
On Sorting, Heaps, and Minimum Spanning Trees ∗

Gonzalo Navarro† Rodrigo Paredes‡

† Dept. of Computer Science, University of Chile, Santiago, Chile.

gnavarro@dcc.uchile.cl
‡ Depto. de Ciencias de la Computación, Universidad de Talca, Curico, Chile.

raparede@utalca.cl

Abstract

Let A be a set of size m. Obtaining the first k ≤ m elements of A in ascending order can be
done in optimal O(m + k log k) time. We present Incremental Quicksort (IQS), an algorithm
(online on k) which incrementally gives the next smallest element of the set, so that the first
k elements are obtained in optimal expected time for any k. Based on IQS, we present the
Quickheap (QH), a simple and efficient priority queue for main and secondary memory. Quick-
heaps are comparable with classical binary heaps in simplicity, yet are more cache-friendly. This
makes them an excellent alternative for a secondary memory implementation. We show that
the expected amortized CPU cost per operation over a Quickheap of m elements is O(log m),
and this translates into O((1/B) log(m/M)) I/O cost with main memory size M and block size
B, in a cache-oblivious fashion. As a direct application, we use our techniques to implement
classical Minimum Spanning Tree (MST) algorithms. We use IQS to implement Kruskal’s MST
algorithm and QHs to implement Prim’s. Experimental results show that IQS, QHs, external
QHs, and our Kruskal’s and Prim’s MST variants are competitive, and in many cases better
in practice than current state-of-the-art alternative (and much more sophisticated) implemen-
tations.

Keywords: Kruskal’s MST algorithm, Prim’s MST algorithm, Incremental sorting, Priority
Queues, External Priority Queues.

1 Introduction

There are cases where we need to obtain the smallest elements from a fixed set without knowing
how many elements we will end up needing. Prominent examples are Kruskal’s Minimum Spanning
Tree (MST) algorithm [24] and ranking by Web search engines [3]. Given a graph, Kruskal’s MST
algorithm processes the edges one by one, from smallest to largest, until it forms the MST. At this
point, remaining edges are not considered. Web search engines display a very small sorted subset
of the most relevant documents among all those satisfying the query. Later, if the user wants more
results, the search engine displays the next group of most relevant documents, and so on. In both
cases, we could sort the whole set and later return the desired objects, but obviously this is more
work than necessary.

∗Supported in part by the Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile;
Yahoo! Research grant “Compact Data Structures”; and Fondecyt grant 1-080019, Chile. Early parts of this work
appeared in ALENEX 2006 [29].

1

This problem can be called Incremental Sorting. It can be stated as follows: Given a set A of m
numbers, output the elements of A from smallest to largest, so that the process can be stopped after
k elements have been output, for any k that is unknown to the algorithm. Therefore, Incremental
Sorting is the online version of a variant of the Partial Sorting problem: Given a set A of m numbers
and an integer k ≤ m, output the smallest k elements of A in ascending order. This can be easily
solved by first finding the k-th smallest element of A using O(m) time Select algorithm [5], and
then collecting and sorting the elements smaller than the k-th element. The resulting complexity,
O(m + k log k), is optimal under the comparison model, as every cell must be inspected and there
are Π0≤j<k(m− j) = m!

(m−k)! possible answers, thus a lower bound is m+log m!
(m−k)! = Ω(m+k log k).

A practical version of the above method uses Quickselect and Quicksort as the selection and
sorting algorithms, obtaining O(m+k log k) expected complexity. Recently, it has been shown that
the selection and sorting steps can be interleaved, which improves the constant terms [26].

To solve the online problem (incremental sort), we have to select the smallest element, then the
second smallest, and so on until the process finishes at some unknown value k ∈ [0,m − 1]. One
can do this by using Select to find each of the first k elements, for an overall cost of O(km). This
can be improved by transforming A into a min-heap [42] in time O(m) [15] and then performing k
extractions. This premature cut-off of the heapsort algorithm [42] has O(m + k log m) worst-case
complexity. Note that m + k log m = O(m + k log k), as they can differ only if k = o

(
mc

)
for any

c > 0, in which case m dominates k log m. However, according to experiments this scheme is much
slower than the offline practical algorithm [26] if a classical heap is used.

Sanders [32] proposes sequence heaps, a cache-aware priority queue, to solve the online problem.
Sequence heaps are optimized to insert and extract all the elements in the priority queue at a small
amortized cost. Even though the total CPU time used for this algorithm in the whole process of
inserting and extracting all the m elements is pretty close to the time of running Quicksort, this
scheme is not so efficient when we want to sort just a small fraction of the set. Then the quest for
a practical online algorithm for partial sorting is raised.

In this paper we present Incremental Quicksort (IQS), a practical and efficient algorithm for
solving the online problem, within O(m + k log k) expected time. Based on IQS, we present
the Quickheap (QH), a simple and efficient data structure for implementing priority queues in
main and secondary memory. Quickheaps are comparable with classical binary heaps in simplicity,
yet are more cache-friendly. This makes them an excellent alternative for a secondary memory
implementation. QHs achieve O(log m) expected amortized time per operation when they fit in
main memory, and O((1/B) log(m/M)) I/O cost when there are M bytes of main memory and the
block size is B in secondary memory, working in a cache-oblivious fashion. IQS and QHs can be
used to improve upon the current state of the art on many algorithmic scenarios. In fact, we plug
them in the classic Minimum Spanning Tree (MST) techniques: We use incremental quicksort to
boost Kruskal’s MST algorithm [24], and a quickheap to boost Prim’s MST algorithm [31]. Given
a random graph G(V,E), we compute its MST in O(|E|+ |V | log2 |V |) average time.

Experimental results show that IQS, QHs, external QHs and our Kruskal’s and Prim’s MST
variants are extremely competitive, and in many cases better in practice than current state-of-the-
art (and much more sophisticated) alternative implementations. IQS is approximately four times
faster than the classic alternative to solve the online problem. QHs are competitive with pairing
heaps [16] and up to four times faster than binary heaps [42] (according to Moret and Shapiro

2

[27], these are the fastest priority queue implementations in practice). Using the same amount of
memory, our external QH performs up to 3 times fewer I/O accesses than R-Heaps [1] and up to 5
times fewer than Array-Heaps [8], which are the best alternatives tested in the survey by Brengel
et al. [6]. External-memory Sequence Heaps [32], however, are faster than QHs, yet these are much
more sophisticated and not cache-oblivious. Finally, our Kruskal’s version is much faster than any
other Kruskal’s implementation we could program or find for any graph density. As a matter of
fact, it is faster than Prim’s algorithm [31], even as optimized by Moret and Shapiro [27], and also
competitive with the best alternative implementations we could find [22, 23]. On the other hand,
our Prim’s version is rather similar to our Kruskal’s one, yet it is resistant to some Kruskal’s worst
cases, such as the lollipop graph.

The rest of this paper is organized as follows. In the rest of the Introduction we briefly review
some of the related work. In Section 2 we present our incremental sorting algorithm. Then, in
Sections 3 and 4 we build on it to design Quickheaps in main memory. Next, in Section 5 we show
how to adapt our priority queue to work in secondary memory. In Section 6 we apply our basic
algorithms and structures to boost the construction of the MST of a graph. Section 7 gives our
experimental results. Finally, in Section 8 we give our conclusions and some directions for further
work. Pseudo-codes and more experiments are available [28].

1.1 Priority Queues

A priority queue (PQ) is a data structure which allows maintaining a set of elements in a par-
tially ordered way, enabling efficient element insertion (insert), minimum finding (findMin) and
minimum extraction (extractMin) —or alternatively, maximum finding and extraction. In the
following we focus on obtaining the minima, that is in min-order PQs. The set of operations can
be extended to construct a priority queue from a given array A (heapify), increase or decrease
the priority of an arbitrary element (increaseKey and decreaseKey, respectively), delete an
arbitrary element from the priority queue (delete), and a long so on.

The classic PQ implementation uses a binary heap [42, 11]. Wegener [41] proposes a bottom-
up deletion algorithm, which addresses operation extractMin performing only log2 m + O(1) key
comparisons per extraction on average, in heaps of m elements. Other well-known priority queues
are sequence heaps [32], binomial queues [40], Fibonacci heaps [17], pairing heaps [16], skew heaps
[34], and van Emde Boas queues [38]. All are based on binary comparisons, except the latter which
handles an integer universe [0,m].

1.2 External Memory Priority Queues

When working in the secondary memory scenario, we assume that we have M bytes of fast-access
internal memory and an arbitrarily large slow-access external memory located in one or more
independent disks. Data between the internal memory and the disks is transferred in blocks of size
B, called disk pages. In this model, the algorithmic performance is usually measured by counting
the number of disk access performed, which we call I/Os. Thus, to improve the I/O performance,
external memory techniques focus on guaranteeing good locality of reference. Therefore, external
memory PQs usually offer just the basic operations, namely, insert, findMin and extractMin.
This is because others, like delete or decreaseKey, need at least one random access to the queue.

3

Some external memory PQs are buffer trees [2, 20], M/B-ary heaps [25, 14], and Array Heaps
[8], all of which achieve the lower bound of Θ((1/B) logM/B(m/B)) amortized I/Os per operation
[39]. Those structures, however, are rather complex to implement and heavyweight in practice (in
extra space and time) [6]. Other techniques are simple but do not perform so well (in theory or in
practice), for example those using B-trees [4]. A practical comparison of existing secondary memory
PQs was carried out by Brengel et al. [6], where in addition they adapt two-level radix heaps [1]
to secondary memory (R-Heaps), and also simplify Array-Heaps [8]. The latter stays optimal in
the amortized sense and becomes simple to implement. Experiments [6] show that R-Heaps and
Array-Heaps were the best choices for secondary memory. In the same issue, Sanders introduced
sequence heaps [32], which can be seen as a simplification of the improved Array-Heaps [6]. Sanders
reports that sequence heaps are faster than the improved Array-Heaps [12, 13].

1.3 Minimum Spanning Trees

Assume that G(V,E) is a connected undirected graph with a nonnegative cost function weighte
assigned to its edges e ∈ E. A minimum spanning tree mst of the graph G(V,E) is a tree composed
of n− 1 edges of E connecting all the vertices of V at the lowest total cost

∑
e∈mst weighte.

The most popular algorithms to solve this problem are Kruskal’s [24] and Prim’s [31], whose
basic versions have complexity O(m log m) and O

(
n2

)
, respectively. There are several other MST

algorithms compiled by Tarjan [35]. Recently, Chazelle [9] gave an O(mα(m,n)) time algorithm.
Later, Pettie and Ramachandran [30] proposed an algorithm that runs in optimal time O(T ∗(m,n)),
where T ∗(m,n) is the minimum number of edge-weight comparisons needed to determine the MST
of any graph G(V,E) with m edges and n vertices. Its best known upper bound is also O(mα(m,n)).
These algorithms almost reach the lower bound Ω(m), yet they are so complicated that their interest
is mainly theoretical.

Several experimental studies on MST exist [27, 22, 23]. Moret and Shapiro [27] compare several
versions of Kruskal’s, Prim’s and Tarjan’s algorithms, concluding that the best in practice (albeit
not in theory) is Prim’s using pairing heaps [16]. Their experiments show that neither Cheriton and
Tarjan’s [10] nor Fredman and Tarjan’s algorithm [17] ever approach the speed of Prim’s algorithm
using pairing heaps. Moreover, they show that it is possible to use heaps to improve Kruskal’s
algorithm. The idea is to min-heapify the set E, and then to perform as many min-extractions of
the lowest-cost edge as needed (they do this in their Kruskal’s demand-sorting version [27]). The
result is a rather efficient MST version with complexity O(m + k log m), being k ≤ m the number
of edges reviewed by Kruskal. However, they also show that the worst-case behavior of Kruskal’s
algorithm stays poor: If the graph has two distinct components connected by a single, very costly
edge, incremental sorting is forced to process the whole edge set. Katriel et al. [22, 23] present the
algorithm iMax, whose expected complexity is O(m + n log n).

Final remarks on Kruskal’s and Prim’s algorithms are in order. If we are using either full
or random graphs whose edge costs are assigned at random independently of the rest (using any
continuous distribution), the subgraph composed by V with the edges reviewed by the Kruskal’s
algorithm is a random graph [21]. Based on that analysis [21, p. 349], we expect to finish the MST
construction (that is, to connect the random subgraph) upon reviewing 1

2n ln n + 1
2γn + 1

4 + O
(

1
n

)

edges, which can be much smaller than m. For each of these edges, we use O(log m) time to
select and extract the minimum element of the heap. So, the average complexity of Kruskal with

4

incremental (or demand) sorting is O(m + n log n log m) = O
(
m + n log2 n

)
(as n− 1 ≤ m ≤ n2).

