*Article

Click here to view linked References

PcapWT: An Efficient Packet Extraction Tool for
Large Volume Network Traces

Young-Hwan Kim®* Roberto Konow”*, Diego Dujovne®, Thierry Turletti?®,
Walid Dabbous®, Gonzalo Navarro®

“INRIA, France
bEscuela de Informatica y Telecomunicaciones, Universidad Diego Portales, Chile
¢Department of Computer Science, Universidad de Chile

Abstract

Network packet tracing has been used for many different purposes during
the last few decades, such as network software debugging, networking per-
formance analysis, forensic investigation, and so on. Meanwhile, the size of
packet traces becomes larger, as the speed of network rapidly increases. Thus,
to handle huge amounts of traces, we need not only more hardware resources,
but also efficient software tools. However, traditional tools are inefficient at
dealing with such big packet traces. In this paper, we propose pcap WT, an
efficient packet extraction tool for large traces. Pcap WT provides fast packet
lookup by indexing an original trace using a Wavelet Tree structure. In ad-
dition, pcap WT supports multi-threading for avoiding synchronous 1/0 and
blocking system calls used for file processing, and is particularly efficient on
machines with SSD. Pcap WT shows remarkable performance enhancements
in comparison with traditional tools such as tepdump and most recent tools
such as pcapIndezr in terms of index data size and packet extraction time.
Our benchmark using large and complex traces shows that pcap WT reduces
the index data size down below 1% of the volume of the original traces.
Moreover, packet extraction performance is 20% better than with pcapIn-
dex. Furthermore, when a small amount of packets are retrieved, pcap WT is
hundreds of times faster than tcpdump.

Keywords: Network traces, Packet indexing, Packet extraction, Wavelet

*Corresponding author
Email address: hawnious@daum.net (Young-Hwan Kim)
!This work has been done while the author was at INRIA.

Preprint submitted to Computer Networks September 20, 2014

O©CoOoO~NOUAWNRE

Tree, Multi-thread file I/O

1. Introduction

The volume of network packet traces becomes larger and larger, and much
more complex than before. The reason is that the speed and size of networks
have increasingly expanded. Thus, much more H/W resources (e.g., massive
storage space, stronger computing power, and so on) are necessary to deal
with big traces including numerous packets and complex traffic patterns. Fur-
thermore, efficient tools are required to analyze the data effectively. However,
traditional tools such as tepdump [1], tepflow |2], or tepstat [3] are inefficient
to handle very large packet traces.

Among current network traffic analysis tasks such as protocol perfor-
mance evaluation, network monitoring and forensic investigation, packet
lookup is one of the most basic and important functions to investigate errors
and to evaluate performance. In particular, packet lookup is a CPU-greedy
task, especially when it deals with a huge packet trace including many com-
plex traffic patterns. However, most of the traditional tools use linear search
algorithms, which are simple, but take a long processing time proportionally
to the packet trace size. Basically, a packet trace is a very long array, so
the time complexity of a linear search is comparatively higher than that of
other algorithms, such as binary search, balanced tree (B-tree), and hash-
ing. Moreover, most of available packet trace formats (e.g., pcap [1]) do not
include the number of matched packets and their locations. Consequently,
the search delay can rapidly increase with the length of the trace and the
complexity of the filtering query. In addition, traditional tools (e.g., tcp-
dump and wireshark [4]) are inefficient for iterative operations and possible
future reuse, since they do not maintain historical data (last search result)
or reusable information (index data).

In order to enhance packet trace analysis, a number of contributions have
been published, such as fast packet filtering [5], packet trace compression
[6, 7], and network statistics information extraction [8]. Moreover, a few
practical tools have also been recently proposed, such as PCAP-Index |9,
Compressed Pcap Packet Indexing Program (CPPIP) [10], and pcaplIndex
[11, 12]. Overall, they use extra data sets for fast search, which are extracted
from the original trace.

However, these tools result in poor performance, as we show in Section
5.3. PCAP-Index running on top of a database requires too much space for

O©CoOoO~NOUAWNRE

handling the index data, and also its packet extraction procedure is consid-
erably slow. CPPIP can save storage space by compressing original traces,
but it can only support a few simple queries. PcaplIndez is much faster than
these tools, and is able to retrieve and extract matched packets from large
size trace files (up to 4.2 GB). However, the index data size built by pcapIndex
is abnormally increased when the number of packets is in the millions. Thus,
there is a trade-off between the index data size and the packet extraction
performance when processing a large packet trace.

In this paper, we propose pcap WT, a fast packet extraction tool for large
network traces, and evaluate its performance in terms of index data size and
packet extraction time. pcap WT adopts an advanced data structure named
Wavelet Tree (WT) [13], which enables a fast search and high compression
ratio at the same time. Moreover, this tool supports multi-threading, which
is able to enhance random file read and write performance over Solid State
Drive (SSD).

This paper is structured as follows. Section 2 presents the state of the art.
Section 3 provides a background on Wavelet Tree, and Section 4 describes the
design of pcap WT in detail. Section 5 evaluates the performance of pcap WT
and compares its performance with other tools. Finally, Section 6 concludes
the paper.

2. Related Work

Today most of network trace analysis tools, such as tepdump [1] and
wireshark [4], run on a single thread, and their complexity increases linearly
with the volume of original trace files. Possible solutions to improve their
performance include using a higher processor clock speed, replacing a Hard
Disk Drive (HDD) by a SSD, or splitting the large packet trace into multiple
pieces. For that reason, several tools have been recently published to enhance
performance of packet extraction on large traces, such as CPPIP [10|, PCAP-
Indez [9], and pcapIndex [11].

CPPIP uses bgzip [14] (i.e., a block compression /decompression software)
to reduce the volume of original packet trace files. This tool extracts an
index data from the compressed trace file, and filters out matched packets
directly from the compressed file. Although this tool is able to reduce the
storage space for the original trace files, it can only support simple queries,
such as packet number and received timestamp. In addition, CPPIP needs a

O©CoOoO~NOUAWNRE

significant amount of space (about 7% of the original trace file) to store the
index data.

