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Abstract. We study the problem of similarity between phrases. To do
so, we study three similarity methods. The first one considers the com-
monalities and differences of the two phrases. The second one is an exten-
sion of the well-known Levenshtein-Damerau distance in a word oriented
fashion. The third one considers the sequentiality of the phrases and is re-
sistant to phrases with repeated words. Finally, we show an experimental
evaluation of our methods in both English and Spanish corpora.
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1 Introduction

A phrase is a sequence of consecutive words. The notion of phrase similarity has
been studied in several application domains, including document retrieval [1],
web document clustering [3,4] and automatic machine translations [5,10].

We study phrase similarity in the perspective of improving the quality of
automatic translations. Our study is motivated by the deficiencies of current
techniques to accurately translate a text from a source to a target language. For
example, Table 1 shows the results of translating the phrase “the trip was busy”
from English to Spanish, by using four translation services. Considering that the
expected result is “el viaje estuvo ocupado”, we see that none of them was able
to provide the correct translation.

Refining a machine translation implies to modify the translation under a given
criteria in order to improve its quality. In the above example, the translated
phrase “el viaje fue ocupado” (returned by Google Translator) can be refined
by replacing the word “fue” by “estuvo”. Our approach for refining is based on
exploiting the Web as a huge source of phrases. The idea is building a database
of (likely) well written phrases obtained from the Web. Then, given a translated
phrase, we will try to find a well written phrase in the database which can be
used to refine the input phrase.

In order to solve this problem, we need to define a metric to measure the
similarity between phrases. That is, given two phrases, the metric returns a
score which determines how similar the two phrases are (the higher the score
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Table 1. Examples of translations, English-Spanish, for the phrase “the trip was busy”

Translation Service Result

Google Translator (translate.google.com/) el viaje fue ocupado

Bing Translator (www.bing.com/translator) el viaje estaba ocupado

Babylon (traductor.babylon.com/) el viaje estaba ocupado

El Mundo Traductor (www.elmundo.es/traductor/) el viaje estaba ocupado

the more similarity). Hence, each phrase in the database can be compared with
the input phrase and ranked according to its score. The phrase with the highest
score is the solution to the problem.

Contributions. This paper presents new contributions to the problem of com-
puting similarity between phrases. First, we formalize a basic notion of similarity
found in the literature [8] which is based on the commonalities and differences
between two phrases. Second, we extend the Levenshtein distance [7] to com-
pare phrases by considering word-oriented edit operations. Third, we present
a sequential method to calculate the cost of a phrase-to-phrase transformation
which is simpler than Levenshteins’s but preserves the precision. Four, we evalu-
ate and compare the effectiveness and efficiency of the methods in terms of their
precision, recall, coverage, sensitivity and execution time.

1.1 Related Work

The notion of similarity between phrases has been studied in several application
domains, including machine translation [10,2] and phrase-based document simi-
larity [3,4]. To best of our knowledge, there exist no work concerning the study
and comparison of metrics to measure the similarity between phrases. The clos-
est work is the one presented by Lin [8] in 1994. In this article, Lin presents an
information-theoretic definition of similarity and demonstrate how to use it to
measure similarity. Unfortunately, it is oriented to words comparison.

The Levenshtein distance (also called edit distance) is a discrete function
that, given two strings, measures the minimum number of insertions, deletions
and substitutions of single characters needed to transform one string into the
other. Its plain, recursive implementation requires O(3n) time in the size of the
strings; however, it is easy to obtain a O(n2) dynamic programming version.

The idea of extending the Levenshtein distance to compute the similarity
between phrases has been explored by some authors. Leusch et al [6] defined a
measure, called the inversion edit distance, which is based on measuring clocks
reordering (i.e., two sentences are similar if a block of words just changes its
position). In 2004, Vilares et al [9] presented an algorithm that combines the
edit distance between parse trees and single-term similarity.
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2 Similarity Methods

In this section we describe three metrics for measuring phrase similarity. For the
sake of space economy we omit the pseudocode of the corresponding algorithms.
However, they are available in ing.utalca.cl/∼rangles/mt/pseudocodes.pdf.

2.1 Basic Metric

Consider the intuitive definition of similarity presented in [8]: “The similarity be-
tween two objects A and B is a function of their commonalities and differences”.
This notion of similarity is formalized in the following definition.

