
Improved Compressed String Dictionaries

Nieves R. Brisaboa
brisaboa@udc.es

Universidade da Coruña,
Centro de investigación CITIC, Databases Lab.

A Coruña, Spain

Ana Cerdeira-Pena
acerdeira@udc.es

Universidade da Coruña,
Centro de investigación CITIC, Databases Lab.

A Coruña, Spain

Guillermo de Bernardo
gdebernardo@udc.es

Universidade da Coruña,
Centro de investigación CITIC, Databases Lab.

A Coruña, Spain

Gonzalo Navarro
gnavarro@dcc.uchile.cl

IMFD, DCC, University of Chile
Santiago, Chile

ABSTRACT

We introduce a new family of compressed data structures to effi-

ciently store and query large string dictionaries in main memory.

Our main technique is a combination of hierarchical Front-coding

with ideas from longest-common-prefix computation in suffix ar-

rays. Our data structures yield relevant space-time tradeoffs in real-

world dictionaries. We focus on two domains where string dictio-

naries are extensively used and efficient compression is required:

URL collections, a key element in Web graphs and applications

such as Web mining; and collections of URIs and literals, the ba-

sic components of RDF datasets. Our experiments show that our

data structures achieve better compression than the state-of-the-

art alternatives while providing very competitive query times.

CCS CONCEPTS

• Information systems → Data compression; Dictionaries;

Web indexing; Resource Description Framework (RDF).

KEYWORDS

compression, data structures, string dictionaries

ACM Reference Format:

Nieves R. Brisaboa, Ana Cerdeira-Pena, Guillermo de Bernardo, and Gon-

zalo Navarro. 2019. Improved Compressed String Dictionaries. In The 28th

ACM International Conference on Information and Knowledge Management

(CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3357384.3357972

1 INTRODUCTION

A string dictionary is essentially a bidirectional mapping between

strings and identifiers. Those identifiers are usually consecutive in-

teger numbers that can be interpreted as the position of the string

in the dictionary. By using string dictionaries, applications no longer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357972

need to store multiple references to large collections of strings. Re-

placing those strings, which can be long and have different lengths,

with simple integer values simplifies the management of this kind

of data.

Many applications need to make use of large string collections.

The most immediate ones are text collections and full-text indexes,

but several other applications, not specifically related to text pro-

cessing, still require an efficient representation of string collec-

tions. Some relevant examples include those handling Web graphs,

ontologies and RDF datasets, or biological sequences. Web graphs,

for example, store a graph representing hyperlinks between Web

pages, so the node identifiers are URLs. Most representations trans-

form those strings into numeric identifiers (ids), and then store a

graph referring to those ids. Compact Web graph representations

can store the graphs within just a few bits per edge [3, 5]. Since

the average node arities are typically 15–30, storing the URL of

the node becomes in practice a large fraction of the overall space.

In RDF datasets, information is stored as a labeled graph where

nodes are either blank, URIs, or literal values; labels are also URIs.

The usual approach to store RDF data is also to use string dictionar-

ies to obtain numeric identifiers for each element, in order to save

space and speed up queries [17]. The classical technique of stor-

ing a string dictionary is extended in some proposals by keeping

separate dictionaries for URIs and literal values [15].

In this paper we consider the problem of efficiently storing large

static string dictionaries in compressed space inmainmemory, pro-

viding efficient support for two basic operations: lookup(s) receives

a string and returns the string identifier, an integer value represent-

ing its position in the dictionary; access(i) receives a string identi-

fier and returns the string in the dictionary corresponding to that

identifier.

We focus on two types of dictionaries that are widely used in

practical applications: URL dictionaries used inWeb graphs, which

are of special interest for many Web analysis and retrieval tasks;

and URIs and literals dictionaries for RDF collections, which are a

key component of the Web of Data and the Linked Data initiative

and have experienced a sharp growth in recent years.

Our techniques achieve compression by exploiting repetitive-

ness among the strings, so they are especially well suited to URL

and URI datasets where individual strings are relatively long and

very similar to other strings close to them in lexicographical order.

https://doi.org/10.1145/3357384.3357972
https://doi.org/10.1145/3357384.3357972

In particular, we build on Front-coding, which exploits long com-

mon prefixes between consecutive strings, and design a hierarchi-

cal version that enables binary searches without using any sam-

pling. We enhance this binary search with techniques inherited

from suffix array construction algorithms, which boost the com-

putation of longest common prefixes along lexicographic ranges

of strings. These main ideas are then composed with other com-

pression techniques.

Experimental results on real-world datasets show that our data

structures achieve better compression than the state-of-the-art al-

ternatives, and we are much faster than the few alternatives that

can reach similar compression. Even if faster solutions exist, our

techniques are still competitive in query times and significantly

smaller than them.

The remaining of this paper is organized as follows: in Section 2

we introduce some concepts and refer to previous work in string

dictionary compression. Section 3 presents our proposal, describ-

ing the structure and query algorithms and explaining the main

variants implemented. Section 4 contains the experimental evalu-

ation of our structures. Finally, Section 5 summarizes the results

and shows some lines for future work.

2 RELATED WORK

2.1 Previous concepts and basic compression

techniques

In this sectionwe introduce some preliminary concepts, presenting

existing data structures and compression techniques that are used

in the paper.

2.1.1 Bit sequences. Abit sequence or bitmap is a sequence B[1,n]

of n bits. Bit sequences are widely used in many compact data

structures. Usually, bit sequences provide the following three ba-

sic operations: access (B, i) obtains the value of the bit at position

i , rankv (B, i) counts the number of bits set to v up to position i ,

and selectv (B, j) obtains the position in B of the j-th bit set to v .

All the operations can be answered in constant time using n +o(n)

bits [16, Ch. 4]. Additionally, compressed bit sequence represen-

tations have been proposed to further reduce the space require-

ments [19]. In this paper we use an implementation of the SDArray

compressed bitmap [18] provided by the Compact Data Structures

Library libcds1 . This solution can achieve compression when the

sequence is sparse and still supports select queries in constant

time.

2.1.2 Integer compression techniques. In this paperwe useVariable-

byte (Vbyte) encoding [21], a simple integer compression technique

that essentially splits an integer in 7-bit chunks, and stores them

in consecutive bytes, using the most significant bit of each byte to

mark whether the number has more chunks or not. It is simple to

implement and fast to decode.

