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Abstract. Proximity searching consists in retrieving the most similar
objects to a given query. This kind of searching is a basic tool in many
fields of artificial intelligence, because it can be used as a search engine
to solve problems like kNN searching. A common technique to solve
proximity queries is to use an index. In this paper, we show a variant of
the permutation based index, which, in his original version, has a great
predicting power about which are the objects worth to compare with the
query (avoiding the exhaustive comparison). We have noted that when
two permutants are close, they can produce small differences in the order
in which objects are revised, which could be responsible of finding the
true answer or missing it. In this paper we pretend to mitigate this effect.
As a matter of fact, our technique allows us both to reduce the index
size and to improve the query cost up to 30%.

1 Introduction

Proximity or similarity searching has become a fundamental task in different
areas, for instance artificial intelligence and pattern recognition. The common
elements in these areas are an object set and a similarity measure among its
objects. The similarity is modeled by a distance function defined by experts
in each application domain (for instance, Euclidean distance), which tells how
similar two objects are. Objects are manipulated as black boxes and the only
operation permitted is to measure the distance towards another object.

Formally, a metric space can be seen as a pair (X, d), where X is a universe
of objects and d is a function d : X × X → R+ ∪ {0} that measures the distance
between them. The distance function must satisfy the following properties for
all u, v, p ∈ U: positiveness, d(u, v) ≥ 0, symmetry d(u, v) = d(v, u), reflexivity
d(u, v) = 0 iff u = v, and the triangle inequality d(u, p) + d(p, v) ≥ d(u, v).

Let U be a subset of objects from X of size n. In metric space searching, we
basically consider two kinds of queries: range queries and k-Nearest-Neighbor
queries. The range query retrieves all the objects within a given query radius,
that is, (q, r)d = {u ∈ U, d(u, q) ≤ r}. The k-Nearest-Neighbor query retrieves
the (first) k elements of U closest to the query q; formally, kNN(q)d = {u ∈ U,

v ∈ U \ kNN(q)d, d(u, q) ≤ d(v, q)} and |kNN(q)d| = k.



When solving a problem with metric space searching techniques, we split it in
two parts, preprocessing time and query time. During the preprocessing time, we
build offline a data structure, the index, in order to solve future online queries.
During the query time, we use the index in order to retrieve the objects from
U that are relevant to the query. The cost of the searching can be evaluated in
different ways, for instance, time to process the index, time consumed by side
computations, or space; but most of them can be neglected because the distance
function usually is expensive to compute (think, for instance, in comparing two
documents or two fingerprints). Hence, our results will be presented in terms of
the number of distance computations performed.

There are many algorithms for proximity searching in metric spaces, many of
them are surveyed in [3]. Basically, they are divided in two classes, exact search-
ing and approximated searching, even when similarity searching is already an
approximated search. There are three families of proximity searching algorithms:
pivots based, partition based and, nowadays, the permutation based algorithm.

Pivots are quite studied and it is known that this technique does not resist
the curse of dimensionality3, but in low dimensional spaces (2–8), it has good
performance. By the other hand, partition based algorithms have good perfor-
mance in medium and high dimension (8–20). However, in very high dimension
(20–), exact algorithms fail and we have to use approximated or probabilistic
approaches, the permutation based approach being one of the most successful
ones. This last approach still has some deficiencies. Our proposal is a permuta-
tion variant, where we try to mitigate the effect when two permutants are so
close that they can confuse the query procedure. Our experimental results show
improvements up to 30% both in space and in distance computations performed.

2 Previous and related work: permutations

In [1], the authors present a novel technique called the permutation based algo-
rithm. During the preprocessing, a subset P = {p1, p2, . . . , p|P|} ⊂ U is selected
out of the database, which are called the permutants. From each u ∈ U, we com-
pute its distance to all the permutants (that is, compute d(u, p) for all p ∈ P) and
sort them increasingly. Then, for each object u ∈ U, we store in the index just
the order of the permutants (not the distances), first the closest and so on. We
define Πu as a permutation of (1 . . . |P|) so that, for all 1 ≤ i < |P| it holds either
d(pΠu(i), u) < d(pΠu(i+1), u), or if there is a tie (d(pΠu(i), u) = d(pΠu(i+1), u)),
then the permutant with the lowest index appears first in Πu. We call the i-th
permutant Πu(i), the inverse permutation Π−1

u , and the position of i-th permu-
tant Π−1

u (pi). The index is composed by all the permutations for every object
in U, so it needs O(n|P|) memory cells.