PCAP-Index uses a database (SQLite Ver. 3) to build the index data
and to perform packet lookup. Thus, this tool is more flexible than other
command-line based tools to express queries. However, as discussed in Sec-
tion 5.3, the performance obtained is poor in terms of time needed to build
index data, packet lookup time and index data size.

Pcaplndez, having a similar name as PCAP-Indez, is currently part of a
commercial network monitoring solution [12]. In order to reduce both index
data size and packet lookup time, this tool adopts an encoding method using
a bitmap compression technique based on a pre-defined codebook, named
COMPressed Adaptive index [15]. Thus, it obtains better performance than
CPPIP and PCAP-Index, in terms of index data size and packet extraction
time. In comparison with tepdump, this tool can reduce packet extraction
time up to 1,100 times. Moreover, its index data size only takes about 7
MB per GB of the original trace file. However, as discussed in Section 5.3,
pcapIndex is not as fast compared to what is mentioned in the paper [11],
when it extracts a large amount of packets from a big trace file. In particular,
the index data size rapidly increases when the volume of original trace file is
greater than 4.2 GB.

3. Wavelet Tree

In this work, we present a compact index for pcap-traces that is built on
top of compact data structures. To understand how these data structures
are employed, we first need to define three basic operations: rank, select and
access.

Given a sequence S containing n symbols from an alphabet of size o (e.g.,
o = 2 for binary sequences), rank;(S, i) counts the number of occurrences of
symbol b until position i, select,(S, 7) finds the position of the j-th occurrence
of b in the sequence, and access(S, k) returns the symbol that is located at
position k.

In the case of binary sequences, the queries described above can be solved
in constant time O(1) by using a bit sequence representation presented by
Munro [16]. Gonzales et al [17] show that practical implementations (RG) are
possible to achieve constant time for rank and access queries, and logarithmic
time for select queries using 5 — 37% extra space. Raman, Raman and Rao

O©CoOoO~NOUAWNRE

(RRR) [18] presented another solution that is able to compress the bit se-
quence to H(S)+o(n), which corresponds to the empirical entropy plus some
low order terms. This representation is able to compress the sequence up to
50% in practice while allowing to perform rank, select and access queries in
constant time. Note however that performing these operations using RRR is
significantly slower than using the RG representation.

For general sequences (i.e., o > 2), the Wavelet Tree [13, 19| data struc-
ture can be used. Its name is derived from an analogy with the wavelet
transform for signals, which operates in a similar way. The wavelet tree is a
perfect balanced binary tree, that stores a bit sequence in every node except
the leaves. Every position of the bit sequences is marked with either a ‘0’
or ‘1’ depending on the value of the most significant bit of the symbol at
the position in the sequence; this can be seen as dividing the alphabet into
halves. Starting from the root, the symbols that are marked with a ‘0’ go
to the left subtree, while the rest go to the right subtree. This segmentation
of the values continues recursively at the subtrees with the next highest bit.
The tree has o leaves, and each level of the tree requires n bits, the height
of the tree is log, o, thus we need n[log, o] bits to represent the tree. Each
sequence of bits at every level must be capable to answer access, rank and
select queries, thus we can use the RG or RRR representation to handle the
bit sequences. The wavelet tree is able to solve rank, select and access oper-
ations in O(logo) time, that is to say, the execution time depends only on
the size of the alphabet, not on the length of the sequence. Note that both
the time to execute the operations and the size of the data structure heavily
depends on the size of the alphabet o. In the case that we use RRR to repre-
sent the bit sequences at each level, the wavelet tree uses nH(S) + o(nlog o)
bits of space. If we want to compress the data structure even more, we can
change the shape of the tree to the Huffman shape of the frequencies of sym-
bols appearing in S, and maintaining the O(log o) complexity for handling
the operations. In practice, if we use the Huffman shaped wavelet tree using
RRR for the bitmaps, we can reduce the space of the data structure by 12%
[20]. Figure 1 shows an example of a regular wavelet tree and a Huffman
shaped wavelet tree built over a small sequence.

We will explain how to perform access operation by an example based
on the regular wavelet tree from Figure 1. Let us assume that we want to
perform access(S,6), that is, return the symbol located at position 6. We
start at position 6 at the root bit sequence (B,.40) and ask if the corresponding
bit is marked as ‘1’ or ‘0’. If the bit is ‘0’, we go to the left branch, if not, to the

O©CoOoO~NOUAWNRE

1511863875743288 1511863875743288
OWH 0100011011111100
1113432 586875788 1118888 563757432
0001110 010110111 0001111 010101101
1112 343 565 887788 |111 8888 5353 67742
0001 010 010 11/0{1 1010 10010
111 2 33 4 55 6 77 8888 55 33 772 64
110 10
2 774 6

Figure 1: On the left the regular wavelet tree, on the right the Huffman shaped wavelet
tree, for the sequence & = 1511863875743288 , 0 = 8 and n = 16.

right. In this case B,..[6] = 1, so we go to the right branch of the tree. Now
we have to map the original position (k = 6) to the corresponding position
at the right branch. In other words, we want to know how many 1's were
at the root bit sequence before position 6. We can easily do this in constant
time by performing the operation supported by RG and RRR bit sequences:
rank; (Byoot, 6), which returns the value 3. Using this value we can now go
to the right branch of the root and execute the same procedure by setting
k' = rank; (B, k) = 3. Then, we obtain the value at position &’ from the
right branch of the root (B,,). Since B,,[3] = 0 we go to the left branch of
B, (B,) and execute the same procedure, but this time we will count how
many 0’s were in B, before position k', and set k" = ranko(B,, k') = 2. We
repeat the procedure by obtaining the bit value from B,.,; at position k" = 2,
since the value is 1 we know that we have to go to the right branch. It turns
out that the right node of B, is a leaf, so we are done with the traversal, and
we can return the symbol located at position 6 from the sequence & which is
6. A very similar procedure is done to perform rank,(S, i) and select, (S, j).
We refer the reader to the previous work from Navarro [19] and Gagie et al
[21] for an extensive explanation of how these operations are performed and
the virtues of wavelet trees with its wide range of possible applications.
Many researchers have studied data compression algorithms, and devel-
oped tools in the past [6, 22, 23, 24|, however enhancing the compression
performance is still a big challenge. Y. Liu et al. [22] proposed an interesting

