strip lattice is finite, then a initial condition vector ~Z1 is needed.
In that case, boundary conditions have to be specified. Typical boundary conditions are free,
periodic, cylindrical and cyclic. M and ~Z1 together form a partition function vector ~Z based
on the following recursion:

~Z(n) = M ~Z(n− 1) = ~Z = Mn−1 ~Z1 (1)

Computing the powers of Mn−1 is done in a numerical context, otherwise memory usage
would become intractable. When Mn−1 is computed, the first element of ~Z becomes the
partition function of the strip lattice.

This work focuses on the process of building M , which is an NP-hard problem [9] where
exponential cost algorithms are involved in the process, with the width m as the exponent.
There are different approaches for building M : (1) In the spin representation approach, an
integer value is chosen for q and the transfer matrix T is obtained by combining the different
spin configurations in the graph layer. Under this approach, the size of M becomes q|V |×q|V |,
where |V | is the number of spins in the layer of the strip. A more detailed explanation on
the spin representation approach is available in the first of the six works by Salas, Sokal and
Jacobsen series of papers [10]. (2) One can also obtain M as a product of sparse matrices
of asymptotic size O(4m) [11], one per edge and practically linear in the number of edges,
where M is not constructed explicitly but only its action on a given vector of states. (3)
Alternatively one can compute M with a generic (q, v) method where the configuration space
grows proportional to the Catalan numbers [12] or asymptotically as O(4m), leading to a
matrix of size O(4m×4m). Indeed there are other strategies that can achieve smaller transfer
matrices [13, 14, 15], but they assume special properties for the lattice, work only for finite
graphs or need to fix the values of v and/or q in order to take any advantage. We believe it is
worth studying what are the possibilities for algorithmic improvements in the generic (q, v)
Catalan based approach since it is a general method applicable to any planar strip.

In the light of these aspects just mentioned, we ask question 1: Is there a generic (q, v)
method that can compute the transfer matrix for any planar strip lattice, using a sub-Catalan

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

configuration space?. From our research we have found that: a hierarchical symmetry exists
among elements of the configuration space that define the transfer matrix. This symmetry is
revealed when first applying deletion-contraction to certain edges of the strip layer. If this
symmetry is used so that the configuration space is re-organized as a forest of hierarchical
families, then a parallel computation only on the root nodes is sufficient for generating a
compressed transfer matrix. When exploiting this symmetry, the configuration space is re-
duced from O(4m) to O(3m), which is an improvement to the actual bound on general transfer
matrix methods for strips. This result allows us to answer positively to question 1.

With the evolution of computer architectures towards a higher amount of cores [16, 17],
parallel computing is not anymore limited to clusters or super-computing; workstations can
also provide high performance for solving physical problems [18]. It is in this last category
where most of the scientific community lies, therefore parallel implementations for multi-
core machines are the ones to have the largest impact on the community. Considering how
technology is changing, we ask question 2: Can transfer matrix methods work in parallel for
modern multi-core architectures and scale their performance efficiently as more processors are
used?. Given the amount of data-parallelism on the number of root nodes, the performance
of the algorithm scales efficiently as more processors are used. Results on a multi-core 8-
core machine show a speedup of 5.7X is achieved when using p = 8 processors, and an
efficiency of 95% is achieved when using p = 4. Results on a 32-core cluster confirm that the
implementation can scale in a distributed scenario, achieving a speedup of 28X when using
p = 32 processors and an efficiency of over 90% for the full range p ∈ [1, 32] when dealing
with large square strips. We can also confirm that a compressed transfer matrix not only
saves data space in comparison to the original one, but it is also faster to load considering
that it must be first evaluated for any practical usage. In the case of cluster performance,
a dynamic scheduler is mandatory in order to bypass potential performance valleys that are
caused by the combination of unbalanced work and a static scheduler. Again, this result
allows a positive answer for question 2.

The paper is organized as follows: Section 2 covers preliminary concepts of the Potts
model, Section 3 describes related work. Sections 4 and 5 explain the algorithm and the
additional optimizations. Section 6 provides details about the implementation while in section
7 we present detailed results for running time, speedup, efficiency and knee, using different
amount of processors. We also compare performance against the Catalan Parallel Method
(CPM) [19]. Section 8 is devoted to the validation of the algorithm by computing some
physical results; from limiting curves to energy and specific heat, and comparing them to the
results obtained by other authors. Section 9 discusses our main results and concludes the
impact of our work.

2. Preliminaries

Let G = (V,E) be a lattice with |V | vertices, |E| edges and si be the state of a spin of G
with si ∈ [1..q] and i ∈ [1, |V |]. The partition function Z(G, q, β) is defined as

Z(G, q, β) =
∑

r

e−βh(Gr) (2)

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where β = 1
KBT , KB is the Boltzmann constant, T the temperature and h(Gr) is the energy

of the lattice at a given state Gr
1. The Potts model [1] defines the energy of a state Gr with

the following Hamiltonian:

h(Gr) = −J
∑

〈i,j〉∈Gr

δsi,sj (3)

Where 〈i, j〉 corresponds to the nearest neighbor edge from vertex vi to vj, r ∈ [1..q|V |], J is
the interaction energy (J < 0 for anti-ferromagnetic and J > 0 for ferromagnetic) and δsi,sj
corresponds to the Kronecker delta evaluated at the pair of spins 〈i, j〉 with states si, sj and
expressed as

δsi,sj =

{

1 if si = sj
0 if si 6= sj

(4)

As the lattice becomes larger in the number of vertices and edges, the computation of equation
(2) becomes rapidly intractable with an exponential cost of Θ(q|V |). In practice, one can
use equivalent methods that, while still exponential, in practice run faster than the original
definition.

The deletion-contraction method [20], or DC method, was initially used to compute the
Tutte polynomial [21] and was then extended to the Potts model after a relation of duality was
found between the two (see [22, 23]). DC re-defines Z(..) as the following recursive equation:

Z(G, q, v) = Z(G− e, q, v) + vZ(G/e, q, v) (5)

Where G − e is the deletion operation, G/e is the contraction operation and the auxiliary
variable v = e−βJ − 1 makes Z(..) a polynomial. There are three special cases where DC can
perform a recursive step with linear cost:

Z(G, q, v) =

(q + v)Z(G/e, q, v); if {e} is a spike.
(1 + v)Z(G− e, q, v); if {e} is a loop.

q|V |; if E = {∅}.
(6)

The computational complexity of DC has a direct upper bound of O(2|E|). When |E| >> |V |
a tighter bound is known based on the Fibonacci sequence complexity [20]; O((1+

√
5

2)|V |+|E|).
In general, the time complexity of DC can be written as

T (G) = min

(

O(2|E|), O
(1 +

√
5

2

)|V |+|E|
)

(7)

A strip lattice is a bidimensional graph G = (V,E) that repeats its pattern at least along
one dimension. It can be built as the concatenation of layers K1,K2, ...,Kn sharing their
boundary vertices and edges. Figure 1 illustrates how the notion of strip lattice applies to
the case of the square and kagome lattices. The transfer matrix, denoted M , takes advantage
of the repeating nature of the lattice, allowing the study of very long graphs. In the limit of
infinite length the free energy per site becomes:

f =
1

nK
lnλ+ (8)

1A state Gr is a distribution of spin values on the lattice. It can be seen the a graph G with a specific
combination of spin values on the vertices.

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: The strip structure for the square and kagome lattices, both with a width (vertical) ofm = 6.

where nK is the number of non-shared vertices per layer and λ+ is the dominant eigenvalue of
M with nontrivial coefficient associated. The dimension of M grows proportional to a combi-
natorial function Γ(m), which depends on the size of the base (i.e., the width of G(V,E)) and
it represents the different ways in which two layers can connect by combining spin states and
identifications. The set of configurations generated by the base corresponds to the configura-
tion space of the problem. The computational cost of a transfer matrix method comes from
two sources; (1) the size of the configuration space and (2) the cost of the local algorithm.
The sequence generated by Γ(m) corresponds to the size of the configuration space of the
problem and, as mentioned earlier, it defines the size of M . The local algorithm is in charge
of computing the partition functions for each element of the configuration space.

3. Related Works

The transfer matrix methods were introduced by Derrida et. al. in 1980 [24] as an ap-
proach to study percolation and phenomenological re-normalization. In 1982, Baxter used
transfer matrix techniques in his seminal works as a tool for solving statistical mechanics
problems [25]. Salas, Sokal and Jacobsen have greatly contributed with a series of re-
sults, plus an additional unnumbered one that follows the same line, in which they study
the physics of square and triangular strip lattices through the transfer matrix technique
[10, 26, 27, 28, 29, 13, 30]. In those works, the authors use different types of algorithmic op-
timizations for the construction of M based on the symmetries available. Different scenarios
are considered along the works, such as the zero temperature (chromatic polynomial) case,
ferromagnetic and antiferromagnetic cases, and different boundary conditions such as free,
periodic, cylindrical and a special boundary condition that consists of adding two extra ver-
tices on the sides of the strip. Some of the contributions made in these works include the use
of non-nearest neighbors partitions for v = −1, sparse matrix factorization, algebraic input
from the representation of the Temperley-Lieb algebra, symmetries for different boundary
conditions and the computation of the limiting curves or partition function zeroes for the
different boundary conditions up to m ≤ 13. State of the art works on the square lattice
normally study strips in the range 3 ≤ m ≤ 13. For the case of the square lattice with free
boundary conditions, Salas et. al. achieved m = 12 using v = −1 [29]. It should be noted
that if v 6= −1 and free boundary conditions are used, then the configuration space is the
one proportional to the Catalan numbers and the problem becomes computationally harder
to handle. The problem of the matrix size has also been improved by algebraic techniques
[14] in the spin representation, reducing the matrix size when working with q = 2 and q = 3.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The authors studied the square and triangular strips with layers of up to r = 11 spins, which
is equivalent to a square strip of width m ≈ 5. Jacobsen et. al. have studied the q-state
Potts model for q = 4cos2(π/p) being a Beraha number with p > 2 and integer [28]. In
the work, the authors study strips of widths in the range m ∈ [2, 6]. The relevance of their
work is that they manage to compute the partition function using the RSOS representation.
Álvarez et. al. [31] have reported exact results for the kagome strip of width m = 5 using the
generic (q, v) Catalan based transfer matrix technique. In contrast to these related works,
we are interested in exploring a general (q, v) method that can allow the study of strips in
the state of the art range for free boundary conditions using generic (q, v). For simplicity, we
will restrict our physical results just to the computation and validation of the limiting curves
using free boundary conditions in order to stay within the scope of our work, but not restrict
the proposed strategy to these conditions.