The crux of this index is that two equal objects must have the same per-
mutation, while similar objects will hopefully have similar permutations. So, if

3 Empirically, the curse shows that the bigger the space dimensionality is, the harder
the problem becomes. A detailed explanation can be found in [3].



Πu is similar to Πq we expect that object u is close to query q. Thus, we have
changed the problem from searching U to searching the permutation set.

At query time, we compute Πq and compare it with all the permutations
stored in the index. Then, we traverse U by increasing permutation dissimilarity.
If we limit the number of distance computations we obtain a probabilistic search
algorithm. Fortunately, the order induced by Πq is extremely promissory.

Now we explain how to compare two permutations Πu and Πq of (1 . . . |P|)
using Spearman Rho Sρ metric. In [5], Sρ is defined as:

Sρ(Πu, Πq) =

√

∑

1≤i≤|P|

(

Π−1
u (i) − Π−1

q (i)
)2

(1)

Since Sρ is monotonous, we omit the square root as it preserves the ordering.
Let us give an example of Sρ(Πq, Πu). Let Πq = (6, 2, 3, 1, 4, 5) be the per-

mutation of the query and Πu = (3, 6, 2, 1, 5, 4) that of an element u. Permutant
p3 in permutation Πu is found two positions off with respect to its position in
Πq. The differences of position for each permutant within the permutations are:
1 − 3, 2 − 1, 3 − 2, 4 − 4, 5 − 6, 6 − 5. Their squares make Sρ(Πq, Πu) = 8. In
Algorithm 1, we show how we compute this similarity in time Θ(|P|).

Algorithm 1 SpearmanRho(Π−1
u , Πq, |P|)

1: INPUT: Π−1

u is the inverse permutation for u, Πq is the permutation of q, and |P|
is the size of permutation.

2: OUPUT: Reports the similarity between Πu and Πq.
3: t← 0
4: for i← 1 to |P| do

5: t← t + |i−Π−1

u (Πq(i))|
2

6: end for

7: return t

There are other similarity measures between permutations [5]. However, they
have a similar performance, and Spearman Rho shows the best balance between
accuracy and time to compute (see [2] for more details).

In [1], the authors show that this technique is unbeatable in high dimensional
spaces. In [4], the authors kept just the closest permutants and made an inverted
index to reduce the index space and get a good performance during the query
time. They gained a fast permutation similarity computation but lost precision.

There are other attempts for reducing the space used by the permutation
index. For example, in [9] every partition is split and just used its first and last
part. They improved the space used by the index but lost precision. In general,
all the attempts to reduce the space of the permutation based algorithm sacrifice
precision. In [7], the authors show an analysis of which part of the permutation is
the most important, concluding that its beginning is the most important section
and the middle portion is the least important.



In [8], the authors proposed to use groups of permutants instead of managing
them independently. They reduce the number of distances used and the new
permutations are almost as large as the original ones.

3 Our proposal

The main feature of the permutation index is its predicting power about which
are the objects worth to compare with the query, and what is the order to do
so. If we are allowed to do few distance computations, we would like that all
the relevant objects were at the beginning of the revision order. However, small
differences in the permutations can change this ordering. Moreover, since the
permutation distances are discrete, the order changes are especially important
at the beginning of the revision order.

We note that when two permutants are close, they can produce small differ-
ences in the permutations. When this occurs, we say those permutants collide.
With limited amount of work, these differences could be responsible of finding
the true answer or missing it. In this paper, we mitigate the collision effect.

3.1 Our contribution

Our contribution tries to reduce both the error rate of the permutation based
algorithm and the space used for every object in the index. An α−collision of two
permutants is defined as follow: let p1, p2 ∈ P, permutant p1 and p2 α−collide
with respect to object u ∈ U if |d(u, p1)− d(u, p2)| ≤ α. Our proposal is to keep
only the permutants free of α−collisions for every permutation. The intuition
of the method is that if we prevent permutants collisions then we only consider
the most important permutants for every permutation. Our results show that
we have reduced the size of permutations without losing precision.