On the other hand, a practical, fast implementation of Prim’s algorithm uses binary heaps,
reducing the time to O(m log n), which is relevant when m = o

(
n2/ log n

)
. Alternatively, Prim’s

can be implemented using Fibonacci Heaps [17] to obtain O(m + n log n) complexity.

2 Optimal Incremental Sorting

Let A be a set of size m. Obtaining the first k ≤ m elements of A in ascending order can be done
in optimal O(m + k log k) time. We present Incremental Quicksort (IQS), an algorithm (online on
k) which incrementally gives the next smallest element of the set, so that the first k elements are
obtained in optimal time for any k. As explained in the Introduction, this is not a big achievement
because the same can be obtained using a priority queue. However, IQS performs better in practice
than the best existing online algorithm.

Essentially, IQS calls Quickselect [19] to find the smallest element of arrays A[0,m− 1], A[1,m− 1],
. . ., A[k − 1,m− 1]. This naturally leaves the k smallest elements sorted in A[0, k − 1]. The key
point to avoid the O(km) complexity is to note that when we call Quickselect on A[1,m − 1], we
can reuse the sequence of decreasing pivots that has already been used in the previous invocation
on A[0,m− 1]. To do that, it suffices with considering an auxiliary stack S in order to manage this
sequence of decreasing pivot positions, as they will be relevant for the next calls to Quickselect.

Figure 1 (left) shows how IQS searches for the smallest element (12) of an array by using a
stack initialized with a single value m = 16. To find the next minimum, we first check whether p,
the top value in S, is the index of the element sought, in which case we pop it and return A[p].
Otherwise, because of previous partitionings, it holds that elements in A[0, p − 1] are smaller than
all the rest, so we run Quickselect on that portion of the array, pushing new pivots into S.

As can be seen in Figure 1 (left), the second minimum (18) is the pivot on the top of S, so we
pop it and return A[1]. Figure 1 (right) shows how IQS finds the third minimum using the pivot
information stored in S. Notice that IQS just works on the current first chunk ({29, 25}). In this
case it adds one pivot position to S and returns the third element (25) in the next recursive call.
The incremental sorting process will continue as long as needed, and it can be stopped in any time.

The algorithm is given in Figure 2. Stack S is initialized to S = {|A|}. IQS receives the set A,
the index idx1 of the element sought (that is, we seek the smallest element in A[idx,m − 1]), and
the current stack S (with former pivot positions). First it checks whether the top element of S is
the desired index idx, in which case it pops idx and returns A[idx]. Otherwise it chooses a random
pivot index pidx from [idx, S.top()−1]. Pivot A[pidx] is used to partition A[idx, S.top()−1]. After
the partitioning, the pivot has reached its final position pidx′, which is pushed in S. Finally, a
recursive invocation continues the work on the left hand of the partition.

Recall that partition(A, A[pidx], i, j) rearranges A[i, j] and returns the new position pidx′ of
the original element A[pidx], so that, in the rearranged array, all the elements smaller/larger than
A[pidx′] appear before/after pidx′. Thus, pivot A[pidx′] is left at the correct position it would have
in the sorted array A[i, j]. The next lemma shows that it is correct to search for the minimum just
within A[i, S.top() − 1], from which the correctness of IQS immediately follows.

1Since we start counting array positions from 0, the place of the k-th element is k − 1, so idx = k − 1.

5

 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81

_

_

_ _ _

_

_

_

_

__

0 1 2 3 4 5 6 7

0 1 2 3

_0

33 37 29 12 49 41 18 25 51 67 86 92 58 63 74 81

51 81 74 12 58 92 86 25 67 33 18 41 49 63 29 37

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18 25 29 12 33 41 49 37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S = {16}

S = {16, 8}

S = {16, 8, 4}

S = {16, 8, 4, 1}

S = {16, 8, 4, 1}

_

2 3

29 25 33 41 49 37 51 67 86 92 58 63 74 81

25 29

2
25

29 33 41 49 37 51 67 86 92 58 63 74 81

2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 4 5 6 7 8 9 10 11 12 13 14 15

S = {16, 8, 4, 3}

S = {16, 8, 4}

S = {16, 8, 4, 3, 2}

S = {16, 8, 4, 3}

S = {16, 8, 4, 1, 0}

12 18 29 25

_

Figure 1: Example of IQS. Each line corresponds to a new partition of a sub-array. In the example
we use the first element of the current partition as the pivot, but it could be any other element.
The bottom line shows the array with the partitions generated by the first call to IQS and the
pivot positions stored in S. On the left, finding the first element. On the right, finding the third
element. Using the pivot information IQS only works on the current first chunk ({29, 25}).

IQS (Set A, Index idx, Stack S)
// Precondition: idx ≤ S.top()

1. If idx = S.top() Then S.pop(), Return A[idx]
2. pidx← random[idx, S.top()−1]
3. pidx′ ← partition(A, A[pidx], idx, S.top()−1)

// Invariant: A[0] ≤ . . . ≤ A[idx− 1] ≤ A[idx, pidx′ − 1] ≤ A[pidx′]
// ≤ A[pidx′ + 1, S.top()−1] ≤ A[S.top(),m − 1]

4. S.push(pidx′)
5. Return IQS(A, idx, S)

Figure 2: Algorithm Incremental Quicksort (IQS). Stack S is initialized to S ← {|A|}. Both S and
A are modified and rearranged during the algorithm. Note that the search range is limited to the
array segment A[idx, S.top()−1]. Procedure partition returns the position of pivot A[pidx] after
the partition completes. Note that the tail recursion can be easily removed.

Lemma 2.1 (pivot invariant). After i minima have been obtained in A[0, i−1], (1) the pivot indices
in S are decreasing bottom to top, (2) for each pivot position p 6= m in S, A[p] is not smaller than
any element in A[i, p− 1] and not larger than any element in A[p + 1,m− 1].

Proof. Initially this holds since i = 0 and S = {m}. Assume this is valid before pushing p, when
p′ was the top of the stack. Since the pivot was chosen from A[i, p′ − 1] and left at some position
i ≤ p ≤ p′ − 1 after partitioning, property (1) is guaranteed. As for property (2), after the

6

partitioning it still holds for any pivot other than p, as the partitioning rearranged elements at the
left of all previous pivots. With respect to p, the partitioning ensures that elements smaller than p
are left at A[i, p − 1], while larger elements are left at A[p + 1, p′ − 1]. Since A[p] was already not
larger than elements in A[p′,m − 1], the lemma holds. It obviously remains true after removing
elements from S.

The worst-case complexity of IQS is O(m2), but it is easy to derive a worst-case optimal version
from it. The only change is in line 2 of Figure 2, where the random selection of the next pivot
position must be changed to choosing the median of A[idx, S.top() − 1], using the linear-time
selection algorithm [5]. See Paredes [28] for details.

Let us now consider the expected case complexity. In IQS, the final pivot position p af-
ter the partitioning of A[0,m − 1] distributes uniformly in [0,m − 1]. Let T (m,k) be the ex-
pected number of key comparisons needed to obtain the k smallest elements of A[0,m − 1].
After the m − 1 comparisons used in the partitioning, there are three cases depending on p:
(1) k ≤ p, in which case the right partition remains until the end of the process, and the to-
tal extra cost will be T (p, k) to solve A[0, p − 1]; (2) k = p + 1, in which case the left par-
tition will be fully sorted at cost T (p, p); and (3) k > p + 1, in which case we pay T (p, p)
on the left partition, whereas the right partition, of size m − 1 − p, will be sorted incremen-
tally so as to obtain the remaining k − p − 1 elements. Thus IQS expected cost is T (m,k) =

m−1+ 1
m

(∑m−1
p=k T (p, k) + T (k − 1, k − 1) +

∑k−2
p=0

(
T (p, p) + T (m− 1− p, k − p− 1)

))
. This ex-

act recurrence describes the offline Partial Sorting algorithm [26], where it was solved. The result
can be rewritten as T (m,k) = Θ(m + k log k), see Paredes [28].

Theorem 2.1 (IQS’s expected case complexity). Given a set A of m numbers IQS finds the k
smallest elements, for any unknown value k ≤ m, in O(m + k log k) expected time. �

3 Quickheaps

Let us go back to the last line of Figure 1 (left), drawn in Figure 3, where we add ovals indicating
pivots. For the sake of simplifying the following explanation, we also add a ∞ mark signaling a
fictitious pivot in the last place of the array.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

 _ _ _ __

Figure 3: Last line of Figure 1.

By virtue of the IQS invariant (see Lemma 2.1), we see the following structure in the array. If
we read the array from right to left, we start with a pivot (the fictitious pivot ∞ at position 16)
and at its left side there is a chunk of elements smaller than it. Next, we have another pivot (pivot
51 at position 8) and another chunk. Then, another pivot and another chunk and so on, until we
reach the last pivot (pivot 18 at position 1) and a last chunk (in this case, without elements).

This resembles a heap structure, in the sense that objects in the array are semi-ordered. In
the following, we exploit this property to implement a priority queue over an array processed with

7

algorithm IQS. We call this IQS-based priority queue Quickheap (QH). From now on we explain
how to obtain a min-order quickheap. For practical reasons, elements within the quickheap are
stored in a circular array, so that we can handle arbitrarily long sequences of operations as long as
we maintain no more elements than the capacity of the circular array.

3.1 Data Structures for Quickheaps

To implement a quickheap we need the following structures (we use Figure 3 as an example):

1. An array heap to store the elements. In the example it is {18, 29, . . . , 81,∞}.

2. A stack S to store the positions of pivots partitioning heap. Recall that the bottom pivot
index indicates the fictitious pivot ∞, and the top one the smallest pivot. In the example,
the stack S is {16, 8, 4, 1}.

3. An integer idx to indicate the first cell of the quickheap. In the example idx = 1. Note that
the last cell of the quickheap (the position of the fictitious pivot ∞) is maintained in S[0].

4. An integer capacity to indicate the size of heap. We can store up to capacity− 1 elements in
the quickheap (as we need a cell for the fictitious pivot ∞).

Note that in the case of circular arrays, we must take into account that an object whose position
is pos is actually located in the cell pos mod capacity of the circular array heap. We add elements
at the tail of the quickheap (the cell heap[S[0] mod capacity]), and perform min-extractions from
the head of the quickheap (the cell heap[idx mod capacity]). So, the quickheap slides from left
to right over the circular array heap as the operation progresses. From now on, we will omit the
expression mod capacity in order to simplify the reading.

Throughout this section we assume that we know beforehand the value of capacity, that is,
the maximum number of elements we store in the priority queue. If this is not the case, we can
implement array heap as a dynamic table [11, Section 17.4], just adding a constant amortized factor
to the cost of quickheap operations.

3.2 Quickheap Operations

Creation of quickheaps. We create the array heap of size capacity with no elements, and
initialize both S = {0} and idx = 0. The value of capacity must be sufficient to store simultaneously
all the elements we need in the array plus a fictitious cell. On the other hand, to create a quickheap
from an array A, we copy it to heap, and initialize both S = |A| and idx = 0. The value of capacity
must be at least |A|+ 1.2 This operation can be done in time O(1) if we can take array A and use
it as array heap.

Finding the minimum. To find the minimum of the heap, we focus on the first chunk, which
is delimited by the cells idx and S.top() − 1. For this sake, we just call IQS(heap, idx, S) and
then return the element heap[idx]. However, in this case IQS does not pop the pivot on top of S.
Remember that an element whose position is pos is located at cell pos mod capacity, thus we have
to slightly change algorithm IQS to manage the positions in the circular array.

2Indeed we do not really need that further cell, we just let the fake pivot S[0] point to a nonexistent cell.

8

Extracting the minimum. To extract the minimum, we first make sure that the minimum is
located in the cell heap[idx]. (Once again, in this case IQS does not pop the pivot on top of S.)
Next, we increase idx and pop S. Finally, we return the element heap[idx− 1].