More general methods for computing the exact partition function of a lattice have also
been proposed [32, 15, 33]. Bedini et. al. [15] proposed a transfer matrix method for
computing the partition function of arbitrary graphs using a tree-decomposed transfer matrix
technique. For arbitrary graphs, they mean any type of finite graph; i.e., random or regular
planar/non-planar graphs. In their work, the authors obtain a sub-exponential complexity
when processing random planar graphs. Their algorithm is considered the best so far for
arbitrary graphs and the authors manage to achieve results for regular lattices of up to 18×18
sites. If the tree-decomposed transfer matrix method is applied to a strip, the configuration
space to explore becomes the same as the traditional transfer matrix methods for strips, i.e.,
the tree-width becomes the width of the strip and the cost is proportional to the Catalan
number of the tree-width. The work is closely related to another result by Jacobsen in which
large regular lattices of up to 20× 21 sites were studied [11] by using a sparse transfer matrix
method based on the product of sparse matrices, of dimension 3m for v = −1 and 4m for
v 6= −1. The work of Haggard et. al. [34] is considered to have the best implementation
of a deletion-contraction technique for the computation of the Tutte polynomial for any
arbitrary graph (the Tutte polynomial is the dual of the partition function [22]). Their
algorithm reduces the computation tree in the presence of loops, multi-edges, cycles and
biconnected graphs (as one-step reductions). By using a cache, some computations can be
reused (i.e., sub-graphs that are isomorphic to the ones stored in the cache do not need to be
computed again). An alternative algorithm to Haggard et. al. was proposed by Björklund
et. al. [35] which achieves exponential time only in the number of vertices; O(2nnO(1)) with
n = |V |. Asymptotically their method is better than deletion-contraction considering that
many interesting lattices have more edges than vertices. However, Haggard et. al. [34] have
stated that the memory usage of Björklund’s method is too high for practical use. These
techniques, which are more general than the ones from the beginning of this section, cannot
be directly compared against the classic transfer matrix approach, nevertheless they still
needed to be mentioned as part of the related work background. General techniques compute
the transfer matrix efficiently for arbitrary graphs, but do not take advantage of the regular
graph structure when it is available. On the other hand, classic transfer matrix methods for
strips indeed take advantage of the regular graph structure but for arbitrary graphs are not
so efficient because for each layer there is a new non-sparse transfer matrix to be computed.
Both strategies play an important role in the study of spin lattices. In our case, we focus on
strips with regular graph structure, therefore our approach should be considered as a classic
transfer matrix method.

Research on transfer matrices for strip lattices in the Potts model have not reported

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

experimental results on the parallel performance, except for a prior work of the authors [19]
that consists of a parallel method for computing general (q, v) transfer matrices using the
Catalan approach, which will be named the Catalan Parallel Method (CPM) for the ease of
referencing it later on. The CPM method was successfully used to study new widths of the
kagome strip [31] with generic (q, v). The present work is a substantial improvement from
CPM.

4. Algorithm overview

4.1. Data structure

The definition of G from Section 2 (see Figure 1) will be used in this section to explain
the input data structure needed by the algorithm. Since the graph is a strip lattice, only
layer Kn of the graph G is explicitly needed. The following naming scheme is now introduced
for distinguishing two types of boundary vertices in the layer: shared vertices and external
vertices. For convention, shared vertices are indexed top-down from 0 to m−1 and correspond
to the left-most ones of Kn, which are being shared with layer Kn−1. External vertices are
the right-most ones of Kn and are indexed bottom-up from |V | − m to |V | − 1. Figure 2
illustrates the data structure for an square strip of m = 3.

K K K Knn-121

shared
vertices

external
vertices

2

1

0

3

4

5K

data structure

σ1

Figure 2: Example data structure for a square lattice of width m = 3.

4.2. DC-based transfer matrix computation

When using (q, v) polynomials, the configuration space of generic q transfer matrix meth-
ods turns out to be the set of all non-crossing partitions on a sequence of m serially connected
vertices. The size of this configuration space is defined by the Catalan numbers:

Γ(m) = Cm =
1

m+ 1

(

2m

m

)

=
(2m)!

(m+ 1)!m!
=

m
∏

k=2

m+ k

k
(9)

We will first explain how the transfer matrix can be built from partial DC repetitions and
then proceed to the parallel family trees strategy.

At this point we introduce two terminologies that are important for the rest of the section;
initial configurations and terminal configurations. These configurations define a combinatorial
sequence of identifications2 on the external and shared vertices of layer Kn. Initial configura-
tions, denoted σi with i ∈ [0..Cm − 1], define a combinatorial sequence of identifications just
on the external vertices of Kn. The terminal configurations, denoted ϕj with j ∈ [0..Cm − 1],
define a combinatorial sequence of identifications just on the shared vertices of Kn. Initial
configurations generate terminal ones, through the DC method.

2For identification we mean a pair of vertices that actually represent a single vertex (they are identified).
Graphically, it is represented by a crossed curved connecting the pair of vertices.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The case of σ1 is the basic case and matches Kn. That is, σ1 is the initial configuration
where no identifications are applied to the external vertices of Kn. It is equivalent as saying
that σ1 is the empty partition of the Catalan set. Similarly, ϕ1 corresponds to the base case
where no shared vertices are identified. In other words, ϕ1 is the empty configuration for the
Catalan set on the shared vertices of Kn. For illustration, Figure 3 shows the configuration
space for the square lattice of width m = 3:

σ1 σ2 σ3 σ4 σ5

Figure 3: The configuration space for a square lattice of width m = 3.

In order to compute the transfer matrix M (row by row), one must apply Cm partial DCs,
each time to a different initial configuration σi. Each one of the Cm partial DC applications
generates a row of M in the form of partial partition functions on (q, v), distributed into a
maximum of Cm terminal configurations. By partial DC we mean to perform DC on the layer,
with the corresponding initial configuration σi applied, but stopping the recursion branches
whenever they meet and edge that connects two shared vertices. The stop condition on the
recursion branches is needed otherwise one would be processing vertices and edges of the next
layer of the strip, breaking the idea of a transfer matrix. For the example of Figure 2 with
m = 3, the partial DC is applied to σ1, σ2, σ3, σ4 and σ5 from Figure 3.

An example of a partial DC for the example of m = 3 is illustrated in Figure 4 for the
case when computing the first row. The process is analogous for the other four rows of M
(i.e., σ2, σ3, σ4 and σ5).

...

z (q, v)1,1

1

+ z (q, v)1,2 + z (q, v)1,5+ z (q, v)1,3 + z (q, v)1,4

σ

1ϕ 2ϕ 3ϕ 4ϕ 5ϕ

Figure 4: Terminal configurations generated from a partial DC on a square strip of width m = 3.

Once a recursion branch has been stopped, partial partition functions zi,j(q, v) appear asso-
ciated to remanents of the graph layer. Remanents are parts of the graph layer that cannot
be computed (i.e, edges connecting shared vertices) and they match one of the Cm possi-
ble terminal configurations that can exist. For some initial configurations, not all terminal
configurations may be generated from a single DC, but only a subset of them.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A terminal configuration ϕj contains a unique sequence of planar identifications on the
shared vertices that is useful to differentiate one from another. We use the term key to de-
note such sequences since they allow fast search and modification in a hash table. Proper
construction of keys are achieved by using a simple algebra that defines how multiple iden-
tifications on shared vertices are combined. A key of n identifications is denoted as Π =
πx1,y1 + πx2,y2 + ...+ πxn,yn . The following properties hold true for keys:

πa,b = πb,a (10)

πa,b + πc,d = πc,d + πa,b (11)

πa,b + πb,c = πa,b,c (12)

Properties (10) and (11) allow the application of a lexicographical order on the keys, while
property (12) allows to combine them using transitivity. There are important differences
when comparing this algebra to the partition algebras studied by Halverson and Ram [36],
specially because the former is much simpler and defines operations on a single layer of points,
while the latter defines a different set of operations for a partition monoid that is represented
as a graph of two layers of points. Nevertheless, we can still find a relation with the number
of partitions in the case of the planar sub-monoid Pk, which is C2k for two layers of length k,
and the number of keys for a single layer of length m, which is Cm.

Using Stirling’s approximation, we have that Cm ≈ 4m

m3/2
√
π
, which is consistent with the

upper bound:

Cm =
1

m+ 1

(

2m

m

)

≤
(

2m

m

)

≤ 4m (13)

Dutton and Brigham proved in 1986 that the Stirling approximation of the Catalan numbers
is in fact already a valid upper bound [37]. In addition, they obtain tighter lower and upper
bounds for the Catalan numbers. The cost of the DC-based transfer matrix method is the
product of the cost of the partial DC and the size of the configuration space Cm.

So far, the worst case running time of the algorithm for computing M is:

T (G(V,E),m) = O
(

Γ(m) ·DC(Kn))
)

= O
(

4m ·min
(

2|E
′|,

1 +
√
5

2

|V ′|+|E′|
))

(14)

In the following sub-section, we show how a finer analysis can lead to a smaller configu-
ration space of Γ(m) = O(3m) for computing a compressed transfer matrix M .

