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Abstract. The permutation based index has shown to be very effective
in medium and high dimensional metric spaces, even in difficult prob-
lems such as solving reverse k-nearest neighbor queries. Nevertheless,
currently there is no study about which are the desirable features one
can ask to a permutant set, or how to select good permutants. Similar to
the case of pivots, our experimental results show that, compared with a
randomly chosen set, a good permutant set yields to fast query response
or to reduce the amount of space used by the index. In this paper, we
start by characterizing permutants and studying their predictive power;
then we propose an effective heuristic to select a good set of permutant
candidates. We also show empirical evidence that supports our technique.

1 Introduction

Proximity or similarity searching is the problem of, given a data set and a simi-
larity criterion, finding elements within the set that are close or similar to a given
query. This is a natural extension of the classical problem of exact searching. It
is motivated by data types that cannot be queried by exact matching, such as
multimedia databases containing images, audio, video, documents, and so on.
In this framework, the exact comparison is just a type of query, while close or
similar objects can be queried as well.

There exist several computer applications where the concept of similarity
retrieval is of interest (see [4] for a comprehensive survey on those applications).
Some examples are machine learning and classification, where a new element
must be classified according to its closest existing element; image quantization

and compression, where only some samples can be represented and those that
cannot must be coded as their closest representable one; text retrieval, where
we look for words in a text database allowing a small number of errors, or we
look for documents similar to a given query or document; computational biology,
where we want to find a DNA or protein sequence in a database allowing some
errors due to typical variations; and function prediction, where past behavior is
extrapolated to predict future behavior, based on function similarity.
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Proximity/similarity queries can be formalized using the metric space model
[4, 7, 10, 12]. The model assumes that there is a universe X of objects and a non-
negative distance function d : X× X → R+ ∪ {0} defined among them. Objects
in X do not necessarily have coordinates (think, for instance, in strings, images,
audio, or video). On the other hand, the distance function gives us a dissimi-
larity criterion to compare objects from the universe. Therefore, the smaller the
distance between two objects, the more “similar” they are.

The distance satisfies the following properties that make the tuple (X, d) a
metric space: d(x, y) ≥ 0 (positiveness), d(x, y) = d(y, x) (symmetry), d(x, x) = 0
(reflexivity), and d(x, z) ≤ d(x, y)+d(y, z) (triangle inequality). These properties
hold for many reasonable similarity functions.

In the typical scenario of the metric space search problem, there is a finite
database or dataset of interest U ⊂ X. Later, when a new query object q ∈ X\U
arrives, its proximity query consists in retrieving objects from U that are relevant
(that is, similar) to q. There are two basic kinds of queries. The first is the range
query d(q, r), which retrieves all the elements in U which are within distance
r to q. Formally, (q, r) = {u ∈ U, d(q, u) ≤ r}. The second is the k-nearest
neighbor query NNk(q), which retrieves the k closest-to-q elements in U. This is,
|NNk(q)| = k, and ∀ u ∈ NNk(q) and v ∈ U \NNk(q), d(u, q) ≤ d(v, q).

Given the database, these similarity queries can be trivially answered by per-
forming n = |U| distance evaluations. Yet, as the distance function is assumed to
be expensive to compute (think, for instance, when comparing two fingerprints),
it is customary to define the complexity of the search as the number of distance
evaluations performed, disregarding other components such as CPU time for side
computations and even I/O time. Thus, the ultimate goal is to build offline an
index in order to speed up online queries.

The Permutation Index [3] is one of the most effective similarity search in-
dices. It is particularly well suited for medium and high dimensional spaces.
Despite that its practical version is focused in the case of retrieving an approx-
imate answer for a given query, its effectiveness allows us to consider it as an
(almost) exact answer. As a matter of fact, experimental results shown in [3]
reveal that the Permutation Index is extremely promissory. Nevertheless, there
is no study about which are the desirable features one can ask to a permutant
set, or how to select good permutants. This is the main focus of this paper.