Definition 1 (Simple similarity between phrases). The similarity between
two phrases, f1 and f2, is defined as sim(f1, f2) = C − (D + I) where C is the
number of coincident words, D is the number of words to eliminate, and I is the
number of words to insert, all operations required to transform f1 into f2.

This definition yields to a very obvious algorithm to compare two phrases.
Despite its simplicity, it reflects well the intuition that two phrases having several
words in common (even if the word are permuted) are more similar than those
having several different words (i.e. we need to delete or insert words to transform
a phrase into the other).

2.2 Word-Oriented Edit Distance

Our second alternative is a rather sophisticated one, inspired on the edit distance.
Since a phrase is composed by words, the comparison of two phrases must be
based on the words they contain instead of the characters. So, based on the
standard version, we define a word-oriented edit distance.

The proposed method considers five types of edit operations: the three basic
ones (namely, insertions, deletions or substitutions of single words), the transpo-
sition of two adjacent words, and another operation that allows to move a word
within a phrase. The latter operation softens the comparison of two phrases that
share words in different order. To do so, instead of use the same penalization
for every edit operation, we define two values: we penalize with cIDS for inser-
tions, deletions and substitutions of single words, and with cMT for single word
movements and transpositions of two adjacent words. After some preliminary
experimental evaluation we set cIDS= 8 and cMT= 2, as with these values we
reflect the intuitive notion of similarity among phrases.

To compute the cost of transforming the phrase f1 = w11w12 . . . w1n into
phrase f2 = w21w22 . . . w2m, our algorithm takes into account the cost of trans-
forming each of the n prefixes of f1 into each of the m prefixes of f2. Using a
matrix cost of size (m+ 1)× (n+ 1) to manage all the costs of prefix transfor-
mation, we can implement an efficient dynamic programming version.

This measure begins by computing size of each phrase n← |f1| and m← |f2|.
Next, it creates the matrix cost of size m+ 1 × n+ 1. In order to minimize the
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cost of transforming the prefix f1,1...j = w11w12 . . . w1j into prefix f2,1...i =
w21w22 . . . w2i, we consider several cases: (i) transform prefix f1,1...j into prefix
f2,1..i−1 and pay the cost of insert word w2i; (ii) transform prefix f1,1...j−1 into
prefix f2,1..i and pay the cost of delete word w1j ; (iii) transform prefix f1,1...j−1

into prefix f2,1..i−1, and substitute w1j by w2i if they differ or do nothing if they
are equal; and (iv) transform prefix f1,1...j−2 into prefix f2,1..i−2 and pay the cost
of swapping words w1(j−1) and w1j . Furthermore, in the third case, if the words
differ, but the word w2i belongs to f1 we account this as a word movement. As
we want to minimize, we pick the minimum cost among insertions, deletions,
substitutions, movements and word transpositions.

To initialize the matrix cost we note that the first row represents the cost
of transforming f1 into the empty phrase, by deleting each of its words. Analo-
gously, the first column represents the cost of transforming the empty phrase in
f2 by inserting its words. The final result is stored in cell costm,n.

2.3 Sequential Distance

One of the drawbacks we detected in the word-oriented edit distance occurs when
there are repetitions of words in the target phrase (phrase f2). So we devise a
sequential approach to compare two phrases.

The basic idea is to traverse both phrases simultaneously, word-wise from
the beginning and perform edit operations as needed. If the i-th word of both
phrases f1 and f2 coincide, that is, if w1i = w2i, we advance to the next word.
Otherwise, we need to determine whether we need to insert, delete or transpose
a word. If word w1i does not belong to the suffix of f2 (which is denoted by
f2,i...m), we delete w1i from f1 and pay for the cost of deleting it (cID); else, if
w1i does belong, we preserve it to future process. On the other hand, if word w2i

belongs to the suffix of f1 we just fetch it by a circular shifting of the words in
the sub-phrase of f1 limited by i and the position of w2i within the suffix of f1
(and pay cT for the transposition). Finally, if w2i does not belong, we need to
insert it into f1 (and pay cID for the insertion). Next, we process the next word
until consume one or both phrases.

