
Dynamic Permutation Based Index

for Proximity Searching ⋆

Karina Figueroa1 and Rodrigo Paredes2

1 Facultad de Ciencias F́ısico-Matemáticas, Universidad Michoacana, México.
2 Departamento de Ciencias de la Computación, Universidad de Talca, Chile.

karina@fismat.umich.mx, raparede@utalca.cl

Abstract. Proximity searching consists in retrieving objects from a
dataset that are similar to a given query. This kind of tool is an elemen-
tary task in different areas, for instance pattern recognition or artificial
intelligence. To solve this problem, it is usual to use a metric index. The
permutation based index (PBI) is an unbeatable metric technique which
needs just few bits for each object in the index. In this paper, we present
a dynamic version of the PBI, which supports insertions, deletions and
updates, and keeps the effectiveness of the original technique.

1 Introduction

Similarity (or Proximity) Searching consists in retrieving the most similar ele-
ments to a given query from a dataset. This makes the proximity searching an
elementary task in many areas where the exact searching is not possible. Exam-
ples of these areas are machine learning, speech recognition, pattern recognition,
multimedia information retrieval or computational biology, to name few. The
core of such areas is precisely a searching task and the common part is a dataset
and a similarity measure among its objects.

Proximity queries can be formalized using the metric space model [3, 6, 8].
Given a universe of objects X and nonnegative distance function defined among
them d : X×X → R+ ∪{0}, we define the metric space as a pair (X, d). Objects
in X do not necessarily have coordinates (think, for instance, in strings). On
the other hand, the function d provides a dissimilarity criterion to compare
objects from X. In general, the smaller the distance between two objects, the
more “similar” they are. The function d satisfies the metric properties, namely:
positiveness d(x, y) ≥ 0, symmetry d(x, y) = d(y, x), reflexivity d(x, x) = 0, and
triangle inequality d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.

In practice, we are working with a subset of the universe, denoted as U ⊂ X,
of size n. Later, when a new query object q ∈ X \U arrives, its proximity query
consists in retrieving relevant objects from U.

There are two basic queries, namely, range and k-nearest neighbor ones. The
range query (q, r) retrieves all the elements in U within distance r to q. The k-
nearest neighbor query NNk(q) retrieves the k elements in U that are closest to

⋆ This work is partially funded by National Council of Science and Technology (CONA-
CyT) of México, Universidad Michoacana de San Nicolás de Hidalgo, México, and
Fondecyt grant 1131044, Chile.

q. Both queries can be trivially answered by exhaustively scanning the database,
requiring n distance evaluations. However, as the distance function is assumed to
be expensive to compute (think, for instance, when comparing two fingerprints),
frequently the complexity of the search is defined in terms of the total number of
distance evaluations performed, instead of using other indicators such as CPU
or I/O time. Thus, the ultimate goal is to build an offline index that, hopefully,
will accelerate the process of solving online queries.

2 Previous and Related Work

To solve this problem, a practical solution consists in building offline an index
which is later used to solve online queries. Among the plethora of indices for
metric space searching [3], the Permutation Based Index (PBI) [2] has shown an
unbeatable performance. Let P ⊂ U be a subset of permutants. Each element u ∈
U computes the distance towards all the permutants p1, . . . , p|P| ∈ P. The PBI
does not store distances. Instead, for each u ∈ U, stores a sequence of permutant
identifiers Πu = i1, i2, . . . , i|P|, called the permutation of u. Each permutation
Πu stores the identifiers in increasing order of distance, so d(u,Pij) ≤ d(u,Pij+1

).
Permutants at the same distance take an arbitrary but consistent order. Thus,
a simple implementation needs n|P| space. For the sake of saving space, we
can compact several permutant identifiers in a single machine word. There are
several improvements built on top of the basic PBI technique [1, 5, 7], however
all of them are static indices.

The crux of the PBI is that two equal objects are associated to the same
permutation, while similar objects are, hopefully, related to similar permuta-
tions. In this sense, when Πu is similar to Πq one expects that u is close to q.
The similarity between the permutations can be measured by Kendall Tau Kτ ,
Spearman Footrule SF , or Spearman Rho Sρ metric [4], among others. As these
three distances have similar retrieval performance [2], for simplicity we use SF ,
defined as SF (Πu, Πq) =

∑

j=[1,|P|] |Π
−1
u (ij)−Π−1

q (ij)|, where Π−1
u (ij) denotes

the position of permutant pij in the permutation Πu. For example, if we have
two permutations Πu = (42153) and Πv = (32154), then SF (Πu, Πv) = 8.

