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1 Facultad de Ciencias F́ısico-Matemáticas,Universidad Michoacana, Mexico.
2 Departamento de Ciencias de la Computación, Universidad de Talca, Chile.

karina@fismat.umich.mx, raparede@utalca.cl

Abstract. The permutation based algorithm has been proved unbeat-
able in high dimensional spaces, requiring O(|P|) distance evaluations
when solving similarity queries (where P is the set of permutants); but
needs n evaluations of the permutant distance to compute the order to
review the metric dataset, requires O(n|P|) space, and does not take
much benefit from low dimensionality. There have been several propos-
als to avoid the n computations of the permutant distance, however all
of them lost precision. Inspired in the list of cluster, in this paper we
group the permutations and establish a criterion to discard whole clus-
ters according the permutation of their centers. As a consequence of our
proposal, we now reduce not only the space of the index and the number
of distance evaluations but also the cpu time required when comparing
the permutations themselves. Also, we can use the permutations in low
dimensions.

1 Introduction

Several modern applications —for instance, pattern recognition or multimedia
retrieval— require similarity retrieval systems to find relevant objects when solv-
ing a query. In these applications the pattern is the same, the search problem
is often stated in terms of expensive comparison between two objects in a huge
database.

The problem can be mapped into a metric space (X, d), where a metric d com-
pares objects out of a universe X and reveals how close is an object with respect
to other. This metric must satisfy the follow properties: positiveness d(x, y) ≥ 0,
symmetry d(x, y) = d(y, x) and triangle inequality d(x, y) ≤ d(x, z) + d(z, y).
Given a dataset U ⊂ X, this kind of queries can be classify basically in two: range
and k-nearest neighbor queries. The first one consists in retrieving those objects
out of U within a radius to a given query, that is, R(q, r) = {d(u, q) ≤ r, ∀ u ∈ U};
the second one is to retrieve the k elements of U that are closest to q.

In general metric spaces, the (black-box) distance function is the only way
to distinguish between objects, and usually, the distance function is expensive
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CyT) of México, Universidad Michoacana de San Nicolás de Hidalgo, México, and
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to compute (e.g., consider comparing two multimedia objects). Hence the com-
plexity is absorbed by the distances evaluated.

Since this kind of datasets lack of total order, to avoid a full linear scan, a
dataset preprocessing, consisting in building an index structure that allows to
get the answer with less effort, is common. In this respect, the list of cluster
[5] is one of the most efficient algorithms in high dimensional spaces, however it
takes O(n2) distances computation to make the index.

In other hand, the permutation based algorithm [3] has been proved unbeat-
able in practice but only works well in high dimensions, as the authors claim. To
use this index, we have to compute the permutation of the query and compare
it with all the dataset permutations so as to compute the order to review the
permutations. This takes at least O(|P|) distances computations (|P| is the size
of the permutations) and O(n) evaluations of the permutation distance. There
have been several proposal to avoid the sequential scanning in the permutation
based algorithm, however all of them lost precision with respect to the original
technique [7, 10].

In this article we combine the ideas of the list of cluster and the permutation
based index and present a new metric index that improves on both of them. The
rest of this paper is organized as follows. In Section 2 we introduce some basic
concepts. Next, in Section 3 we describe the List of Clustered Permutations and
in Section 4 we show the experimental evaluation of our technique. Finally, we
draw our conclusions and future work directions in Section 5.

2 Previous work

One can approach the similarity search problem in either an exact or approxi-
mated way. In the first case, we want to retrieve all the objects satisfying the
similarity query. The main families of this kind of algorithms are the pivot based
indices and the ones based on compact partitions [6, 1]. In the second, the idea
is to retrieve most of the relevant elements that fulfill the similarity query. In
this case, we accept to miss some relevant elements for the sake of speed up the
query solving. There are already some non-exact approaches [4, 3, 12, 9].

In this paper, we combine the list of clusters with the permutation based
algorithm. Hence, in the next sections we describe both indices.