4.3. Family trees strategy

It is possible to reduce the Catalan configuration space by exploiting a symmetry present
in the deletion-contraction (DC) method, resulting in an exponentially faster algorithm. Ba-
sically, the idea is the following: if the DC procedure is forced to act first on certain external
edges of the layer, and act later on the rest of the graph, then symmetries appear between
nodes of the recursion tree and other initial configurations. Exploiting such symmetry allows
one to group many Catalan configurations into families of configurations, where a single DC
procedure applied to the root node of a family contributes to the solution of the whole family.

Forcing DC to start on the external edges results in a recursion tree composed of two
phases; (1) a perfect binary tree (PBT) of height h = m− 1− b and (2) several sub-trees tj
with j ∈ [1..2h] (see Figure 5).

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

PBT

1 2

root

3 2
m-b-1

Phase 1

Phase 2

h=m-b-1

Figure 5: When DC is forced to start on the external edges, the recursion is divided into two phases.

Variable b is the number of external edges that sit in between an identification πij where
at least one of its vertices is i or j. These b edges are left for phase (2) because they do
not produce the symmetries needed for the family trees strategy. Each node of the PBT of
phase (1) that comes from a contraction produces a unique algebraic symmetry to one of
the configurations found in the original Catalan set. The configuration of a contracted node
from the recursion tree is denoted χi and the symmetric correspondence is χi ←→ σi. All χi

configurations that share the same PBT, together form a family tree. Following the example
of the square strip with m = 3, its configuration space would be grouped into two family
trees (see Figure 6); {σ1, σ2, σ3, σ4} and {σ5}, being σ1 and σ5 their root configurations,
respectively.

χ1

1 2 4t 3t t t

χ5

χ2

χ 4χ3

1t

111 1

5

v

v

v

Figure 6: An example of the perfect binary tree and subtrees for m = 3.

The solution of a configuration, namely 〈σi〉, is defined in terms of its symmetric χi found
in the PBT:

〈σi〉 = (1 + v)c
2d−1
∑

k=0

vb(k)〈χk
i 〉 (15)

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Variable d denotes the number of deletions (i.e., holes in the external layer) and variable c the
contractions accumulated along its path, both starting from the root. The (1+ v)c coefficient
corresponds to the expression for the c loops that are present in the external layer of σi, but
are missing in χi. For the example of the square strip of width m = 3, c = 0, 1, 1, 2, 0 for
χ1, χ2, χ3, χ4, χ5, respectively. Function b(k) counts the number of non-zero bits of k and the
expression χk

i is the application of the binary mask k just on the holes of χi. The mask works
as follows: if bit kj = 1, with j ∈ [0..d−1], then the j-th hole is filled with an edge, otherwise
it is left as a hole.

When d = 0, χi represents exactly the starting point of an eventual solution 〈σi〉, alge-
braically symmetric in (1 + v)c. When d > 0, χi is no longer the starting point of 〈σi〉, but
instead it is the left-most node in an eventual recursion tree of the solution 〈σi〉, at level d.
In order to compute 〈σi〉, 2d − 1 variations of χi are needed to build the missing steps and
eventually reach σi in a bottom-up way. An important property of the variations of χi is that
they actually correspond to other family members within the PBT that will be eventually
solved too. This means that there is no need to compute these variations, instead one has
to make the correct relations between the different family members. We propose a hash map
of the type (χi, r[]) so that for each χi, represented by its unique key, there is an array of
related configurations r[] that need 〈χi〉. Each time a contracted configuration is reached in
the PBT, equation (15) is applied and 2d− 1 relations are inserted in the hash map. Figure 7
illustrates the example of the strip of width m = 3 when processing χ3; it needs χ4 in order
to build the solution 〈σ3〉.

Figure 7: An example of how χ3, with d = 1, builds the solution of σ3 with the help of χ4.

The solution for each family member 〈χi〉 can be written in terms of the solutions of the 2h

subtrees. A convenient way for storing the solution for a whole family is to write a system of
equations, using a linear combination of the 2h sub-trees. A vc coefficient is included, where
c is the amount of contractions found in the path from the familiar to the sub-tree. For the
example of the strip of m = 3, the solution for the family of σ1 is:

〈σ1〉 = 〈χ1〉 = 〈t11〉+ v〈t12〉+ v〈t13〉+ v2〈t14〉, (16)

〈σ2〉 = (1 + v)〈χ2〉 = (1 + v)[〈t13〉+ v〈t14〉] (17)

〈σ3〉 = (1 + v)[〈χ3〉+ v〈χ4〉] = (1 + v)[〈t12〉+ v〈t14〉] (18)

〈σ4〉 = (1 + v)2〈χ4〉 = (1 + v)2〈t14〉 (19)

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Note how 〈σ3〉 includes 〈χ4〉, as shown in Figure 7. The solution for the family of σ5 is:

〈σ5〉 = 〈χ5〉 = 〈t51〉 (20)

These equations, plus the solutions of the sub-trees, conform the compressed transfer matrix
for the example strip of width m = 3. It is important to mention that the sub-trees are stored
only once and the system of equations use indices to the sub-trees.

Given how DC works, identification can only occur on pairs of vertices that are neighbors.
This aspect of DC allows us to establish a formal definition for a family.

Definition 1. A family is a set of configurations in which for any chosen pair σi and σj of
the set, the difference of their corresponding keys Πi and Πj is Πi−j = πx1,x1+1 + πx2,x2+1 +
...+ πxn,xn+1.

In other words, the difference between σi and σj must only consist of identifications of
length l = 1. Configurations that differ at least by one identification of length l > 1 belong to
a different family. Each family is identified by its root configuration, therefore it is important
to know which configurations are root and which are not.

Definition 2. A root configuration is an instance of Kn where its key Π = πx1,y1 + πx2,y2 +
...+ πxn,yn satisfies |xi − yi| > 1 for i ∈ [1..n].

That is, a root configuration is one that does not have identifications of length l = 1.
The number of root configurations will be denoted ∆m as a function of the width m. We
formulate the following expression for ∆m, based on Definition 2 and using the inclusion-
exclusion principle:

∆m =

m−1
∑

k=0

(−1)k
(

m− 1

k

)

Cm−k (21)

Theorem 1. The amount of root configurations is upper bounded as ∆m = O(3m).

Proof. Using (13) into (21) leads to the following bound:

∆m =

m−1
∑

k=0

(−1)k
(

m− 1

k

)

Cm−k ≤
m−1
∑

k=0

(

m− 1

k

)

(−1)k4m−k = 4

m−1
∑

k=0

(

m− 1

k

)

(−1)k4m−1−k

(22)

= 4(4− 1)m−1 (23)

= O(3m) (24)

Step 23 is obtained by using the Binomial formula with x = 4 and y = −1.

The number of root configurations ∆m corresponds to the number of non-crossing non-
nearest-neighbor partitions (nc-nnn). The number of nc-nnn can also be counted with the
Motzkin number evaluated at m− 1; ∆m = Mm−1, where Mm is:

Mm =

⌊m/2⌋
∑

j=0

(

m

2j

)

Cj (25)

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The asymptotic number of nc-nnn partitions has been previously studied by Chang et. al.
in [38] by using the asymptotic behavior of Mm:

Mm =
33/2

2
√
π m3/2

3m
[

1 +O(m−1)
]

(26)

Although the asymptotic bound was already obtained in two earlier works [38, 13] in the
context of nc-nnn partitions, the proof of Theorem 1 still remains interesting as a short
and alternative way to establish the O(3m) upper bound coming from an inclusion-exclusion
formulation that has not considered the Motzkin numbers.

4.3.1. Upper bound for relating k-hole familiars

Counting the amount of family relations within a DC procedure allows one to precise an
upper bound on the number of accesses made to the hash map. For each DC application, the
cost of relating family members is defined as:

g(h) =
h−1
∑

k=0

c(k, h)r(k) (27)

Where r(k) = 2k−1 is the cost of performing the relations for a k-hole configuration. Function
c(k, h) counts the number of k-hole configurations, which is a subset of the total number of
familiars. Since familiars can only be contracted nodes within the PBT, the size of a family
is 2h−1. A direct upper bound can be computed assuming the worst case for r(k):

g(h) < (2m − 1)

h−1
∑

k=0

c(k, h) ≤ (2m − 1)2h < 4m = O(4m) (28)

A tighter upper bound is possible when c(k, h) is analyzed more carefully. The following
pattern can be found when counting the number of k-hole configurations.

c(0, h) = h (29)

c(1, h) = 1 + 2 + ...+ h− 1 (30)

c(2, h) = (1) + (1 + 2) + ...+ (1 + 2 + 3...+ h− 2) (31)

c(3, h) =
[

(1)
]

+
[

(1) + (1 + 2)
]

+ ...+
[

(1) + (1 + 2) + ...+ (1 + 2 + 3 + ...+ h− 3)
]

(32)

The recursion for c(k, h) is:

c(k, h) =
h−k
∑

i=0

c′(k − 1, i), 1 ≤ k ≤ h− 1 & c(0, h) = h (33)

c′(k, h) =
h
∑

i=0

c′(k − 1, i), 1 ≤ k ≤ h− 1 & c′(0, h) = h (34)

Function c(k, h) is equivalent to counting the number of k-faces in a regular (h − 1)-
simplex [39]. A regular (h − 1)-simplex is a (h − 1)-dimensional polytope that is the convex
hull of h vertices in a regular spatial distribution. A regular simplex can also be seen as the
generalization of the notion of a triangle or a tetrahedron, for an arbitrary dimension. A
regular (h− 1)-simplex can be drawn in the plane by placing h vertices inscribed in a circle,
with all pairs connected (see Figure 8).