O©CoOoO~NOUAWNRE

information theoretic framework for compressing network packet traces, and
developed different models by theoretical bounds based on the entropy of
packet traces. They introduce a comprehensive guideline for developing high
performance compressors for network packet traces. Our work is also based
on one of the guidelines which compress the packet traces by dividing them
into multiple sub-sequences containing the individual information fields ob-
tained from the packet header (destination address, destination port, source
address and others). In their work, they show that this approach is highly
efficient, since individual sub-sequences tend to have low entropy values. As
mentioned above, the wavelet tree is able to represent a sequence S to its
empirical entropy nH(S) plus low order terms, and also allows fast access,
rank and select operations. These properties make this data structure con-
siderably compelling for representing and indexing individual fields from the
packet trace as individual sequences. We explain how we use the wavelet tree
data structure and the design of our index in the following sections.

4. The design of pcapWT

In this section, we describe how to build the index data, and explain the
process for lookup querying and for extracting packets. The overall processes
consist of six steps, as shown in Figures 2 through 7.

4.1. Building index data

In this work, the generated index is a data set that improves the speed
of packet lookup operations on network traces. The index data is used to
quickly locate packets specified by user query without the need to search for
every item from the data set. The index data is created using part of packet
headers or additional information possibly available.

The first step is to extract index data from a packet trace file, such
as packet offset, Ethernet source (Src) / destination (Dst) addresses, IPv4
Src/Dst addresses, Src/Dst port numbers, and Layer 4 (L4) protocol type.
Here, the packet offset stands for the distance in bytes between two consecu-
tive packets, which corresponds to the packet size in bytes. The reason why
the offset is replaced by the packet size is that sequentially accumulated val-
ues consume a lot of memory. In addition, such large numbers are inefficient
for the WT compression, since they increase the required number of bits to
represent them. As shown in Figure 2, all index data are stored into each

O©CoOoO~NOUAWNRE

array, and they include the same number of elements with the number of
total packets in the source trace file.

source Eth 1Pv4 Src Port L4 Proto
Pkt Size trace file Src Addr Dst Addr Num Type
o

300 | 1000 ...

301 | 500 g

packet number

6000

Figure 2: Extracting index data from a source packet trace file, such as packet size, Eth-
ernet Src/Dst address, IPv4 Src/Dst address, Src/Dst port number, and Layer 4 protocol

type.

However, as mentioned in Section 3, the size of the WT compressed
data is highly affected by the number of bits per element and the num-
ber of elements. For instance, when an element set of index data is S =
{100, 200, 200, 300..., n}, the required number of bits per element is ([logso]),
where ¢ is the maximum value among these input elements. Thus, for en-
hancing the compression performance, the elements have to be converted into
sequential positive integer numbers (X = {1,2,...,0}), and long arrays must
be divided into multiple pieces (S = {Si, Ss, ..., Sy }). For example, as shown
in Figure 3, IPv4 addresses are mapped into positive integer numbers in con-
secutive order. In addition, to increase efficiency, we use a balanced tree
(B-tree) to map the addresses with a positive integer. Consequently, a trace
file accompanies a number of mapping tables, and the tables are provided as
part of the index data.

In the last step for building index data, as shown in Figure 4, the WT
builder creates one chunk of compressed index data every one million ele-
ments, and each chunk is stored in an independent file. This value has been
empirically set to minimize the compressed index data size.

Meanwhile, the packet offset is not compressed by WT, because the large
value of o causes significant degradation of the compression performance. As

O©CoOoO~NOUAWNRE

an alternative, we use an efficient array provided by the libeds package [25],
which removes redundant bits.

source mapped IPv4 Addr
pcap 5=1{S5, S, .., S}
“~ 1 -
mapping IPv4 Addr 2
£={1,2,3,4,5,0=5, B
s ;3 M 10.1.1.1 1 3
v—!é N 11.1.1.2 2 -8,
Q ..
4 20.2.2.31 3
20.99.5.10 4
>>>>>> o 10121 s)
L A4) =¥ S _
- - -
£,={(1,23, .., P
I T RCETES) T
Tf 101218132 >
s& | ' L
= S,
o
- 12.110.22.71 o e 5
2
£,={1,23,.,0) S

Figure 3: Mapping between the extracted index data and positive integers in consecutive
order for reducing the index data size and packet lookup time.

mapped compressed
index data index data
Em L (saved in each file)
5 51 ={1511863875743288 ... }, n = 1Million . ..:]
1
. Huffman shaped wavelet tree builder —
------- $1511863875743288.. :]
111 ..1 888 .. 8 5637657432 ..
SZ 000 ..0 111 .. 1 0101001101 ...
—
5353 .. P
1010 ..
- H
Huffman bit compressor)—-----------1
|
H

s, .

Figure 4: Building WT chunks from the mapped index data once every one million packets.
This partitioning can reduce the size of index data.

O©CoOoO~NOUAWNRE

4.2. Packet lookup and extraction

Figure 5 illustrates the packet lookup procedure. First, this procedure
reconstructs the packet offset by accumulating the packet sizes. For example,
if the packet sizes are P = {100,200, 200, 300, ..., p,}, their offsets are O =
{0,100, 300, 500, 800, ..., 0,}. Then, it loads an index data related to the
query. At this step, the index data is located in main memory, however it
does not need to be decompressed to execute a lookup.