2.1 List of Clusters

There are many indices in metric spaces [6, 1]. One of the most economical and
rather efficient is the list of clusters (LC) [5], because it uses O(n) space and has
an excellent performance in high dimension. Regretably, its construction requires
O(n2) distance evaluations, which is very expensive. The LC is built as follows:

Firstly, a center c is selected from the database and a bucket size b is given.
c chooses its b-closest elements out of the database and build the set I, which is
the answer of a b-nearest neighbour query. Let crc be the distance from c to its
farthest neighbor in I. The tuple (c,I,crc) is called a cluster. (Notice that the



parameter b could be replaced by specifying the global covering radius, but this
alternative has worse performance [5].) This process is repeated recursively with
the rest of the non-clustered objects.

To solve queries, the query object is compared with all the cluster centers.
So, for each cluster, if the distance from its center to the query is larger than
the its covering radius plus the query radius we can discard its whole bucket,
otherwise we review it exhaustively.

2.2 Permutation based algorithm

In [3], the authors introduce the permutation based algorithm (PBA), a novel
technique that shows a different way to sort the space. During the preprocessing
time, a subset of objects P = {p1, p2, . . . , p|P|} ⊂ U is selected out of the database,
which are called the permutants. Each u ∈ U, computes its distance to all the
permutants (that is, compute d(u, p) for all p ∈ P) and sort them increasingly by
proximity. Then, for each object u ∈ U, we store just the order of the permutants
(not the distances) in the index.

If we define Πu as the permutation of (1 . . . |P|) for object u, so Πu(i) is
the i-th cell in the u’s permutation and pΠu(i) denotes the i-th permutant. For
instance, if Πu = (5, 1, 2, 4, 3) then pΠu(3) = p2. Within the permutation, for
all 1 ≤ i < |P| it holds either d(pΠu(i), u) < d(pΠu(i+1), u) or, if there is a tie
(d(pΠu(i), u) = d(pΠu(i+1), u)), then the permutant with the lowest index appears
first in Πu. We call the i-th permutant Πu(i), the inverse permutation Π−1

u , and
the position of i-th permutant Π−1

u (pi). The set of all the permutations stored
in the index needs O(n|P|) memory cells.

At query time, we compute the distance from the query q to all the permu-
tants in P and calculate the query permutation Πq. Next, Πq is compared with
all the permutations stored in the index, that is O(n) permutation distances.
In [11], authors introduce how to index the permutations’ space as a new metric
space, however they do not mix both kind of distances and they use a bigger
index. Authors in [3] claim that the order induced by Πq is extremely promising
and a reviewing a small fraction of the dataset is enough to get a good answer.

The permutation distance is calculated as follows: let Πu and Πq permuta-
tions of (1 . . . |P|). We compute how different is a permutation from the other
using Spearman Rho Sρ metric. In [8], Sρ is defined as:

Sρ(Πu, Πq) =

√

∑

1≤i≤|P|

(

Π−1
u (i)−Π−1

q (i)
)2

(1)

Since Sρ is monotonic we omit the square root as it preserves the ordering.
The main disadvantage of the PBA is that its memory requirement could

be prohibitive in some scenarios, especially where n is huge. Also, like other
indices, the dimension of the space has an impact on the index performance; in
particular, it has an effect on how long is the fraction to consider when solving
the approximated query.



3 List of Clustered Permutations

The simplest way to reduce the time consumed when building a list of clusters is
to avoid distance computations. For this sake, we have two possibilities: a bigger
bucket size, or using another, cheaper, way to construct the structure. Follow the
second possibility, we propose to combine the PBA with the LC. We choose a set
of permutants, where each one within this set has a double role, as permutant
and as a cluster center; and only the cluster centers store their permutation. We
call this structure the List of Clustered Permutations (LCP).

