
Efficient Group of Permutants for Proximity

Searching

Karina Figueroa Mora1, Rodrigo Paredes2, and Roberto Rangel1

1 Universidad Michoacana de San Nicolás de Hidalgo, México
2 Universidad de Talca, Chile

karina@fismat.umich.mx, raparede@utalca.cl, a0529275g@correo.fie.umich.mx

Abstract. Modeling proximity searching problems in a metric space
allows one to approach many problems in different areas, e.g. pattern
recognition, multimedia search, or clustering. Recently there was pro-
posed the permutation based approach, a novel technique that is un-
beatable in practice but difficult to compress. In this article we intro-
duce an improvement on that metric space search data structure. Our
technique shows that we can compress the permutation based algorithm
without loosing precision. We show experimentally that our technique
is competitive with the original idea and improves it up to 46% in real
databases.

1 Introduction

Proximity or similarity searching has become a fundamental task in different
areas, for instance artificial intelligence and pattern recognition. The common
elements in these areas are a database (e.g. a set of objects) and a similarity
measure among its objects (e.g. Euclidean distance). The similarity is modeled
by a distance function defined by experts in each application domain, which tells
how similar two objects are. The objects are manipulated as black boxes and the
only operation permitted is to measure their distance towards another object.
Usually, the distance function is quite expensive to compute, therefore our goal
is avoiding to make comparisons between objects.

Another problem in these days is that there are huge databases and usually
these data use considerably less structure and much less precise queries than
traditional database system. Example are multimedia data like images or videos
where is common query-by-example search. In view of these challenges a way to
face up is building an index that allows us to search quickly. In particular, we
are proposing to use a metric space index. A metric space consists in a dataset
and a function distance (formally it is described at Section 2).

All metric space search algorithms rely on an index, that is, a data structure
that maintains some information on the database in order to save some distance
evaluations at search time. Chávez et al. [2] give a complete survey in this area
(the two main types of indices), but recently in metric space indices was a third
proposal, the permutation-based algorithm [1] which is unbeatable in practice

but is difficult to compress. All the proposals to compress this kind of index are
prepared to loose precision at retrieval but reducing the size of the index [3, 7].

In this paper we face the compression of the index, by a novel index using
cluster techniques. At Section 2 we introduce the basic concepts and discuss the
previous work in permutation-based algorithms. At Section 3 we explain our
proposal and finally at Section 4 we present the experimental part that support
our technique. We finish with our conclusions and future work at Section 5.

2 Basic Concepts and Related Work

Formally, the proximity search problem in a metric space may be stated as
follows: there is a universe X of objects and a nonnegative distance function

d : X×X → R
+ defined among them. The distance satisfies the axioms that make

the set a metric space: reflexivity (d(x, x) = 0), strict positiveness (x 6= y ⇒
d(x, y) > 0), symmetry (d(x, y) = d(y, x)), and triangle inequality (d(x, z) ≤
d(x, y) + d(y, z)). Usually, this distance is expensive to compute. We have a
finite database U ⊆ X, of size n, which is a subset of the universe of objects.

Basically, there are two kind of queries: range query and K-Nearest Neighbor

query (K-NN). The first one consists in retrieving those objects within a radius
to a given query, that is R(q, r) = {d(u, q) ≤ r | ∀ u ∈ U}, the second one is to
retrieve the K elements of U that are closest to q.

Most of the existing approaches to solve the search problem are exact algo-

rithms which retrieve exactly the elements of U as specified above. In [2, 6, 8, 9],
most of those approaches are surveyed and explained in detail. These kind of
indices usually have a good performance with a few dimensions (two to eight).
However, in high dimensions they compare the whole database. An alternative
in high dimension is the permutation-based algorithms (PBA).

In [1], the authors show the technique PBA as follows. Let P ⊆ U be a set
of distinguished objects from the database, called permutants. Each element of
the space, u ∈ U, defines a permutation Πu, where the elements of P are written
in increasing order of distance to u. Ties are broken using any consistent order,
for example the order of the elements in P.