The query syntax is as follows,

Q = Qtype Qoperand
= Q1 and/or Qs

A basic query consists of a query type (Qyype) and a query operand (Qoperand)-
The query type defines the kind of index data extracted from the traces, and
peap WT supports pkt _num, eth_src, eth _dst, ipvj_ src, ipv4_ dst, port _src,
port_dst, and 1} proto. The query operand is the value that needs to be
found on a data set of index data which is indicated by the query type. For ex-
ample, the Quype is ipv4_ src and the valid Qoperang is 10.1.1.1. The query syn-
tax also allows to perform intersection (and) or union (or) of different queries,
thus we can construct more complex queries, such as Q)1 and Q5 and ... or Q,,.

Query: | ipv4_src 10.1.1.1 ‘ cr‘ ipv4_dst 132.154.11.19 ‘ and D e

* , looping for each query

create
offset list
of matched
packets

load retrieve packets update
related [using | matching
index data rank () & select () point table

load
offset data

Figure 5: Searching matched packets from the index data.

More precisely, the query operand is converted to a positive integer num-
ber, using the mapping table provided from the index data build process. As
mentioned above, the reason is that all index data, except offset, is mapped
to positive integers. If the mapping table does not have the same entry as
the query operand, this indicates that there are no matched packets for the
query in the trace.

Regarding basic functions, as described in Section 3, we can get the num-
ber of matched packets (m) containing the query operand by performing

10

O©CoOoO~NOUAWNRE

rank() of the WT. Next, we can figure out indexing numbers of matched pack-
ets by iterative executing of select(), for example Y = {2,301, 303, ..., y,,} as
shown in Figure 6.

The matched packets are marked on the matching table, which is com-
posed of a boolean array with the same number of entries as the number of
packets included in the source pcap file. If there are multiple queries concate-
nated by and/or operators, those steps are repeated -from loading related
index data- through updating the matching table. As shown in Figure 6, the
matching table assigns ‘71’ to its entries for the matched packets which are
found by the first query or queries located after the or operator. On the
other hand, if the packets are found by queries located after the and oper-
ator, the table assigns ‘7’ only to entries kept ‘7’ otherwise ‘0’. Once the
lookup procedure is completed, two lists are created where offsets and packet
sizes for the final matched packets are marked ‘7’ on the matching table.

matching point offset list of size list of
table offset list of all pkts matched pkts matched pkts

1 0 1 0 4 1 500 500

2 P E——— s R .2 | 100000 1,000

" .3 | 103,000 1,500

300 [300 100,000

301 1 -] —— 1 TR

302 0 302 | 101,500

packet number

303 £ 1) P ——— - T\ ¥

m
(total matched pkts)

Figure 6: Listing up the final matched packets marked by ‘1’ at the matching point table.
Then the offset position and the size of selected packet are written into the offset list and
the size list, respectively.

The performance of packet extraction highly depends on the capability
of storage devices. In particular, this function performs random read and se-
quential write from/to files. The random access performance is significantly
degraded in comparison with sequential access, in terms of read and write
throughput. The main reason is related to the total idle time caused by mul-

11

O©CoOoO~NOUAWNRE

tiplication of the average access delay (e.g., ranging from dozen to hundred
milliseconds) and the number of random accesses. In addition, performance
enhancement using cache for pre-reading consecutive data and a buffer for
full padded block writing are not allowed in random I/0O operations, unlike
the sequential ones. However, it is possible to reduce the access delay by re-
placing HDD with SSD. On the other hand, file I/O libraries are also deeply
related to performance degradation. Especially, in the standard C/C-++ li-
brary, file seeking functions such as Iseek() and fseek(), take a lot of time at
each call, and generate frequent idle operations.

Therefore, we need an efficient way to compensate the performance degra-
dation. SSDs have a very short access delay (e.g., below 1 millisecond) com-
pared to HDDs, thus we can reduce the idle time by distributing the 1/0
requests into multiple processes, without significant delay overhead. Con-
sequently, the proposed design uses multiple threads to handle multiple re-
quests simultaneously, which are performed by OpenMP provided by gcc
[26]. For more details, we provide numerical performance comparisons in
Subsection 5.1.

size list of offset list of output pcap file
matched pkts matched pkts (Containing matched packets)
EIEN @
£ 18 /Tz\ —
=3l |58 \J
Tm
Copy N packet
I at X with Y bytes
3| |8 ST
?é ?§
FRm FWm
P .

11 1 .

source pcap file y

Figure 7: Retrieving the packets using multi-threaded file I/O. Multiple threads (m) evenly
divide the amount of the final matched packets (n), and each thread (71, T5, ..., T),) copies
the assigned packets from the source to output pcap file, simultaneously.

12

O©CoOoO~NOUAWNRE

As shown in Figure 7, a number of threads are used to balance the overall
workload for the packet lookup and extraction tasks. For example, if the
number of matched packets is m and the number of threads is w, each thread
will retrieve m/w packets to an output file simultaneously. More precisely,
each thread already knows the exact writing locations in the output file before
the packet retrieval stage, by summing up the packet sizes that are assigned
to each thread. Inside of each thread, the target packets are copied into user
space memory from the source trace file, and then they are written into the
output file.

Note that the current version of pcapW'T does not support detailed filter-
ing operations including flag fields and higher level protocols than L4, such as
ACK/SYN/FIN of TCP, Type of Service (TOS) of IP, RTP/RTCP/RTSP.
We expect to add this feature in a future version of the tool and believe that
this will not have a high impact on the size of the indexed data. The reason
of this is that these kinds of fields generally have a short range of numbers
(o), for example ‘0’ or ‘1" in the ACK/SYN/FIN fields and twenty six values
in the TOS fields. Consequently, o is going to be small, and thus its wavelet
tree must be very simple in terms of structure and small in terms of size.