Finally, at query time, we compute Πq and compare it with all the permuta-
tions stored in the PBI. Next, U is traversed in increasing permutation dissimi-
larity. If we limit the number of distance computations, we obtain a probabilistic
search algorithm that is able to find the right answer with some probability.

3 Our Approach

We propose a dynamic scheme for the PBI. That is, we grant the PBI the capa-
bility of inserting or deleting objects in the index while preserving the searching
performance. Bestowing dynamism on the PBI allows us to manage real-world
applications, where the whole dataset is unknown beforehand and objects are
inserted or deleted as the retrieval system evolves. At the rest of the paper, we
show how to do that.

3.1 Dynamic Permutants

A dynamic permutant based index has to support object insertions and deletions,
while preserving the retrieving performance. We note that when we insert a new
object into the index, a new permutant can also be added. So, each object in
the index has a dynamic permutation. On the other hand, we need to support
the case when we delete an object which is a permutant.

In order to deal with permutations that are continuously changing, for each
object we split its permutation in buckets. This way, we can limit the scope of
the changes. The number of buckets is a parameter we study experimentally.
All these buckets make a valid permutation and the last bucket is considered
in process. Formally, let B be the size of a bucket, then every object has a
permutation divided in pieces of size B. That is, every object u ∈ U has a

permutation Πu divided in ⌈ |Πu|
B

⌉ = m pieces.
The main idea is processing small permutations of size B. Therefore, we will

consider three sections: a list of bucket completed, a bucket of size B (which
store the bucket in process), and a list of computed distances D of size B, to
manage the distances for the bucket in process. Formally, for an object u ∈ U,

we have its complete permutation Πu divided in m = ⌈ |Πu|
B

⌉ pieces. Therefore,
Πu = Π1

u, Π
2
u, . . . , Π

m
u . Particularly, Πm

u is the permutation in process. We also
need a small array D for the distances of the bucket Πm

u .

Inserting an Object When inserting an object into the database we have two
possibilities: it is a simple object or is also a new permutant. In first case, the
object computes all the distances to the set of permutants and computes its
permutation Π. The cost is O(k) distances.

The interesting case is when an object v becomes a permutant (in this work,
we chose the permutants at random). Firstly, v computes d(u, v) for all u ∈ U.
Next, u modifies both its Πm

u and its vector of distances D. In Algorithm 1 we
show details of the insertion process as permutant.

Algorithm 1 InsertionAPermutant(p)

1: INPUT: Let p be the new permutant
2: Let U = {u1, . . . , un} be our database
3: for each u ∈ U do

4: d1 = d(p, u)
5: insert p in bucket Πm

u
and d1 at D

6: Rebuild the small bucket Πm

u

7: end for

Notice that when the bucket m is completed, it is transfered to the list of
bucket completed and when a new permutant arrives, we use a new small bucket,
and this is now the bucket Πm

u .
For example: Let be u an element of the database, B = 4 and Πu =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, that is:

– List of bucket completed = {Π1
u = {1, 2, 3, 4}, Π2

u = {5, 6, 7, 8}}.
– Permutation in process = Π3

u = {9, 10}
– Distances D = [d(u, p9), d(u, p10)]

Comparing small permutations Using Spearman Footrule, we can compare
two permutations in two ways. Let Πu and Πq be the permutations of an element
u and a query q:

– If we consider use a sequential number for every permutant like the previous
example, then we can compare all the permutation in a classic way, that is:
SF (Πu, Πq) =

∑

1≤i≤k

∣

∣Π−1
u (i)−Π−1

q (i)
∣

∣.
– If we numerate each bucket separately, we just need numbers in [1, B].

So, we have Πu = {1, 2, 3, 4, 1, 2, 3, 4, 1, 2}, where {Π1
u = {1, 2, 3, 4}, Π2

u =
{1, 2, 3, 4}} and Π3

u = {1, 2}. In this case we compute:

SF (Πu, Πq) =
∑

1≤i≤m

∑

1≤j≤B

∣

∣(Πi
u)

−1(j)− (Πi
q)

−1(j)
∣

∣

Notice, that we can get the same performance that the original technique.
However, this alternative allows better compaction of the permutation.