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5-simplex4-simplex3-simplex2-simplex1-simplex0-simplex

Figure 8: Examples of regular simplexes drawn on the plane.

The number of k-faces in a (h− 1)-simplex [40] is defined as:

c(k, h) =

(

h

k + 1

)

(35)

Using (35) in (27), we have that

g(h) =

h−1
∑

k=0

(

h

k + 1

)

(2k − 1) (36)

Theorem 2. The cost of relating all configurations within a PBT is upper bounded as g(m−
1) = 1

6(3
m − 3 · 2m + 3) = O(3m).

Proof. For simplicity, we will assume that every DC application processes the default initial
configuration. This configuration is the one that spans the largest family, hence the worst
case where b = 0, that is h = m− 1.

g(h) ≤ g(m− 1) =
m−2
∑

k=0

(

m− 1

k + 1

)

(2k − 1) =
m−2
∑

k=0

(

m− 1

k + 1

)

2k −
m−2
∑

k=0

(

m− 1

k + 1

)

(37)

Both summations obey the following form:

m−2
∑

k=0

(

m− 1

k + 1

)

ak =
1

a

m−1
∑

k=1

(

m− 1

k

)

ak =
1

a

(

−1 +
m−1
∑

k=0

(

m− 1

k

)

ak

)

(38)

Using the Binomial theorem for the summation, we get

1

a

(

−1 +
m−1
∑

k=0

(

m− 1

k

)

ak

)

=
(a+ 1)m−1 − 1

a
(39)

Using a = 2 and a = 1 leads to the first and second terms of Eq. (37)

g(h) ≤ g(m− 1) =
3m−1 − 1

3
− 2m−1 − 1

2
=

1

6
(3m − 3 · 2m + 3) = O(3m) (40)

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.3.2. Running time of the family trees strategy

The asymptotic sequential running time of the family trees algorithm applied to a layer
K(V ′, E′) of a strip lattice is:

T (m,K(V ′, E′)) = ∆m

(

DC + g(m− 1)
)

(41)

= O
(

3m
(

min
(

2|E
′|,

1 +
√
5

2

|V ′|+|E′|
)

+ 3m
))

(42)

The extra cost provided by g(m − 1) does not incur in too much extra computation
compared to the cost of DC itself, where the amount of edges of K(V ′, E′) must at least
double the amount of edges in the boundary, that is E′ ≥ 2(m − 1). Additionally, g(m − 1)
is considering the worst case for each root configuration where h = m − 1. In practice, all
configurations, except for the default one, will have h < m− b− 1 with b > 0.

4.3.3. Parallel family trees

By default, the algorithm does not know the ∆m different root configurations except for
σ1 which is given as part of the input of the strip lattice and is the one that triggers the
computation. Under this scheme, the configuration space would have to be explored incre-
mentally, each time adding a sub-set of configurations from the terminal configurations found
from a DC application. This is indeed a problem for parallelization because the data-parallel
elements are being discovered sequentially, limiting the efficiency and scalability of a parallel
computation. In order to solve this problem, we use a recursive generator g(A[][], s,H, S),
that with the help of a hash table H, generates all the ∆m configurations before hand and
stores them in an array S. A[][] is an auxiliary array that stores the intermediate aux-
iliary subsequences and s is the accumulated sequence of identifications. Before the first
call to g(A[][], s,H, S), A = [[0, 1, 2, ...,m − 1]], s is null and H as well as S are empty.
g(A[][], s,H, S) is defined as:

g(A[][],s,H,S){

if(!add_sequence(s,H,S))

return;

for(int k=0; k<A.size(); k++){

for(int j=2; j<A[k].size(); j++){

for(int i=0; i<j-1; i++){

if(can_identify(A[k],i,j)){

cA = copy(A);

cs = copy(s);

identify(cA,i,j,k,cs);

divide(cA,i,j,k);

g(cA,cs,H,S);

}}}}}

Basically, g(..) performs a recursive partition of the domain A. If |j−i| ≤ 3 then no further
identifications can be carried on, otherwise the identification would be of length l = 1 and the
generated configuration would not be a root configuration. Similarly, for the top and bottom
parts if |j−i| ≤ 2 then no more identifications are possible. Each time a new identification i, j
is added, the resulting configuration is checked in the hash table. If it is a new configuration,
then it is added, else it is discarded as well as all further recursion computations continuing
from that point. By using this approach we ensure that redundant recursion branches are

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

never computed. Once g(..) has finished, S becomes the array of all possible configurations
and H the hash that maps configurations to indices.

Parallel family trees are achieved by first generating all root configurations with g(..),
followed by the parallel computation of p family trees simultaneously, using p processors
and a total of ∆m/p family trees per processor. The initial key needed by each processor
pi is obtained by reading in parallel from S[pi], assuming the PRAM-CREW model. Once
the key is obtained, it is applied to the external vertices of its own local copy of the base
layer σ1. Foster’s four-step strategy [41] describes the design process of a parallel algorithm;
partitioning, communication, agglomeration, mapping. The design steps for the parallel family
trees is illustrated in Figure 9.

p

p

M

0

1

Partitioning
Communication

Mapping
Agglomeration

Figure 9: Foster’s four step strategy for achieving parallel family trees, for two processors.

The work for each processor pi is divided in the following steps: (1) pick one root configuration
key from S[], (2) apply it to its local copy of the Kσ1

layer, (3) perform the DC procedure, (4)
write the results into non-volatile memory, i.e., sub-tree results as well as the linear equations
into disk, and (5) go to step (1) if there are still root configurations remaining. For step (3),
familiars of a root configuration are detected at runtime within the PBT by computing its
key, each time the recursion comes from a contraction. When the beginning of a sub-tree
is reached, no more familiars are guaranteed to be found on what is left of the recursion,
therefore the algorithm can proceed to compute the whole sub-tree without needing to check
for the existence of familiars. The solution of a sub-tree ti is a vector of expressions zi,j(q, v)
that associates a j index to a terminal configuration ϕj within the sub-tree ti. The hash-map
H from the generator becomes useful for searching with average cost O(1) the index j of
a terminal configuration ϕj . Also, H ensures that all vectors are consistent with the order
established in the generator and in the transfer matrix.

The 2m−1 sub-tree vectors and the coefficients for the set of equations provide the solution
for a whole family. Both of these results are saved locally for each processor. This output for-
mat based on sub-trees and coefficients makes the matrix compressed in the same proportion
of the improvement in the running time.

The asymptotic running time for the parallel family trees algorithm using p processors is:

T (m) = O
(3m

p

[

DC + g(k,m)
])

(43)

= O
(3m

p

[

min
(

2|E
′|,

1 +
√
5

2

|V ′|+|E′|
)

+ 3m
])

(44)

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Further computations for achieving physical results require decompression of the matrix,
leading to a matrix of Catalan dimensions again. In practice, large symbolic matrices need
first to be evaluated before doing any analysis. If the numerical evaluation is performed before
decompressing the matrix, then the process is much faster than first decompressing and then
evaluating, even faster than evaluating an uncompressed transfer matrix on (q, v). Numerical
evaluation has the potential to be exponentially faster as a consequence of the parallel family
trees compression, which is in the same order of the running time improvement.

The analysis of the algorithm has been made for the case of free boundary conditions but
it is not restricted to it. For different boundary conditions such as cylindrical, full periodic or
cyclic, the parallel family trees can be still applied following the same principle, while taking
advantage of additional symmetries like the dihedral group in the cylindrical case. The rest
of the paper assumes free boundary conditions unless we explicitly mention the contrary.

For the case of a finite strip, the initial conditions vector ~Z1 is computed by applying DC
to each one of the Cm terminal configurations:

~Z1 = (DC(ϕ1),DC(ϕ2), ...,DC(ϕCm)) (45)

The computation of ~Z1 has very little impact on the overall cost of the algorithm and practi-
cally costs O(mCm) in time because a terminal configuration contains mostly spikes and/or
loops, which are linear in cost for DC.

5. Algorithm improvements

5.1. Serial and Parallel paths

The DC contraction procedure can be improved for graphs that present serial or parallel
paths between two endpoints va and vb, as shown in Figure 10.

Figure 10: Serial and parallel paths.

A serial path , denoted s, is a set of edges e1, e2, ..., en that connect sequentially n−1 vertices
between va and vb. It is possible to process a serial path of n edges in one recursion step by
using the following expression;

Z(K, q, v) =

[

(q + v)n − vn

q

]

Z(K−s, q, v) + vnZ(K/s, q, v) (46)

A parallel path p is a set of edges e1, e2, ..., en that reduntandly connect va and vb. It is
possible to process a parallel path of n edges in one recursion step by using the following
expression;

Z(K, q, v) = Z(K−p, q, v) +
[

(1 + v)n − 1
]

Z(K/p, q, v) (47)

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5.2. Axial Symmetry

One practical optimization is to detect the lattice’s reflection symmetry when comput-
ing the root configurations as well as the Catalan configurations. When detecting reflection
symmetry, the size of the configuration space is decreased for all symmetric pairs of configu-
rations, no matter if it is initial, terminal or root. As the width of the strip lattice increases,
the number of symmetric states increases too, leading to configuration spaces almost half the
size of the original. We establish reflection symmetry between two configurations ϕa and ϕb

with keys πa1,...,an and πb1,...,bn respectively in the following way:

πa1,...,an = πb1,...,bn ⇔ ai = (m− 1)− bn−i+1 (48)

Exploiting this symmetry results in a matrix size Cs
m:

Cs
m =

Cm

2
+

m!

2⌊m2 ⌋!
(49)

For large values of m, Cs
m ≈ Cm

2 .
For the case of root configurations, Chang et. al. [38] proved that the number of non-

crossing non nearest-neighbor partitions under reflection symmetry, which we denote ∆s
m,

is:

∆s
m =

1

2
Mm−1 +

(m′ − 1)!