A technique of special relevance is Directly Addressable Codes

(DACs) [4]. This technique aims at storing a sequence of integers

in compressed space while providing direct access to any position.

Given the Vbyte encoding of the integers, DACs store the first

chunk of each integer consecutively, and use a bitmap B1 to mark

1https://github.com/fclaude/libcds

the entries with a second chunk. The process is repeated with the

second chunks and its corresponding bitmap B2, and so on. DACs

support decompressing entries accessing the first chunk directly

and using rank1 operations on the Bi s to locate the corresponding

position of the next chunk.

DACs can work with Vbyte encoding but they are actually a

general chunk-reordering technique. In this paper we make use of

a variant that is designed to store a collection of variable-length in-

teger sequences, instead of a sequence of integers. In this variant,

that we call DAC-VLS, integers are not divided in chunks; instead,

the first integer in each sequence is stored in the first level, and

a bitmap is used to mark whether the current sequence has more

elements. This technique does not reduce the space of the original

integers, but provides direct access to any sequence in the collec-

tion.

2.1.3 String compression: Front-coding and Re-Pair. Front-coding

is a folklore compression technique that is used as a building block

in many well-known compression algorithms. Front-coding com-

presses a string s relative to another s0 by computing their longest

common prefix (lcp) and removing the first lcp characters from the

encoded string. Hence, Front-coding represents s as a tuple con-

taining the lcp and the substring after it 〈lcp, s[lcp..len(s)]〉. De-

spite its simplicity, it is a very useful technique for many applica-

tions, providing a simple way to compress collections of similar

strings. URLs, for instance, tend to have relatively long common

prefixes, so Front-coding compression is very effective on them,

even if the string portions remaining after Front-coding, or string

tails, are still relatively long.

Re-Pair [12] is a grammar compression technique that achieves

good compression in practice for different kinds of texts. Given a

textT , Re-Pair finds the most repeated pair of consecutive symbols

ab and replaces each occurrence of ab by a new symbol R, adding

to the grammar a new rule R → ab . The process is repeated until

no repeated pairs appear in the text. The output of Re-Pair is a

list of r rules and the resulting reduced text TC , represented as a

sequence of integers in the range (1,σ + r), where σ is the number

of different symbols in the original text.

2.2 String dictionary compression

Simple techniques for storing collections of strings have been used

inmany applications.Hash tables and tries [11] are just some exam-

ples of classical representations that can be used in main memory

for small dictionaries.

As the dictionary size increases, those classical data structures

no longer fit in main memory, so a compressed representation has

to be used or the dictionarymust be stored in secondarymemory. A

simple approach to reduce space is to compress individual strings

using general or domain-specific compression techniques, before

adding them to the dictionary structure.Modern techniques for dic-

tionary compression are based on specific compact data structures

usually combined with custom compression techniques applied to

the strings. Several theoretical solutions have been proposed for

static dictionaries [2], and solutions also exist for the dynamic dic-

tionary problem [9, 10, 20]. In this section we will focus on prac-

tical solutions for a static dictionary, outlining the most relevant

existing implementations.

Martinez-Prieto et al. [14] have proposed a collection of com-

pressed string dictionary representations that provide a choice for

different space/time tradeoffs. In their survey, they show advan-

tages against proposals based on compressed tries and similar com-

pression techniques. Their representations are based onwell-known

compression techniques that are combined to build space-efficient

versions of data structures like tries and hash tables. The most rele-

vant proposal in this survey is a collection of differentially encoded

dictionaries. The authors sort the strings and split them into fixed-

size buckets. Then, they store the first string of each bucket, or

bucket header, in full, and the remaining strings of the bucket are

compressed relative to the previous one using Front-coding. To an-

swer lookup queries, a binary search in the bucket headers is used

to locate the bucket containing the string, and a sequential search

in the bucket is performed; access queries just traverse sequentially

the bucket containing the query identifier. The authors propose

several variants of this idea in the original paper that combine the

previous idea with additional compression techniques like Huff-

man [8], Hu-Tucker [6] or Re-Pair applied to the strings in each

bucket or to the bucket headers to reduce the overall space usage.

In the previous work several other alternatives are proposed

that share similarities with our proposal. Binary-searchable Re-

Pair (RPDAC) compresses the strings with Re-Pair and uses DAC-

VLS to provide direct access to each one, supporting lookup queries

through binary search. An improvement on the same idea uses a

hash table to provide direct access to the location of a string, in-

stead of resorting to binary search, improving lookup queries sig-

nificantly at the cost of additional space.

Grossi and Ottaviano propose a structure based on path decom-

posed tries (PDT) [7]. The authors create a path decomposition

of the trie representing the dictionary strings, and build a com-

pact representation of the tree generated by the path decomposi-

tion. They explore different techniques for the representation of

the trie (lexicographical and centroid-based path decomposition).

They also propose compressed variants inwhich the path labels are

compressed using Re-Pair. Their solution has shown good results

in different kinds of string dictionaries. Their compressed tries are

competitive in space with previous techniques, but more impor-

tantly provide fast and very consistent query times.

Arz and Fischer [1] have recently proposed a solution based on

Lempel-Ziv-78 (LZ-78) compression on top of PDT. This technique

has been shown to slightly improve the compression of PDT in

some datasets, but improvement is small in most cases and the

LZ-78-compressed structures have much higher query times, es-

pecially in lookup queries.

3 OUR PROPOSAL

3.1 Data structure and algorithms

We propose a family of compression techniques for string collec-

tions that aim at providing good compression with efficient query

times. Our techniques follow some of the ideas of differential com-

pression described in Section 2.2 and aim at improving their weak

points.

To build our representation, the strings are sorted in lexicographic

order. This order is frequently used in most string dictionary repre-

sentations, so that entries that are close to each other should also

be similar to each other. For convenience, we also add two marker

strings at the beginning and at the end of the collection: the for-

mer is the empty string, and the latter is a single-character string

lexicographically larger than any string in the original collection.

Our goal is to use Front-coding to reduce the common prefix of

common entries. However, instead of compressing each string rela-

tive to the previous one, we use a different scheme for comparisons

that constitutes the basis of our proposal. Our technique is based

on a binary decomposition of the list of strings, following similar

ideas to the binary search algorithms over suffix arrays proposed

by Manber and Myers [13].

