
Web-based Refining of Machine Translations

Renzo Angles, Rodrigo Paredes, Federico Meza, Marcos Guti´errez, Felipe Valdebenito, Danilo Yáñez
Departamento de Ciencias de la Computación

Universidad de Talca
Curicó, Chile

Email: {rangles,raparede,fmeza}@utalca.cl,{magutierrez, fvaldebenito, dyanez}@alumnos.utalca.cl

Abstract—In this article we describe the architecture of
our Web-based platform for refining machine translations.
The main idea is to use the Web as a database of phrases,
and use this information in order to improve the quality of
translations. The platform considers three modules, namely:
crawling, indexing, and refining. This is an ongoing work, and
currently we are capable to take an English phrase and produce
its refined Spanish translation.

Keywords-Machine translation; Similarity searching.

I. I NTRODUCTION

The hypothesis of our work is that automatic transla-
tions [1] produced by Web services can generate inconsistent
translations of the source text, and such mismatches can be
refined by using the Web as a source of well-written phrases.

To illustrate our point, in Table I we show the results
obtained by several translation Web services for the phrase
“I used to be in love,”whose correct Spanish translation is
“Solı́a estar enamorado.” As can be seen, only one of the
tools can generate the right phrase. Note, however, that some
of those translations can be easily refined so as to obtain the
correct translation by changing or introducing a few words.

Table I
EXAMPLES OF MACHINE TRANSLATIONS OF THE PHRASE:

“ I used to be in love.”

Translation service (URL) Result
Google translate (translate.google.com)Yo soĺıa ser en el amor
Yahoo! Babel Fish (babelfish.yahoo.com)Estaba en amor
SYSTRANet (www.systranet.com) Estaba en amor
Babylon (traductor.babylon.com) Yo soĺıa estar en amor
yacom (traductor.ya.com) Solé estar enamorado
elmundo.es (www.elmundo.es/traductor)Soĺıa estar enamorado

The main ideas of our proposal consist on building a
database of (likely) well written phrases obtained from the
Web, and later use it as a knowledge base for refining
automatic translations. This obeys the intuition that well
written phrases are more common than the wrong ones, so
we can use the occurrence frequency of a phrase as a ranking
criterion for similarity searching.

There are two main sources of related work. The first (and
more important) comes from Machine Translation [1]. There
are several approaches to cope the automatic translation
problem, most of them based on corpus and statistical

techniques, however there is not an effective one [2]. The
second source correspond to Information Retrieval [3]. To
the best of our knowledge, we are not aware of any previous
published work on the subject of using the Web as a source
in order to improve the quality of automatic translations.

A. Indexing methods

In order to efficiently retrieve information out of a textual
database, first we need to index it [4]. Since our retrieving
problem consists on obtaining phrases from a dataset con-
taining an specific set of query words, a well suited data
structure is the inverted index [3], also called postings file
or inverted file.

An inverted indexis a data structure storing a mapping
from words to all their locations in the document collection.
For the sake of building the index, we first compute the vo-
cabulary of the whole collection. Later, for each vocabulary
term we store all the locations (for instance, the document
identifiers) containing it. In order to save space, we can only
store the document identifier that contain the word. However,
we can also be more specific by storing additional location
information, but spending more space. So, given a query,
that is, a set of wordsq = {w1, . . . , wk}, we obtain the
posting lists for each query word and intersect them. If the
resulting set is not empty, all the hits in the intersection of
the posting lists contain all the query words, so they can be
considered as relevant. In order to refine the result, we can
rank the resulting set according to a scoring function.

II. REFINING MODEL

A machine translationis a functionMT : Ls → Lt where
Ls is a source natural language andLt is a target natural
language. Considering that there is not an effective approach
for machine translation, we have that for some textt ∈ Ls

it applies thatMT (t) is not a valid translation fort.
We aim that there is a functionℜ which transforms

an invalid translationMT (t) in a valid one by applying
some transformations toMT (t). The functionℜ is called a
refining functionfor machine translation.

In order to simplify the definition of our refining model,
we reduce the problem to translate phrases. Aphrase is
a group of words that form a single unit in the syntax of

a sentence and has a meaning by itself. Two phrases are
similar if they have the same meaning.

Let F be a database of well-written phrases in a natural
languageL and S be a similarity metric between phrases.
Given a phrasef in L, we define the functionℜF

S
(f) = f ′

such thatf ′ ∈ F andS(f, f ′) > S(f, f ′′) for every phrase
f ′′ ∈ F − {f ′}.