2

⌊m′/2⌋
∑

j=0

m′ − j

(j!)2(m′ − 2j)!
(50)

where m′ =
⌊

m+1
2

⌋

. The expression was also obtained by Salas and Sokal [13] for studying

the square lattice symmetries when v = −1. When m→∞ we have:

∆s
m ∼

√
3

4
√
π m−3/2

3m
[

1 +O(m−1)
]

(51)

Table (1) shows how the amount of Catalan and root configurations increase for non-
symmetric and symmetric lattices up to m = 14. If cylindrical boundary conditions are used,
then the reflection symmetry can be replaced by the symmetry of the dihedral group which
further reduces the size of the matrix. For this manuscript we limit our work to the case of
free boundary conditions.

6. Implementation

We tried two implementations for the parallel family trees parallel algorithm; one using
OpenMP [42] and the other one using MPI [43]. We observed that the MPI implementation
achieved better performance in the multi-core scenario and allows parallel computation in
a distributed scenario. For this, we decided to continue the research with the MPI imple-
mentation for both multi-core and distributed scenarios. Basic mathematical operations on
symbolic expressions are handled through the GiNaC C++ library [44]. Parallel execution
of the algorithm receives two parameters; the number of processors p and the block size B,
which is the amount of consecutive jobs per process. When the parallelization is unbalanced,
the value of B plays an important role for efficiently distributing work to all processors. In
our implementation we make each process to generate its own H lookup table and S array.
This small sacrifice in memory leads to better performance than if H and S were shared

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1: Number of Catalan and root configurations under non-symmetric and symmetric cases.

m Cm Cs
m ∆m ∆s

m

1 1 1 1 1
2 2 2 1 1
3 5 4 2 2
4 14 10 4 3
5 42 26 9 7
6 132 76 21 13
7 429 232 51 32
8 1430 750 127 70
9 4862 2494 323 179

10 16796 8524 835 435
11 58786 29624 2188 1142
12 208012 104468 5798 2947
13 742900 372308 15511 7889
14 2674440 1338936 41835 21051

among all processes. There are mainly three reasons why the replication approach is better
than the sharing approach: (1) caches will not have to deal with consistency of shared data,
(2) there is no sending/receiving of data structures and (3) the allocation of the replicated
data is correctly placed on memory modules when working under a NUMA architecture. The
last claim is true because on NUMA systems memory allocations on a given process are au-
tomatically placed in its fastest location according to the NUMA topology between memory
and CPU cores. It is responsibility of the OS (or make manual mapping) to stick the process
to the same processor throughout the entire computation.

The implementation writes each row to a persistent secondary memory (i.e., HDD or
SSD) as soon as it is computed. Each processor does this with its own file, therefore the
matrix is fragmented into p files. In practice, a fragmented matrix is not a problem at all,
because numerical evaluation is needed before using the matrix in its full form. Furthermore,
a fragmented matrix allows parallel numerical evaluation.

7. Performance results

We have realized performance tests for the parallel transfer matrix method implemented
with MPI for both shared and distributed memory scenarios. The experimental design consists
of measuring the main performance metrics (i.e., running time, speedup, efficiency, knee) of
the implementation by computing the compressed transfer matrix several times, each time
varying the number of processors p. We also compute the improvement factor with respect
to previous work [19]. The experiments are divided into two categories; (1) multi-core and
(2) cluster. For each case, we measure performance with two strip lattices; (1) square and (2)
kagome, respectively (see Figure 11).

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 11: The square and kagome lattices used for measuring performance.

Explicit algebraic expressions for the sparse-matrix factorization of M for all the Archimedean
lattices (which include the square and kagome lattices) have been computed by Jacobsen [45],
on finite lattice regions of up to |E| = 882 edges. The approach taken by the sparse-matrix
differs from the standard transfer matrix technique, since the former processes a whole finite
lattice region, using one sparse matrix computation per edge, while the latter computes a
dense TM for each different graph layer of width m.

Note: PFT refers to the actual Parallel Family Trees strategy and PCM to the Parallel
Catalan Method from [19].

7.1. Multi-core results

The machine used for the multi-core performance tests has an 8-core CPU AMD FX-8350
at 4.0 GHz, 8GB of RAM and uses the openMPI implementation of the MPI standard [43].

7.1.1. Square strip lattice test

For the square lattice, we measure performance for 9 different strip widths in the range
m ∈ [2, 10]. For each width, we measure 8 average execution times, one for each value of
p ∈ [1, 8]. As a whole, we perform a total of 72 average measurements for the square test.
The standard error for each average execution time is below 5%. Different block sizes where
tested, giving no significant difference on performance. For this reason, we kept a block size
of B = 1. The other performance measures include speedup, efficiency and the knee3 [46]. In
this case we took advantage of the reflection symmetry for all sizes of m.

Figure 12 shows all four performance measures for the square lattice. From the results, we
observe that the running time grows at an exponential rate which is compatible with the upper
bound in (44), assuming that the cost of DC had a little impact on the algorithm. Indeed it is
possible for DC to have a little impact, considering that algorithmic improvements are linear
and they occur with more or less frequency depending on the edge selection order [34] and
the lattice structure. For the speedup, there is improved performance for every value of p as
long as m > 4. For m ≤ 4, the problem is not large enough to justify parallel computation,
hence the overhead from MPI makes the implementation perform poorly and sometimes even
worse than the sequential version. The plot of the execution times confirms this behavior
since the curves cross each other for in the transition from m = 3 to m = 4. The maximum
speedup obtained was 5.7 when using p = 8 processors. From the lower left plot we can see
that efficiency decreases as p increases, which is expected in every parallel implementation.

3In the knee, point counting is in reverse order.

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

ti
m

e
 [

s
]

m

PFT Runtime (square)

p=1
p=2
p=4
p=8

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

s
p

e
e

d
u

p

p

PFT Speedup (square)

m=4
m=6
m=8
m=10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

e
ff

ic
ie

n
c
y

p

PFT Efficiency (square)

m=4
m=6
m=8
m=10

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ti
m

e
 [

s
]

efficiency

PFT Knee (square)

m=4
m=6
m=8
m=10

Figure 12: Multi-core running time, speedup, efficiency and knee for the square strip test.

What is important is that for large enough problems (i.e., m > 6), efficiency is over 62% for
all p. For the case of p = 4, we report at least 95% of efficiency, which is close to perfect
linear speedup. For m ≤ 6, the implementation is not so efficient because the amount of
computation involved is not enough to keep all cores working at full capacity. The knee is
useful for finding the optimal value of p for a balance between efficiency and computing time.
It is called knee because the hint for the optimal value of p is located in the knee of the curve
(thought as a leg), that is, its lower right part. In order to know the value of p suggested by
the knee, one has to count the position of the closest point to the knee region, in reverse order.
Our results of the knee for m > 6 show that the best balance of performance and efficiency
is achieved with p = 4 (for m ≤ 6, the knee is not effective since there was no speedup in the
first place). In other words, while p = 8 is faster, it is not as efficient as with p = 4.

7.1.2. Kagome strip lattice test

For the test of the kagome lattice, we used 6 different strip widths in the range m ∈ [2, 7].
For each width, we measured 8 average execution times, one for each value of p ∈ [1, 8]. As a
whole, we performed a total of 48 measurements for the kagome test. The standard error for
each average execution time is below 5%. Additional performance measures such as speedup,
efficiency and knee have also been computed. Different values of block size were tested,
achieving noticeable differences on performance as B changed. We found by experimentation
that B = 1 makes the work assignment slightly more balanced. In this test we can only use
lattice axial symmetry for m = 2, 4, 6, 8, For this reason we decided to run the whole

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

kagome benchmark without axial symmetry in order to maintain a coherence between odd
and even values of m.

Figure 13 shows the performance results for the kagome strip test. From the results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 3 4 5 6 7

ti
m

e
 [

s
]

m

PFT Runtime (kagome)

p=1
p=2
p=4
p=8

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

S

p

PFT Speedup (kagome)

m=4
m=5
m=6
m=7

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

E

p

PFT Efficiency (kagome)

m=4
m=5
m=6
m=7

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ti
m

e
 [

s
]

efficiency

PFT Knee (kagome)

m=4
m=5
m=6
m=7

Figure 13: Multi-core running time, speedup, efficiency and knee for the kagome strip test.

we have that the parallel performance is still scalable even for dense layers; the maximum
speedup is over 4.7 for p = 8 on the largest problems. When m > 5, the efficiency of the
parallel implementation is approximately over 60% for all values of p. In this test the knee is
harder to identify, however for the largest problems one can see a small curve that suggests
p = 4 which is in fact 90% efficient when solving large problems.

7.2. Cluster results

The cluster used for the tests has a total four nodes; each one with 32GB RAM and two
quad-core processors Xeon 5500 2.26 GHz. The full systems offers a total of 32 processing
cores and 128GB RAM. The network is Ethernet gigabit centralized and the implementation
of MPI is openMPI.

7.2.1. Square results

For the test of the square strip lattice in the cluster environment, we tested 9 different strip
widths in the range m ∈ [2, 10]. For each width, we measure 32 average execution times, one
for each value of p ∈ [1, 32]. This process is repeated for both static and dynamic scheduling.
The standard error for each average execution time is below 5%. For the dynamic scheduler
we have chosen a block size value of B = 1. This value of B produces the highest amount

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of communication between the worker processes and the scheduler, hence the most dynamic
scenario. Advantage of axial symmetry has also been taken.