Assume we have a collectionC of n strings, including our initial

and last string, and let C[pi] be the string at position pi in the

collection. Our structure is built as follows:

• We initialize two markers pℓ = 0 and pr = n − 1, set to the

limits of the collection.

• We select the middle point pm = (pℓ + pr)/2 and compute

llcp[m] = lcp (C[pm],C[pℓ]) and rlcp[m] = lcp (C[pm],C[pr]),

the longest common prefixes between the string at position

pm and the strings at both limits of the interval.

• Letmaxlcp be themaximumbetween llcp[pm] and rlcp[pm].

C[pm] is compressed using Front-coding, by removing the

maxlcp initial bytes. In practice, Front-coding is applied rel-

ative to the most similar of the entries at each limit of the

interval. We will refer to these as the “parents” of a given

entry.

• We recurse on both halves of the collection ([0,pm] and

pm ,n−1]), repeating the previous steps to compare the mid-

dle element with the limits of the interval and apply Front-

coding accordingly.

After this procedure, our conceptual representation consists of

two integer sequences llcp and rlcp, and the remaining of each

string after Front-coding is applied to them. Let us call this S[n].

In practice we use different techniques to store the strings, but for

simplicity we will write S[i] to refer to the string stored at position

i .

Figure 1 shows an example of our dictionary structure for a

small set of strings. We use $ to denote a string terminator. Our

marker strings are denoted as $ and ~$ respectively. The origi-

nal strings at each position are displayed below the arrays, with

the prefix that would be removed after Front-coding compression

grayed out. Arrows identify the position of the left and right “par-

ent” of each entry. For instance, C[8] is compared with positions 0

and 16 (our marker strings), and it is stored in full.C[12] (climate

$) is compared with C[8] (llcp = 2) and C[16] (rlcp[8] = 0), and af-

ter Front-coding is applied it becomes imate$, removing the longest

common prefix. Note that the marker strings we use will never

share a common prefix with any string in the collection, so both

marker strings and the string in the middle position will always

have llcp and rlcp values of 0 and will be stored in full. The final

representation needs to store the llcp and rlcp arrays and the col-

lection of string tails.

Our construction technique is expected to yield worst compres-

sion results than the usual Front-coding approach that would be

applied sequentially to the collection of strings. We will describe

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

//&3

5/&3

�

�

� � � � � � � � � � �� �� �� �� �� �� ��

� F
D
OO�

F
D
P
S
�

F
H
LO�

F
H
LOLQ
J
�

F
H
Q
W�

F
H
Q
WV
�

F
OD
P
�

F
OD
P
S
�

F
OH
D
Q
�

F
OH
D
U�

F
OH
Y
H
U�

F
OLP
D
WH
�

F
OLQ
J
�

F
OR
WK
H
V
�

F
OR
Y
H
U�

a
�

Figure 1: Conceptual dictionary structure. The original strings are displayed below, but the grayed-out prefixes are not stored.

later our implementation strategies to improve the space utiliza-

tion. However, as we will see next, our binary decomposition al-

lows us to provide an efficient method to answer queries without

resorting to sampling or partitioning of the collection. Therefore,

we avoid the need for bucket headers that arises in some of the

solutions described in Section 2.

Next we outline the algorithms for lookup and access operations.

In both cases we perform a binary-search-like traversal of the col-

lection.

3.1.1 Lookup operation. To obtain the identifier of a string in the

dictionary (lookup), a trivial algorithmwould involve a binary search,

checking the midpoint at each step and comparing the resulting

string with the target. However, our scheme is able to improve the

performance of lookup operations by avoiding some string compar-

isons.

The pseudo-code used for lookup searches is described in Algo-

rithm 1. Let sq be the search string. The values pℓ and pr are the

limits of our interval, initially pℓ = 0 and pr = n − 1. The variables

ℓ and r store the longest common prefix of the left- and right-hand

strings in the dictionary with the search string and are initially

set to 0. Hence, a lookup(sq) is translated into doLookup (sq, 0,n −

1, 0, 0).

At any step of search, we first compare ℓ and r . We will focus

on the case ℓ >= r (i.e., the string at pℓ is more similar to sq than

the string at pr) covered in lines 3-18 of the algorithm 2, since the

other case is symmetric. We obtain the midpoint pm and the value

of llcp[pm] and then compare it with ℓ:

• If llcp[pm] > ℓ, entry pm has a longer prefix in common

with pℓ than pℓ with sq . Hence, the result cannot be to the

left ofpm .We recurse on the right half of the range ([pm ,pr])

without comparing strings.

• If llcp[pm] < ℓ, we are on the symmetric case: entry pℓ is

more similar to the pattern than to entry pm . We recurse on

the left half of the interval, and we set the new lower bound

2In practice, when ℓ = r we have to check the values of l lcp and r lcp to choose the
branch for traversal. Algorithm 1 shows the actual comparison.

r = llcp[pm], since our current string must have llcp[pm]

characters in common with the search string.

• If llcp[pm] = ℓ, we need to compare entry pm with sq . Our

comparison method in Algorithm 1 gives us the two rele-

vant pieces of information: the comparison value cmp, and

the offset o of the last equal character. If both strings are

equal, we return immediately. Otherwise, we recurse on the

appropriate half, setting the value of ℓ or r to o.

Following the example in Figure 1, assume we are searching for

string clam. First we compare with clamp (due to our markers, in

the first iteration a comparison is always performed). The query

string is smaller than S[8], and they share the first 4 characters.

Therefore, we recurse on the left half [0, 8], setting r = 4. In the

next step (pm = 4), r > ℓ and rlcp[4] = 1 < r , so we do not need

to compare strings: we just recurse on the right-side interval [4, 8],

and we set ℓ = 1, since rlcp[4] = 1, meaning that it shares also a

prefix of length 1 with sq . In the next step (pm = 6), again r > ℓ,

and rlcp[6] = 1 < r , so we recurse on the interval [6, 8]. At the

last step, rlcp[7] = 4 = r , so we compare strings to find that both

strings are equal.

3.1.2 Access operation. The second main operation, access(i) , is

the opposite of the previous one, retrieving the string for a given

identifier. It follows a bottom-up approach, starting at the position

pi and traversing up to the parent position until we have recov-

ered the full string. The procedure is described in Algorithm 2. The

string is decoded from the end, prepending new characters at each

new step until we reach the beginning of the string. Given an iden-

tifier i , we read llcp[pi] and rlcp[pi] and compute their maximum

as o. Then, we can extract all the characters from S[pi], that will

correspond to the result string from position o onwards. Since we

have already decoded the result from position o, in the next itera-

tions we set a limit to mark that we only need to extract characters

up to that position.