Formally, let P = {p1, p2, . . . , pk} and u ∈ U. Then we define Πu as a
permutation of (1 . . . k) so that, for all 1 ≤ i < k it holds either d(pΠu(i), u) <

d(pΠu(i+1), u), or d(pΠu(i), u) = d(pΠu(i+1), u) and Πu(i) < Πu(i + 1).
Given permutations Πu and Πq of (1 . . . k), we can compare them using

Spearman Rho. It is defined as3

Sρ(Πu,Πq) =
∑

1≤i≤k

(

Π−1
u (i) − Π−1

q (i)
)2

. (1)

Let us give an example of Sρ(Πq,Πu). Let Πq = 6, 2, 3, 1, 4, 5 be the permu-
tation of the query, and Πu = 3, 6, 2, 1, 5, 4 that of an element u. A particular

3 The actual definition in [4] corresponds to
p

Sρ(Πq, Πu) in our terminology. We omit
the square root because it is monotonous and hence does not affect the ordering.

element p3 in permutation Πu is found two positions off with respect to its
position in Πq. The differences of position of each permutant within its permu-
tation are: 1 − 2, 2 − 3, 3 − 1, 4 − 4, 5 − 6, 6 − 5, and the sum of their squares is
Sρ(Πq,Πu) = 8.

There are other similarity measures between permutations [4], however in [1]
the authors show that all of them have a similar performance but specially
Spearman Rho has a balance between accuracy and time to compute it.

An attempt to compress the index is shown in [3]. They proposed to chose
just a few of permutants (the closest ones) in each permutation, and use an
inverted index to keep them. In this way they compress the index. They improve
in searching time and the space used by the index but retrieval is sacrificed.
They can lost up to 20% of the retrieval using less permutants.

There is another attempt to compress the index sacrificing the retrieval which
is described in [7]. Basically, they represent the permutation using just two bits,
and using another similarity between permutations. They show a good perfor-
mace but after all retrieval is sacrificed.

3 Our Proposal

The basic idea of a PBA consists in selecting a set of permutants, and produce
all the permutations (by comparing every object in the database against the
permutants, and sorting in increasing order).

Our proposal consists in using a set of permutants instead of a single per-
mutant per each component in the permutation. In this way, we use the same
amount of space that the original one but we have more precision.

Formally, we select sets of permutants G = {G1, G2, . . . , Gk} where G ⊆ U

and Gi ∩ Gj = ∅, ∀ i, j, 1 ≤ i, j ≤ k. Each group has m permutants. Then,
∀ u ∈ U, we compared u against the groups, that is, Di(u,Gi), 1 ≤ i ≤ k and
we sorted Di by proximity to u. In the next section we discuss the criteria to
compute Di.

3.1 Proximity to a Group

An important factor of the performance in our technique is how to decide the
proximity to the groups (i.e., how to compute D). We propose treating each
group as a cluster and we can use the methods to classify a cluster.

– Single Linkage: That is, we consider the lowest distance towards all the
objects in the group, Dimin

(u,Gi) = min∀p∈Gi
d(p, u).

– Complete Linkage: In this case we consider the greatest distance towards all
the objects in the group Dimax

(u,Gi) = max∀p∈Gi
d(p, u).

– Average: The third propose is the average of distances, that is, Diav
(u,Gi) =

P

∀p∈Gi
d(p,u)

|Gi|

For simplicity, in the follow we will use only Dmin, Dmax o Dav.

Figure 1 describes two (of the three) criteria of proximity towards the groups.
Permutants are the black points. G1 = {p1, p2, p3}, G2 = {p4, p5, p6}, and G3 =
{p7, p8, p9}. Every point has a line to the closest group according to the criterion
used. Notice that each permutation depends on these criteria. For example, u1

does not change its permutation when considering single or complete criterion,
but u7 does. In fact, using the single linkage Πu7

= 2, 1, 3 (Dmin(u7, G2) ≤
Dmin(u7, G1) ≤ Dmin(u7, G3)); and using the complete linkage Πu7

= 1, 2, 3
(Dmax(u7, G1) ≤ Dmax(u7, G2) ≤ Dmax(u7, G3)). In this figure, we have not
drawn the average criterion because it depends on each point and it can confuse
the idea. At the experimental section we can see the performance of these criteria.

��
��
��
��

�
�
�
�

��
��
��

��
��
��
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

p1

u1[1,3,2]

p3

u2

p2

u5
u6

p6

p5

p4

p7

p8

u4u3

Group2

Group1

p9

Group3

u2

u7

Maximum

Minimum

(Dmin)[2,1,3] or (Dmax)[1,2,3]

Fig. 1. Criteria for proximity to a group. Continuous line is for the minimum dis-
tance (single linkage) to the group, and discontinued line is for the maximum distance
(complete linkage).