After this processing, it is possible that any of the phrases still has words to
process. If so, either all the unprocessed words in f2 are inserted into f1 and we
pay cID for each insertion; or all the unprocessed words in f1 are deleted and
pay cID for each deletion. Finally, we return the dissimilarity assessment.

After some preliminary experimental evaluation, we set cID= 8 and cT= 2,
as with these values we reflect the intuitive notion of similarity among phrases.

3 Experimental Evaluation

In this section we evaluate the metrics presented above in terms of their effec-
tiveness and efficiency. Recall that effectiveness is purely a measure of the ability
of a system to satisfy the user in terms of the relevance of items (words, phrases,
documents, etc.) retrieved, whereas efficiency measures the computer resources
used by a system to complete the retrieval process.
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As usual in the area of Information Retrieval, the effectiveness of a metric
is measured in terms of precision and recall. In our context, the precision of
a metric is the fraction of retrieved phrases that are relevant, while recall is
the fraction of relevant phrases that are retrieved. Additionally, we consider
the notions of coverage and sensitivity. The coverage of a metric is the number
of results needed to recover all the relevant phrases. The sensitivity measures
the degradation in the recovering capacity of a metric under specific types of
errors (swap, insertion or deletion). Finally, the efficiency is the execution time
required to rank all the phrases in the corpus according to a given metric. In
what follows, we formally define the experiments and discuss the results.

3.1 Experiments

In order to define the experiments we carry out in this paper, consider the
following general definitions:

– Assume that CL denotes a corpus of phrases in a given language L. In this
sense, we consider a corpus Cen of English phrases (approx. 48.7 MB) and a
corpusCes of Spanish phrases (approx. 55.4 MB). Each corpus contains 1 mil-
lion phrases obtained from DBpedia dumps (wiki.dbpedia.org/Downloads)
corresponding to Wikipedia articles.

– For each corpus C, we generate a set of 100 test phrases obtained randomly
from C (without duplicates).

– Given a test phrase f , we generate 10 phrases from f via different trans-
forming operations, specifically: 1 or 2 swaps, 1 or 2 inserts, 1 or 2 deletes,
swap + insert, insert + delete, and delete + swap. Note that, the resulting
phrases can be considered relevant as they are obtained from the original
test phrase.

– Given two phrases f and f ′, a metric is a function M(f, f ′) which returns a
value representing the similarity between f and f ′. We use M1 to denote the
basic metric (Section 2.1), M2 for the adapted edit-distance (Section 2.2),
and M3 for the sequential metric (Section 2.3).

– Given a metric M , a corpus C and a test phrase f ∈ C, the function
Rank(M,C, f) returns the phrases in C ranked by their similarity with f ,
i.e. each phrase f ′ ∈ C is ranked according to M(f, f ′). The closer to the
top in the rank that a phrase f ′ occurs, the more similar is f ′ to the test
phrase f .

– Given a sorted list of phrases L, the function TopN(L) returns the first N
phrases in L.

Given a metric M , a corpus of phrases C, a test phrase f ∈ C and a total
number of phrases to retrieve k, we consider the following experiments:

Experiment 1: Calculating Precision. The precision of a metric M is given
by the fraction (or percentage) of relevant phrases retrieved byM with respect to
the total number of phrases retrieved k. Specifically, if s is the number of relevant
phrases occurring in Topk(Rank(M,C, f)) then the precision of M is s/k. This
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experiment considers to compute, for each metric Mi and corpus CL, the average
precision over a set of 100 test phrases obtained from CL. The precision results
are showed in Figures 1(a) and 2(a).

Experiment 2: Calculating Recall. The recall of a metric M is given by
the fraction (or percentage) of relevant phrases retrieved by M with respect
to the total number of relevant phrases. Specifically, if r is the total num-
ber of relevant phrases and s is the number of relevant phrases occurring in
Topk(Rank(M,C, f)) then the recall of M is s/r. This experiment considers to
compute, for each metric Mi and corpus CL, the average recall over the set of
100 test phrases obtained from CL. Figures 1(b) and 2(b) show the recall results.