Inserting elements. To insert a new element x into the quickheap we need to find the chunk
where we can insert x in fulfillment of the pivot invariant (Lemma 2.1). Thus, we need to create an
empty cell within this chunk in the array heap. Note that we do not need to move every element
in the array one position to the right, but only some pivots and elements to create an empty cell
in the appropriate chunk. We first move the fictitious pivot, updating its position in S, without
comparing it with the new element x, so we have a free cell in the last chunk. Next, we compare x
with the pivot at cell S[1]. If the pivot is smaller than or equal to x we place x in the free place left
by pivot S[0]. Otherwise, we move the first element at the right of pivot S[1] to the free place left
by pivot S[0], and move the pivot S[1] one place to the right, updating its position in S. We repeat
the process with the pivot at S[2], and so on until we find the place where x has to be inserted, or
we reach the first chunk. Figure 4 shows an example.

18 29 25 33 41 49 37 35 51 86 92 58 63 74 81 67 S = {17, 9, 4, 1}

818 29 25 33 41 49 37 51 86 92 58 63 74 81 67 S = {17, 9, 4, 1}

8

818 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

818 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {17, 8, 4, 1}

35

8

35

51 67

35

35

Figure 4: Inserting a new element into a quickheap. The figure shows the pivots we have to compare
with the new element to insert it into the quickheap, and the elements we have to move to create
the free cell to allocate the new element.

Deleting arbitrary elements. Given a position pos, this operation removes from the quickheap
the element at that cell. When we delete a non-pivot element we move some pivots and elements
one cell to the left. If we remove a pivot element, we drop it, join the two chunks and continue as
if it were a non-pivot deletion.

This operation, as well as increaseKey and decreaseKey, requires to know the internal posi-
tions of elements in the quickheap, not only their identifiers. Thus we might have to augment the
quickheap with a dictionary which, given an element identifier, answers its respective position, and
to maintain this mapping upon changes in the quickheap. There are several options for implement-
ing this dictionary, depending on the application, which range from constant to O(log m) time per
update. We do not include this possible extra cost in our analysis.

9

Using the dictionary we obtain the element position pos. To delete the element, we first need
to find its chunk. Note that each chunk has a pivot at its right, so we reference the chunk by that
pivot, pidx. Therefore, we traverse the stack S to find the smallest pivot that is ≥ pos.

Once we have a pivot pidx at a position greater than pos, we repeat the following process. We
place the element previous to the pidx-th pivot in the position pos, that is, we move the element
heap[S[pidx] − 1] to position heap[pos], so we have a free cell at position S[pidx]− 1. Then, we
move the pivot heap[S[pidx]] one place to the left, and update its position in S. Then we update
pos to the old pivot position, pos = S[pidx] + 1. Then we process the next chunk at the right. We
continue until we reach the fictitious pivot.

Note that, if the element at position pos is originally a pivot, we extract it from S (by moving
every pivot above it in the stack one position towards the bottom) and go back to the previous
pivot, so we always have a pivot at a position greater than pos. Thus, extracting a pivot effectively
merges the two chunks at the left and right of the removed pivot.

An application of operation delete is to implement operation extractMin by calling delete(0).
This way we obtain a quickheap version that does not slide on the array heap. In this case we
do not need the dictionary, as we want to delete the element at position zero. Yet, preliminary
experiments show that this alternative is less efficient than the sliding one proposed above.

Decreasing and increasing a key can be done via a delete plus insert operations. Nevertheless,
next we show a more efficient direct implementation.

Decreasing a key. Given a position pos of some element in the quickheap and a value δ ≥ 0,
we change the priority of the element heap[pos] to heap[pos] − δ, and adjust its position in the
quickheap so as to preserve the pivot invariant (Lemma 2.1). As we are decreasing the key, the
modified element either stays in its current place or it moves chunk-wise towards position idx. Thus
operation decreaseKey is similar to operation insert.

To decrease a key, we first need to find the chunk pidx of the element to modify. If the element
at position pos is a pivot, we extract it from S and go back to the previous pivot, so we always
have a pivot at a position greater than pos.

Let newV alue = heap[pos]− δ be the resulting value of the modified element. Once we have a
pivot pidx at a position greater than pos, we do the following. If we are working in the first chunk,
that is |S| = pidx + 1, we update the element heap[pos] to newV alue and we are done. Otherwise,
we check whether newV alue is greater than or equal to the preceding pivot (heap[S[pidx + 1]]). If
so, we update the element heap[pos] to newV alue and we have finished. Else, we place the element
at the right of the next pivot in the current position of the element. That is, we move the element
heap[S[pidx+1]+1] to position heap[pos]. As we have an empty space next to the pivot delimiting
the preceding chunk, we start the pivot movement procedure from that chunk.

Increasing a key. Analogously, given a position pos of some element in the quickheap, and a
value δ ≥ 0, this operation changes the value of the element heap[pos] to heap[pos] + δ, and adjusts
its position in the quickheap so as to preserve the pivot invariant. As we are increasing the key,
the modified element either stays in its current place or moves chunk-wise towards position S[0].
Thus, operation increaseKey is similar to operation delete, but without removing the element.
Similarly to operations decreaseKey or delete, we first need to find the chunk pidx of the element

10

to modify. If the element at position pos is a pivot, we remove it from the stack S and go back to
the previous pivot, so we have a pivot in a position greater than pos.

4 Analysis of Quickheaps

In the following, we prove that quickheap operations cost O(log m) expected amortized time, where
m is the maximum size of the quickheap. This analysis is based on a key observation: statistically,
quickheaps exhibit an exponentially-decreasing structure, which means that the pivot positions form
on average an exponentially decreasing sequence. We start by proving that exponential-decrease
property. Then, we introduce the potential debt method for amortized analysis. Finally, exploiting
the exponential-decrease property, we analyze quickheaps using the potential debt method.

4.1 The Quickheap’s Exponential-Decrease Property

In this section we introduce a formal notion of the exponentially-decreasing structure of quickheaps.
We show that this property is true at the beginning, and that it holds after extractions of minima,
as well as insertions or deletions of elements that fall at independent and uniformly distributed po-
sitions in the heap. It follows that the property holds after arbitrary sequences of those operations,
yet the positions of insertions and deletions cannot be arbitrary but uniformly distributed.

More precisely, our uniformity assumptions are stated as follows. When inserting a new element
into a heap of n − 1 elements, we assume that the rank of the new element in the existing set
distributes uniformly in [1, n]. When deleting an element from a heap with n + 1 elements, we
assume each of the elements is chosen for deletion with uniform probability.

From now on, we consider that array segments are delimited by idx and the cell just before
each pivot position S[pidx] (heap[idx, S[pidx] − 1], thus segments overlap), and array chunks are
composed by the elements between two consecutive pivot positions (heap[S[pidx]+1, S[pidx−1]−1])
or between idx and the cell preceding the pivot on top of S (heap[idx, S.top()−1]). We call
heap[idx, S.top()−1] the first chunk, and heap[S[1] + 1, S[0] − 1] the last chunk. Analogously, we
call heap[idx, S.top()−1] the first segment, and heap[idx, S[0]−1] the last segment. The pivot of a
segment will be the rightmost pivot within such segment (this is the one used to split the segment
at the time partition was called on it). Thus, the pivot of the last segment is S[1], whereas the
first segment is the only one not having a pivot. Figure 5 illustrates this.

Using the traditional definition of the median of a n-element set —if n is odd the median is the
n+1

2 -th largest element, else it is the average of the n
2 -th and (n

2 + 1)-th largest ones—, let us call
an element not smaller than the median of the array segment heap[idx, S[pidx]− 1] a large element
of such segment. Analogously, let us call an element smaller than the median a small element.

The exponential-descrease property is formally defined as follows:

Definition 4.1 (quickheap’s exponential-decrease property). The probability that the pivot of each
array segment heap[idx, S[pidx] − 1] is large in its segment is smaller than or equal to 1

2 . That is,
for all the segments P(pivot is large) ≤ 1

2 .

We prove the property by analyzing each individual element in isolation, and considering the
operations that affect it. So from now on we refer to any individual segment and analyze its

11

[0]

chunk chunk
secondfirst

other chunks last chunk

. . .
. . .

second segment

other segments

last segment . . .

first segment

last segment pivot

second segment pivot

idx []S j S j[−1] S [1] S

Figure 5: Segments and chunks of a quickheap.

evolution (note segments contain each other, but we can still analyze each of them regardless of
the rest). Let Pi,j,n, 1 ≤ i ≤ n, j ≥ 0, n > 0, be the probability that the i-th element of the
segment, of size n, is the pivot of the segment after the j-th operation (Pi,j,n = 0 outside bounds).
In the following we prove by induction on j that Pi,j,n ≤ Pi−1,j,n, for all j, n and 2 ≤ i ≤ n, after
performing any sequence of operations insert, delete, findMin and extractMin. That is, the
probability of the element at cell i being the pivot is non-increasing from left to right. Later, we
use this to prove the exponential-decrease property and some consequences of it.

Note that the pivot appears for the first time in the segment when it is the shortest one
and operations extractMin or findMin partition it. Note also that, just after the segment is
partitioned, the probabilities are Pi,0,n = 1

n , as the pivot is chosen following a uniform distribution,
so we have proved the base case.

Lemma 4.1. For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after inserting
a new element x at a position uniformly chosen in [1, n].

Proof. We suppose that after the (j−1)-th operation the segment has n−1 elements. As we insert
x in the j-th operation, the resulting segment contains n elements. The probability that after the
insertion the pivot p is at cell i depends on whether p was at cell i − 1 and we have inserted x at
any of the first i− 1 positions 1, . . . , i− 1, so the pivot moved to the right; or the pivot was already
at cell i and we have inserted x at any of the last n − i positions i + 1, . . . , n. So, we have the
recurrence of Eq. (1).

Pi,j,n = Pi−1,j−1,n−1
i− 1

n
+ Pi,j−1,n−1

n− i

n
(1)

From the inductive hypothesis we have that Pi,j−1,n−1 ≤ Pi−1,j−1,n−1. Multiplying both sides
by n−i

n , adding Pi−1,j−1,n−1
i−1
n and rearranging terms we obtain the inequality of Eq. (2), whose

left side corresponds to the recurrence of Pi,j,n.

Pi−1,j−1,n−1
i− 1

n
+ Pi,j−1,n−1

n− i

n
≤ Pi−1,j−1,n−1

i− 2

n
+ Pi−1,j−1,n−1

n + 1− i

n
(2)

12

By the inductive hypothesis again, Pi−1,j−1,n−1 ≤ Pi−2,j−1,n−1, for i > 2. So, replacing on the
right side above we obtain the inequality of Eq. (3), where in the right side we have the recurrence
for Pi−1,j,n.

Pi,j,n ≤ Pi−2,j−1,n−1
i− 2

n
+ Pi−1,j−1,n−1

n + 1− i

n
= Pi−1,j,n (3)

With respect to i = 2, note that the term i−2
n from Eqs. (2) and (3) vanishes, so the replacement

made for i > 2 holds anyway. Thus, this equation can be rewritten as P2,j,n ≤ P1,j−1,n−1
n−1

n . Note
that the right side is exactly P1,j,n according to the recurrence Eq. (1) evaluated for i = 1.

Lemma 4.2. For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after deleting
an element at a position chosen uniformly from [1, n + 1].

Proof. Suppose that after the (j − 1)-th operation the segment has n + 1 elements. As we delete
an element in the j-th operation, the resulting segment contains n elements.

We start by proving the property when the deleted element is not a pivot. The probability that
after the deletion the pivot p is at cell i depends on whether p was at cell i + 1 and we delete an
element from positions 1, . . . , i, so the pivot moved to the left; or the pivot was already at cell i,
and we have deleted from the last n + 1 − i elements i + 1, . . . , n + 1. So, we have the recurrence
of Eq. (4).

Pi,j,n = Pi+1,j−1,n+1
i

n + 1
+ Pi,j−1,n+1

n + 1− i

n + 1
(4)

From the inductive hypothesis we have that Pi,j−1,n+1 ≤ Pi−1,j−1,n+1. Multiplying both sides
by n+2−i

n+1 , adding Pi,j−1,n+1
i−1
n+1 and rearranging terms we obtain the inequality of Eq. (5), whose

right side corresponds to the recurrence of Pi−1,j,n.

Pi,j−1,n+1
i

n + 1
+ Pi,j−1,n+1

n + 1− i

n + 1
≤ Pi,j−1,n+1

i− 1

n + 1
+ Pi−1,j−1,n+1

n + 2− i

n + 1
(5)

By the inductive hypothesis again, Pi+1,j−1,n+1 ≤ Pi,j−1,n+1, so we can replace the first term
above to obtain the inequality of Eq. (6), where in the left side we have the recurrence for Pi,j,n.
On the right we have Pi−1,j,n.