Let f be a machine translation of a phrasefs, andfv be
a valid translation offs satisfying thatf ≈ fs. We aim that
S(ℜF

S
(f), fv) > S(f, fv).

III. I MPLEMENTATION

In order to validate our refining model, we have designed a
refining system composed of three modules, namely: Crawl-
ing, Indexing, and Refining. Figure 1 shows the general
architecture of the system. In this section we describe the
work done in each module.

Figure 1. Architecture of the refining system.

The indexing module implements suitable structures for
storing and querying phrases, words, and the relations among
all of them. The refining module implements the refining
function based on two similarity metrics between phrases.

A. Crawling module

The crawling module is responsible for collecting and
parsing Web pages in order to build the database of phrases
in the target language.

Our crawler is a parallel program comprising processes of
two kinds:readersandwriters. Readers download and ana-
lyze web pages; writers store on plain text files the phrases
collected by the readers, storing the associated URL’s on
a database. Communication between readers and writers is
accomplished by Remote Method Invocation (RMI). Three
tasks are performed in parallel: URL scheduling, download

Figure 2. Speedup of the parallel crawler for different configurations.

and analysis of web pages, and storage of information on
disk.

In order to find the best configuration for the parallel
crawler, we performed a series of experiments comparing
its performance against a sequential single-threaded crawler.
Both the sequential and the parallel crawler were setup to
retrieve 5000 pages selected at random. Figure 2 shows
the speedup for several configurations. It can be seen that
maximum efficiency is achieved by using 12 threads, that
is, 10 readers.

Aiming to find the optimal number of writer processes,
we performed an experiment where the crawler was run for
20 minutes measuring the number of writers working when
a writer is needed. We conclude that the best configuration
includes 3 writers.

B. Indexing module

We adapt the inverted index to our problem as follows. For
each vocabulary term, we store the identifier of the phrase
containing it. So given a query, a set of words, for each
of them we retrieve its posting list and later compute their
intersection. See [5] for further details.

This module implements suitable structures for storing
and querying phrases, words, and the relations among all of
them. The basic process is to take a phrase, split it according
to our definition of phrase, and then store both the phrase
and its words in the inverted list index [3] running on the
database. For this sake, we use a standard relational database
(PostgreSQL 8.3) indexed by B-trees and Hash.

We validate the effectiveness of the database indices. As
expected, Figure 3 shows indexing the tables with b-trees
or hash tables dramatically improves the results, and both

indices show mild differences in performance. On the other
hand, we run experiments to measure the size of each table.
When we use no index, hash index and b-tree index we
spend 171, 325 and 277 bytes per phrase, respectively, in
the database tables. Hence, we prefer to index the tables
using b-trees in order to obtain fast response reducing the
space usage.

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 1 1.5 2 2.5 3 3.5 4 4.5 5

qu
er

y
tim

e
[m

 s
eg

]

|phrases| x 10,000

Query time for intersecting four posting list

no index
b-tree
hash

Figure 3. Time for solving queries composed by three words.

C. Refining module

This module implements the refining function presented
in Section II. First we describe some criteria to determine
the similarity between word. Then we define two metrics
that can be used to implement a similarity search strategy.
A detailed description of this module can be found in [6].

Along this section, we assume that we have a set of
well-written phrases obtained from the crawling module, and
accessible via the indexing module. Additionally, we define
a phraseas a sequence of at mostn words separated by
prepositions or punctuation symbols. After computing some
statistics on the database, we fixedn = 7.

In order to determine the similarity between two phrases,
we consider the following criteria:

1) Coincident words: This refers to take into account
the number of words that occur in both phrases.
We consider exact and fuzzy coincidence. Since it is
possible that several phrases tie, the fuzzy criterion
tries to break the tie by taking into account the number
of stopwords that occurs in the phrases.

2) Relevant words: This criterion is directly related with
the criterion of coincident words. It consists in increas-
ing the similarity degree when the coincident words
are relevant, and decreasing the degree in case of
being stopwords (irrelevant words). Note that relevant
words are directly related with the meaning of a phrase
whereas stopwords just act as connectors.

3) Order of words: This criterion evaluates whether the
coincident words are in the same order. It assumes that
having words in the same order increases the similarity
between phrases.