5. Performance Evaluation

In this section, we evaluate the performance of pcap WT, in terms of index
data size, index data building time, and packet extraction time. PcapWT
has been developed using gcc and libeds [25] on the Linux platform. In
particular, pcap WT and libeds have been compiled with g++ (Ver. 4.4.7)
with the highest optimization flag (-O3). In addition, we set the -fopenmp
option of g++ for enabling OpenMP. The machine used for benchmarking
consists of CentOS 6.4 (kernel Ver. 2.6.32 for 64 bits x86 system), Intel i7-
2600k processor including 8 threads (4 cores), 4 GB of main memory, a 60
GB SSD (OCZ Agility 3, low-grade product), and a 500 GB HDD (Toshiba
HDD2F22).

5.1. Performance benchmark of SSD and HDD

First we benchmark read and write operations on the storage devices that
will be used in the experiments. As shown in Table 1, we measure the average
read or write throughput with six types of tests: sequential read/write, 4KB
random read/write, and 4KB random read/write using 64 threads.

13

O©CoOoO~NOUAWNRE

As shown in Table 1, SSD and HDD exhibit similar capabilities for the
sequential write. However SSD is 3.5 times faster than HDD for the sequen-
tial read. On the contrary, random read and write performance tested on
both devices is degraded, compared to the sequential read/write operations.
On the other hand, multi-threaded random write obtains almost the same
performance as the sequential write on the SSD. Likewise, random read per-
formance is considerably improved when using multi-threading. However, the
performance drops below 1 MBps on the HDD because of the long seeking
time of the HDD, which results in inefficient multi-threading.

Basically, the packet extraction process is based on random reads and
sequential writes from/to file. As we can observe in Table 1, multi-threaded
read is 2.5 times faster than single threaded read on the SSD, even though
the drive used in the benchmark is one of the most basic SSDs 2. Thus, the
random read capability substantially impacts performance of packet extrac-
tion on SSD. Nevertheless, other tools such as tepdump and peapInder do
not use multi-threading for random read.

Table 1: Sequential (Seq), random (Rand), multi-threaded by 64 threads (64T) random
I/0 performance measurements of the SSD and the HDD used in the experimentation.
SSD HDD
[MBps| [MBps|

Seq Read 198.8 56.2
Seq Write 52.7 52.0

4 KB Rand Read 17.7 0.4

4 KB Rand Write 28.0 0.9

4 KB 64T Rand Read 47.0 0.8
4 KB 64T Rand Write 51.0 0.8
[ms] [ms]

Read Access Time 0.18 17.39
Write Access Time 0.31 4.27

%In the same test made on one level higher product (OCZ-Agility 3, 240 GB) than the
SSD used in this evaluation, the gap is greater than 10 times (Seq Read: 211.4 MBps, 4K
Rand Read: 13.6 MBps, and 4K 64T Rand Read: 140.9 MBps).

14

O©CoOoO~NOUAWNRE

5.2. Sample packet traces

PcapWT supports pcap [1], one of the most popular packet trace formats.
Table 2 shows four sample pcap files used in the performance evaluation, such
as simulated traffic (ST) and real traffic 1/2/3 (RT-1/2/3). ST was generated
by the ns-3 network simulator [27], and contains 15 million packets in a 4.2
GB pcap file. RT-1 was generated by capturing packets in our local network,
and also contains 15 million packets in a 3.6 GB pcap file. ST consists
of 8 endpoints at the transport layer, whereas RT-1 has 2416 endpoints.
Meanwhile, those two samples are smaller than 4.2 GB because pcapIndex
cannot support larger pcap files than the volume.

RT-2 and RT-3 are used to evaluate larger source trace files than 4.2 GB.
Those two samples are generated by adding virtual packets to RT-1 in order
to compare the results with RT-1 directly. Thus, RT-2 contains 115 million
packets in a 13.4 GB pcap file, and the latter contains 200 million packets in
a 21.6 GB pcap file.

As mentioned above, the packet extraction performance depends on the
random read and write capabilities. Thus, we have manipulated those two
samples in order to contain a larger amount of packets than ST and RT-1,
instead of reducing their average packet sizes.

Table 2: Description of four sample pcap files: simulated traffic (ST) and real traffic
1/2/3/ (RT-1/2/3).

ST RT-1 RT-2 RT-3

Number of packets |million] 15 15 115 200
File size [GB] 42 36 134 21.6

User data size |GB]| 3.9 34 115 184
Average packet size [Byte] 261.7 224.1 100.1 92.2
Number of end-points 8 2416 2417 2417

5.3. Other tools using packet indexing

We first analyze the performances of other tools based on packet indexing,
such as Compressed Pcap Packet Indexing Program (CPPIP) [10]|, PCAP-
Indez [9], and pcapIndex [12].

These three tools use pre-built index data, but have different architec-
tures. In particular, CPPIP adopts the bgzip data compression utility [14],

15

O©CoOoO~NOUAWNRE

PCAP-Index runs the SQLite Ver. 3 database, and pcapIndex uses the COM-
PAX bitmap compression data structure [15]. We compare their performance
on the SSD described in Table 1, in terms of index data size and packet ex-
traction time.

In order to build the index data from RT-1, pcapIndex and CPPIP need 27
MB (0.8% ?) and 289 MB (8.0%) of storage, respectively. However, PCAP-
Index needs around 2.6 GB (72%), even though PCAP-index deals with a
few simple fields (e.g., addresses, port numbers, protocol types, and so on).
This is due to the database, which is not configured to use data compres-
sion. Moreover, PCA P-Index needs around 265 seconds to complete, whereas
peapInder and CPPIP take only around 25 and 40 seconds, respectively. The
reason is that PCAP-Index requires a lot of time to inject the index data
into the database.