Figure 14 shows the performance measures of the running time, speedup, efficiency and
the knee [46] for the cluster environment. Note that for each color (size), the solid and dashed
lines represent static and dynamic scheduling, respectively.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

ti
m

e
 [

s
]

m

Cluster PFT Runtime (square)

p=1
p=4
p=16
p=32

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

s
p

e
e

d
u

p

p

Cluster PFT Speedup (square)

m=4
m=6
m=8
m=10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 4 8 12 16 20 24 28 32

e
ff

ic
ie

n
c
y

p

Cluster PFT Efficiency (square)

m=4
m=6
m=8
m=10

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

ti
m

e
 [

s
]

efficiency

Cluster PFT Knee (square)

m=4
m=6
m=8
m=10

Figure 14: Cluster running time, speedup, efficiency and the knee for the square strip test.

From the results we observe that the reduction of the running time becomes effective
starting from problems of size m ≥ 6. Speedup has an overall linear behavior for the full
range p ∈ [1, 32] which tells good scalability. Interestingly, near p = 4 there is a region
of super-linear speedup [47] that occurs only for sizes m = 6, 8. For p > 10, super-linear
speedup vanishes for all problem sizes. In the cluster environment, the behavior between
static (solid lines) and dynamic scheduling (dashed lines) is notorious; the former behaves
irregularly producing several performance valleys, while the latter behaves regularly, gives
higher performance and produces close to zero performance valleys. The maximum speedup
achieved is approximately 28X for p = 32, being superior in the dynamic case by a small
margin. The efficiency of the parallel algorithm stays above 90% for the largest case of
m = 10. Again, dynamic scheduler proves to be much more efficient than the static one
when m > 6, and overall the algorithm is over 70% efficient for large enough problems, that
is m ≥ 8. The knee suggests that p ∈ [8, 10] gives the best balance of running time and
efficiency whenever m ≥ 8.

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7.2.2. Kagome results

For the test of the kagome strip lattice in the cluster environment, we tested 5 different
strip widths in the range m ∈ [3, 7]. For each width, we measure 32 average execution
times, one for each value of p ∈ [1, 32]. This process is repeated for both static and dynamic
scheduling. The standard error for each average execution time is below 5%. For the dynamic
scheduler we have chosen a block size value of B = 1, same as in the square cluster test.

Figure 14 shows the performance measures of running time, speedup, efficiency and the
knee [46] for the cluster environment. Note that for each color (size), the solid and dashed
lines represent static and dynamic scheduling, respectively.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 4 5 6 7

ti
m

e
 [

s
]

m

Cluster PFT Runtime (kagome)

p=1
p=4
p=16
p=32

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 4 8 12 16 20 24 28 32

s
p

e
e

d
u

p

p

Cluster PFT Speedup (kagome)

m=4
m=5
m=6
m=7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 4 8 12 16 20 24 28 32

e
ff

ic
ie

n
c
y

p

Cluster PFT Efficiency (kagome)

m=4
m=5
m=6
m=7

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ti
m

e
 [

s
]

efficiency

Cluster PFT Knee (kagome)

m=4
m=5
m=6
m=7

Figure 15: Cluster running time, speedup, efficiency and knee for the kagome strip test.

The results show that the reduction of the running time becomes effective in a cluster as
long as m ≥ 6. In this case, speedup is closer to a logarithmic curve rather than a linear
one. It is interesting to note that speedup gets stuck at specific values for sizes m = 4, 5, 6.
The reason why is because the size of the configuration space is not large enough for cluster
execution; ∆m ≤ 32 for m = 4, 5, 6. In fact, the values of p where speedup starts to get
stuck actually match the values found for ∆4,∆5,∆6 in Table 1. This phenomenon is totally
normal in cluster or supercomputer environments, where the amount of work needed to reach
full system occupancy is not always provided by the problem input. In order for speedup
to take off, the configuration space must be equal or greater than the amount of processors
available in the system.

There is a notorious difference in performance between static and dynamic scheduling.
With dynamic scheduling, the performance valleys are practically non-existent, giving a much

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

more stable parallel performance for the full range of p. Efficiency is not as good as in the
square test; the largest problem is solved with an efficiency over 55%, while the others reach
below 50% at some point of p. Dynamic scheduling proves to be in average more efficient
than static scheduling, by-passing the performance valleys. The Knee curve suggests a value
p ≈ 8 for a good balance between running time and efficiency.

7.3. Impact of DC on algorithm performance

We observed from the results that the running time of PFT applied to the kagome strip is
slower than in the square strip. DC may cost too much in layers with a dense number of edges
if optimizations do not occur too frequently. For the square lattice layer, we can write the DC
worst case cost as O(22m)−O(opt) = O(4m−opt) which is one of the fastest cases we can find,
and optimizations, namely O(opt), appear without too much effort. If we multiply this cost
by the configuration space we have that the upper bound for the time to compute the transfer
matrix of the square strip is O(3m × (4m − opt)) = O(12m − 3m · opt), which is a notorious
improvement with respect to the O(16m) bound with the standard Catalan technique, even
if no DC optimizations occur. Now for the kagome we can write the DC worst case cost as
O(26m)−O(opt) = O(64m−opt) which would cost O(3m×(64m−opt)) = O(192m−3m ·opt) in
time when computing the matrix. For dense layers the performance depends on how good the
optimizations are and how frequently one can make them appear for a specific strip type. In
our case the optimizations for kagome did not occur as frequent as in the square case because
we programmed the heuristics in a very general way, nevertheless the method still managed
to perform at least two times faster than the Catalan approach. It should be possible to
make DC become more aware of the kagome structure and make it to generate the maximum
number of optimization opportunities, as mentioned in the work of Haggard et. al. [34].

7.4. Performance on wider strips

We ran the PFT method to compute general (q, v) transfer matrices on square strips at
m = {11, 12, 13} and kagome strips at m = {8, 9}, using free boundary conditions and all the
32 processors we had available. For the square strip, the computation of the TM took ∼ 5.5
minutes for width m = 11, ∼ 46 minutes for width m = 12 and ∼ 6.7 hours for width m = 13.
For the kagome strip, the computation of the TM took between 11 ∼ 12 hours at width m = 8
and ∼ 3 months at width m = 9. These results were not included in the performance plots
because it would have required excessive amount of time to benchmark for all values of p,
specially for p = 1 where the computation is sequential. For the kagome strip we consider that
we have reached the limit of tractability and wider kagome strips would become intractable4

with our hardware resources. For the square strip, we believe it is still possible to go further
with our hardware resources, possibly up to m = 14 or in the best scenario m = 15 before
reaching intractability. Moreover, if cylindrical boundary conditions are used, then it should
be possible to go further beyond by using the symmetry of the dihedral group.

An important aspect of having a parallel solution is that if enough processors are used,
that is p = ∆m, then the time for computing the transfer matrix becomes proportional to the
depth of the largest directed-acyclic graph (DAG) of computation, which would correspond
to the time required to solve the deepest family. The DAG concept allows to know what

4We consider that a problem becomes intractable when the time it takes to be solved is in the order of
years for a given computer. It is possible that a faster computer can handle the problem, making it tractable.

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to expect when having more processors (i.e., a supercomputer) and gives insights on the
limits of computation regarding parallelism. If we apply the DAG concept to our results,
we have that the time needed to compute the TM for the square strip would have been less
than 5 seconds for m = 11 using p = 1142 processors, less than 10 seconds for m = 12 using
p = 2947 processors and less than 5 minutes for m = 13 using p = 7889 processors. Analogous
for kagome; the time needed to compute the TM would have been between 2 ∼ 3 hours for
m = 8 using p = 70 processors and ∼ 1 week for m = 9 using p = 323 processors. As we
mentioned earlier, DC heuristics that are aware of the kagome structure should improve the
performance further.

7.5. Comparison with related work

In this subsection we compare the Parallel Family Trees (PFT) strategy against the Cata-
lan Parallel Method (CPM) [19] by using the following metrics: (1) running time (2) matrix
evaluation time and (3) matrix space. Figure 16 shows the results.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

F
a

c
to

r

m

Cluster PCM/PFT Running time Improvement (square)

PCM/PFT@p=1
PCM/PFT@p=4

PCM/PFT@p=16
PCM/PFT@p=32

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 3 4 5 6

F
a

c
to

r

m

CPM/PFT runtime improvement (kagome)

CPM/PFT@p=1
CPM/PFT@p=2

CPM/PFT@p=4
CPM/PFT@p=8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 3 4 5 6 7 8 9 10

C
o

m
p

re
s
s
io

n
 F

a
c
to

r

m

Matrix space

CPM/PFT - square
CPM/PFT - kagome

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9 10

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r

m

Matrix evaluation time

CPM/PFT - square
CPM/PFT - kagome

Figure 16: Comparison between Parallel Family Trees (PFT) and the Catalan Parallel Method (CPM).

The first aspect to note from the running time results is that there is an non-linear im-
provement with respect to CPM that is independent of the amount of processors used. This
improvement corresponds to the asymptotic reduction from O(4m) to O(3m) in configuration
space. The improvement is less clear in the kagome strip test, but we expect that it should
manifest when exploring larger sizes of m or when using better heuristics for the DC optimiza-
tions. For the space metric, we observe that the size of the compressed matrices is indeed
smaller than in the CPM case. Moreover, for the square strip the amount of compression

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

increases non-linearly as we expected from the theoretical bound. For the kagome test, the
compression factor stabilizes at approximately 1.5. We believe that the reason why kagome
compression stays fixed is because the kagome matrix is more sparse than in the square case,
making the method to group zero-elements instead of large polynomials, reducing the com-
pression factor from the maximum possible if the matrix was dense. For the results of Matrix
evaluation, we observe that evaluation and decompression on a PFT-matrix is faster than just
evaluation on a CPM-matrix. The improvement seems to be a consequence of the compression
factor achieved previously, since the behavior is similar.