After extracting the required characters, we move to the appro-

priate parent3, the one corresponding to the maximum lcp, and

3In practice, the parent positions are not computed bottom-up in our implementations.
Instead, the list of search positions is obtained in a top-bottom fashion before the
access algorithm starts. These details are omitted for simplicity in Algorithm 2.

Algorithm 1 Algorithm for lookup

function doLookup(sq , pℓ , pr , ℓ, r)

pm ← (pℓ + pr)/2

if ℓ > r or ((ℓ = r) & llcp[pm] >= rlcp[pm]) then

lval ← llcp[pm]

5: if lval > ℓ then

return doLookup(sq , pm , pr , ℓ, r)

else if lval < ℓ then

return doLookup(sq , pℓ , pm , ℓ, lval)

else

10: (cmp,o) ← compare (s + ℓ, S[pm])

if cmp > 0 then

return doLookup(sq , pm , pr , o, r)

else if cmp < 0 then

return doLookup(sq , pℓ , pm , ℓ, o)

15: else

return pm
end if

end if

else

20: rval ← rlcp[pm]

if rval > r then

return doLookup(sq , pℓ , pm , ℓ, r)

else if lval < ℓ then

return doLookup(sq , pm , pr , rval , r)

25: else

(cmp,o) ← compare (s + r , S[pm])

if cmp > 0 then

return doLookup(sq , pm , pr , o, r)

else if cmp < 0 then

30: return doLookup(sq , pℓ , pm , ℓ, o)

else

returnm

end if

end if

35: end if

end function

repeat the procedure. Whenever o ≤ limit , we prepend the first

limit−o characters of the current S[i] to the result. When we reach

o = 0 the result has been decoded and the procedure ends.

Note that in the worst case we may have to traverse up until we

reach one of the positions that are always stored in full: 0, (n−1)/2

or n − 1, hence running log(n) string comparisons. However, in

many instances we can reach o = 0 earlier in the traversal. Addi-

tionally, in iterations where o > limit comparisons are skipped,

therefore we do not even need to access the text. This will be rel-

evant in some implementation variants that apply compression to

the string tails, since in those solutions string comparisons are rel-

atively expensive.

Following again the example in Figure 1, assume we want to

obtain the string for identifier 9 (clean). At the first iteration, the

maximum common prefix is rlcp[9] = 4. This means that S[4] is

stored from position 4, so we can recover the characters from po-

sition 4 until the end of string (____n). We set limit = 4 for fu-

ture iterations, and since the rlcp value was higher we move to the

Algorithm 2 Algorithm for access

function access(pi)

s ←′′

limit ←max (llcp[pi], rlcp[pi]) + len(S[pi])

o ← ∞

5: while limit > 0 do

if llcp[pi] ≥ rlcp[pi] then

(o,n) ← (llcp[pi], le f t (pi))

else

(o,n) ← (rlcp[pi], riдht (pi))

10: end if

if o ≤ limit then

s[o..limit]← S[pi][0..limit − o]

limit ← o − 1

end if

15: pi ← n

end while

return s

end function

right-side parent, i.e. to position 10. Now llcp[10] = rlcp[10] = 2,

so o = 2 and we can extract the first two characters of S[10] to

fill positions 2-3 of the result string, getting __ean. In this step we

could move to either side, assume we simply move left by conven-

tion. We reach position 8, and we get llcp[8] = rlcp[8] = 0, so we

copy the first two characters of S[8] to fill the remaining positions

of our result and then return.

3.2 Implementation variants

Our conceptual representation stores two integer sequences llcp

and rlcp and a set of string tails S . Several alternatives exist for

the representation of both structures, hence originating a family

of structures that provide a space/time tradeoff. In this section we

introduce implementation details for the different variants of our

proposal:

IBiS is the simplest proposal. In this approach we store llcp and

rlcp as sequences of fixed-length integers. This solution is simple

and efficient, but in datasets where the maximum lcp value is high

it is space-inefficient. The string tails S are concatenated in a single

sequence Str . A bitmap B is added to indicate the position in Str

where each string begins marking with 1 those positions and set-

ting the remaining positions to 0. We store the bit array using an

SDArray compressed bitmap representation, to provide select sup-

port. In this representation, S[i] is obtained by selecting the posi-

tion of the i-th 1 in B, and extracting Str [select1(B, i)..select1(B, i+

1) − 1].

IBiSRP differs from the previous one on the representation of

the strings. All the string tails are again concatenated in a single

sequence Str , including the end-of-string markers, or string termi-

nators. After this, a variant of Re-Pair compression is applied to

the sequence, generating a grammar-compressed sequence where

symbols never overlap two dictionary strings. This transforms the

original byte string into a grammar and a sequence of integers. The

sequence of integers is encoded using Vbyte. We also use a bitmap

B that marks with 1 the first byte of each dictionary string. S[i] can

be obtained by extracting the sequence in the same way as before,

and then decoding the corresponding Re-Pair sequence.

IBiSRP+DAC is similar to IBiSRP but it uses DACs to store the

sequences llcp and rlcp. This is expected to achieve much better

space in many real-world collections, and especially in collections

with long strings where the maximum lcp is much higher than the

average.

IBiSRP+DAC−VLS is again similar to IBiSRP but uses the vari-

ant of DACs designed for variable-length integer sequences (DAC-

VLS) to store the Re-Pair-compressed strings (i.e. the sequence of

integers generated by Re-Pair), instead of compressing individual

integers with Vbyte. Since the DAC-VLS structure provides direct

access to any string, the bitmap B is not necessary, and a string S[i]

is just decoded by extracting symbols from the DAC-VLS structure

and decompressing them using the Re-Pair grammar. Note that this

combination of Re-Pair and DAC-VLS is the same underlying idea

of RPDAC, described in Section 2.

IBiSRP+DAC+DAC−VLS combines the two previous ones: llcp

and rlcp are stored using DACs, and Str stored using DAC-VLS.

3.2.1 End-of-string symbols. All our implementations use a bitmap

B or a DAC-VLS structure to provide direct access to any string tail,

so, unlike alternatives based on sequential search, our representa-

tion does not need to physically store end of string markers. The

string terminators are used asmarkerswhen applying Re-Pair com-

pression, so that no Re-Pair symbol overlaps two dictionary strings.