Figure 1 illustrates the α−collision idea. Blank points are the permutants
p1, p2, p3, and p4; white ones are objects u1 and u2; and the query q is the filled
point. According to Spearman Rho, Sρ(q, u1) = 6 and Sρ(q, u2) = 0. This implies
that q is possibly closer to u2 than u1, but it is clearly false. With our technique
we detect that both p1 α−collides with p2 and p3 with p4 with respect to u1.
So, the new permutation for u1 is Πu1

= (1, 3), and for u2, Πu2
= (2, 3, 4). We

only need 2 permutants to learn that u1 is the closest to q.

Formally, every permutation is computed as follow. We have a set of per-
mutants P = {p1, . . . p|P|} ⊆ U. Let u ∈ U, u computes its distances to the
permutants and sorts them. u keeps those permutants free of α−collisions. Al-
gorithm 2 shows how to compute the partial permutation for an element u.

Algorithm 3 shows how to compute partial Spearman Rho in time Θ(|P|).
Note that the size of the reduced permutation (m) could become much too
smaller when compared to |P|. With α = 0 we return to the original permutation
based algorithm.
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Fig. 1. Example of collision between permutants. p1, p2, p3, p4 are permutants, q is the
query and u1, u2 are objects in the database. Note that the original permutations are
in brackets and the compact ones in parenthesis.

Algorithm 2 Algorithm: build-PartialPermutation(u, P, α)

1: INPUT: u is an object, P is a set of permutants and α is a parameter.
2: OUTPUT: u’s permutation, without α−collisions.
3: D[] is an array of tuples (d, p)
4: for i← 1 to |P| do

5: D[i]← (d(u, pi), i)
6: end for

7: Sort(D) // by component d
8: (Πu(1), last, cont)← (D[1].p, 1, 2)
9: for i← 2 to |P| do

10: if D[i].d > (D[last].d + α) then

11: Πu(cont)← D[i].p
12: (last, cont)← (i, cont + 1)
13: end if

14: end for

15: return Πu

Algorithm 3 SearmanRhoPartial(Πu, Πq)

1: INPUT: Πu, Πq are the permutations of u and q, respectively. Πu may be reduced.
2: OUPUT: Reports the similarity between Πu and Πq.
3: (t, c)← (0, 0)
4: for i← 1 to |Πq | do

5: T [i]← 0 // initializing
6: end for

7: for i← 1 to |Πu| do

8: T [Πu(i)]← i
9: end for

10: for i← 1 to |Πq | do

11: if T [Πq(i)] 6= 0 then

12: (t, c)← (t + |c− T [Πq(i)]|
2, c + 1)

13: end if

14: end for

15: return t



3.2 Solving queries

In order to solve range and kNN queries, first we need to compute the per-
mutation similarity between the query and every point in the database. After
that, we need to sort the objects in order to find the closest one, this takes
O(n log n). This algorithm is probabilistic and this technique only show a good
way to review the elements. Nevertheless, this technique preserves (and some-
time improves) the predicting power of the permutation based index. In the next
section, we show our experimental results.

4 Experimental evaluation

In the experimental evaluation, we used two kind of databases, namely, synthetic
and real-world datasets. All the plots have a comparison with the basic technique,
that is, when α = 0. Despite that our variant is probabilistic, the retrieval in all
the cases is 100%.

4.1 Synthetic Databases

The synthetic sets are random vectors uniformly distributed in the unitary cube.
Then, we can control the space dimensionality and evaluate how it influences in
our technique. We use datasets of dimension 16 to 32, with 10,000 objects.

In Figure 2, we use permutant sets of increasing size (ranging from 8 through
256 permutants) for a dataset in dimension 16. In the plots, |P| shows the initial
number of permutants used per each object in the dataset, and the line in red
is a separation-line just to read easily the results. Figure 2 (left) shows that as
α grows, the number of non-colliding permutants decreases (the separation line
is placed at 16 permutants). In the right side, we show the number of distances
used to solve a query. Every point under the separation-line makes less distances
than the original algorithm with 16 randomly chosen permutant, and also most
of them use less permutants (this can be checked reading the left plot).