Similar to the case of traditional pivots [1, 2], our experimental results show
that a good permutant set yields to fast query response or to reduce the amount
of space used by the index compared to a randomly chosen set. In fact, in the
metric space of Flickr images, we only need to review a 1.15% of the dataset to
obtain the nearest neighbor of a given query.

The rest of this paper is organized as follows. In Section 2, we cover related
work on metric space indices. Then, in Section 3, we start by characterizing per-
mutants and studying their prediction power, and then we propose an effective
heuristic to select a good permutant candidate set. Next, Section 4 shows the
empirical evidence that supports our technique. We finally draw our conclusions
and future work directions in Section 5.



2 Related Work

2.1 Previous Work on Choosing Pivots

The pivot based indices are one of the most popular in the field of metric space
searching. These algorithms select a set of pivots {p1 . . . pk} ⊆ U and store a
table of kn distances d(pi, u), i ∈ {1 . . . k}, ∀ u ∈ U. To solve a range query
(q, r), pivot-based algorithms measure d(q, pi) for all the pivots, and use the
fact that, because of the triangle inequality, d(q, u) ≥ |d(q, pi) − d(u, pi)|, so
they can discard every u ∈ U such that |d(q, pi) − d(u, pi)| > r, since this
implies d(q, u) > r (which any of the pivots). The elements u that still cannot
be discarded at this point are directly compared against q.

In general, these indices choose the pivots randomly among the database
objects. However, there are some preliminary attempts to choose pivots [11, 8]
which are based in two ideas: good pivots are far away from the rest of the
database, and also, far away of each other pivots. These techniques have good
performance in some metric spaces but they fail in others.

There are two works [1, 2] on how to systematically select a good pivot set.
In [1], the authors propose an efficiency measure to compare two pivot sets,

maximizing the mean of the distance distribution among pivots. Based on that
criterion, they also provide three optimization techniques to select good sets of
pivots: (i) produce several pivot sets at random and choose the set with the
highest average distance; (ii) choose pivots incrementally, the first pivot p1 is
the object that have the maximum average distance to other objects, the second
one p2 is selected so that the subset {p1, p2} has the maximum average distance,
and so on until selecting all the pivots; and (iii) starting with a random set of
pivot, in each iteration the pivot having the smallest contribution to the average
distance is removed and replaced by a better pivot.

In [2], the authors propose a dynamic pivot selection technique, which com-
bines the third alternative in [1] with the Sparse Spatial Selection (SSS) tech-
nique [9]. The idea is to use the same SSS’s pivot insertion criterion but checking
if any of the already selected pivots becomes redundant (in the sense that its
contribution to some efficiency criterion is low) or the new pivot candidate is
redundant with respect to the current pivot set.

2.2 The Permutation based Index

Let P ⊂ U be a subset of permutants (in the literature, they are also called
anchors). Each element u ∈ U induces a preorder ≤u given by the distance
from u towards each permutant, defined as y ≤u z ⇔ d(u, y) ≤ d(u, z), for any
pair y, z ∈ P. The relation ≤u is a preorder and not an order because some
permutants can be at the same distance of u. So, it could be possible to find
y, z ∈ P, such that y ≤u z ∧ z ≤u y.

LetΠu = i1, i2, . . . , i|P| be the permutation of u, where permutant pij ≤u pij+1
.

Permutants at the same distance take an arbitrary but consistent order. Every
object in U computes its preorder of P and associates it to a permutation, which



is stored in the index (this index does not store distances). Thus, a simple im-
plementation needs n|P| space.

The crux of this index is that two equal objects must have the same permu-
tation, while similar objects will hopefully have similar ones. So if Πu is similar
to Πq we expect that u is close to q. Thus, we have changed the problem from
searching the dataset U to searching the permutation set.