CPPIP and Pcaplndex take around 20 and 30 seconds to extract the
largest traffic corresponding to 48% of the volume and 36% of the total num-
ber of the packets of RT-1, respectively. However, the available operations
are not the same ones used as in the prior case, since this tool supports only
simple filtering queries using a range of packet timestamps and striding (e.g.,
selecting every n-th packets). Moreover, PCA P-Indez takes about 80 seconds
(packet lookup time from the database about 30 seconds and file writing time
about 50 seconds), which is significantly slower compared to the other tools.
Even tepdump takes less than 32 seconds in the same use case.

CPPIP affords the advantage of being able to extract packets directly
from a compressed trace file. However, some efforts are needed to support
more complex filtering queries and to reduce the index data size as much
as that of pcapIndex. PCAP-Indez is not satisfactory from many points of
views, even though it uses a database. In contrast, pcapIndex is the only
reliable one among those tools, since it provides not only comprehensive
query operations, as well as remarkable performances in terms of index data
size and packet extraction time. Therefore, we select pcapIndex to compare
performance with pcap WT in the following.

5.4. Buwilding index data

PcapW'T aims to minimize the index data size, for example to compress
it below 1% of the volume of original trace files. As shown in Table 3, pcap-

3percentage of volume of the original trace file.

16

O©CO~NOOOA~,WNE

wt-index is successful for all sample files.

Table 3: A comparison of the index data size produced by pcapIndex and pcap WT with
RG(50). The percentage indicates the ratio between the index data size and the volume
of the original trace file.

pcaplndex pcapWT

%] %]

ST 0.45 0.30
RT-1 0.78 0.86
RT-2 6.86 0.93
RT-3 Error 0.96

More precisely, as mentioned in Section 3, WT supports two bitmap rep-
resentation methods (i.e., RG and RRR) and its encoding unit size that can
be set by the user. Figure 8 shows that RRR is slightly better at reducing
index data size than RG. On the other hand, according to Figures 9 and 10,
RG is more efficient than RRR, in terms of index data building time and the

1,000

900 osT |

ORT-1

800
W RT-2
700
ERT-3

Index Data Size (MB)

600

500

400 -

300 -+

200 -+

100 -

ERROR to build index data for RT-3

dddddddd

pcapIndex RG(S) RG(20) RG(35) RG(50) RRR() RRR(20) RRR(35) RRR(50)
J

pcapWT

Figure 8: A comparison of the index data size for different sampling methods (RG and
RRR) and sampling sizes (5, 20, 35, 50).

17

O©CO~NOOOA~,WNE

400

osT
350 | @RT-1

W RT-2
300
ERT-3
250
200
150
100
50 -
4
0

pcaplndex RG(S) RG(20) RG(35 RG(50) RRR(5) RRR(20) RRR(35) RRR(SO)

Index Data Building Time (s)

ERROR to build index data of RT-3

pcapWT

Figure 9: A comparison of the building time of index data for different sampling methods
(RG and RRR) and sampling sizes (5, 20, 35, 50).

packet lookup time. Especially, as shown in Figure 8, RG using a wide sam-
pling provides mostly complementary performance between those features.
Thus, we decided to use RG(50) as the default configuration.

In addition, for improving compression efficiency and reducing search time
at the same time, we use Huffman shaped W'T which combines multi-layered
wavelet trees and entropy compression of the bitmap sequences. Moreover,
we minimize redundant bits (e.g., consecutive ‘0’ bits) that can be generated
in between multi-layered wavelet trees, using Huffman compression.

In contrast, pcapIndex obtains an abnormally large index data size and
causes a segmentation fault when building the index data for trace files larger
than 4.2 GB. In the case of RT-2, the index data size corresponds to 6.86%
of the volume of the original trace file, and around 3.0 GB of main memory
is required. Furthermore, this tool fails to build the index data for RT-3
because of lack of memory. Note that RT-2 and RT-3 have been generated
by adding virtual packets to RT-1, in order to provide a direct comparison
with the index data size and packet extraction performance of RT-1. More
precisely, the virtual packets are equal except for the timestamp field. Thus,
the index data from those samples has to be minimized regardless of the
number of packets. Nevertheless, the index data size produced by pcapIndex

18

O©CoOoO~NOUAWNRE

exponentially increases with the number of packets.

240

Otcpdump with RT-2
210 O tcpdump with RT-3
180

B pcapWT (32 threads) with RT-2
B pcapWT (32 threads) with RT-3

150 ——

Packet Extraction Time (s)

120 -+ —
90
60

D E F G H I J
Type of queries

Figure 10: A comparison of the packet lookup time for different sampling sizes.

5.5. Performance evaluation of multi-threaded file 1/0

The packet lookup time required to find matched items from index data
takes a small portion of the overall packet extraction time. As shown in
Figure 10, pcap WT takes less than 1 second to retrieve millions of packets.
In case of ST, the number of the retrieval targets is 9.6 million packets (i.e.,
63.8% in comparison to the total number of packets included in this sample.),
and the volume of the target packets corresponds to 1.82 GB (i.e., 43.7% in
comparison with the original volume). In case of RT-1/2/3, the amount
of target packets are all same at 5.6 million packets and 0.97 GB, whereas
the percentages of the number of the target packets are 37.5%, 3.8%, and
2.8%, and the percentages of the volumes of them correspond to 23.3%, 7.3%,
and 4.5%), respectively. The rest of time is consumed by file I/O, including
file seeking, reading, and writing. Especially, as mentioned in Section 4.2,
file seeking is one of the main reasons causing performance degradation of
random file read and write operations. Thus, with pcap WT, we propose to
apply multi-threaded file I/O to increase the throughput of random file read
and write.