Pi+1,j−1,n+1
i

n + 1
+ Pi,j−1,n+1

n + 1− i

n + 1
= Pi,j,n ≤ Pi−1,j,n (6)

In the case of deleting a pivot p we have the following. If we delete the pivot on top of S, then
the first and the second chunk get merged and the lemma does not apply to the (new) first segment
because it has no pivot.

Otherwise, we must have (at least) two pivots pl and pr at the left and right of p. Let posl, pos
and posr be the positions of the pivots pl, p, pr before deleting p, respectively, as it is shown in
Figure 6. Note that pl and p are pivots of segments heap[idx, pos− 1] and heap[idx, posr − 1] with
n′ and n elements (n′ < n), respectively.

Once we delete pivot p, the segment heap[idx, pos − 1] is “extended” to position posr − 2 (as
we have one cell less). As the n−n′− 1 new elements in the extended segment were outside of the
old segment heap[idx, pos − 1], they cannot be the pivot in the extended segment. On the other
hand, the probabilities of the old segment elements hold in the new extended segment. Therefore,

13

. . .

l posr

pl pr

idx S

. . .

p

pos [0]pos

Figure 6: Deleting an inner pivot of a quickheap.

for each idx ≤ i < pos, Pi,j,n = Pi,j−1,n′, and for each pos ≤ i < posr − 2, Pi,j,n = 0. Thus the
invariant is maintained.

In order to analyze whether the property Pi,j,n ≤ Pi−1,j,n is preserved after operations findMin
and extractMin we need consider how IQS operates on the first segment. For this sake we
introduce operation pivoting, which partitions the first segment with a pivot and pushes it into
stack S. We also introduce operation takeMin, which increments idx, pops stack S and returns
element heap[idx− 1].

Using these operations, we rewrite operation extractMin as: execute pivoting as many times
as we need to push idx in stack S and next perform operation takeMin. Likewise, we rewrite
operation findMin as: execute pivoting as many times as we need to push idx in stack S and
next return element heap[idx].

Operation pivoting creates a new segment and converts the previous first segment (with no
pivot) into a segment with a pivot, where all the probabilities are Pi,0,n = 1

n . The next lemma
shows that the property also holds after taking the minimum.

Lemma 4.3. For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after taking the
minimum element of the quickheap.

Proof. Due to previous calls to operation pivoting, the minimum is the pivot placed in idx. Once
we pick it, the first segment vanishes. After that, the new first segment may be empty, but all the
others have elements. For the empty segment the property is true by vacuity. Else, within each
segment probabilities change as follows: Pi,j,n = Pi+1,j−1,n+1

n+1
n .

Finally, we are ready to prove the quickheap’s exponential-decrease property.

Theorem 4.1 (quickheap’s exponential-decrease property). Given a segment heap[idx, S[pidx]−1],
the probability that its pivot is large is smaller than or equal to 1

2 , that is, P(pivot is large) ≤ 1
2 .

Proof. When the segment is created, all the probabilities are Pi,j,n = 1
n . Lemmas 4.1 to 4.3 guaran-

tee that the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after inserting or deleting elements, or
taking the minimum. So, the property is preserved after any sequence of operations insert, delete,
findMin and extractMin. Therefore, adding up the probabilities Pi,j,n for the large elements, that
is, for the

(⌈
n
2

⌉
+ 1

)
-th to the n-th element, we obtain that P(pivot is large) =

∑n
i=⌈n

2
⌉+1

Pi,j,n ≤
1
2 .

In the following, we use the exponential-decrease property to show two additional facts we use
in the analysis of quickheaps. They are (i) the height of stack S is O(log m), and (ii) the sum of
the size of the array segments is Θ(m).

14

Lemma 4.4. The expected value of the height H of stack S is O(log m).

Proof. Notice that the number H of pivots in the stack is monotonically nondecreasing with m.
Let us make some pessimistic simplifications (that is, leading to larger H). Let us take the largest
value of the probability P(pivot is large), which is 1

2 . Furthermore, let us assume that if the pivot
is taken from the large elements then it is the maximum element. Likewise, if it is taken from the
small elements, then it is the element immediately previous to the median.

With these simplifications we have the following. When partitioning, we add one pivot to stack
S. Then, with probabilities 1

2 and 1
2 the left partition has m − 1 or

⌊
m
2

⌋
elements. So, we write

the following recurrence: H = T (m) = 1 + 1
2T (m− 1) + 1

2T
(⌊

m
2

⌋)
, T (1) = 1. Once again, using the

monotonicity on the number of pivots, the recurrence is simplified to T (m) ≤ 1 + 1
2T (m) + 1

2T
(

m
2

)
,

which can be rewritten as T (m) ≤ 2 + T
(

m
2

)
≤ . . . ≤ 2j + T

(
m
2j

)
. As T (1) = 1, choosing j = log2(m)

we obtain that H = T (m) ≤ 2 log2 m + 1. Finally, adding the fictitious pivot we have that H =
2(log2 m + 1) = O(log m).

Lemma 4.5. The expected value of the sum of the sizes of array segments is Θ(m).

Proof. Using the same reasoning of Lemma 4.4, but considering that when partitioning the largest
segment has m elements, we write the following recurrence: T (m) = m + 1

2T (m− 1) + 1
2T

(⌊
m
2

⌋)
,

T (1) = 0. Using the monotonicity of T (m) (which also holds in this case) the recurrence is
simplified to T (m) ≤ m + 1

2T (m) + 1
2T

(
m
2

)
, which can be rewritten as T (m) ≤ 2m + T

(
m
2

)
≤ . . .

≤ 2m + m + m
2 + m

22 + . . . + m
2j−2 + T

(
m
2j

)
. As T (1) = 0, choosing j = log2(m) we obtain that

T (m) ≤ 3m + m
∑∞

i=1
1
2i ≤ 4m = Θ(m). Therefore, the expected value of the sum of the array

segment sizes is Θ(m).

4.2 The Potential Debt Method

To carry out the amortized analysis of quickheaps we use a slight variation of the potential method
([36] and [11, Chapter 17]), which we call the potential debt method.

In the potential method, the idea is to determine an amortized cost for each operation type.
The potential method overcharges some operations early in the sequence, storing the overcharge
as “prepaid credit” on the data structure. The sum of all the prepaid credit is called the potential
of the data structure. The potential is used later in the sequence to pay for operations that are
charged less than what they actually cost.

Instead, in the case of the potential debt method, the potential function represents a total cost
that has not yet been paid. At the end, this total debt must be split among all the performed
operations. The potential debt is associated with the data structure as a whole.

The potential debt method works as follows. It starts with an initial data structure D0 on
which operations are performed. Let ci be the actual cost of the i-th operation and Di the data
structure that results from applying the i-th operation to Di−1. A potential debt function Φ maps
each data structure Di to a real number Φ(Di), which is the potential debt associated with data
structure Di up to then. The amortized cost c̃i of the i-th operation with respect to potential debt
function Φ is defined by

c̃i = ci − Φ(Di) + Φ(Di−1) . (7)

15

Therefore, the amortized cost of i-th operation is the actual cost minus the increase of potential
debt due to the operation. Thus, the total amortized cost for N operations is

N∑

i=1

c̃i =

N∑

i=1

(ci − Φ(Di) + Φ(Di−1)) =

N∑

i=1

ci − Φ(DN) + Φ(D0) . (8)

If we define a potential function Φ so that Φ(DN) ≥ Φ(D0), then the total amortized cost∑N
i=1 c̃i is a lower bound on the total actual cost

∑N
i=1 ci. However, if we sum the positive cost

Φ(DN) − Φ(D0) to the amortized cost
∑N

i=1 c̃i, we compensate for the debt and obtain an upper

bound on the actual cost
∑N

i=1 ci. That is, at the end we share the debt among the operations.
Thus, in Eq. (9) we write an amortized cost ĉi considering the potential debt, by assuming that we
perform N operations during the process, and the potential due to these operations is Φ(DN).

ĉi = c̃i +
Φ(DN)− Φ(D0)

N
= ci − Φ(Di) + Φ(Di−1) +

Φ(DN)− Φ(D0)

N
(9)

This way, adding up for all the N operations, we obtain that∑N
i=1 ĉi =

∑N
i=1

(
ci − Φ(Di) + Φ(Di−1) + Φ(DN)−Φ(D0)

N

)
=

∑N
i=1 ci.

4.3 Expected-case Amortized Analysis of Quickheaps

In this section, we consider that we operate over a quickheap qh with m elements within heap and
a pivot stack S of expected height H = O(log m), see Lemma 4.4.

We define the quickheap potential debt function as twice the sum of the sizes of the segments
delimited by idx and pivots in S[0] to S[H]. Eq. (10) shows the potential function Φ(qh), which is
illustrated in Figure 7.

Φ(qh) = 2 ·

H∑

i=0

(S[i]− idx) = Θ(m) expected, by Lemma 4.5 (10)

[2]

.
S [0][1]Sidx S

Figure 7: The quickheap potential debt function is computed as twice the sum of the lengths
of the segments (drawn with lines) delimited by idx and pivots in S[0] to S[H]. In the figure,
Φ(qh) = 2 · (S[0] + S[1] + S[2]− 3idx).

Thus, the potential debt of an empty quickheap Φ(qh0) is zero, and the expected potential
debt of an m-elements quickheap is Θ(m), see Lemma 4.5. Note that if we start from an empty
quickheap qh, for each element within qh we have performed at least operation insert, so we can
assume that there are more operations than elements within the quickheap. Therefore, in the case
of quickheaps, the term Φ(qhN)−Φ(qh0)

N is O(1) expected. So, we can omit this term, writing the
amortized costs directly as ĉi = ci − Φ(qhi) + Φ(qhi−1).

16

Operation insert. The difference of the potential debt Φ(qhi−1)− Φ(qhi)(< 0) depends on how
many segments are extended (by one cell) due to the insertion (recall that segments contain each
other, so one insertion extends several segments). Note that for each key comparison, we extend one
segment —which increases by 2 the potential debt—, yet the final key comparison might extend one
more segment (if it is the shortest one). Thus, it holds ci − Φ(qhi) + Φ(qhi−1) ≤ 0, which means
that all the cost is absorbed by the increase in the potential debt.

However, we can prove that also the expected (individual) cost of operation insert is O(1).
When inserting an element, we always extend the last segment. Later, with probability P1 ≥

1
2

the position of the inserted element is greater than the position of the pivot S[1] —that is, the
element is inserted at the right of the pivot S[1]— (from Theorem 4.1), in which case we stop. If
not, we compare the pivot of the second last segment, and once again, with probability P2 ≥

1
2

the element is inserted at the right of the pivot S[2], in which case we stop. Else, we compare the
third pivot, and this goes on until we stop expanding segments. Thus, the expected number of
key comparisons is 1 + (1− P1)(1 + (1− P2)(1 + (1− P3)(1 + . . .))). This sum is upper bounded,
by taking the lowest value of Pi = 1

2 , to 1 + 1
2

(
1 + 1

2

(
1 + 1

2 (1 + . . .)
))

= O(1).

Operation delete. The decrease of the potential debt Φ(qhi−1)− Φ(qhi)(> 0) depends on how
many segments are contracted (by one cell) due to the deletion. Note that it is also possible to
delete a whole segment if we remove a pivot.

The worst case of operation delete (without considering pivot deletions) arises when deleting
an element in the first chunk. This implies to contract by one cell all the segments, which is
implemented by moving all the pivots —whose expected number is H— one cell to the left. So, the
actual cost of moving pivots and elements is H. On the other hand, the term Φ(qhi−1) − Φ(qhi),
which accounts for the potential decrease due to all the contracted segments, is 2H+ 2. Thus, the
amortized cost is ĉi = ci − Φ(qhi) + Φ(qhi−1) ≤ 3H+ 2. This is O(log m) expected, see Lemma 4.4.

If, instead, we remove a pivot, we also remove a whole segment, thus decreasing the potential
debt. We can delete each of the pivots with probability 1

m . Hence the average decrease in the

potential debt is 2 ·
∑H

i=0
1
m(S[i] − idx) = 1

mΦ(qh). As Φ(qh) = Θ(m), 1
mΦ(qh) = Θ(1) expected.

Therefore, the potential debt decrease Φ(qhi−1)−Φ(qhi)(> 0) due to segment contractions and
segment deletions is 2H + Θ(1). Considering that every time we contract a segment, we perform
O(1) work in pivot and element movements, the expected amortized cost of operation delete on
pivots is ĉi = ci − Φ(qhi) + Φ(qhi−1) ≤ 3H+ Θ(1) = O(log m) expected.