At query time, we compute Πq and compare it with all the permutations
stored in the index. So, we traverse U in the order ≤Πq

induced by Πq (by
increasing permutation dissimilarity). If we limit the number of distance compu-
tations, we obtain a probabilistic search algorithm (in the sense that with some
probability, we are able to find the right answer to the query). Fortunately, the
order ≤Πq

induced is extremely promissory, as reported in [3] for range queries.
Similarity between the permutations of q and u can be measured by Kendall

Tau Kτ , Spearman Footrule SF , or Spearman Rho Sρ metric [5], among others.
Kτ can be seen as the number of swaps that a bubble-sort-like algorithm has to
do in order to make two permutations equal. On the other hand, using Π−1

u (ij)
to denote the position of permutant pij in the permutation Πu, SF and Sρ are
defined as follows:

SF (Πu, Πq) =
∑

j=[1,|P|]
|Π−1

u (ij)−Π−1
q (ij)| (1)

Sρ(Πu, Πq) =

√

∑

j=[1,|P|]
|Π−1

u (ij)−Π−1
q (ij)|2 (2)

As Sρ is monotonous, we can simple use S2
ρ . For example, let Πu = (42153)

and Πq(32154) be the object u ∈ U and query q ∈ X \ U permutations, respec-
tively. So, Kτ (Πu, Πq) = 7, SF (Πu, Πq) = 8 and S2

ρ = (Πu, Πq) = 32.

3 Finding Good Permutants

In the following, we will describe our approach to select good permutants. It
is based on experimental observations that lead us to the final methodology to
obtain a good permutant set. We start by characterizing the permutants, and
then we propose a heuristic to select a permutant set.

3.1 Characterizing the Permutants

Let us consider a single permutant p from the set P. For this permutant, the
maximum difference of positions between the query permutation Πq and the
permutation of any object in the database Πu is |P|−1. This is obvious, however
it suggests a simple way to determine how much a permutant can contribute in
the searching process. Permutants at the beginning or the end of a permutation
can produce an important increase in the permutation distance, while the ones in
the middle of the permutation produce a mild increase. Note that, such increase
is the one that changes the order ≤Πq

(induced by the permutation of the query).



Based in this observation, we start our study by considering how much con-
tributes a portion of the permutation to the order ≤Πq

. To illustrate our point
we perform the following experiment. We divide the permutation Πq in three
equal portions, and show the results when searching in a metric space using the
permutants that fall in two thirds of the permutation Πq (that is, we exclude a
portion). To do this, we compute the permutation distance using Equation 3.

SF (Πu, Πq) =
∑

j=[1,|P|∧Π−1
q (ij)/∈portion]

|Π−1
q (ij)−Π−1

u (ij)| (3)

For this experiment, we use (RD, L2) considering a uniform dataset composed
by 80,000 vectors with dimension D ∈ [8, 128], and show the average over 100
randomly chosen queries. According to the results of [3] we use permutant sets
of size D ± 2, that is, a direct relation with the dimension of data.

Fig. 1 shows the results when we discard either the left, middle, or right
portions of the permutation. The figure shows that the best results are obtained
when we discard the middle portion; this is in agreement with the intuition that
the permutants that fall in this section do not heavily increase the permutation
distance. On the other hand, the figure also says that the permutants in the left
portion are the most important ones in terms of inducing the order ≤Πq

, since
in high dimension (D = 128), removing the left partition produces the biggest
degradation in the search efficiency.

This observation leads us to the core of our method to find good permutants.
The main idea is trying to pick permutants that do not fall in the middle portion.
To do this, we can look for permutants that concentrate their occurrences in some
portions of the object permutations (hopefully in the left one).
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Fig. 1. Retrieval performance when excluding one portion of the permutation.



3.2 A Simple Heuristic to Find Good Permutants

Given a permutant, one can compute the histogram of its positions in the per-
mutations of all the elements in U. If that histogram is not concentrated, its
variance is large when compared with a random permutant.

Therefore, we now perform another preliminary experiment in order to verify
this assumption. In this experiment we compare the retrieval performance of
three sets. The first is a randomly chosen permutant set of size D, the second is
composed by D permutants having low variance in their histogram of positions,
and the third are the D permutants with high variance. This experiment was
done using the same setup of the previous section.

To choose permutant sets with low and high variance, we take a random

sample of size c =
⌊

1+
√
1+8n
2

⌋

(where n = |U|). We select this value since the

full comparison among all the elements in the sample requires c(c−1)
2 < n distance

computations. So, we maintain controlled the number distance computations. If
D > c, we repeat the process until we have enough permutants to make the
selection. But, in practical cases D = O(

√
n), so with one iteration is enough.