3.2 Selecting Good Permutants per Group

Figure 1 shows the permutant groups closer each other, but that is not manda-
tory. In this section we consider other options:

1. Random (RTG). That is choosing elements at random to form a group.

2. Closer to its group (CTG). For this heuristic we propose choosing one per-
mutant p and to pick up closest ones to p for the rest of the group.

3. Farther to its group (FTG). Unlike to the previous one we use the opposite,
that is the farther ones to p.

Algorithm 1 shows our proposal. Notice that before to use this algorithm we
need to compute every Πu, ∀ u ∈ U. The fraction f of the database to traverse
depends on dimension and number of permutants, to name a few. For more
reference see [1].

Algorithm 1 gPermutation(q,r,f)

1: INPUT: q is a query and r its radius, f is the fraction of the database to traverse.
We have Πu, ∀u ∈ U.

2: OUTPUT: Reports a subset of those u ∈ U that are at distance at most r to q.
3: Let A[1, n] be an array of tuples and U = {u1, . . . , un}
4: Compute Πq with the same criterion used (Dmin, Dmax, Dav) to build every Πu

5: Every group was formed using RTG, CTG or FTG
6: for i ← 1 to n do

7: A[i] ← 〈ui, Sρ(Πui
, Πq)〉

8: end for

9: SortIncreasing(A) // by second component of tuples
10: for i ← 1 to f · n do

11: Let A[i] = 〈u, s〉
12: if d(q, u) ≤ r then

13: Report u

14: end if

15: end for

Analysis. Our technique uses the same amount of space as the original one,
that is Θ(kn), where k is the number of groups. We notice that, we can pack
several group identifiers in a single machine word. Also, we keep a small vector
with the identifiers of the permutants within the groups. That is Θ(km), where
m is the group size (we can also try to save some space by packing the identifiers
somehow). Another important issue to emphasize is that our technique spends
the same time as the original to solve a query because we use the same procedure
that the original idea at algorithm 1 (lines 6-15).

4 Experimental Section

In this section we evaluate and compare the performance of our technique in
different metric spaces, such as synthetic vectors on the unitary cube and real
life databases. The experiments were run on an Intel Xeon workstation with 2.4
GHz CPU and 32 GB of RAM with Ubuntu server, running kernel 2.6.32-22.

4.1 Synthetic Databases

In these experiments we used a synthetic database with vectors uniformly dis-
tributed on the unitary cube. We use 10,000 points in different dimensions under
Euclidean distance. As we can precisely control the dimensionality of the space,
we use these experiments to show how much the predictive power of our tech-
nique varies with the dimensionality.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140

D
is

ta
nc

es

Dimension

8 Groups, K−NN=1

m=1
m=2 FTG Dav
m=2 CTG Dav
m=2 RTG Dav

m=2 FTG Dmax
m=2 CTG Dmax
m=2 RTG Dmax
m=2 FTG Dmin
m=2 CTG Dmin
m=2 RTG Dmin

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140
D

is
ta

nc
es

Dimension

8 Groups, K−NN=10

m=1
m=2 FTG Dav
m=2 CTG Dav
m=2 RTG Dav

m=2 FTG Dmax
m=2 CTG Dmax
m=2 RTG Dmax
m=2 FTG Dmin
m=2 CTG Dmin
m=2 RTG Dmin

Fig. 2. Vectors uniformly distributed on the unitary cube n=10,000, K-NN=1,10.

Figure 2 shows the performance of our technique in different dimensions.
We use all the parameters proposed (FTG, CTG, RTG), and Dav, Dmin and
Dmax. The line with label m = 1 is the original permutant idea (one permutant
per group). Our technique can improve the original one in dimensions up to 64.
As can be seen Dav has better performance than Dmax and Dmin, and CTG

and RTG has better performance over FTG most of the time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

%
 R

et
rie

va
l

Database compared

Dim 16, 8 groups, K−NN=1

m=1
Dav m=2 RTG
Dav m=2 CTG
Dav m=2 FTG
Dav m=3 RTG
Dav m=3 CTG
Dav m=3 FTG

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

%
 R

et
rie

va
l

Database compared

Dim 32, 8 groups, K−NN=1

m=1
Dav m=2 RTG
Dav m=2 CTG
Dav m=2 FTG
Dav m=3 RTG
Dav m=3 CTG
Dav m=3 FTG

Fig. 3. Dimension 16 and 32, n=10,000, K-NN=1. We use the three criteria to sort
objects by proximity to the groups, and the three criteria to choose permutants per
group.