Once again, we can prove that the individual cost of operation delete is actually O(1) expected.
We start by analyzing the deletion of non pivot elements with an argument similar to the one used
in operation insert. When deleting an element, we always contract the last segment. Later, with
probability P1 ≥

1
2 the position of the deleted element is greater than the position of the pivot S[1]

(from Theorem 4.1), in which case we stop. If not, we contract the second last segment, and this
goes on until we stop contracting segments. Thus, the expected cost due to segment contractions is
1 + (1− P1)(1 + (1− P2)(1 + (1− P3)(1 + . . .))) = O(1). Otherwise, if we delete a pivot, we have
to add the cost of removing it from the stack, which is O(log m) expected. Yet, this occurs with
probability O(log m

m), thus overall we add up o(1) expected time.

17

Creation of a quickheap. The amortized cost of constructing a quickheap from scratch is
O(1). Instead, if we create a quickheap from an array A of size m, the potential debt will be 2m,
regardless of whether we copy the array (at actual cost ci = O(m)) or we take A as heap (at actual
cost ci = O(1)). In either case the amortized cost is ĉi = Θ(m). This preserves correctness of
our analysis even if are breaking the assumption of having more operations than elements, as the
potential debt is accounting for all these elements.

Operation extractMin. To analyze this operation, we again use auxiliary operations pivoting
and takeMin (see Section 4.1). Thus, we consider that operation extractMin is a sequence of
zero or more calls to pivoting, until pushing idx in stack S, and then a single call to takeMin.

Each time we call operation pivoting, the actual cost corresponds to the size s of the first
segment. On the other hand, once we push the pivot, the potential debt increases by an amount
which is twice the size s′ of the new segment. As s′ distributes uniformly over [0, s], we have
that its expected value is s′ = s/2. Thus we have that the expected amortized cost will be
ĉi = ci − Φ(qhi) + Φ(qhi−1) = s− 2 · s′ = 0.

With respect to operation takeMin, its actual cost is O(1), and the potential debt decreases
by 2H+ 2, as all the segments are reduced by one cell after taking the minimum. As the expected
value of H is O(log m) (see Lemma 4.4), the expected amortized cost of operation takeMin (and
extractMin) is O(log m). Note also that takeMin can remove one segment (of length 1) if it
happens to remove a pivot. This causes a change of −2 in the potential debt, which adds O(1) to
the amortized cost.

Operation findMin. We rewrite operation findMin as: execute pivoting as many times as we
need to push idx in stack S (with amortized cost zero) and then return element heap[idx] (with
constant cost). Then, the amortized cost of operation findMin is O(1).

Operation increaseKey. This operation is special in the sense that it only moves elements to
the rear of the quickheap. (We cannot use the fact that increaseKey can be seen as a sequence
of two single operations delete and insert, as they are not independent: even though the deletion
occurs at random, the following insertion does not.) Fortunately, increaseKey preserves Theorem
4.1. In fact, when we increase the key of some element the involved pivots either stay in their cells
or they move to the left. So the probability that the pivot is large holds or diminishes.

Therefore, in order to analyze it, we can still use the argument that in the worst case we in-
crease the key of an element in the first chunk; which implies at most H movements of elements
and pivots. So the actual cost of operation increaseKey is O(log m) expected. On the other
hand, the potential variation Φ(qhi−1) − Φ(qhi)(> 0) depends on how many segments are con-
tracted when moving the modified element, and is at most 2H + 2. Thus, the amortized cost is
ĉi = ci − Φ(qhi) + Φ(qhi−1) = 3H + 2. This is O(log m) expected, see Lemma 4.4.

Operation decreaseKey. This is also a special operation. Regrettably, it does not preserve
Theorem 4.1. In fact, each time we decrease some key the involved pivots either stay in their cells
or they move to the right. Thus, when we perform operation decreaseKey the probability of a

18

pivot being large holds or increases, so it could go beyond 1
2 . However, in practice, this operation

performs reasonably well as it is shown in Sections 7.2 and 7.4.

To sum up, we have proved the following theorem.

Theorem 4.2 (quickheap’s complexity). The expected amortized cost of any sequence of m opera-
tions insert, delete, findMin, extractMin and increaseKey over an initially empty quickheap
is O(log m) per operation, assuming that insertions and deletions occur at uniformly random posi-
tions. Actually, the individual expected cost of operations insert and delete is O(1). All operation
costs must be multiplied by the cost of updating the element positions in the dictionary in case
delete or increaseKey are to be supported. �

5 Quickheaps in External Memory

Quickheaps are excellent candidates for secondary memory, as they exhibit a local access pattern.
Since our algorithms are unaware of the disk transfers, the result of blindly using them on disk
is cache-oblivious. Cache obliviousness [18, 7] means that the algorithm is designed for the RAM
model of computation but analyzed under the I/O model, assuming an optimal offline page replace-
ment strategy. (This is not unrealistic because LRU is 2-competitive if run over a memory of twice
the original size [33].) Cache-oblivious algorithms for secondary memory are easier to program than
their cache-aware counterparts, and adapt better to arbitrary memory hierarchies.

The resulting external quickheap allows performing operations insert, findMin and extract-
Min in expected amortized I/O cost O((1/B) log(m/M)), where B is the block size, M is the
total available main memory, and m is the maximum heap size along the process. This result is
close to the lower bound [7], Θ((1/B) logM/B(m/B)), for cache-oblivious sorting. It relies on the
assumption M = Ω(B log m), which is not standard, yet reasonable in practice. Although there
exist optimal cache-oblivious priority queues [2, 20, 25, 14, 8, 6, 32, 13], quickheaps are, again, a
simple and practical alternative.

5.1 Adapting Quickheap Operations to External Memory

When considering the basic priority queue operations one can realize that quickheaps exhibit high
locality of reference: First, the stack S is small and accessed sequentially. Second, each pivot in
S points to a position in the array heap. Array heap is only modified at those positions, and the
positions themselves increase at most by one at each insertion. Third, IQS sequentially accesses the
elements of the first chunk. Thus, under the cache-oblivious assumption, we will consider that our
page replacement strategy keeps in main memory: (i) the stack S and integers idx and capacity;
(ii) for each pivot in S, the disk block containing its current position in heap; and (iii) the longest
possible prefix of heap[idx,N], containing at least two disk blocks. According to Lemma 4.4, all
this requires on average to hold Θ(B log m) ≤M integers in main memory. Say that we have twice
the main memory required for (i) and (ii), so that we still have Θ(M) cells for (iii).

Despite we could manage the element positions in a dictionary, in the case of external quickheaps
we do not consider operations delete, increaseKey, and decreaseKey. This is because the
accesses to the dictionary are not necessarily sequential. Thus, if we cannot handle the dictionary in
main memory, the I/O cost of updating it could be excessive, preventing us to efficiently implement

19

all the quickheap operations. Note that we could implement extractMin through calling delete(0)
(in order to implement a non-sliding heap), since in this case we do not need the dictionary. Yet,
in this case we have to keep in main memory two blocks per pivot: (1) the block containing the
current position of the pivot in heap, and (2) the one that previously contained it. This way, even
though a pivot moves forward and backward from one page towards the other (note that both pages
are consecutive), the I/Os are bounded. However, in this case we have less memory for the prefix.

5.2 Analysis of External Memory Quickheaps

We first show a simple approach that keeps in main memory the first two disk blocks of the array.
Later, we analyze the effect of a larger prefix of disk blocks cached in internal memory.

5.2.1 A Simple Approach

Let us first consider operation insert. Assume that entry heap[i] is stored at disk block ⌈i/B⌉.
Note that once a disk page is loaded because a pivot position is incremented from i = B · j to
i + 1 = B · j + 1, we have the disk page j + 1 in main memory. From then, at least B increments
of pivot position i are necessary before loading another disk page due to that pivot. Therefore, as
there are H (true) pivots, the amortized cost of an element insertion is H/B. According to the
results of the previous section, this is O(log(m)/B) expected.

Operations findMin and extractMin essentially translate into a sequence of pivoting actions.
Each such action sequentially traverses heap[idx, S.top()− 1]. Let ℓ = S.top()− idx be the length
of the area to traverse. The traversed area spans 1+⌈ℓ/B⌉ disk blocks. As we have in main memory
the first two blocks of heap[idx,N], we have to load at most 1+⌈ℓ/B⌉−2 ≤ ℓ/B disk blocks. On the
other hand, the CPU cost of such traversal is Θ(ℓ). Hence, each comparison made has an amortized
I/O cost of O(1/B). According to the previous section, all those traversals cost O(log m) amortized
expected comparisons. Hence, the amortized I/O cost is O(log(m)/B) expected. Maintaining this
prefix of a given size in main memory is easily done in O(1/B) amortized time per operation, since
idx grows by one upon calls to extractMin.

Overall, we achieve O(log(m)/B) expected amortized I/O cost. We now get better bounds by
considering an arbitrary size Θ(M) for the heap’s prefix cached in internal memory.

5.2.2 Considering the Effect of the Prefix

Let us consider that we have M ′ = Θ(M) cells of main memory to store a prefix of array heap.
Thus, accessing these cells is I/O-free, both when moving pivots or when partitioning segments.

We start by using the potential debt method to analyze the number of key comparisons com-
puted for elements outside the prefix for each quickheap operation. Then, we will derive the I/O
cost from those values by reusing the arguments of Section 5.2.1. We define the potential function
as follows:

Ψ(qh) =
H∑

i=0

max(2 (S[i]− idx) −M ′, 0) = 2 ·
H∑

i=0

max((S[i]− idx)−M ′/2, 0).

20

In this case, the potential debt Ψ(qh) of an empty quickheap Ψ(qh0) is zero, the potential debt
Ψ(qh) of a small heap (that is, where m ≤ M ′/2) is also zero, and when the heap is big enough
(m≫M ′), the expected potential debt Ψ(qh) of an m-element quickheap is Θ(m), see Lemma 4.5.

Once again, if we start from an empty quickheap qh, for each element within qh we have
performed at least operation insert, so we can assume that there are more operations than elements
within the quickheap, and write the amortized costs directly as ĉi = ci −Ψ(qhi) + Ψ(qhi−1).

Due to the exponential-decrease property (Theorem 4.1), on average at least the first log2 M ′ =
Θ(log M) pivots will be in main memory, and therefore accessing them will be I/O-free. As a
consequence, there are only O(log m− log M) = O(log(m/M)) pivots outside the prefix. Similarly,
O(log(m/M)) segments contribute to the potential debt.

Operation insert. The potential debt Ψ(qh) grows by 2 for each segment larger than M ′/2
worked on. The real cost is one unit per segment larger than M ′ worked on. Hence it holds
ci −Ψ(qhi) + Ψ(qhi−1) ≤ 0.

Operation extractMin. We split operation extractMin into a sequence of zero or more calls
to pivoting, and a single call to takeMin (see Section 4.1). Note that pivoting is I/O-free over
the first M ′ elements of heap (as they are cached in main memory).

Each time we call operation pivoting, we only consider the key comparisons computed outside
the prefix. Say that the first segment is of size s, and a new one of size s′ is created after the
partitioning. Then the actual number of accesses is max(s − M ′, 0), while the increase in the
potential debt is max(2s′ −M ′, 0). As s′ distributes uniformly in [0, s − 1], assuming s > M ′ we
have that max(2s′ −M ′, 0) = 1

s

∑s−1
j=M ′/2(2j − M ′) = (s − M ′/2)(s − M ′/2 − 1)/s. Hence the

expected amortized cost is (1) zero if s ≤M ′ and s′ ≤M ′/2, (2) negative if s ≤M ′ and s′ > M ′/2,
and otherwise (3) ĉi = (s−M ′)− (s−M ′/2)(s−M ′/2− 1)/s = (s−M ′)− (s−M ′/2)2/s + O(1).
By calling x = M ′/(2s) < 1/2 and analyzing ((s −M ′) − (s −M ′/2)2/s)/s = (1 − 2x) − (1 − x)2

for 0 ≤ x ≤ 1/2, we see that ĉi = O(1).
With respect to operation takeMin, it takes no comparison outside the cached prefix. On the

other hand, the potential debt Ψ(qh) decreases by O(log(m/M)), as all the segments considered in
the potential are reduced by one cell after taking the minimum. Therefore, the amortized cost of
operation takeMin is O(log(m/M)).