When solving a proximity query q with the standard PBA, we need to spend
|P| distance evaluations to compute the query permutationΠq, plus n evaluations
of the permutation distance to compute the order induced by Πq, and O(fn)
distance evaluations to compare q with the fraction f of the dataset objects that
are the most promising to be relevant for the query. With the LCP, we spend
only |P| (< n) evaluations of the permutation distance to compare Πq with the
permutation of each cluster center, and distances evaluations needed to review
non-discarded clusters. In our experiments, we verify that this is an improvement
over the traditional LC.

3.1 Building

Firstly, we randomly select a set P of centers and we compare every object within
the database with this set. This way, we compute permutations for all the objects
in the dataset. Then, we choose the first center and group its b = n

|P| − 1 most

similar objects according to the permutation distance (excluding all the cluster
centers, so that no center can be inside the bucket of another one). We continue
the process iteratively with the rest of elements in the dataset until every element
is clustered. Every center keeps its covering radius crc (that is, the distance to
the farthest object in the bucket), its bucket and its permutation (hence, we
discard the permutations of all the objects within a bucket).

The space used is n + |P|2 cells, and the construction time is O(n|P|) eval-
uations of both the space distance and the permutation distance. Note that we
can pack the whole LCP index using just (n+ |P|2) log2 |P| bits.

3.2 Querying

The standard LC discards clusters with the covering radius rule. Let d(q, c) be
the distance between the query and the center, r the query radius, and crc the
covering radius of center c. So, if d(q, c) > r + crc the cluster is discarded.

Since we have permutations, we introduce a heuristic method to discard a
cluster, modifying the criteria explained in [13]. Our preliminary experimental
results shown that if we have an object (for instance, a cluster center), and its
permutation has (just) one permutant that moved far away with respect to its
position inside query permutation, then this object is not relevant, so we can
discard it (and also its bucket). For instance, if the permutation of the query



is (1,2,3,4) and the permutation of the center is (4,1,2,3), even though most of
both permutations are similar, the position shifting of permutant 4 suggests that
the object can be discarded.

Of course, we need to establish a criterion to measure our finding. Basically,
we need to know how much could a permutant move away inside the permutation
of an object. So, using the query permutation and the range query radius, we
estimate how far a permutant can shift. To do that, for a pair of permutants
pi, pj , where pi is closer to the query than pj , and d(pj , q) − d(pi, q) ≤ r, our
method does not discard an object whose permutation has an inversion of these
permutants; this is, it does not discard an object that is closer to pj than to
pi. But, if the distance difference is larger, even though permutant inversion is
possible there as a big chance that the object were irrelevant so the object can
be discarded. Therefore, we take note of how many slots the permutant moves;
this is computed in Algorithm 1.

Algorithm 1 ComputingShift(Q, r)

1: Let Q the set of pairs (permutant, distance) to q, sorted by distance
2: permShift← 0
3: for i← 0 to |P| − 2 do

4: cont← 0, j ← i+ 1
5: while j < |P| AND Q[j].dist−Q[i].dist ≤ r do

6: cont← cont+ 1, j ← j + 1
7: end while

8: permShift← max {permShift, cont}
9: end for

10: return permShift

In the query procedure, we discard a cluster center (and its bucket) when a
permutant shifts more than tolerated.

4 Experiments

In this section we evaluate and compare the performance of our technique in
different metric spaces, such as synthetic vectors on the unitary cube and a real
life database. The experiments were run on an Intel Xeon workstation with 2.4
GHz CPU and 32 GB of RAM with Ubuntu server, running kernel 2.6.32-22.

4.1 Synthetic Databases

In these experiments we used a synthetic database with vectors uniformly dis-
tributed on the unitary cube. We use 100,000 points in different dimensions
under Euclidean distance. As we can precisely control the dimensionality of the
space, we use these experiments to show how much the predictive power of our
technique varies with the dimensionality.