19

O©CO~NOOOA~,WNE

As we can observe in Figure 11, pcapIndexr and pcap WT have almost
the same packet extraction performance on both the SSD and the HDD
when using a single thread. In this test, pcap WT extracts two different
sizes of traffic from ST: one low traffic containing 1.8 million packets (12.2%)
corresponding to 146 MB and one high traffic containing 13.2 million packets
(88.0%) corresponding to 3.0 GB. Note that the percentages indicate the
ratio of the extracted packets to the total number of packets included in the
sample. Meanwhile, when pcap WT extracts a large portion (88% of the total
packets) from ST on the SSD, 32 threads can reduce the time down to 26%,
compared to when using a single thread. However, multi-threading on HDD
does not provide any gain. Even worse, the time is increased to 24% when
using 32 threads. In this case, multi-threading generates frequent random
accesses which increase delay and degrade performance on HDD.

120

O low traffic on SSD
O low traffic on HDD

100 - 5] h?gh traff?c on SSD
B high traffic on HDD

80

Packet Lookup Time (s)

60

40

20

tcpdump pcaplndex (1 thread) (2 threads) (4 threads) (8 threads) (16 threads)(32 threads)
L)
pcapWT

Figure 11: A performance comparison of packet extraction with various number of threads
for parallel file T/O.

5.6. Performance evaluation of packet extraction

To analyze the performance of packet retrieval, we use various queries,
and extract a large amount of packets. As shown in Table 4, simple queries
(from A through E) extract packets specified by a pair of the query type

20

O©CoOoO~NOUAWNRE

and its operand, and complex queries (from F through J) indicate combining
simple queries by using the union operator. For example, query A extracts
4,030 packets from RT-1/2/3, corresponding to 0.03%, 0.003%, and 0.002% in
comparison with the total numbers of packets, respectively. Likewise, query
F (combined with A and B) extracts 525K (524,684) packets, and the total
amount corresponds to 20.97%, 5.66%, and 3.49% compared to the volume of
the original traces, respectively. In the same way, query I includes the former
eight queries (from A through H), and contains over 12 million packets. On
the other hand, query J searches packets belonging to queries B and E in
common, and the extracted packets are same as the result of query B.

Table 4: Packet filtering queries and specifications of RT-1/2/3. The percentage values
indicate (1) the ratio of the number of matched packets and (2) the ratio of the size of
matched packets compared to the packet number and the volume of the original trace file,
respectively. Note that all numbers are rounded up.

Matched packets Total packet size

Query) %) %)@
AP Addr) b0 Yoy oy MBL g
A 4 0.03 0.00 0.00 0.3 0.01 0.00 0.00
B 521 3.5 0.3 0.26 754 20.94 5.65 3.48
C 1,161 70 0.77 0.58 298 8.28 2.23 1.38
D 5,631 37.5 3.75 2.82 971 26.96 7.27 4.49
E 5,428 36.2 3.62 2.71 1731 48.07 12.97 8.00
F = {A U B} H24 3.5 0.3 0.26 755 20.97 5.66 3.49
G = {F U C} 1,686 11.2 1.12 0.84 1053 29.24 7.89 4.87
H = {G U D} 7,317 48.8 4.88 3.66 2024 56.21 15.16 9.35
I = {H U E} 12,225 81.5 8.15 6.11 3000 8&83.31 22.47 13.86
J = {B N E} 521 3.5 0.35 0.26 754 20.94 5.65 3.48

As shown in Figure 12, in experiments using RT-1, pcapIndex and pcap WT
are faster than tepdump in retrieving small amounts of packets, such as
queries A, B, C, F, G, and J. On the contrary, the gap of packet extraction
performance becomes smaller between tcpdump and those two tools using
the packet indexing scheme. The reason is that the performance depends
highly on the amount of packets extracted. Nevertheless, pcap WT (using 32
threads) is faster than pcapIndez in experiments performing complex queries,
such as 21.8% at D, 20.3% at E, 20.3% at H, and 9.9% at L.

21

O©CO~NOOOA~,WNE

In experiments using larger samples (i.e., RT-2/3), we evaluate the per-
formance of pcap WT and compare it with tepdump, since pcapIndex cannot

45

40

35

30

Packet Extraction Time (s)

25

20

15

10

O tcpdump
] pcapIndex

B pcapWT (32 threads)

I J
Type of queries

Figure 12: A performance comparison of packet extraction using RT-1.

240

180

150

Packet Extraction Time (s)

120

210

Otcpdump with RT-2

O tcpdump with RT-3

B pcapWT (32 threads) with RT-2
B pcapWT (32 threads) with RT-3

-

1

E

I J
Type of queries

Figure 13: A performance comparison of packet extraction using RT-2/3.

22

O©CoOoO~NOUAWNRE

support such large traces. In these experiments, pcap WT uses a prompt mode
which supports iterative operations once the index data is loaded. Thus, this
mode can avoid unnecessary time loading the same index data repetitively.

As shown in Figure 13, tcpdump takes much longer (i.e., around 100
seconds in the case of RT-2 and 170 seconds in the case of RT-3 along the all
queries) compared to the results of RT-1, even if it extracts the same amount
of packets. In other words, the performance based on the sequential approach
is significantly impacted by the number of packets, regardless of the amount
of packets retrieved. On the other hand, pcap WT using 32 threads is much
faster than tcpdump, and the time increases proportionally to the amount of
matched packets, unlike the sequential approach.

6. Conclusion

In network analysis, packet traces have always been important to analyze,
since they record the complete information exchanged through networks.
However, as network links, traffic complexity, and applications throughput
have significantly increased, the analysis of huge amounts of those traces is
becoming a challenging task, and traditional analysis tools are not efficient
at dealing with such traces. Even though a few tools have been recently
published for fast packet extraction, their performance is still not satisfactory
in terms of index data size, and packet extraction delay.

In this paper, we propose a new tool designed to process efficiently very
large network traces, which allows not only enhancing packet extraction per-
formance on large traces, but also reducing storage requirements. Pcap WT
uses a Wavelet Tree data structure and a multi-threading scheme for parallel
file I/O. Our benchmarks including SSD show that pcap WT is about 10 to
20% faster than pcapIndex in the worst case scenario and about 200% in the
best cases. Moreover, this tool allows reducing the storage space required to
store the index data by about 10 to 35% compared to pcapIndex.