Operation findMin. We consider that operation findMin is a sequence of as many calls to
operation pivoting as we need to push idx in stack S (with amortized cost zero) and later return
element heap[idx] (also with cost zero). Therefore, the amortized cost of findMin is O(1).

Creation of a quickheap. The amortized cost of constructing a quickheap on disk from scratch
is O(1). Instead, the amortized cost of constructing a quickheap on disk from an array A of size m
is O(m), just as in Section 4.3. Note that the potential debt Ψ(qh) is max(2m−M ′, 0).

Obtaining the I/O costs. Up to this point we have computed the amortized number of key
comparisons performed by the quickheap operations outside the cached prefix. Thus, to compute

21

the amortized I/O costs of quickheap operations, we have to take into account how many of those
can produce an additional I/O. According to the analysis of Section 5.2.1, there are two cases:

1. When moving a pivot from a disk page which is already in memory towards another page
which is not, at least B further pivot movements are necessary before loading another disk
page due to that pivot. The additional movement of the element beside the pivot is I/O-free,
as when the element is moved, both source and target pages reside in main memory.

2. The access to elements inside the segments is sequential. So, the work performed by both
element insertions or deletions and operation partition is amortized among B consecutive
disk accesses. For this to remain true we need, just as in Section 5.2.1, that at least two
blocks of the prefix are cached, that is, M ′ ≥ 2B.

Therefore we have proved the following theorem.

Theorem 5.1 (external quickheap’s complexity). If the Quickheap is operated in external memory
using an optimal page replacement strategy and holding M = Ω(B log m) integers in main memory,
where B is the disk block size and m is the maximum heap size along the process; then the expected
amortized I/O cost of any sequence of m operations insert, findMin, and extractMin over
an initially empty quickheap is O((1/B) log(m/M)) per operation, assuming that insertions and
deletions occur at uniformly random positions. �

6 Boosting the MST Construction

As a direct application of IQS, we use it to implement Kruskal’s MST algorithm. Later, we use
QHs to implement Prim’s MST algorithm. The solutions obtained are competitive with the best
current implementations, as we show in Section 7.4.

IQS-based implementation of Kruskal’s MST algorithm. In our Kruskal’s MST variant,
we use IQS in order to incrementally sort E. The expected number of pivots we store in S is
O(log m) (Lemma 4.4). Considering that in the general case we review m′ edges, the expected cost
of our Kruskal variant is O(m+m′ log n) (Theorem 2.1). On random graphs [21, p. 349], we expect
to review m′ = 1

2n ln n + O(n) edges, so the expected complexity of our Kruskal variant becomes
O(m + n log2 n), just as Kruskal’s algorithm with demand sorting.

Quickheap-based implementation of Prim’s MST algorithm. We use a quickheap qh in
order to find the node u∗ with the minimum connecting cost to the growing MST. Next, we check
whether we update the values of cost for each u∗’s neighbor, and for these nodes we update their
values in qh. For the sake of a fast access to the elements within the quickheap, we have to augment
the quickheap structure with a dictionary managing the positions of the elements.

Each call to insert and extactMin uses O(1) and O(log n) expected amortized time, respec-
tively. Thus, the n calls to insert and extractMin use O(n) and O(n log n) expected time,
respectively. Finally, we perform at most m calls to operation decreaseKey. Regrettably, we can-
not prove an upper bound for operation decreaseKey. However, our experimental results suggest
that operation decreaseKey behaves roughly as O(log n), so the whole process costs O(m log n).

22

We have tested our Prim variant on graphs with random weights, which is a case where we
can improve the obtained bound. Note that we only call operation decreaseKey when the new
cost weightu∗,v is smaller than costv. Considering graphs with random weights, for each node, the
probability of a fresh random edge being smaller than the current minimum after reviewing k edges
incident on it is 1

k . The number of times we find a smaller cost obeys the recurrence T (1) = 1
(the base case, when we find v the first time), and T (k) = T (k − 1) + 1

k = . . . = Hk = O(log k).
As each node has m

n neighbors on average and for the concavity of the logarithm, we expect to
find O

(
log m

n

)
minima per node. So, adding for the n nodes, we expect to call O

(
n log m

n

)
times

operation decreaseKey.
Assuming that each call to decreaseKey has cost O(log n), we conjecture that this accounts

for a total O
(
n log n log m

n

)
expected time, making up a conjectured O

(
m + n log n log m

n

)
expected

amortized time for our Prim variant on graphs with random weights.

7 Experimental Results

We ran four experimental series. In the first we compare IQS with other alternatives. In the
second we study the empirical behavior of QHs. In the third we study the behavior of QHs in
secondary memory. Finally, in the fourth we evaluate our MST variants. The experiments were run
on an Intel Pentium 4 of 3 GHz, 4 GB of RAM and local disk, running Gentoo Linux with kernel
version 2.6.13. The algorithms were coded in C++, and compiled with g++ version 3.3.6 optimized
with -O3. For each experimental datum shown, we averaged over 50 repetitions. The weighted
least square fittings were performed with R [37]. In order to illustrate the precision of our fittings,

we also show the average percent error of residuals with respect to real values
(∣∣∣ y−ŷ

y

∣∣∣ 100%
)

for

fittings belonging to around the largest 45% of values3.

7.1 Evaluating IQS

For shortness we have called the classical Quickselect + Quicksort solution QSS, and the Partial
Quicksort algorithm PQS [26]. We compared IQS with PQS, QSS, and two online approaches: the
first based on classical heaps [42] (called HEx, implemented using the bottom-up deletion algorithm
[41]), and the second based on sequence heaps [32] (called SH, we obtained the implementation of
SH from www.mpi-inf.mpg.de/~sanders/programs/spq/). The idea is to verify that IQS is in
practice a competitive algorithm for the Partial Sorting problem of finding the smallest elements
in ascending order. For this sake, we use random permutations of non-repeated numbers uniformly
distributed in [0,m− 1], for m ∈

[
105, 108

]
, and we select the k first elements with k = 2j < m, for

j ≥ 10. The selection is incremental for IQS, HEx and SH, and in one shot for PQS and QSS.
We measure CPU time and, except for SH, the number of key comparisons.

3Our fittings are too pessimistic for small permutations or edge sets, so we intend to show that they are asymp-
totically good. In the first series we compute the percent error for permutations of length m ∈ [107, 108] for all
the k values, which is approximately 45.4% of the measures. In the second series we compute the percent error for
sequences of m ∈ [222, 226] elements, which is approximately 50% of the measures. In the fourth series we compute
the percent error for edge densities in [16%, 100%] for all values of |V |, which is approximately 44.4% of the measures.

23

We summarize the experimental results in Figure 8. Figure 8(e) gives the least square fittings,
where the percent errors of all the fittings are below 7%. The table shows that IQS CPU time per-
formance is only 2.99% slower than that of its offline version PQS. The number of key comparisons
is exactly the same, as we expected from Section 2. This is an extremely small price for permitting
incremental sorting without knowing in advance how many elements we wish to retrieve, and shows
that IQS is practical. Moreover, as the pivots in the stack help us reuse the partitioning work,
our online IQS uses only 1.33% more CPU time and 4.20% fewer key comparisons than the offline
QSS. This is illustrated in Figure 8(a), where the plots of PQS, IQS and QSS are superimposed.
A detail of the previous is shown in Figure 8(b), where we see that PQS is the fastest algorithm
when sorting a small fraction of the set, but IQS and QSS are rather close.

On the other hand, Table 8(e) shows large improvements with respect to online alternatives.
According to the insertion and deletion strategy of sequence heaps, we compute its CPU time least
squares fitting by noticing that we can split the experiment into two stages. The first inserts m
random elements into the priority queue, and the second extracts the k smallest elements from it.
Then, we obtain a simplified O(k + m log m) complexity model that shows that most of the work
performed by SH comes from the insertion process. This also can be seen in Figure 8(a), by noticing
that there is little difference between obtaining the first elements of the set, or the whole set. As
a matter of fact, we note that if we want a small fraction of the sorted sequence, it is preferable
to pay a lower insertion and a higher extraction cost (just like IQS) than to perform most of the
work in the insertions and little in the extractions. With respect to the online HEx, we have the
following. Even when it uses at most 2m key comparisons to heapify the array, and log2 m + O(1)
key comparisons on average to extract elements, the poor locality of reference generates numerous
cache faults slowing down its performance. In fact, HEx uses 3.88 times more CPU time (see
Figure 8(a)), even using 18.76% fewer key comparisons than IQS (see Figure 8(c)).

Finally, Figure 8(d) shows that, as k grows, IQS’s behavior changes as follows. When k ≤
0.01m, there is no difference in the time to obtain either of the first k elements, as the term m
dominates the cost. When 0.01m < k ≤ 0.04m, there is a slight increase of both CPU time and key
comparisons, that is, both terms m and k log k take part in the cost. Finally, when 0.04m < k ≤ m,
term k log k leads the cost.

7.2 Evaluating Quickheaps

We start by studying the empirical performance of each operation in isolation. Next, we evaluate
sequences of interleaved insertions and minimum extraction operations. Each experimental datum
shown is averaged over 20 repetitions. For shortness we call operation insert ins, operation ex-
tractMin del, operation decreaseKey dk and operation increaseKey ik. (We have omitted the
mixed sequence of del and dk/ik operations, since it is implicitly tested by Prim3, see Section 7.4.)

In these experiments, inserted elements follow a uniform distribution. On the other hand,
updated keys are chosen uniformly, and increased or decreased by 10%.

Isolated Quickheap Operations. We compare the empirical performance of quickheaps (or
QHs for shortness) with binary heaps (BH) [42, 41] and with paring heaps (PH) [16]. We chose
BHs because they are the canonical implementation of PQs, they are efficient and easy to program.
We also chose PHs because they implement efficiently key update operations. Note that both binary

24

 2

 4

 8

 16

 32

 64

 128

 256

 0.001 0.01 0.1 1 10 100

C
P

U
 ti

m
e

[s
ec

]

number of selected elements k [x 10e6]

IQS, PQS, QSS, HEx and SH CPU time m = 10e8

IQS
PQS
QSS
HEx
SH

(a) CPU time for the five algorithms.

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

2^202^18 65536 16384 4096 1024

C
P

U
 ti

m
e

[s
ec

]

number of selected elements k

IQS, PQS and QSS CPU time m = 10e8

IQS
PQS
QSS
HEx

(b) Detail of CPU time for IQS, PQS, QSS and HEx.

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10

ke
y

co
m

pa
ris

on
s

[x
 1

0e
6]

number of selected elements k [x 10e6]

IQS, PQS, QSS and HEx key comparisons m = 10e8

IQS
PQS
QSS
HEx

(c) Detail of key comparisons for the four algorithms.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.001 0.01 0.1 1 10 100

C
P

U
 ti

m
e

[s
ec

]

number of selected elements k [x 10e6]

IQS CPU time

IQS, m=100e6
IQS, m= 70e6
IQS, m= 40e6
IQS, m= 10e6

(d) IQS CPU time as a function of k and m.

(e) Weighted least square fittings.

CPU time Error Key comparisons Error
PQS 25.8m + 16.9k log

2
k 6.77% 2.14m + 1.23k log

2
k 5.54%

IQS 25.8m + 17.4k log
2
k 6.82% 2.14m + 1.23k log

2
k 5.54%

QSS 25.8m + 17.2k log
2
k 6.81% 2.14m + 1.29k log

2
k 5.53%

HEx 23.9m + 67.9k log
2
m 6.11% 1.90m + 0.97k log

2
m 1.20%

SH 9.17m log
2
m + 66.2k 2.20% — —

Figure 8: Performance comparison between IQS, PQS, QSS, HEx and SH as a function of k and
m. Note the logscales in the plots. In (a) and (b), CPU time for m = 108. In (c), key comparisons
for m = 108. In (d), IQS CPU time as a function of k and m. In (e), weighted least square
fittings. For SH we only compute the CPU time fitting. In this fitting CPU time is measured in
nanoseconds.

and paring heaps are reported as the most efficient PQ implementations in practice [27]. We obtain
the PH implementation, which includes operations insert, extractMin and decreaseKey, from
www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz, as it is described by Katriel et al. [22].

25

This experiment consists in inserting m elements
(
m ∈

[
217 ≈ 0.13e6, 226 ≈ 67e6

])
, next per-

forming i times the sequence del-ik i or del-dk i, for i = 10000, and later extracting the remaining
m − i elements. We measured separately the time for each different operation in this sequence.
Note that we are testing a combined sequence of one minimum extraction and several element mod-
ifications. Recall that both QHs and PHs actually structure the heap upon minima extractions,
so the idea of running an additional minimum extraction is to force both quickheaps and pairing
heaps to organize their heap structure.