Deleting Permutants In this case, we consider two element types. The first
one is a simple object, which can be deleted without any consideration from
the database. The second type is a permutant, that can also be deleted without
modify the permutations of objects in U, because the order in the rest of elements
is conserved. A bucket with less than three permutants can be deleted, because
is too short to help in the retrieving process.

Searching The search process is almost identical to the basic PBI one. The
only consideration is that we need to compute the query permutation according
to the buckets, and then we compare the permutations as we explain above.

4 Experiments

In this section we evaluate and compare the performance of our technique in
different metric spaces, such as synthetic vectors on the unitary cube and NASA
images. The experiments were run on an Intel Xeon workstation with 2.4 GHz
CPU and 32 GB of RAM with Ubuntu server, running kernel 2.6.32-22.

4.1 Synthetic Databases

In these experiments, we used a synthetic database with vectors uniformly dis-
tributed on the unitary cube [0, 1]D, in order to control the dimensionality of the
space. This also allows us to define some extra parameters. We use 80,000 points
in different dimensions D = 16, 32, 64, and 128, under Euclidean distance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

D
is

ta
n
c
e
s

Bucket size

Unitary cube [0,1]D, n=80,000, 1NN

16 perms total, D16
32 perms total, D32
64 perms total, D64

128 perms total, D128

Fig. 1. Example of our technique. All points use the same amount of memory in the
index. For example, line with × means 32 permutants and the first point has B = 4
that is 32/4 = 8 buckets. The next point is 32/8 we are using 4 buckets, and so on. The
last point has 32/32 = 1 bucket, that is the original idea. Notice that axe x represents
the size of bucket.

4.2 Optimal Value of B

For this experiment, different values of B (bucket size) are plotted in Fig. 1 for
different dimensions. Notice that if B = m then we have the original permutation
based index. In axe x, we change the size of bucket, the values start at 4, and
increases in values of 4. In this case, we represent distances computed for 1NN
in dimension 16, 32, 64, and 128. Notice that the last point is the value of the
original technique. This plot shows that we can get a better performance with a
dynamic technique. For example, in dimension 128 the original technique makes
1224 distances (1 completed bucket of B = 128) while using B = 24 (that is,
5 buckets), only 948 computations of distances are required for the same query,
that is a 27% less distances.

4.3 NASA images

We use a set of 40,700 images from NASA, represented as 20-dimension feature
vectors. For simplicity we compare the vectors with the Euclidean distance. This
dataset is available at www.dimacs.rutgers.edu/Challenges/Sixth/software.html.

Notice that in this datase, our proposal keeps its performance. Fig 2 shows
that after some B size our technique can improves the original idea. For example,
128 permutants with B = 100, or B = 52.

5 Conclusions

In this paper we present a technique to turn the permutation based index (PBI)
into a dynamic one. That is, an index that support both insertions and deletions

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 20 40 60 80 100 120 140

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Bucket size (B)

Nasa images, 1NN

128 permutants total
64 permutants total
32 permutants total

Fig. 2. Our approach keeps its performance on the real database of NASA images. All
points use the same amount of memory.

of objects, while preserving the unbeatable performance of the original PBI. To
do so, we process the complete permutation by parts.

As future work, we plan to test our technique in other metric spaces and
research another alternatives to grant dynamism to the PBI strategy.

References

1. Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted
files. In: Proc. 3rd Intl. Conf. Scalable Information Systems. ICST (2008), article 28

2. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
30(9), 1647–1658 (2009)

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric spaces.
ACM Computing Surveys 33(3), 273–321 (Sep 2001)

4. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete
Math. 17(1), 134–160 (2003)

5. Figueroa, K., Paredes, R.: List of clustered permutations for proximity searching. In:
Proc. 6th Intl. Conf. Similarity Search and Applications (SISAP 2013). pp. 50–58.
LNCS 8199, Springer (2013)

6. Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM
Transactions Database Systems 28(4), 517–580 (2003)

7. Mohamed, H., Marchand-Maillet, S.: Quantized ranking for permutation-based in-
dexing. In: Proc. 6th Intl. Conf. Similarity Search and Applications (SISAP 2013).
pp. 103–114. LNCS 8199 (2013)

8. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search – The Metric Space
Approach, Advances in Database System, vol. 32. Springer (2006)