In order to illustrate our point, we compare the performance of 16 and 64
permutants. Starting with 64 permutants with the original technique (line in
cyan with α = 0), we can reduce both the number of distance computations to
solve a query and also the number of non-collision permutants by changing the
parameter α. In fact, with α ∈ [0.05, 0.1], Figure 2 (left) shows that the tech-
nique reduces from 64 to 9 permutants (about 44% less memory compared with
16 permutants under the original technique). For this number of permutants,
Figure 2 (right) shows that the algorithm requires from 200 to 350 distance
computations (in the best case, it uses up to 43% less distance computations).

The gain in terms of distance computations or the number of permutants is
calculated as follow. Let C(|P|, α) and T(|P|, α) be the computed distances and
the number of permutants with parameters |P| and α, respectively.

gainC =
C(|P|, α)

C(|P|, α = 0)
∗ 100 (2)



gainT =
T(|P|, α)

T(|P|, α = 0)
∗ 100 (3)

The best results for dimension 16 are showed in Figure 3. In left side, we use
as reference |P| = 8 permutants with α = 0. The best tradeoff is where distances
and permutants are intersected. For example, using in the left the best result
with |P| = 64, we improve the original technique up to 30% both in distances
and permutants. In Figure 3 using as reference |P| = 16 (right side), we improve
the previous technique up to 40% using |P| = 128. In this plot we have just the
lines with gain in both distances and permutants. In other words, this is the
zoom of Figure 2 under the red line.

 1

 10

 100

 1000

 0  0.05  0.1  0.15  0.2  0.25  0.3

P
er

m
ut

an
ts

 (
m

)

α

Unitary cube [0,1]16, n=10,000

separation line
|P|=8

|P|=16
|P|=32
|P|=64

|P|=128
|P|=256

 10

 100

 1000

 10000

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
is

ta
nc

es

α

Unitary cube [0,1]16, n=10,000

separation line
|P|=8

|P|=16
|P|=32
|P|=64

|P|=128
|P|=256

Fig. 2. Unitary cube in dimension 16. (Left) Size of permutation (m) and distances
(right) when α grows.
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Fig. 3. The plots show the percentage of gain respect to the original permutation based
algorithm. This is the zoom of the figure 2 in region under red line.

For dimension 32, we obtain similar results. For example, in Figure 4 using
|P| = 8, the original idea made 1,080 distances, while starting with |P| = 256,
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Fig. 4. Unitary cube in dimension 32. (Left) Size of permutation (m) and distances
(right) when α grows.

when α = 0.15 we have reduced the permutation set to m = 8 permutants in
average per object. We also reduce the number of distances computed up to 750,
that is almost 200 distances less, about 30% less distances computations.

4.2 Real Databases

In this section, we show the performance of our heuristic in a real-world space
of images. The dataset used was obtained from the web site called Flickr, using
the URL provided by the SAPIR collection [6]. The content-based descriptors
extracted from the images were: Color Histogram 3×3×3 using RGB color space
(a 27 dim vector), Gabor Wavelet (a 48 dim vector), Efficient Color Descriptor
8×1 using both RGB and HSV color space (two 32 dim vectors), and Edge Local
4×4 (a 80 dim vector). The distance function used was Euclidean distance. The
dataset size was 1 million of images.

Figure 5 shows the performance of our technique and also it compares our
proposal with permutations by groups (introduced in [8]). Permutations by
groups use 8, 16 and 32 groups and 2 permutants per group (|P| = 8, 2), (|P| =
16, 2), (|P| = 32, 2). Since this technique is not affected by the parameter α, we
plot it as a straight line. Notice that using 16 permutants and α = 5, we can
improve the number of distances computed using less permutants in the index.

5 Contributions and Future Work

Similarity searching is a very important operation in multimedia databases and
other database applications containing complex objects. It involves finding ob-
jects in a dataset similar to a query object q, based on some distance measure d.
In this paper we have introduce a novel way to reduce the size of permutation
based algorithm without losing precision. To do so, we introduce the concept
of α-collision: two permutants p1 and p2 α−collide with respect to u ∈ U, if
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Fig. 5. Flickr database. (Left) Size of permutation (m) and distances (right) when α
grows.

|d(u, p1) − d(u, p2)| ≤ α. We propose to keep just the non-α-colliding permu-
tants for every object. Our algorithm improves the original technique up to 30%
in both computed distances and the size of the permutant set. We note that α

varies from a dataset to another. As future work, we are interested in turning
out this probabilistic algorithm into an exact one.
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3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric spaces.
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