Experiment 3: Calculating Coverage. The coverage of a metric M is de-
fined as the number (or percentage) of phrases that we need to recover from
Rank(M,C, f) in order to obtain all the relevant phrases. The coverage was cal-
culated with a upper bound of 100 recovered phrases. This experiment considers
to compute, for each metric Mi and corpus CL, the average coverage over the
set of 100 test phrases obtained from CL.

Experiment 4: Calculating Sensitivity. The sensitivity of a metric M under
a type of error ξ (swap, insert or delete operation) measures how the efficiency of
the metric is affected by the occurrence of multiple errors of type ξ. In this sense,
the sensitivity shows the degradation rate of M due to an increasing number of
errors of type ξ.

Given a test phrase f and a type of error ξ, we generate “perturbed” phrases
from f by introducing multiple errors of type ξ into f , incrementally. Specifically,
we construct the set of perturbed phrases {f1, . . . , fn} where f1 contains 1 error,
f2 contains 2 errors, and so on, until completing n errors. The sensitivity of a
metric M according to a set of perturbed phrases (as defined above) is calculated
as (Rank(M,C, fn)−Rank(M,C, f1))/(n− 1) where n indicates the maximum
number of errors. In our experiments, the sensitivity is calculated with n = 5.

This experiment considers to compute, for each metric Mi, corpus CL and
type of error ξ (swap, insert or delete), the average sensitivity over the set of
100 test phrases obtained from CL. The sensitivity results are showed in Figures
1(c) – (e) and 2(c) – (e).

3.2 Results and Comments

Figures 1 and 2 show the results of the experimental evaluation for both English
and Spanish, respectively.

In terms of precision, Figures 1(a) and 2(a) show that all the methods are
very similar. Considering that the total number of relevant phrases is 10, the
precision decreases when the number of phrases retrieved increases from k = 10
to k = 20. Specifically, for k = 5 the precision is almost 100%, for k = 10 the
precision is higher that 85%, and for k = 20 the precision is mildly lower than
50%. Additionally, we can see that the precisions of M1 and M3 are very similar
whereas M2 is slightly lower.
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Fig. 1. Experimental evaluation over English corpus. M1 identifies the basic metric, M2

the adapted edit-distance and M3 the sequential metric. The total number of relevant
phrases is 20 and k defines the number of phrases retrieved.
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Fig. 2. Experimental evaluation over Spanish corpus
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In Figures 1(b) and 2(b), we can see that the three metrics are very similar
in terms of recall. For k = 5, all the metrics are able to recover the 50% of the
total set of relevant phrases, and for k >= 10 the recall is higher than 85%.

With respect to their coverage, we can indicate (the plot is omitted for lack
of space) that the three metrics need less or equal than 20 results to recover
the set of 10 relevant phrases. Specifically, M1 requires 11 results, M2 requires
20 results, and M3 requires 10 results. In this sense, M2 requires the double of
results to recover all the relevant phrases.

Figures 1(c) – (e) and 2(c) – (e) show different behaviors with respect to the
sensitivity to swap, insert and delete errors. M1 is the least sensitive to swaps
and insertions, and M3 is the least one to deletions. In contrast, M2 is the most
sensitive to the three operations. Note that, the values returned by the sensitivity
tests are not included, however the degradation rate is visible in the charts.

Finally, we can indicate that the average execution time (in microseconds) is
14 μs for M1, 53 μs for M2 and 9 μs for M3, considering phrases in English. In
the case of Spanish phrases, the times are 23 μs for M1, 71 μs for M2, and 19 μs
for M3. Hence, we have that the sequential metric is the most efficient, closely
followed by the basic metric, and the adapted edit-distance is the one with the
highest average execution time.

4 Conclusions

Finally, we will try to answer the question: Which is the best metric? Considering
that there is not a unique and clear definition of similarity between phrases, and
that the notion of relevance is very subjective, we conclude that there exist no
metric that can be efficient and effective for all the cases, when only considering
simple edit word operations. However, from the experiments presented in this
paper, we can conclude that a simple metric (as the basic metric defined here)
can be more effective and efficient than a complex one (as the word-oriented
edit-distance) considering the reduced setup of edit operations.

On the other hand, we hope that by introducing semantic elements in the
metrics (such as the use of synonyms or semantic similarity measures between
words) or by considering the context of the phrases, we can improve the similarity
assessment between the phrases.
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