However, after compression, we can remove these string termina-

tors to save a byte per string in Str . Nevertheless, we still tested,

as well, the version with string terminators since having them we

can decode until we reach the terminator instead of performing a

second select1 operation on B. Even though select operations are

constant-time, they are relatively costly and avoiding them we can

speed up string decoding.

Notice that, when a string is compressed relative to a larger

string in lexicographical order, a zero-length tail may appear (see

for example the string at position 5 in Figure 1). We handle these

empty strings as a special case, storing them as an end-of-string

symbol even if our implementationwould remove these symbols in

any other case. This is necessary for select operations in B to work,

so that each S[i] is associatedwith a different offset in Str ; theDAC-

VLS structure also requires this adjustment since it is not designed

to support zero-length sequences. Note also that the DAC-VLS im-

plementation, due to its construction, would not benefit from extra

end-of-string symbols, so for those implementations we only use

variants with no string terminators.

3.2.2 Single-lcp implementations. Our main proposal stores two

integer sequences, llcp and rlcp, to optimize lookup operations.

Similar algorithms can be designed to work with only one array,

saving half the space of these arrays at the cost of worst Front-

coding compression.

Single-lcp implementations of any of our proposals can also be

built in order to reduce the space utilization. The same idea of the

general construction applies to these variants, but now we always

compare with the left parent (llcp-only variants) or with the right

parent (rlcp-only variants). Compression of the strings is expected

to be worse since we are no longer using the maximum lcp, but

Table 1: Description of the datasets

Dataset Size(MB) #strings Avg. length σ

UK 1372.06 18,520,486 77.68 101

Arabic 1774.42 22,744,080 81.81 100

URIs 1553.46 30,137,450 54.05 116

Literals 2048.00 331,253,572 7.48 96

these variants can still achieve better overall compression by re-

moving one of the integer sequences.

Regarding query algorithms, lookup operations can still save

some string comparisons using a similar algorithm to the one we

proposed: essentially, llcp-only variants use lines 4-18 of the orig-

inal algorithm, and rlcp-only variants lines 20-34. On access op-

erations, the algorithm is also essentially the same, but we always

move to the left (right) parent. When the lcp arrays are compressed,

removing one access to them will have a positive effect on per-

formance, since a single-lcp implementation only needs one DAC

access per step.

4 EXPERIMENTAL EVALUATION

In this section we test the performance of our proposal in com-

parison with several alternatives in the state of the art. We per-

form tests with real-world datasets, focusing on two main appli-

cation domains: representation of URLs, obtained fromWeb graph

crawls, and representation of URIs and literal values extracted from

RDF datasets. First we show an empirical evaluation of the imple-

mentation variants described in Section 3, in order to display their

strengths. Then, we perform an experimental evaluation of our

best implementation variants, comparing them with existing solu-

tions for string dictionaries. Our comparison focuses on compres-

sion capabilities and query performance, and shows that our solu-

tions obtain a better trade-off than state-of-the-art alternatives.

4.1 Experimental setup

Weuse in our tests a collectionof datasets including URLs from real

Web graphs and also URIs and literal values from an RDF dataset.

Table 1 shows a summary of the datasets used. For each one, we

display its size in plain, the number of strings it stores, the average

string length and the alphabet size. Note that the average length

displayed is computed as total size divided by number of strings,

so it includes an extra character per string corresponding to the

string terminator in the input.

UK and Arabic are datasets containing URLs of two different

Web graph crawls. UK4 has been obtained from a 2002 crawl of

.uk domains, whereas Arabic5 is a 2005 crawl that includes pages

from countries whose content is potentiallywritten inArabic. Both

datasets have been obtained from the Webgraph framework [3].

The UK dataset has been used in previous work as a baseline for

URL compression [1, 7, 14]. The Arabic dataset is included for bet-

ter confirmation of the performance of each solution in different

Web graphs. Both datasets are similar in number of strings and

average string length.

4http://law..dsi.unimi.it/webdata/uk-2002
5http://law.di.unimi.it/webdata/arabic-2005/

URIs contains all the different URIs in the English version of the

DBpedia RDF dataset, in its 3.5.1 version6.

Literals is a subset of the literals existing in the same DBpe-

dia 3.5.1 dataset. Our input was generated from the original data

by extracting all the literal values of the collection and obtaining

the raw value from the RDF literal. To do this we remove lan-

guage tags and type information, as well as the enclosing quotes

of the original string. For instance, the RDF literal "100 AD"@en

becomes 100 AD after removing the language tag, whereas the nu-

meric value "57805"ˆˆ<http://www.w3.org/2001/XMLSchema#int> is

converted to 57805. We sorted the values lexicographically, discard-

ing duplicates and taking the entries in the first 2 GB. We limit the

input size to 2 GB since it is the maximum supported by most of

the state-of-the art alternatives that will be used for comparison.

Notice that using raw literal values the strings are significantly

shorter, but keeping the full strings would have little effect on our

techniques: since only one language tag and a small number of

different types are used, Re-Pair compression would be able to rep-

resent the extra characters at small cost. Our choice of raw values

aims at highlighting the fundamental differences between Literals

and the other datasets used, as Literals has much shorter strings

on average, and much more different from each other.

The space shown for each structure is computed precisely from

the size of the corresponding components. Tomeasure query times,

we build a set of 10,000 queries for each dataset by selecting ran-

dom positions from the collection. The same positions are used for

access and for the corresponding lookup queries. Query times are

measured as the average over 100 iterations of the query set.

We implemented our proposals in C++7. We use an implemen-

tation of compressed bitmaps and Re-Pair based on the libcds li-

brary, the same used by Martinez-Prieto et al. [14]. All our imple-

mentations are compiled with g++ 4.8 with -O9 optimizations.

We compare our results with the following techniques:

• PFC, RPFC and RPHTFC are some of the differential encod-

ing techniques based on Front-coding [14] described in Sec-

tion 2. PFC is the plain solution, RPFC uses Re-Pair to com-

press buckets. RPHTFC is similar to the previous one, but

it also applies Hu-Tucker compression to the bucket head-

ers. We include PFC because it is the simplest solution, and

RPFC and RPHTFC because they achieved the best results

among their Front-coding-based solutions. We used bucket

sizes 4, 8, 16 and 32.