Since ours is an approximated method, we relax the discarding criteria by
accepting bigger shifts and tabulate the results. They are shown in Figures 1,
2, and 3. In this plots, the labels bx000 indicates the size b of the LCP buckets.
Since b = n

|P| − 1, bx000 also fixes a value for |P|.
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Fig. 1. Unitary cube using 100,000 vectors. (Left) Dimension 8, (right) dimension 10.
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Fig. 2. The plots show the percentage of recall using the distances show in Figure 1.

In Figures 1 and 3, the solid line is the original LC. For this line, the axis
x represent the bucket size per thousand (from 1,000 to 10,000). As expected,
Figure 1 shows that the smaller the bucket size the better the query results, since
it is easier to discard a cluster with any of both criteria (this applies both for LC
and LCP). On the other hand, Figure 2 illustrates that as long as the shifting
criterion is relaxed, the recall of the method improves; but, it also increases
the number of distance evaluations needed to solve the query. In several cases,
accepting eight times in the permutant shift is enough to obtain an acceptable
recall, saving distance computations and cpu time. Finally, the time computed
for our method is lower than the standard LC, as evidenced in Figure 3.
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Fig. 3. Time consumed for experiments showed in Figures 1 and 2.

In order to illustrate the performance of our method, in dimension 10, using
buckets of 1,000 objects and accepting eight times in the permutation shifting,
our method requires 44% of distance evaluations of LC, obtains a 88% of recall
and uses 48% of LC cpu time.

Note that the LCP index uses very little space: one identifier for each non-
center object and only |P|2 cells for the permutations of centers. In this case,
when using buckets of 1,000 objects (so |P| = 100), this translates approximately
to 7.7 bits per object.

Figure 4 compares the LTC with standar PBA. In order to perform a fair
comparison, we allow 8 bits for each permutation, that is, four permutants coded
in two bits. As can be seen, LTC with buckets of 1,000 objects outperforms by
far the recall of standard PBA.
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4.2 Real Databases

In this section we show the performance of our heuristic in a real-world space of
images.

Cophir Database In this section we show the experiments made on a large
database. The CoPhIR is Content-based Photo Image Retrieval, with 1,000,000
of images [2] and buckets de 2,000 objects per cluster. For each image, the
standard MPEG-7 image feature have been extracted. So, each image is a vector
of 208 components.

In Figure 5, the label List of Cluster is the original technique retrieving the
exact nearest neighbors. It shows that the LC requires to review almost 30% of
the images. The label Recall is our proposal (it reviews from 1 to 7 % of the
database) and the label Distances is the distance evaluation used to retrieval that
recall. In this space, LCP performance is rather good. For instance, accepting
forty times of shifting, we get the best retrieval (94%), reviewing just 7% of the
database, in compare with LC that requires almost the 30% of the database.
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Fig. 5. 1 million of images. The solid line is the recall and the dashed line is the
percentage of distance evaluations. The dotted line is the original LC.

5 Contributions and Future Work

Similarity searching is a very important operation in multimedia databases nowa-
days. It involves finding objects in a dataset similar to a query object q, based on
some distance measure d. To do so, it is common to compute an index structure



in order to solve similarity queries efficiently. One of the most successful indices
is the permutation based algorithm. In this paper, we present a novel way to
index permutations so that we can save space when computing the distance be-
tween permutations. The advantage of our proposal is that it is now possible
to use the permutations in low dimensions and also we propose a parameter to
avoid to sequential scanning in the permutation based algorithm.

As a future work we consider two lines, namely:

1. For the sake of maintain small clusters, we can divide the LCP construction
in three phases. In the first, we choose the permutants and compute the
permutations for all the objects. In the second, we compute the clusters for
the permutants, and finally, we compute the other clusters. This way, we
expect to compute the LCP using very few distance computations, but the
amount of work computing the permutation distances should increase.

2. Since our method uses very little memory, we want to explore the possibility
of using short permutations for objects inside the clusters. This is supported
by the facts that the beginning of the permutation is the most important
data portion to process and that we can trade space in order to improve the
recall results.
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