7.6. Dynamic scheduler and block size

The role of the block size under dynamic scheduling can be viewed as the amount of
staticness induced to the program. A value of B = 1 means a fully dynamic scheduler, while
a value of B = ⌈n/p⌉ means a fully static scheduler. Given that the dynamic scheduler of our
implementation communicates via 1-byte messages, it is safe to use B as long as the network
is sufficiently fast and dedicated to the cluster, like in our case. In a limited and shared
network environment, one could consider exploring the range 1 < B < ⌈n/p⌉ until a good
local minimum is found.

7.7. Axial Symmetry

When using axial symmetry, we observed an extra improvement in performance of up
to 2X for the largest values of m. This improvement applies to both sequential and parallel
execution. The size of the transfer matrix is improved under axial symmetry, in the best cases
we achieved almost half the dimension of the original matrix, which in practice translates into
up to 1/4 of the space of the original non-symmetric matrix. Lattices as the kagome will only
have certain values of m where it is axial symmetric. In the other cases, one must perform a
non-symmetric computation.

8. Validation

In this section we present some physical results we have computed for different widths of
the square strip using free boundary conditions, as a way to validate the correctness of the
parallel family trees method by comparing the curves with the ones from related works.

The first set of results are shown in Figure 17. In the graphics we present the limiting
curves on the complex q-plane for different values of the temperature-like parameter; v =
{−1.0,−0.5,−0.1}, at different strip widths in the range m ∈ [2, 8]. The curves were obtained
by using the direct-search approach method which consists of scanning the complex domain
in small discrete steps, and checking on each discrete location the condition |λ1| = |λ2| where
λ1 and λ2 are the first and second dominant eigenvalues, respectively. If the condition is true,
then the pair (x, y) is a point of the curve, where x and y are the real and imaginary parts
of q, respectively. Due to numerical precision limits, we allowed %1 of numerical error for
accepting the condition |λ1| = |λ2|. For the case of v = 0.5 we allowed up to %4 of error
for drawing the limiting curve at size m = 8. The curves for v = −1 agree with the ones
presented by Salas et. al. in Figure 21 of ref. [10]. The curves for v = −0.5 and v = −0.1,
although grouped in a different way, agree with the result obtained by Chang et. al. from
Figures 2, 3, 4 of ref. [38]. Limiting curves for 6 ≤ m ≤ 8 did not appear in the cited work.

For the next set of physical results we are interested in fixing the q parameter at values
q = {2, 3, 4} and compute the dimensionless reduced internal energy Er as well as the reduced

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

-3

-2

-1

 0

 1

 2

 3

 0 1 2 3

im
a

g
(q

)

real(q)

Square lattice free bc’s, v=-1.0

m=2

m=3

m=4

m=5

m=6

m=7

m=8

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2

im
a

g
(q

)

real(q)

Square lattice free bc’s, v=-0.5

m=2

m=3

m=4

m=5

m=6

m=7

m=8

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.1 0.2 0.3 0.4

im
a

g
(q

)

real(q)

Square lattice free bc’s, v=-0.1

m=2

m=3

m=4

m=5

m=6

m=7

m=8

Figure 17: Limiting curves on the complex q−plane for v = {−1.0,−0.5,−0.1}. In each graphic there
are seven limiting curves with different colors, each one corresponding to a different strip
width.

function CH of the specific heat C, for different strip widths in the range m ∈ [2, 8]. The
dimensionless reduced internal energy is defined as

Er = −
E

J
= (v + 1)

∂f

∂v
(52)

where f is the free energy density as defined in equation (8), J the coupling constant which
is J > 0 for the ferromagnetic case (0 < v < ∞) and J < 0 for the antiferromagnetic case
(−1 < v < 0). The specific heat is defined as

C =
∂E

∂T
= kBK

2(v + 1)

[

∂f

∂v
+ (v + 1)

∂2f

∂v2

]

(53)

and CH uses the reduced form

CH =
C

kBK
(54)

The results are presented in Figure 18, where each row presents the results for a given q value.
The curves for 2 ≤ m ≤ 5 agree with the ones presented by Chang et. al. [38]. Results for
6 ≤ m ≤ 8 did not appear in the cited work.

Although the computation of new physical curves for wider strips is indeed possible, it
would require more time with our resources, or a much larger cluster than ours for faster
results. Nevertheless, our present results already show that with the PFT strategy known
results are obtained faster than with CPM. We would like to remind the reader that the focus
of this work is on the algorithmic improvements and the possibilities to compute the general
(q, v) transfer matrix for strips, using a configuration space that is asymptotically O(3m) .

9. Discussion

We have presented a parallel strategy for computing the general (q, v) transfer matrix of
strip lattices in the Potts model. Our main result is the asymptotic reduction of the config-
uration space, from O(4m) to O(3m), by re-organizing the problem domain as parallel family

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 0

 0.5

 1

 1.5

 2

-1 0 1 2 3 4

E
r

v

Square lattice free bc’s, q=2

m=2

m=3

m=4

m=5

m=6

m=7

m=8

 0

 0.5

 1

 1.5

 0 2 4 6

C
H

v

Square lattice free bc’s, q=2

m=2

m=3

m=4

m=5

m=6

m=7

m=8

 0

 0.5

 1

 1.5

 2

-1 0 1 2 3 4

E
r

v

Square lattice free bc’s, q=3

m=2

m=3

m=4

m=5

m=6

m=7

m=8

 0

 0.5

 1

 1.5

 2

 0 2 4 6

C
H

v

Square lattice free bc’s, q=3

m=2

m=3

m=4

m=5

m=6

m=7

m=8

 0

 0.5

 1

 1.5

 2

-1 0 1 2 3 4

E
r

v

Square lattice free bc’s, q=4

m=2

m=3

m=4

m=5

m=6

m=7

m=8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6

C
H

v

Square lattice free bc’s, q=4

m=2

m=3

m=4

m=5

m=6

m=7

m=8

Figure 18: Plots for reduced internal energy Er and reduced specific heat CH for q = {2, 3, 4}.

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

trees (PFT). Using this strategy, the transfer matrix can now be computed by just processing
the root configurations, which are O(3m) in number. Computation of the family trees can be
performed completely in parallel because family trees are independent from each other, and
the configuration space is generated a priori, removing any potential time-dependence. We
have compared the experimental results of PFT and indeed it runs exponentially faster than
the Catalan Parallel Method (CPM) [19], both in sequential and parallel execution.

The resulting matrix of PFT is a compressed structure based on systems of linear equa-
tions. Numerical evaluation on the matrix, including decompression time, is actually faster
than numerical evaluation using the CPM method, by a factor that is proportional to the
improvement we measured for running time. Therefore, it is not only faster to generate the
matrix using PFT, but it is also faster to use it later for extracting the physical information.

Multi-core results have shown that PFT benefits from shared-memory parallelism, achiev-
ing a maximum of 5.7X of speedup for the square strip test when using p = 8 processors. At
p = 4, the efficiency of the implementation is still over 95%, which is worth mentioning. By
plotting the knee curve, we have managed to confirm that choosing p = 4 is in fact a wise
decision for a balance of speed and efficiency. In the Multi-core scenario, a dynamic scheduler
did not produce a beneficial change in performance, therefore static scheduling still remains
convenient.

For the cluster results, we achieved up to 28X of speedup using p = 32 for the square
strip tests, with an efficiency above 90% for a strip of width m = 10 (largest one). For the
kagome strip test, efficiency stayed above 55% for a strip of m ≥ 7 and the maximum value
of speedup reached was close to 20X when using p = 31. A small super-linear speedup region
emerged near p = 4 when solving square strips of sizes m = 6, 8, giving an efficiency of up
to 120%. We believe that this is just a particular fortunate event, possibly produced by the
reduction of cache misses, which is caused when partitioned data fits entirely in cache. In
general, we do not expect super-linear behavior since we are measuring fixed-size speedup
which is upper bounded as Sp ≤ p [48]. The knee curve suggests that p ∈ [8, 10] produces a
good balance between speed and efficiency. An important result in cluster execution is that
dynamic scheduling is mandatory in order to achieve a performance curve that will not fall
into performance valleys, as static scheduling did. On average, dynamic scheduling achieves
considerable higher performance than static scheduling.

One of the goals of this work was to present an algorithmic improvement that is implicitly
parallel and scalable. For this, we introduced a preprocessing step that generates all possible
root configurations and Catalan configurations, which are critical for processing the family
trees in parallel. This step takes a small amount of time compared to the whole problem.
Other technical improvements had been introduced, some of them being already known in the
literature [34]; (1) fast computation of serial and parallel paths of the graph, (2) exploiting
axial symmetry, (3) a set of algebra rules for making consistent keys in all leaf nodes and
(4) a hash table for accessing column values of the transfer matrix. In particular, when
taking advantage of axial symmetry, the implementation achieved extra improvement of up
to 2X in performance, using almost a quarter of the matrix space used in a non-symmetric
computation.

In order to achieve a scalable parallel implementation, some small data structures were
replicated among processors while some other data structures per processor were created
within the corresponding worker process context, not in any master process. This allocation
strategy results in faster cache performance and brings up the possibility to scale better under
NUMA architectures. It is not a problem to store the matrix fragmented into many files as

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

long as the matrix is in its symbolic form. In practice, it is first necessary to evaluate the
matrix on q and v before doing any further numerical analysis. Therefore, the fragmented
parts can be evaluated at runtime as they become read. This evaluation can also be done in
parallel.

The only technical restriction of the parallel family trees strategy in order to work is
that vertices of the left and right boundaries of the layer need to be connected sequentially.
This restriction is not a problem, because any planar strip lattice can be rotated so that
the restriction is satisfied. Additionally, PFT allows any graph structure along the vertical
direction, that is, one can study strips where itsKi layer is composed by a sequence of different
tiles.