• RPDAC andHASHRPDAC are the binary searchable Re-Pair

techniques also introduced in Section 2. The first one uses

binary search, and the second one adds a hash table to speed

up queries. Both of them are used with the default configu-

ration parameters.

• PDT is the the centroid-based compressed implementation

of path-decomposed tries variants [7], the best-performing

alternative of this family.

All the alternatives are compiled with g++ with full optimiza-

tions enabled, using the default settings as provided by the authors

apart from the parameters described above.

6http://downloads.dbpedia.org/3.5.1/all_languages.tar
7Our code is publicly available at https://gitlab.lbd.org.es/gdebernardo/improved-csd

Note that we do not include a comparison with the implemen-

tation of LZ-78-compressed tries also described in Section 2, since

their publicly-available code could not be compiled. Nevertheless,

previous results [1, 14] suggest that their proposals are dominated

in most cases by PDT, and when they slightly improve compres-

sion they aremuch slower; they are also less efficient thanHASHRP-

DAC and RPHTFC in most cases.

4.2 Comparison of our variants

Due to the relatively large number of variants proposed, we first

outline some of the general characteristics of our implementation

variants to display their relative strengths. After that, in the follow-

ing sections we will only show experimental results corresponding

to those of our techniques that provide the best tradeoff.

Figure 2 shows the space/time tradeoff provided by some of

our proposals, considering both uncompressed (IBiS) and Re-Pair-

compressed strings (IBiSRP , IBiSRP+DAC). For each approach we

show the space/time tradeoff achieved in the dataset UK for the

basic implementation (two lcp arrays) and both possible single-lcp

implementations, labeled -L and -R respectively. For each of those,

we show results for the basic techniques that keep string termi-

nators and also for no-term implementations (labeled with -nt).

The plot also shows a few of the differential encoding techniques

described in Section 2, since they share similarities with our ap-

proach: PFC is similar to IBiS, whereas the rest of our variants are

similar to RPFC or RPHTFC, improving compression through the

use of Re-Pair and other techniques.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 150 200 250 300 350 400 450 500 550 600

lo
o
k
u
p
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

IBiS

IBiS
RP

IBiS
RP+DAC

IBiS-nt

IBiS
RP

-nt

IBiS
RP+DAC

-nt

PFC

IBiS-L

IBiS
RP

-L

IBiS
RP+DAC

-L

IBiS-L-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-L-nt

RPFC

IBiS-R

IBiS
RP

-R

IBiS
RP+DAC

-R

IBiS-R-nt

IBiS
RP

-R-nt

IBiS
RP+DAC

-R-nt

RPHTFC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300 350 400 450 500 550 600

a
c
c
e
s
s
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

space (MB)

IBiS

IBiS
RP

IBiS
RP+DAC

IBiS-nt

IBiS
RP

-nt

IBiS
RP+DAC

-nt

PFC

IBiS-L

IBiS
RP

-L

IBiS
RP+DAC

-L

IBiS-L-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-L-nt

RPFC

IBiS-R

IBiS
RP

-R

IBiS
RP+DAC

-R

IBiS-R-nt

IBiS
RP

-R-nt

IBiS
RP+DAC

-R-nt

RPHTFC

Figure 2: Comparison of our variants on dataset UK

As shown in Figure 2, our plain implementations are not very

competitive with PFC, since our techniques cannot compress each

string with Front-coding as efficiently as the sequential encoding.

Plain approaches will be omitted in the next sections, focusing

on the more space-efficient alternatives. Figure 2 also shows some

trends among our variants that are mostly the same in all the datasets

used in our experiments:

• Single-lcp implementations are, in general, a bit more space-

efficient than double-lcp implementations in all the variants

that use Re-Pair. A single-lcp variant may have significantly

more characters in the string tails than a double-lcp variant.

However, due to the efficiency of Re-Pair to compress the re-

sulting strings, the actual increase in size of the compressed

text is much smaller, and removing one of the lcp arrays

easily compensates for this additional space. Plain single-

lcp implementations, on the other hand, are much less effi-

cient in space, since the extra bytes in the string tails are not

compressed in any way. Regarding query times, single-lcp

implementations are slower on lookup queries, due to the po-

tentially larger cost of searches, but faster on access queries,

thanks to the simpler bottom-up traversal that only needs

to access a single lcp array. We will show experimental re-

sults for both single-lcp and double-lcp variants, since they

can be useful in different scenarios depending on whether

lookup or access queries are more relevant.

• llcp-only and rlcp-only implementations achieve almost iden-

tical query times, as expected. However, llcp-only achieves

slightly better compression in all cases, and it is also simpler,

since in llcp-only variants we always perform Front-coding

compression respective to a lexicographically smaller string,

so we are guaranteed to have non-empty string tails in ev-

ery position. In view of these results, we will omit rlcp-only

variants from the remaining test results, noting that in all

our experiments they were consistently slightly larger than

their llcp-only counterparts and query times are similar.

• no-term implementations achieve much better compression

in most variants and in all datasets. This is expected since af-

ter Re-Pair compression is applied to Str the average length

of a string tail is usually much shorter, so removing a byte

per word yields a significant reduction in the overall space.

As expected, no-term variants are also slightly slower, both

in lookup and access queries, but we consider the effect on

compression much more relevant. In the remaining test re-

sults we will focus mostly on no-term variants.

4.3 Comparison with the state of the art

Next we compare our implementations with the most significant

state-of-the-art alternatives to the best of our knowledge. Note

that, as stated earlier, we omit some of our implementation alter-

natives to provide clearer plots, and focus our comparison on the

best-performing techniques from previous work.

Figures 3 and 4 show the space/time tradeoff on the Web graph

datasets UK and Arabic. Both datasets are similar and the results

obtained by the different techniques are also similar. Our propos-

als achieve the best compression among all the tested implemen-

tations. The llcp-only variant of IBiSRP+DAC+DAC−VLS obtains

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35

lo
o
k
u
p
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC-VLS

-nt

IBiS
RP+DAC-VLS

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35

a
c
c
e
s
s
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

space (% of original)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC-VLS

-nt

IBiS
RP+DAC-VLS

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

Figure 3: Space and query times on dataset UK

the best overall space results, but the equivalent IBiSRP+DAC is

very close.We improve the space/time tradeoffRPFC and RPHTFC,

since for smaller buckets they need much space to store bucket

headers and for larger buckets their sequential traversal of the

bucket becomes much slower. Regarding query times, the most ef-

ficient techniques are PDT and HASHRPDAC; RPDAC is similar

to HASHRPDAC on access queries, but much less competitive on

lookup queries, since it requires a binary search and must decode

an entry of the DAC-VLS structure at each step. Our variants are

similar on lookup queries, but the DAC-VLS solutions are slower on

access queries. Note that our DAC-VLS solutions are much faster

in lookup queries than RPDAC; both perform a binary search with

accesses to a DAC-VLS structure, but we encode shorter entries

thanks to Front-coding and we do not need to access the DAC-VLS

at each step. The query times of our best solutions are roughly two

times slower than the fastest solutions, butwe are also significantly

smaller than those, becoming the best alternative to optimize com-

pression with competitive query times.