Figure 9 shows the results. Table 9(d) shows that the basic QH operations perform better
than the corresponding BH ones. On the other hand, PHs perform better than QHs both when
inserting elements and decreasing the key, although pairing heap operation extractMin is several
times costlier than on the quickheap. Figure 9(a) shows that, as expected from our analysis, the
cost of quickheap operation insert is constant, and it is the second best time (approximately twice
the CPU time of PH and half the time of BH). Figure 9(b) shows that QHs have the best minimum
extraction time, approximately one third of BHs and six times faster than PHs. Finally, Figure
9(c) shows that quickheap update-key operations perform slightly better than the respective ones
for BHs. The plot also shows that PH decrease key operation performs slightly better than on
quickheaps. Note that the model for QHs’ decrease key operation was selected by observing the
curve, as we could not analyze it.

Sequence of Insertions and Minimum Extractions. In order to show that quickheaps per-
form well under arbitrarily long sequences of insertions and minimum extractions we consider the
following sequence of operations:

(
ins − (del − ins)i

)m (
del − (ins − del)i

)m
, for i = 0, 1, and 2.

Note that for i = 0 we obtain algorithm heapsort [42].
We compare QHs with binary and pairing heaps as before, but we also include sequence heaps

[32], which are optimized for this type of sequences. Sequence heaps were excluded from other
experiments because they do not implement increaseKey nor decreaseKey.

Figure 9 shows the results of this experiment. To improve readability, CPU times were divided
by m log2 m. Figure 9(e) shows that BHs have the best performance for small sets, that is, up to
218 ≈ 262e3 elements. This is expectable for two reasons: the bottom-up algorithm [41] strongly
improves the binary heap performance, and the whole heap fits in cache memory. However, as the
number of elements in the heap increases, numerous cache misses slow down the performance of
binary heaps (these heaps are known to have poor cache locality, since an extraction touches an
arbitrary element at each level of the heap, and the lower levels contain many elements). QHs,
instead, are more cache-friendly as explained in the previous section. This is confirmed by the fact
that quickheaps retain their good performance on large sets, being the fastest for more than 219 ≈
524e3 elements. In fact, for m = 226 ≈ 67e6 BHs perform 4.6 times slower than QHs, and SHs
perform 1.6 times slower than QHs. On the other hand, the pairing heap is, by far, the slowest
contestant in this experiment, as its operation extractMin is very costly.

A similar behavior is appreciated for i = 1 (we have omitted this plot) and i = 2 (Figure 9(f)).
For i = 1 BHs perform better for m < 219 ≈ 524e3 elements, then SHs are the fastest until
m < 223 ≈ 8.4e6, and finally QHs take over. For i = 2 the best behaviour is that of SHs, closely
followed by QHs. Binary heaps perform up to 2.4 times slower than quickheaps, and sequence
heaps perform 8% faster than quickheaps. This is a modest difference considering that quickheaps

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
P

U
 ti

m
e

[n
an

os
ec

]

number of elements [x 10e6]

Quickheaps CPU time, inserting elements

QH ins
BH ins
PH ins

(a) Inserting elements.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8 16 32 64

C
P

U
 ti

m
e

[n
an

os
ec

]

number of elements [x 10e6]

Quickheaps CPU time, extracting minima

QH del
BH del
PH del

(b) Extracting minima.

 300

 350

 400

 450

 500

 550

 600

 1 2 4 8 16 32 64

C
P

U
 ti

m
e

[n
an

os
ec

]

number of elements [x 10e6]

Quickheaps CPU time, increasing or decreasing the key

QH ik
BH ik

QH dk
BH dk
PH dk

(c) Increasing and decreasing the key.

(d) Least square fittings for priority queue operations.

Fitting Error
QHins 42 1.28%
BHins 99 3.97%
PHins 26 10.35%
QHdel 35 log

2
m 9.86%

BHdel 105 log
2
m 15.13%

PHdel 201 log
2
m 15.99%

QHik 18 log
2
m 8.06%

BHik 18 log
2
m 9.45%

QHdk 18 log
2
m 8.88%

BHdk 20 log
2
m 6.75%

PHdk 16 log
2
m 5.39%

 0

 20

 40

 60

 80

 100

 120

 140

 4096 2^14 2^16 2^18 2^20 2^22 2^24 2^26

C
P

U
 ti

m
e

[n
an

os
ec

],
di

vi
de

d
by

 m
 lo

g
m

number of elements

Quickheaps CPU time, ins^m del^m

QH
BH
SH
PH

(e) insm delm.

 40

 60

 80

 100

 120

 140

 160

 180

 4096 2^14 2^16 2^18 2^20 2^22 2^24 2^26

C
P

U
 ti

m
e

[n
an

os
ec

],
di

vi
de

d
by

 m
 lo

g
m

number of elements

Quickheaps CPU time, (ins (del ins)^2)^m (del (ins del)^2)^m

QH
BH
SH
PH

(f)
`

ins − (del − ins)2
´m `

del − (ins − del)2)m.

Figure 9: Evaluating Quickheaps. In (a), (b), and (c), performance of quickheap operations. In
(d), least square fittings for priority queue operations, CPU time is measured in nanoseconds. In
(e) and (f), performance of sequences interleaving operations ins and del. Note the logscales.

27

are much simpler to implement than sequence heaps. Once again, operation extractMin leaves
pairing heaps out of the competitive alternatives for this experiment.

7.3 Evaluating External Memory Quickheaps

We carry out a brief experimental validation of QHs in external memory, comparing them with
previous work [6, 13]. The results are shown in Figure 10. In order to reproduce the experimental
setup of Brengel et al. [6], we measure quickheap I/O performance when executing the sequence
insm delm for m ∈ [1e6, 200e6], considering disk block size B = 32 KB, and keys of four bytes
(that is, storing single integer values). As the authors have used M = 16 MB of main memory,
we have varied the size of M from 1 to 256 MB. The inserted elements are chosen at random
without repetition. The authors report the number of blocks read/written for different sequences
of operations on the most promising secondary memory implementations they consider, namely,
two-level radix heaps [1] (R-Heaps) and Array-Heaps [8].

Figure 10(a) shows that QHs achieve a performance slightly worse than R-Heaps when using
just 4 MB of RAM. When using the same 16 MB, our structure performs 29% to 167% (that is,
up to three times less) of the I/O accesses of R-Heaps, which only work if the priorities of the
extracted elements form a nondecreasing sequence. If we consider the best alternative that works
with no restriction (Array-Heaps), external QHs perform 17% (up to five times less) to 125% of
their I/O accesses. We notice that, as the ratio m

M grows, the performance of both R-Heaps and
Array-Heaps improves upon external Quickheaps’. Other tests by Brengel et al. [6] are harder to
reproduce4. Naturally, as more RAM is available, the I/O accesses consistently fall down. In fact,
we notice the logarithmic dependence both on m and M (the plots are log-log), as expected from
our analysis.

 64

 256

 1024

 4096

 16384

 65536

 262144

2^282^272^262^252^242^232^222^212^20

I/O
 c

os
t

number of elements [x 10e6]

Quickheap’s number of I/Os varying available RAM, ins^m del^m

QH 4MB RAM
QH 16MB RAM
QH 64MB RAM

QH 256MB RAM
R-Heap 16MB RAM

Array Heap 16MB RAM

(a) I/O complexity insm delm.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2^20 2^21 2^22 2^23 2^24 2^25 2^26 2^27 2^28 2^29

by
te

s
pe

r
op

er
at

io
n

number of elements

Quickheap’s bytes per operation, ins^m del^m

LEDA-SM ins
LEDA-SM del

STXXL ins
STXXL del

QH ins
QH del

(b) Bytes per operation insm delm.

Figure 10: In (a), I/O cost comparison for the sequence insm delm. In (b), bytes accessed per
operation for the sequence insm delm using 256MB RAM. Note the logscales in the plot.

4For example, they also report real times, but those should be rerun in our machine and we do not have access to
LEDA, which is mandatory to run their code.

28

To compare with the more recent experiments [13], we have measured bytes read/written per
operation when executing the sequence insm delm for m ∈ [220, 229], considering 512 MB of main
memory, blocks of 2 MB, 8-byte elements (the key and four padding bytes), and keys drawn
randomly from the range [0, 231). In this comparison we have used the results reported [13] both
for SHs, currently the best external memory PQ, as implemented in the STXXL library [12, 13];
and the general-purpose Array-Heap implementation in LEDA-SM [6].

The results are shown in Figure 10(b). They are consistent with those of 10(a), in that QHs
require fewer I/O accesses than Array-Heaps, both when inserting elements and extracting the
minimum. On the other hand, SHs require fewer I/O accesses than QHs. For instance, QHs require
2.1 times the I/O accesses for operation insert and 4.5 for operation extractMin. These results
show that, despite quickheaps are not the most efficient alternative for external memory priority
queues, they behave decently in this scenario, while retaining simplicity and cache-obliviousness.

7.4 Evaluating the MST Construction

MST construction is one of the emblematic applications of incremental sorting and PQs. We com-
pare our improved MST construction algorithms (see Section 6) with state-of-the-art alternatives.
Our aim is not to study new MST algorithms but just to demonstrate the practical impact of our
new fundamental contributions to existing classical algorithms. We use synthetic graphs with edges
chosen at random, and with edge costs uniformly distributed in [0, 1]. We consider graphs with
|V | ∈ [2000; 26, 000], and graph edge densities ρ ∈ [0.5%, 100%], where ρ = 2m

n(n−1)100%.
For shortness we have called the basic Kruskal’s MST algorithm Kruskal1, Kruskal’s with

demand sorting Kruskal2, our IQS-based Kruskal’s Kruskal3, the basic Prim’s MST algorithm
Prim15, Prim’s implemented with PHs Prim2, our Prim’s implementation using QHs Prim3
and the iMax algorithm iMax [22, 23]. We have used pairing heaps as they have shown good
performance in this application [27, 23].

According to the experiments of Section 7.1, we preferred classical heaps using the bottom-up
heuristic (HEx) over sequence heaps (SH) to implement Kruskal2 in these experiments (as we
expect to extract 1

2n ln n + O(n) ≪ m edges). We obtained both the iMax and the optimized
Prim2 implementations from www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz [22].

For Kruskal’s versions we measure CPU time, memory requirements and the size of the edge
subset reviewed during the MST construction. Note that those edges are the ones we incrementally
sort. As the three versions run over the same graphs, they review the same subset of edges and use
almost the same memory. For Prim’s versions and iMax we measure CPU time and memory.

We summarize the experimental results in Figure 11 and Table 1. Table 1 shows our least
squares fittings for the MST experiments. First of all, we compute the fitting for the number of
lowest-cost edges Kruskal’s MST algorithm reviews to build the tree. We obtain 0.524 |V | ln |V |,
which is very close to the theoretically expected value 1

2 |V | ln |V |. Second, we compute fittings for
the CPU cost for all the studied versions using their theoretical complexity models. Note that, in
terms of CPU time, Kruskal1 is 17.26 times, and Kruskal2 is 2.20 times, slower than Kruskal3.
Likewise, Prim3 is just 4.6% slower than Kruskal3. Finally, Kruskal3 is around 33% slower than
Prim2 and 2.6 times faster than iMax. Note that the good performance of Prim3 also shows

5That is, without priority queues. This is the best choice to implement Prim in complete graphs.

29

that QHs allow efficient sequences of interleaved del and dk operations.

Table 1: Weighted least-square fittings for MST construction algorithms (n = |V |, m = |E|). CPU
time is measured in nanoseconds.