In the kagome tests, the performance results were not as good as we expected, because
the number of edges in the layer is much higher than in the square case, making DC to take
a considerable amount of time for each configuration. We believe that the dependence of
DC on the number of edges in the layer is a sensible aspect for the PFT algorithm, and an
extrapolation of this situation would suggest that the largest Archimedean lattices could be
much harder to the point of being intractable. However, it is important to consider that DC
can significantly improve its performance if the heuristics are improved so that they choose
the best sequence of edges based on the connectivity of the graph layer [34]. These heuristics,
combined with the linear-cost optimizations, can make the PFT method more resistant to
the number of edges in the layer. Furthermore, if more processors are used to the point that
p = ∆m, then the time for computing the TM will be much lower than in our case with
p = 32, and will correspond to the time taken to solve the deepest DAG of computation. For
this reason, we expect that an execution on a large cluster or supercomputer could allow the
computation of transfer matrices of strips wider than what has been reached before.

Acknowledgment

Special thanks to Pedro D. Álvarez for his explanations and useful advice on the com-
putation of the limiting curves. The authors would like to thank CONICYT for sponsoring
the PhD program of Cristóbal A. Navarro, folio No 21100750. This work was partially sup-
ported by the FONDECYT projects No 1120495, No 1120352 and the Millennium Nucleus
Information and Coordination in Networks ICM/FIC P10-024F.

References

[1] R. B. Potts, Some generalized order-disorder transformation, in: Transformations, Pro-
ceedings of the Cambridge Philosophical Society, Vol. 48, 1952, pp. 106–109.

[2] H. W. J. Blöte, R. H. Swendsen, First-order phase transitions and the three-state Potts
model, Phys. Rev. Lett. 43 (1979) 799–802.

[3] S.-C. Chang, R. Shrock, Exact Potts model partition functions on strips of the honeycomb
lattice, Physica A: Statistical Mechanics and its Applications 296 (1-2) (2000) 48.

[4] R. Shrock, S.-H. Tsai, Exact partition functions for Potts antiferromagnets on cyclic
lattice strips, Physica A 275 (1999) 27.

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[5] S.-C. Chang, J. Salas, R. Shrock, Exact Potts model partition functions on wider
arbitrary-length strips of the square lattice, Journal of Statistical Physics 107 (5/6)
(2002) 1207–1253.

[6] S.-C. Chang, J. L. Jacobsen, J. Salas, R. Shrock, Exact Potts model partition functions
for strips of the triangular lattice, Physica A 286 (1-2) (2002) 59.

[7] E. Ising, Beitrag zur theorie des ferromagnetismus, Zeitschrift Für Physik 31 (1) (1925)
253–258.

[8] L. Onsager, The effects of shape on the interaction of colloidal particles, Annals of the
New York Academy of Sciences 51 (4) (1949) 627–659.

[9] G. J. Woeginger, Combinatorial optimization - eureka, you shrink!, Springer-Verlag New
York, Inc., New York, NY, USA, 2003, Ch. Exact algorithms for NP-hard problems: a
survey, pp. 185–207.

[10] J. Salas, A. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic
Potts models. I. General theory and square-lattice chromatic polynomial, Journal of
Statistical Physics 104 (3-4) (2001) 609–699.

[11] J. L. Jacobsen, Bulk, surface and corner free-energy series for the chromatic polynomial
on the square and triangular lattices, Journal of Physics A: Mathematical and Theoretical
43 (31) (2010) 315002.

[12] S.-C. Chang, R. Shrock, Structure of the partition function and transfer matrices for the
Potts model in a magnetic field on lattice strips, Journal of Statistical Physics 137 (4)
(2009) 667–699.

[13] J. Salas, A. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic
Potts models VI. square lattice with extra-vertex boundary conditions, Journal of Sta-
tistical Physics 144 (5) (2011) 1028–1122.

[14] M. Ghaemi, G. A. Parsafar, Size reduction of the transfer matrix of two-dimensional
Ising and Potts models, 2 4.

[15] A. Bedini, J. L. Jacobsen, A tree-decomposed transfer matrix for computing exact Potts
model partition functions for arbitrary graphs, with applications to planar graph colour-
ings, Journal of Physics A: Mathematical and Theoretical 43 (38) (2010) 385001.

[16] G. Blake, R. G. Dreslinski, T. Mudge, A survey of multicore processors, Signal Processing
Magazine, IEEE 26 (6) (2009) 26–37.

[17] R. Duncan, A survey of parallel computer architectures, Computer 23 (2) (1990) 5–16.

[18] C. A. Navarro, N. Hitschfeld-Kahler, L. Mateu, A survey on parallel computing and
its applications in data-parallel problems using GPU architectures, Commun. Comput.
Phys. 15 (2014) 285–329.

[19] C. A. Navarro, N. Hitschfeld, F. Canfora, Multi-core computation of transfer matrices
for strip lattices in the potts model, in: 15th IEEE International Conference on High
Performance Computing and Communications & 2013 IEEE International Conference on

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Embedded and Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China, November
13-15, 2013, 2013, pp. 125–134.

[20] H. S. Wilf, Algorithms and Complexity, 2nd Edition, A. K. Peters, Ltd., Natick, MA,
USA, 2002.

[21] W. T. Tutte, A contribution to the theory of chromatic polynomials, J. Math 6 (1954)
80–91.

[22] D. Welsh, C. Merino, The Potts model and the tutte polynomial, J. Math. Phys. 43
(2000) 1127–1149.

[23] A. D. Sokal, The multivariate tutte polynomial (alias Potts model) for graphs and ma-
troids, Surveys in Combinatorics 327 (2005) 173–226.

[24] B. Derrida, J. Vannimenus, Transfer-matrix approach to percolation and phenomenolog-
ical renormalization, Journal de Physique Lettres 41 (20) (1980) 473–476.

[25] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982.

[26] J. Jacobsen, J. Salas, Transfer matrices and partition-function zeros for antiferromagnetic
Potts models. II. extended results for square-lattice chromatic polynomial, Journal of
Statistical Physics 104 (3-4) (2001) 701–723.

[27] J. Jacobsen, J. Salas, A. Sokal, Transfer matrices and partition-function zeros for an-
tiferromagnetic Potts models. III. triangular-lattice chromatic polynomial, Journal of
Statistical Physics 112 (5-6) (2003) 921–1017.

[28] J. Jacobsen, J. Salas, Transfer matrices and partition-function zeros for antiferromagnetic
Potts models : IV. chromatic polynomial with cyclic boundary conditions, Journal of
Statistical Physics 122 (4) (2006) 705–760.

[29] J. Salas, A. D. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic
Potts models. V. Further results for the square-lattice chromatic polynomial., J. Stat.
Phys. 135 (2) (2009) 279–373.

[30] J. Jacobsen, J. Salas, Phase diagram of the chromatic polynomial on a torus, Nuclear
Physics B 783 (3) (2007) 238–296.

[31] P. Alvarez, F. Canfora, S. Reyes, S. Riquelme, Potts model on recursive lattices: some
new exact results, The European Physical Journal B 85 (3) (2012) 1–13.

[32] A. K. Hartmann, Partition function of two- and three-dimensional Potts ferromagnets
for arbitrary values of q>0, Phys.rev.lett. 94 (2005) 050601.

[33] R. Shrock, Exact Potts model partition functions on ladder graphs, Physica A: Statistical
Mechanics and its Applications 283 (3-4) (2000) 73.

[34] G. Haggard, D. J. Pearce, G. Royle, Computing tutte polynomials, ACM Trans. Math.
Softw. 37 (2010) 24:1–24:17.

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[35] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Computing the tutte polynomial in
vertex-exponential time, in: 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, 2008, pp. 677–686.

[36] T. Halverson, A. Ram, Partition algebras, European Journal of Combinatorics 26 (6)
(2005) 869–921.

[37] R. D. Dutton, R. C. Brigham, Computationally efficient bounds for the catalan numbers,
Eur. J. Comb. 7 (3) (1986) 211–213.

[38] S.-C. Chang, J. Salas, R. Shrock, Exact Potts model partition functions for strips of the
square lattice, Journal of Statistical Physics 107 (5-6) (2002) 1207–1253.

[39] H. S. M. Coxeter, Regular polytopes, Courier Dover Publications, 1973.

[40] M. Henk, J. Richter-Gebert, G. M. Ziegler, Handbook of discrete and computational
geometry, CRC Press, Inc., Boca Raton, FL, USA, 1997, Ch. Basic properties of convex
polytopes, pp. 243–270.

[41] I. Foster, Designing and building parallel programs: Concepts and tools for parallel
software engineering, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[42] B. Chapman, G. Jost, R. V. D. Pas, Using OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering Computation), The MIT Press, 2007.

[43] M. P. Forum, Mpi: A message-passing interface standard, Tech. rep., Knoxville, TN,
USA (1994).

[44] C. Bauer, A. Frink, R. Kreckel, Introduction to the ginac framework for symbolic compu-
tation within the c++ programming language, Journal of Symbolic Computation 33 (1)
(2002) 1 – 12.

[45] J. L. Jacobsen, High-precision percolation thresholds and Potts-model critical manifolds
from graph polynomials, Journal of Physics A: Mathematical and Theoretical 47 (13)
(2014) 135001.
URL http://stacks.iop.org/1751-8121/47/i=13/a=135001

[46] D. L. Eager, J. Zahorjan, E. D. Lazowska, Speedup versus efficiency in parallel systems,
IEEE Trans. Computers 38 (3) (1989) 408–423.

[47] B. Wilkinson, C. M. Allen, Parallel programming, page 7, Prentice hall New Jersey, 1999.

[48] J. L. Gustafson, Fixed time, tiered memory, and superlinear speedup, in: Proceedings of
the Fifth Distributed Memory Computing Conference (DMCC5), 1990, pp. 1255–1260.

34