Figure 5 shows the results for the URIs dataset. Overall compres-

sion of all the tested representations is slightly worse when com-

pared with the URL collections, but our compressed representa-

tions achieve again the best space results, around 15% compression.

Again, the best compression is achieved by the llcp-only variants

of IBiSRP+DAC+DAC−VLS and IBiSRP+DAC , and most of our pro-

posals improve the tradeoff provided by RPFC and RPHTFC. Our

best variants are also significantly smaller than HASHRPDAC, that

achieves the best query times. PDT reaches compression close to

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35

lo
o
k
u
p
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC-VLS

-nt

IBiS
RP+DAC-VLS

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35

a
c
c
e
s
s
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

space (% of original)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC-VLS

-nt

IBiS
RP+DAC-VLS

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

Figure 4: Space and query times on dataset Arabic

ours, while achieving better query times on lookup queries. Never-

theless, on access queries our best structures are still competitive

with PDT, achieving similar query times in less space. We consider

this result on access queriesmore relevant than the result on lookup

queries since, in practice, the former are usuallymore relevant than

the latter, because they are more frequently used. In an RDF en-

gine, for instance, a SPARQL query just requires a few lookup op-

erations to encode the URIs/literals used in the query into numeric

identifiers; then, after the query is executed, each result has to be

translated back into the corresponding URIs/literals, which means

a potentially very large number of access operations to answer a

single query. Hence, even though good performance is required

on both operations, performance on access queries may be more

important in many applications.

Figure 6 shows the results obtained for the Literals dataset. In

this dataset, the different nature of the strings leads to significantly

different results: PDT, RPDAC and HASHRPDAC are much less ef-

ficient to compress the collection. Also, among our variants, the

DAC-VLS techniques becomemuch less efficient, since they are not

well-suited to handle this kind of collection, with very short aver-

age string length but a few very long strings. Nevertheless, we still

show in the plot the results for the best performing DAC-VLS vari-

ants, namely the IBiSRP+DAC+DAC−VLS approaches. Note also that,

in this dataset, llcp-only implementations are not as efficient, and

the smallest representation is the double-lcp IBiSRP+DAC . In spite

of all these differences, our best solutions (both double-lcp and

single-lcp) are much smaller than PDT and HASHRPDAC, while

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 10 15 20 25 30 35 40

lo
o
k
u
p
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC-VLS

-nt

IBiS
RP+DAC-VLS

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40

a
c
c
e
s
s
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

space (% of original)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC-VLS

-nt

IBiS
RP+DAC-VLS

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

Figure 5: Space and query times on dataset URIs

obtaining query times competitive with them. RPFC and RPHTFC,

for larger bucket sizes, can achieve compression similar to us, but

at the cost of much larger query times. Notice that, due to the char-

acteristics of this dataset, the overall compression of all the solu-

tions for this collection is much worse than in the previous ones,

but still IBiSRP+DAC reaches 25% compression whereas PDT and

HASHRPDAC are above 35%.

Taking into account the combined results from Figures 5 and 6,

our techniques clearly obtain the best compression for both URIs

and literal values, constituting a very efficient basis for string dic-

tionary compression of RDF data. Our query times are competitive

with those of existing data structures, especially on access queries,

and the space-time tradeoff provided overcomes the tested alterna-

tives.

5 CONCLUSIONS AND FUTUREWORK

We have introduced a new family of compressed data structures

for the efficient in-memory representation of string dictionaries.

Our solutions can be regarded as an enhanced binary search that

combines a hierarchical variant of Front-coding with suffix-array-

based techniques to speed up longest-common-prefix computations.

Those ideas are then composed with other techniques to derive a

family of variants.

We perform a complete experimental evaluation of our propos-

als, comparing them with the best-performing state-of-the-art so-

lutions and applying them to real-world datasets. We focus on two

of the most active application domains for string dictionaries: Web

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 24 26 28 30 32 34 36 38 40 42 44 46

lo
o
k
u
p
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 24 26 28 30 32 34 36 38 40 42 44 46

a
c
c
e
s
s
 t
im

e
 (

µ
s
e
c
./
q
u
e
ry

)

space (% of original)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiS
RP

-nt

IBiS
RP

-L-nt

IBiS
RP+DAC

-nt

IBiS
RP+DAC

-L-nt

IBiS
RP+DAC+DAC-VLS

-nt

IBiS
RP+DAC+DAC-VLS

-L-nt

Figure 6: Space and query times on dataset Literals

graph and RDF data. Our results show that our representations

achieve better compression than existing solutions, for similar query

times, and are significantly smaller than any other alternative that

is able to outperform our query times. Overall, our representa-

tion, in its several implementation variants, provides a relevant

improvement in compression relative to previous proposals within

very efficient query times.

We plan to explore the possibilities to extend our ideas to the

dynamic scenario, where insertions and deletions are supported.

A direct application of our techniques is not feasible in a dynamic

environment, since we use a static decomposition of the collection

and compression techniques that are also of static nature. However,

we believe that simple adaptations based on the same compression

techniques introduced here would still yield sufficiently compact

dynamic dictionaries. Dynamic string dictionaries in compressed

space are useful, for instance, for better handling large datasets in

RDF engines in main memory.

6 ACKNOWLEDGEMENTS

Funded by EU H2020 MSCA RISE grant No 690941 (BIRDS). GN

funded by the Millennium Institute for Foundational Research on

Data (IMFD), and by Fondecyt Grant 1-170048, Conicyt, Chile. NB,

ACP and GdB funded by Xunta de Galicia/FEDER-UE grants CSI:

ED431G/01 and GRC:ED431C 2017/58; by MINECO-AEI/FEDER-

UE grants TIN2016-77158-C4-3-R and TIN2016-78011-C4-1-R; and

by MICINN grant RTC-2017-5908-7.