4) Number of words: This criterion measures the differ-
ence of length (in terms of the number of words)
between phrases. This follows the intuition that the
greater the difference between the length of two
phrases, the more likely they have different meaning.

5) Verbal tense: This criterion is given by the equality
between the verbal tenses of the phrases.

6) Phrase context: The context of a phrase refers to the
topic where the phrase is meaningful. The context can
be determined by the occurrence of particular words
in the phrase.

Similarity search: We combine and evaluate the criteria
described above, in order to select a search strategy for
retrieving, from the list of well-written phrases, a subsetof
phrases considered candidate for the refining process.

Consider a formal definition for a general similarity search
strategy. Given a phrasef , a set of phrasesF , and a
similarity criteriaS, the functionSearch(f, F, S) returns a
set of phrasesF ′ ⊆ F , such that every phrase inF ′ satisfies
the similarity criteriaS with respect tof . Every phrase in
F ′ is called acandidate phrase.

We test four similarity criteria for searching:

(1) Exact coincidence, considering the order in the se-
quence of word.

(2) Exact coincidence, considering relevant words.
(3) Fuzzy coincidence by using combinations of relevant

words.
(4) Fuzzy coincidence by using all combinations among

words.

In order to determine the best searching strategy, we
consider three factors to evaluate: precision to obtain all
candidate phrases; computation time, and the number of
phrases returned (no necessarily candidates). The resultsof
the experiments, over a database of 30.000 phrases, are
shown in Table II). Considering that the most important
selection criterion is the precision of the method, we select
method (4) as the best candidate selection method.

criteria Time(ms) Phrase found Candidates
(1) Exact coincidence 68 0 0
(2) Exact coincidence 63 1 1

+ Relevant words
(3) Fuzzy coincidence 136 8 7
+ Partial combination
(4) Fuzzy coincidence 188 107 12
+ Total combination

Table II
EVALUATION OF CRITERIA FOR SIMILARITY SEARCHING

IV. CONCLUSIONS ANDFUTURE WORKS

We have developed a proof of concept application aimed
to improve the quality of poorly translated phrases from
English to Spanish. The experimental evaluation has shown
that, given a source phrase and its translation, both similarity
phrase metrics successfully rank the well-written phrase
among the top 10 most relevant phrases. Although neither
metric performs better than the other when computing the
rank of relevant phrases, evidence suggests that they can
work together in order to obtain better results.

Our refining approach has several advantages:

1) The refining system is independent of the source
language.

2) The system model is able to smoothly incorporate
other target languages.

3) The system can obtain the original translation from
any machine-translation Web service.

A. Future work

For future work, we plan to enhance the correctness and
quality of the refined texts. So, we need both to improve the
quality and the size of the phrase database. For this sake,
we plan to extend our crawler to support other significant
phrase sources (for instance, electronic books).

On the other hand, it is crucial to support a massive
knowledge database. In fact, our preliminary tests show
that a traditional DBMS (or an ad-hoc index in a single
machine) could not be able to support the storage and
querying requirements of the system. This motivates us to
research on ad-hoc indices for secondary memory, and also
on a distributed refining platform.

We need to improve the candidate selection method by
introducing some notion of ranking, in order to obtain the
most similar phrase among the candidates. We also consider
to customize the refining to an specific variant or dialect
of a given language which could be done by using phrase
sources from such specific language variant.

Finally, we also plan to develop a user-friendly interface
which allows the final user to visualize and select the
candidate phrases.

REFERENCES

[1] W. J. Hutchins and H. L. Somers,An Introduction to Machine
Translation. Academic Press, 1992.

[2] M. W. Madsen, “The limits of machine translation,” Master’s
thesis, Department of Scandinavian Studies and Linguistics,
Faculty of Humanities, University of Copenhagen, December
2009.

[3] R. A. Baeza-Yates and B. Ribeiro-Neto,Modern Information
Retrieval. Addison-Wesley, 1999.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. The MIT Press, 2001.
[Online]. Available: http://mitpress.mit.edu/algorithms/

[5] D. Yáñez, “Efficient data retrieval for phrase-based refining
of machine translations using the Web as a knowledge base,”
March 2011, Universidad de Talca, Computer Science final
project. In Spanish.

[6] M. Gutiérrez, “Design and implementation of phrase similarity
criteria,” March 2011, Universidad de Talca, Computer Science
final project. In Spanish.