Fig. 2 shows that the best similarity query performance is verified with the
set whose permutants present the largest variance. The difference is clearly no-
ticeable, in particular in high dimensional spaces. In fact, in dimension D = 128,
the high variance set needs 79% of the distance computations required by the
random set; and for D = 64, the high variance set requires just 76%. The sec-
ond performance is achieved by the random chosen set. This behavior is counter
intuitive as we would expect that having a criterion is better that choosing per-
mutants at random.
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4 Experimental Evaluation

We show the performance of our heuristic in two real-world spaces of images.

4.1 Flickr

The set of image objects were taken from Flickr, using the URL provided by the
SAPIR collection [6]. The content-based descriptors extracted from the images
were: Color Histogram 3 × 3 × 3 using RGB color space (27 dimension vector),
Gabor Wavelet (48 dimension vector), Efficient Color Descriptor (ECD) 8 × 1
using RGB color space (32 dimension vector), ECD 8× 1 using HSV color space
(32 dimension vector), and Edge Local 4 × 4 (80 dimension vector). For each
image, all the components are concatenated in a single vector of 219 components.
We compare the vectors using Euclidean distance. The dataset contains 1 million
of images.

Fig. 3 shows the performance of our technique when solving k-nearest neigh-
bor queries. We test three values of k, namely 1, 10, and 20, and the three criteria
used in Section 3.2, that is, excluding the each one of the three portions (left,
middle and right). We repeat the experiment using permutant set of size 128
and 256. Notice that we also compare our criteria with the complete permu-
tation of 128 or 256 permutants, respectively. These experiments show that we
make almost the same computational effort using two thirds of the permutations
than using the complete one. In practice, the center or the right portion does
not really give much information.

Usually, users retrieve a few numbers of images per query. So for illustrate
our results, we remark that with k = 1, we need to compare only 1.15% to 0.89%
of the database (for 128 or 256 permutants). If we use higher values of k, our
index needs to review a larger fraction of the database, as expected; however,
the query performance is sublinear with respect to k.

4.2 Nasa

A set of 40,150 20-dimensional feature vectors, generated from images down-
loaded from NASA3 and with duplicate vectors eliminated. We also use Eu-
clidean distance.

At Fig. 4, we show the performance of our technique when solving k-nearest
neighbor queries (k ∈ {1, 10, 20}), and two permutant set sizes {128, 256}. No-
tice that we compare our criteria with the complete permutation of 128 or 256
permutants (that is, considering the three parts, namely, left, center and right).
Once again, the complete permutation uses more permutants than the others (ex-
actly P/3 more), and that can explain why it is better than the others. However,
permutations without center (or right) part have the same power of prediction.

3 at http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
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Fig. 3. Performance of our technique using real database (FLICKR images).

5 Conclusions

In this paper we started by characterizing permutants and studying their predic-
tion power. Next, we proposed an effective heuristic to select a good permutant
candidate set. We also showed empirical evidence that supports our technique.
The experimental results shows that our approach is very promising when re-
trieving objects from high dimensional spaces and also from real-world datasets.

In fact, in the Flickr real-world metric space, which contains 1 million of
images represented with a vector of 219 dimensions, using 128 permutants, we
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Fig. 4. Performance of our technique using real database (NASA images).

only need to review 1.15% of the dataset to obtain the nearest neighbor of a given
query. We obtain a similar performance in the space of Nasa images (represented
by 20-dimensional feature vectors), where, using a permutant set of size 128 and
our criteria, we need to review 2.24% of the dataset in order to retrieve the 10
nearest neighbors of a given query.

In the future work, we are interesting on compressing the permutants through
removing the middle of the permutations, as we state here. We are also very
interested in how to characterize better the set of permutants. Finally, the high
variance permutant set of Fig. 2 is composed by permutants that concentrate



their occurrences in some specific positions of the permutation. In future work
we also study how to we refine this permutant set.
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