Figure 3 shows that experiments with m = 2 and m = 3 retrieve faster than
m = 1. In this case, for simplicity we only kept 8n bytes for the index. We also
use 8 × 2 or 8 × 3 machine words to identify each of the permutants per group.

However, we can pack the permutant index in just 3n bytes plus the space
of the permutant identifiers (as we are considering just eight groups, so we need
24 bits for each permutation).

4.2 Real Databases

In this section we show the performance of our heuristic in a real-world space of
images.

Flickr. The set of image objects were taken from Flickr, using the URL provided
by the SAPIR collection [5]. The content-based descriptors extracted from the
images were: Color Histogram 3×3×3 using RGB color space (a 27 dim vector),
Gabor Wavelet (a 48 dim vector), Efficient Color Descriptor (ECD) 8 × 1 using
RGB color space (a 32 dim vector), ECD 8× 1 using HSV color space (a 32 dim
vector), and Edge Local 4×4 (a 80 dim vector). The distance function used was
Euclidean distance. The dataset size was 1 million of images.

Nasa. A set of 40,150 20-dimensional feature vectors, generated from images
downloaded from NASA4 and with duplicate vectors eliminated. We also use
Euclidean distance.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000

%
 R

et
rie

va
l

Database compared

Flickr, 8 groups, K−NN=1

 m=1
Dav m=2 FTG
Dav m=2 CTG
Dav m=2 RTG
Dav m=3 FTG
Dav m=3 CTG
Dav m=3 RTG
Dav m=4 CTG
Dav m=4 RTG

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 R

et
rie

va
l

Database compared

Nasa, 8 groups, K−NN=10

 m=1
Dav m=2 CTG
Dav m=2 RTG
Dav m=3 CTG
Dav m=3 RTG
Dav m=4 CTG
Dav m=4 RTG

Fig. 4. Real-life database (left)Flickr database, (right) Nasa database. K-NN=1,10.

At figure 4 the original idea is labeled (black line) with m = 1, that is 1
permutant per group (randomly selected). With our technique we can retrieve
the 100% of the query using up to 46% less comparison using two permutants
per group (m = 2 and RTG). With three permutants per group we can also
get faster the 100% of retrieval but it grows slower than m = 2. Notice that
comparing just 5000 distances our technique has retrieved 90% of the data while
the original idea has retrieved only 75% of the data. The plots also show that the
FTG strategy has the worst performance when choosing the permutant groups.
Our technique has a better performance on a real database.

4 at http://www.dimacs.rutgers.edu/ Challenges/Sixth/software.html

5 Conclusions and Future Work

The permutation based algorithm for proximity searching is unbeatable in high
dimension, but this kind of index has not been improved using less space. All
the attempts to compress the index lose precision at retrieval.

In this article we present an improvement on the permutation-based algo-
rithm. The main idea is to have a set of permutants instead of a single permutant
(as the original idea). With our heuristic we can improve the permutation based
algorithm using the same amount of space as the original idea. The experimental
part shows that our technique can improve the performance of the original idea
up to 46% in real databases.

In future work we will select different amount of permutants per group. That
is, some groups will have more permutants than others.

References

1. E. Chávez, K. Figueroa, and G. Navarro. Effective proximity retrieval by order-
ing permutations. IEEE Trans. on Pattern Analysis and Machine Intelligence
(TPAMI), 30(9):1647–1658, 2009.

2. E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

3. A. Esuli. Mipai: using the pp-index to build an efficient and scalable similarity
search system. In Similary Searching and Applications, pages 146–148, 2009.

4. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J. Discrete
Math., 17(1):134–160, 2003.

5. F. Falchi, M. Kacimi, Y. Mass, F. Rabitti, and P. Zezula. Sapir: Scalable and
distributed image searching. In SAMT (Posters and Demos), volume 300, pages
11–12. CEUR Workshop Proceedings, 2007.

6. G. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM
Transactions Database Systems, 28(4):517–580, 2003.

7. E. Sadit and E. Chávez. On locality sensitive hashing in metric spaces. In Similarity
Search and Applications, volume ISBN: 978-1-4503-0420-7, pages 67–74. ACM press,
2010.

8. H. Samet. Foundations of Multidimensional and Metric Data Structures (The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

9. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach, volume 32 of Advances in Database Systems. Springer, 2006.

Acknowledgements

This paper was partially supported by National Council of Science and Technol-
ogy (CONACyT) of México and by Universidad Michoacana de San Nicolás de
Hidalgo, México.