Note that the current version of pcapW'T does not support fine-grained
filtering operations with flag fields in protocol headers. We plan to add an
enhanced filtering feature in a future version of the tool and believe that this
will have minor impact on the size of index data. The reason is that the
added fields to account for include few bits and the corresponding wavelet
tree generated is expected to be of small size and simple in terms of structure.

23

O©CoOoO~NOUAWNRE

Acknowledgement

The authors would like to thank Dr. Renato Cerro for his great help

to improve the quality of the paper. This study was supported by Anillo
Project ACT-53, the Fondecyt project No. 11121475, CIRIC (INRIA-Chile)
Project "Network Design", Project Semilla - UDP "ANDES" and "Anaélisis
y diseno de algoritmos en redes de bajo consumo aplicado a condiciones

extremas de los Andes": Programa de Cooperacion Cientifica Internacional
CONICYT/MINCYT 2011.

References

1]

2l

3]

4]

[5]

7]

8]

19]

V. Jacobson, C. Leres, S. McCanne, Tcpdump, URL http://www.
tcpdump. org/, last visited on 18/12/2013 (2003).

J. Elson, Tcpflow, URL http://www.circlemud.org/jelson/
software/tcpflow/, last visited on 18/12/2013 (2009).

P. Herman, Tcpstat tool, URL http://www.frenchfries.net/paul/
tcpstat/, last visited on 18/12/2013 (2001).

G. Combs, et al., Wireshark (2007) 12-02Last visited on 18/12/2013.

L. Deri, High-speed Dynamic Packet Filtering, Journal of Network and
Systems Management 15 (3) (2007) 401-415.

R. Holanda, J. Verdu, J. Garcia, M. Valero, Performance Analysis of A
New Packet Trace Compressor Based on TCP Flow Clustering, Proceed-
ings of the IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS) (2005) 219-225.

P. I. Politopoulos, E. P. Markatos, S. Ioannidis, Evaluation of Compres-
sion of Remote Network Monitoring Data Streams, in: Proceedings of
the IEEE Network Operations and Management Symposium (NOMS)
Workshops, 2008, pp. 109-115.

C. Estan, K. Keys, D. Moore, G. Varghese, Building A Better NetFlow
34 (4) (2004) 245-256.

Pcap-index, URL https://github.com/taterhead/PCAP-Index/, last
visited on 18/12/2013.

24

O©CoOoO~NOUAWNRE

[10] Cppip, URL http://blogs.cisco.com/tag/pcap/, last visited on
18/12/2013.

[11] F. Fusco, X. Dimitropoulos, M. Vlachos, L. Deri, PcapIndex: An Index
for Network Packet Traces with Legacy Compatibility, ACM SIGCOMM
Computer Communication Review 42 (1) (2012) 47-53.

[12] PcapIndex, URL http://www.ntop.org/products/n2disk/, last vis-
ited on 18/12/2013.

[13] R. Grossi, A. Gupta, J. S. Vitter, High-order Entropy-compressed Text
Indexes, in: Proceedings of the fourteenth annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2003, pp. 841-850.

[14] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, et al., The Sequence Alignment/Map
Format and SAMtools, Bioinformatics 25 (16) (2009) 2078-2079.

[15] F. Fusco, M. P. Stoecklin, M. Vlachos, NET-FLi: On-the-fly Compres-
sion, Archiving and Indexing of Streaming Network Traffic, The Pro-
ceedings of the VLDB Endowment 3 (1-2) (2010) 1382-1393.

[16] I. Munro, Tables, in: Proceedings of the sixteenth Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS), Vol.
1180 of Lecture Notes in Computer Science, 1996, pp. 37—42.

[17] R. Gonzalez, S. Grabowski, V. Mikinen, G. Navarro, Practical Imple-
mentation of Rank and Select Queries, in: Proceedings of the 4th Work-
shop on Efficient and Experimental Algorithms (WEA), 2005, pp. 27-38.

[18] R. Raman, V. Raman, S. R. Satti, Succinct Indexable Dictionaries with
Applications to Encoding k-ary Trees, Prefix Sums and Multisets, ACM
Transactions on Algorithms (TALG) 3 (4) (2007) 1-25.

[19] G. Navarro, Wavelet Trees for All, in: Proceedings of the 23rd Annual
conference on Combinatorial Pattern Matching (CPM), 2012, pp. 2-26.

[20] F. Claude, G. Navarro, Practical Rank/Select Queries over Arbitrary
Sequences, in: Proceedings of the fifteenth International Symposium on
String Processing and Information Retrieval (SPIRE), 2008, pp. 176—
187.

25

O©CoOoO~NOUAWNRE

21]

22]

23]

[24]

[25]

26]

27]

T. Gagie, G. Navarro, S. J. Puglisi, New Algorithms on Wavelet Trees
and Applications to Information Retrieval, Theoretical Computer Sci-

ence 426 (2012) 25-41.

Y. Liu, D. Towsley, T. Ye, J. C. Bolot, An information-theoretic ap-
proach to network monitoring and measurement, in: Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement, 2005, pp.
159-172.

S. Chen, S. Ranjan, A. Nucci, [Pzip: A stream-aware IP compression
algorithm, in: Proceedings of the IEEE Data Compression Conference
(DCC), 2008, pp. 182-191.

H. Aljifri, M. Smets, A. Pons, Ip traceback using header compression,
Computers & Security 22 (2) (2003) 136-151.

Libeds, URL https://github.com/fclaude/libcds/, last visited on
18/12/2013.

Openmp, URL http://gcc.gnu.org/projects/gomp/, last visited on
18/12/2013.

Ns-3 Network Simulator, URL http://www.nsnam.org/, last visited on
18/12/2013.

26