Fitting Error Fitting Error
Kruskaledges 0.524n lnn 2.97% iMaxcpu 30.4m + 655n log

2
n 25.8%

Kruskal1cpu 12.9m log
2
m 2.31% Prim1cpu 19.1m + 7.2n2 1.74%

Kruskal2cpu 40.4m + 37.5n log
2
n log

2
m 3.57% Prim2cpu 9.7m + 141n log

2
n 8.24%

Kruskal3cpu 20.4m + 9.2n log2

2
n 4.67% Prim3cpu 19.8m + 37.6n log

2
n log

2

m
n

3.57%

Figure 11(a) compares all the studied versions for n = 20, 000 and ρ ∈ [0.5%, 100%]. As
can be seen, Kruskal1 is, by far, the slowest alternative, whereas Kruskal3 shows the best or
second best performance for all ρ. Prim3 also shows good performance, being slightly slower than
Kruskal3 for low densities (ρ ≤ 8%), and reaching almost the same time of Kruskal3 for higher
densities. When Kruskal3 achieves the second best performance, the fastest algorithm is Prim2.
We also notice that, as ρ increases, the advantage of our Kruskal3 is more remarkable against
basic Kruskal’s MST algorithm. We could not complete the series for Prim2 and iMax, as their
structures require too much space. For 20,000 vertices and ρ ≥ 32% these algorithms reach the
3 GB out-of-memory threshold of our machine. Since our Kruskal’s implementation sorts the list
of edges in place, we require little extra memory to manage the edge incremental sorting. With
respect to Prim3, as the graph is handled as an adjacency list, it uses more space than the list
of edges we use in Kruskal3. Nevertheless, the space usage is still manageable, and the extra
quickheap structures use little memory. On the other hand, the additional structures of Prim2
and iMax heavily increase the memory consumption of the process.

Figures 11(b) and (c) show the CPU time comparison on random graphs with ρ = 8% and 100%,
respectively. In both plots Kruskal3 is always the best Kruskal’s version for all sizes of set V and
all edge densities ρ. Moreover, Figure 11(c) shows that Kruskal3 is also better than Prim1, even
in complete graphs. Once again, Prim3 shows a performance similar to Kruskal3. On the other
hand, Kruskal3 and Prim3 are better than iMax in both plots, and very competitive against
Prim2. In fact Kruskal3 beats Prim2 in some cases (in (b), for |V | ≥ 22, 000). We suspect that
this is due to the high memory usage of Prim2, which affects cache efficiency. For ρ = 64% and
100% we could not finish the series with Prim2 and iMax because of their memory requirements.

Finally, Figure 11(d) shows the same comparison of Figure 11(c) for ρ = 100%, now considering
a lollipop graph. Given a random graph G(V,E) we can build a lollipop graph Gl as follows. First
we compute the maximum edge weight weight∗ of G; and second, we pick a node ul ∈ V at random
and increase the weight of all its edges by weight∗. Lollipop graphs are a hard case for Kruskal’s
algorithms, as they force them to review almost all the edges in G before connecting ul to the
MST of Gl. The plot shows that the CPU time of all Kruskal’s variants increases dramatically,
while Prim3 preserves its performance, compare with 11(c). We omit Prim2 and iMax as we
do not have the lollipop graph generator for these algorithms. Note, however, that both Prim2
and iMax are likely to retain their performance. That is, Prim2 could be the best or second best
algorithm, and iMax would display the same performance of Figure 11(c), which is not enough to
beat Prim3. It is also expectable that they exhaust main memory just as in previous experiments.

30

 16

 8

 4

 2

 1

 0.5

 0.25

2^-3

2^-4
 100 64 32 16 8 4 2 1 0.5

C
P

U
 ti

m
e

[s
ec

]

graph edge density [%]

MST CPU time, n = 20,000

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(a) MST construction CPU times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 8%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(b) MST CPU time, depending on n, for ρ = 8%.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 100%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(c) MST CPU time, depending on n, for ρ = 100%.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20 22

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 100%, Kruskal’s worst case

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim3

(d) MST CPU time, Kruskal’s worst case, for ρ = 100%.

Figure 11: Evaluating MST construction algorithms. In (a), CPU times for n = 20, 000 depending
on ρ. For ρ = 100% Kruskal1 reaches 70.1 seconds. Note the logscales. In (b) and (c), random
graphs with edge density ρ = 8% and 100%, respectively. For n = 26, 000, in (b) Kruskal1,
Kruskal2 and iMax reach 9.08, 1.56 and 1.53 seconds; in (c) Kruskal1, Kruskal2 and Prim1
reach 121.14, 13.84 and 25.96 seconds, respectively. In (d), we use a lollipop graph, which is a
hard case for Kruskal’s algorithm, and ρ = 100%. It can be seen that the MST CPU time of all
Kruskal’s variants increases drastically, while Prim3 preserves its performance, compare with (c).

8 Conclusions

We have presented Incremental Quicksort (IQS), an algorithm to incrementally retrieve the next
smallest element from a set. IQS has the same expected complexity of existing solutions, but it is
considerably faster in practice. It is nearly as fast as the best algorithm that knows beforehand the
number of elements to retrieve. As a matter of fact, IQS is just 3% slower than Partial Quicksort
[26], the best offline alternative, yet IQS is four times faster than the classical online alternative,
consisting in heapifying the set and then performing k minimum extractions.

Based on the Incremental Quicksort algorithm, we have introduced Quickheaps, a simple and

31

efficient data structure which implements priority queues. Quickheaps enable efficient element
insertion, minimum finding, minimum extraction, deletion of arbitrary elements and modification of
the priority of elements within the heap. We proved that the expected amortized cost per operation
is O(log m), for a quickheap containing m elements. Quickheaps are as simple to implement as
classical binary heaps, need almost no extra space, are efficient in practice, and exhibit high locality
of reference. In fact, our experimental results show that in some scenarios Quickheaps perform up to
four times faster than binary heaps, and that they can outperform more complex implementations
such as sequence heaps [32], even in the scenarios sequence heaps were designed for.

Exploiting the high locality of reference of Quickheaps, we have designed a cache-oblivious
version, External Quickheap, that performs nearly optimally on secondary memory. The external
quickheap implements efficient element insertion, minimum finding and minimum extraction. We
proved that the amortized cost per operation in secondary memory is O((1/B) log(m/M)) I/O
accesses, where B the block size and M the main memory size. Our experimental results show
that external Quickheaps are also competitive in practice: using the same amount of memory, they
perform up to 3 times fewer I/O accesses than R-Heaps [1] and up to 5 times fewer than Array-
Heaps [8], which are the best alternatives tested in the survey by Brengel et al. [6]. On the other
hand, SHs require fewer I/O accesses than QHs. These results show that, despite quickheaps are
not the most efficient alternative for external memory priority queues, they behave decently in this
scenario, while retaining simplicity and cache-obliviousness.

To analyze quickheaps we introduce a slight variation of the potential method [36] which we
call the potential debt method. In this case, the potential debt represents a cost that has not yet
been paid. At the end, this total debt must be split among all the operations performed.

Both the algorithm IQS and the quickheap improve upon the current state of the art on many
algorithmic scenarios. For instance, we plug our basic algorithms into classical Minimum Spanning
Tree (MST) techniques [11], obtaining two solutions that are competitive with the best (and much
more sophisticated) current implementations: We use the incremental sorting technique to boost
Kruskal’s MST algorithm [24], and the priority queue to boost Prim’s MST algorithm [31]. In the
case of random graphs the expected complexities of the resulting MST versions are O

(
m + n log2 n

)
,

where n is the number of nodes and m the number of edges.
The most important future work is to devise a stronger variant of Quickheaps that achieves the

stated complexities without any assumption on the distribution of the keys inserted/deleted. This
would make the analytical results much stronger, and include decreaseKey in the analysis. In
particular, we could prove an upper bound on the performance of Quickheap-based Prim.

Acknowledgments. We wish to thank the helpful and constructive comments from Peter Sanders
and the anonymous referees.

References

[1] R. Ahuja, K. Mehlhorn, J. Orlin, and R. Tarjan. Faster algorithms for the shortest path
problem. Journal of the ACM, 37(2):213–223, 1990.

32

[2] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms (extended abstract). In
Proc. 4th Intl. Workshop on Algorithms and Data Structures (WADS’95), LNCS 995, pages
334–345. Springer-Verlag, 1995.

[3] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[4] R. Bayer and E. McCreight. Organization and maintenance of large ordered indices. Acta
Informatica, 1:173–189, 1972.

[5] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7(4):448–461, 1973.

[6] K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An experimental study of priority queues
in external memory. ACM Journal of Experimental Algorithmics, 5(17), 2000.

[7] G. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. 35th ACM Symp. on
Theory of Computing (STOC’03), pages 307–315, 2003.

[8] G. Brodal and J. Katajainen. Worst-case external-memory priority queues. In Proc. 6th
Scandinavian Workshop on Algorithm Theory (SWAT’98), LNCS 1432, pages 107–118, 1998.

[9] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity.
Journal of the ACM, 47(6):1028–1047, 2000.

[10] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM Journal on Computing,
5:724–742, 1976.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2nd edition, 2001.

[12] R. Dementiev. Algorithm Engineering for Large Data Sets. PhD thesis, Saarland University,
Germany, 2006.

[13] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template Library for XXL data
sets. Software: Practice and Experience, 38(6):589–637, 2007.

[14] R. Fadel, K. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on secondary
storage. Theoretical Computer Science, 220(2):345–362, 1999.

[15] R. W. Floyd. Algorithm 245 (treesort). Comm. of the ACM, 7:701, 1964.

[16] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: a new form
of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

[17] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[18] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
Proc. 40th IEEE Symp. on Foundations on Computer Science (FOCS’99), pages 285–297,
1999.

33

[19] C. A. R. Hoare. Algorithm 65 (find). Comm. of the ACM, 4(7):321–322, 1961.

[20] D. Hutchinson, A. Maheshwari, J. Sack, and R. Velicescu. Early experiences in implementing
buffer trees. In Proc. 1st Intl. Workshop on Algorithm Engineering (WAE’97), pages 92–103,
1997.

[21] S. Janson, D. Knuth, T. Luczak, and B. Pittel. The birth of the giant component. Random
Structures & Algorithms, 4(3):233–358, 1993.

[22] I. Katriel, P. Sanders, and J. Träff. A practical minimum spanning tree algorithm using
the cycle property. Research Report MPI-I-2002-1-003, Max-Planck-Institut für Informatik,
October 2002.

[23] I. Katriel, P. Sanders, and J. Träff. A practical minimum spanning tree algorithm using the
cycle property. In Proc. 11th European Symp. on Algorithms (ESA’03), LNCS 2832, pages
679–690. Springer, 2003.

[24] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7:48–50, 1956.

[25] V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph prob-
lems in external memory. In Proc. 8th IEEE Symp. on Parallel and Distributed Processing
(SPDP’96), page 169. IEEE Computer Society Press, 1996.

[26] C. Mart́ınez. Partial quicksort. In Proc. 6th ACM-SIAM Workshop on Algorithm Engineering
and Experiments and 1st ACM-SIAM Workshop on Analytic Algorithmics and Combinatorics
(ALENEX-ANALCO’04), pages 224–228. SIAM Press, 2004.

[27] B. Moret and H. Shapiro. An empirical analysis of algorithms for constructing a minimum
spanning tree. In Proc. 2nd Workshop Algorithms and Data Structures (WADS’91), LNCS
519, pages 400–411, 1991.

[28] R. Paredes. Graphs for Metric Space Searching. PhD thesis, University of Chile,
Chile, 2008. Dept. of Computer Science Tech Report TR/DCC-2008-10. Available at
http://www.dcc.uchile.cl/~raparede/publ/08PhDthesis.pdf.

[29] R. Paredes and G. Navarro. Optimal incremental sorting. In Proc. 8th Workshop on Algorithm
Engineering and Experiments and 3rd Workshop on Analytic Algorithmics and Combinatorics
(ALENEX-ANALCO’06), pages 171–182. SIAM Press, 2006.

[30] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. Journal of
the ACM, 49(1):16–34, 2002.

[31] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957.

[32] P. Sanders. Fast priority queues for cached memory. ACM Journal of Experimental Algorith-
mics, 5, 2000.

34

[33] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Comm. of
the ACM, 28(2):202–208, 1985.

[34] D. D. Sleator and R. E. Tarjan. Self adjusting heaps. SIAM Journal on Computing, 15(1):52–
69, 1986.

[35] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

[36] R. E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and Discrete
Methods, 6(2):306–318, 1985.

[37] R Development Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2004.

[38] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Mathematical Systems Theory, 10:99–127, 1977.

[39] J. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys, 33(2):209–271, 2001. Version revised at 2007 from
http://www.cs.duke.edu/∼jsv/Papers/Vit.IO survey.pdf.

[40] J. Vuillemin. A data structure for manipulating priority queues. Comm. of the ACM,
21(4):309–315, 1978.

[41] I. Wegener. bottom-up-heapsort, a new variant of heapsort beating, on an average,
quicksort (if n is not very small). Theoretical Computer Science, 118(1):81–98, 1993.

[42] J. Williams. Algorithm 232 (heapsort). Comm. of the ACM, 7(6):347–348, 1964.

35