REFERENCES
[1] Julian Arz and Johannes Fischer. 2018. Lempel—Ziv-78 Compressed

String Dictionaries. Algorithmica 80, 7 (July 2018), 2012–2047.
https://doi.org/10.1007/s00453-017-0348-7

[2] Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. 2017. Determin-
istic Indexing for Packed Strings. In 28th Annual Symposium on Combina-
torial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland. 6:1–6:11.
https://doi.org/10.4230/LIPIcs.CPM.2017.6

[3] Paolo Boldi and Sebastiano Vigna. 2004. The Webgraph Framework I:
Compression Techniques. In Proceedings of the 13th International Confer-
ence on World Wide Web (WWW ’04). ACM, New York, NY, USA, 595–602.
https://doi.org/10.1145/988672.988752

[4] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. 2013. DACs: Bringing
Direct Access to Variable-length Codes. Information Processing and Management
49, 1 (Jan. 2013), 392–404. https://doi.org/10.1016/j.ipm.2012.08.003

[5] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. 2014. Compact Repre-
sentation of Web Graphs with Extended Functionality. Information Systems 39
(Jan. 2014), 152–174. https://doi.org/10.1016/j.is.2013.08.003

[6] T C. Hu and A C. Tucker. 1979. Optimal Computer Search Trees and Variable-
Length Alphabetical Codes. Siam Journal on Applied Mathematics - SIAMAM 21
(Jan. 1979). https://doi.org/10.1137/0121057

[7] Roberto Grossi and Giuseppe Ottaviano. 2015. Fast Compressed Tries Through
Path Decompositions. Journal of Experimental Algorithmics 19, Article 3.4 (Jan.
2015), 11 pages. https://doi.org/10.1145/2656332

[8] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the Institute of Radio Engineers 40, 9 (Sept.
1952), 1098–1101. https://doi.org/10.1109/JRPROC.1952.273898

[9] Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. 2017. Com-
pressed double-array tries for string dictionaries supporting fast
lookup. Knowledge and Information Systems 51, 3 (2017), 1023–1042.
https://doi.org/10.1007/s10115-016-0999-8

[10] Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. 2017. Prac-
tical Implementation of Space-Efficient Dynamic Keyword Dictionaries.
In Proceedings of the 24th International Symposium on String Process-
ing and Information Retrieval (SPIRE ’17), Vol. 10508. Springer, 221–233.
https://doi.org/10.1007/978-3-319-67428-5_19

[11] Donald E. Knuth. 1998. The Art of Computer Programming, volume 3: Sorting and
searching. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[12] N. Jesper Larsson and Alistair Moffat. 1999. Offline Dictionary-Based
Compression. In Proceedings of the Conference on Data Compres-
sion (DCC ’99). IEEE Computer Society, Washington, DC, USA, 296–.
https://doi.org/10.1109/DCC.1999.755679

[13] Udi Manber and Eugene W. Myers. 1993. Suffix Arrays: A New Method
for On-Line String Searches. SIAM J. Comput. 22 (Jan. 1993), 935–948.
https://doi.org/10.1145/320176.320218

[14] Miguel A. Martínez-Prieto, Nieves R. Brisaboa, Rodrigo Cánovas, Fran-
cisco Claude, and Gonzalo Navarro. 2016. Practical Compressed
String Dictionaries. Information Systems 56, C (Mar. 2016), 73–108.
https://doi.org/10.1016/j.is.2015.08.008

[15] Miguel A. Martínez-Prieto, Javier D. Fernández, and Rodrigo Cánovas. 2012.
Querying RDF Dictionaries in Compressed Space. ACM SIGAPP Applied Com-
puting Review 12, 2 (June 2012), 64–77. https://doi.org/10.1145/2340416.2340422

[16] Gonzalo Navarro. 2016. Compact Data Structures: A Practical Ap-
proach (1st ed.). Cambridge University Press, New York, NY, USA.
https://doi.org/10.1017/CBO9781316588284

[17] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X Engine for Scal-
able Management of RDF Data. The VLDB Journal 19, 1 (Feb. 2010), 91–113.
https://doi.org/10.1007/s00778-009-0165-y

[18] Daisuke Okanohara and Kunihiko Sadakane. 2007. Practical Entropy-
compressed Rank/Select Dictionary. In Proceedings of the Meeting on Algorithm
Engineering & Experiments. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 60–70. https://doi.org/10.1137/1.9781611972870.6

[19] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. 2002. Succinct Indexable
Dictionaries with Applications to Encoding K-ary Trees and Multisets. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’02). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 233–242. https://doi.org/10.1145/1290672.1290680

[20] Kazuya Tsuruta, Dominik Köppl, Shunsuke Kanda, Yuto Nakashima, Shunsuke
Inenaga, Hideo Bannai, and Masayuki Takeda. 2019. Dynamic Packed Compact
Tries Revisited. CoRR abs/1904.07467 (2019). arXiv:1904.07467

[21] Hugh E. Williams and Justin Zobel. 1999. Compressing Inte-
gers for Fast File Access. Comput. J. 42, 3 (Jan. 1999), 193–201.
https://doi.org/10.1093/comjnl/42.3.193

https://doi.org/10.1007/s00453-017-0348-7
https://doi.org/10.4230/LIPIcs.CPM.2017.6
https://doi.org/10.1145/988672.988752
https://doi.org/10.1016/j.ipm.2012.08.003
https://doi.org/10.1016/j.is.2013.08.003
https://doi.org/10.1137/0121057
https://doi.org/10.1145/2656332
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1007/s10115-016-0999-8
https://doi.org/10.1007/978-3-319-67428-5_19
https://doi.org/10.1109/DCC.1999.755679
https://doi.org/10.1145/320176.320218
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1145/2340416.2340422
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1145/1290672.1290680
http://arxiv.org/abs/1904.07467
https://doi.org/10.1093/comjnl/42.3.193

	Abstract
	1 Introduction
	2 Related work
	2.1 Previous concepts and basic compression techniques
	2.2 String dictionary compression

	3 Our proposal
	3.1 Data structure and algorithms
	3.2 Implementation variants

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Comparison of our variants
	4.3 Comparison with the state of the art

	5 Conclusions and future work
	6 Acknowledgements
	References

