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ABSTRACT
Large scale data centers for crawlers are able to maintain
a very large number of active http connections in order to
download as fast as possible the usually huge number of
web pages from given sections of the WWW. This gene-
rates a continuous stream of new URLs of documents to
be downloaded and it is clear that the associated work-load
can only be served efficiently with proper parallel computing
techniques. The incoming new URLs have to be organized
by a priority measure in order to download the most rele-
vant documents first. Efficiently managing them along with
other synchronization issues such as URLs downloaded by
different processing nodes forming a cluster of computers
are the matters of this paper. We propose efficient and sca-
lable strategies which consider intra-node multi-core multi-
threading on an inter-nodes distributed memory environ-
ment, including efficient use of secondary memory.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms
Algorithms, Performance

Keywords
Priority Queues, Parallel and Distributed Computing

1. INTRODUCTION
The basic architecture of a Web search engine is composed

of (i) a crawler which is in charge of retrieving and storing
the documents to be indexed, (ii) an indexer that builds an
index data structure necessary to reduce the response time
to user queries, and (iii) the search engine itself which per-
forms query processing upon the index structure to quickly
present users the top-k documents per query. A crawler is
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composed of a scheduler that decides which documents are
to be retrieved first from the Web, and a large set of so-called
robots which make http connections to Web servers to obtain
the documents. The scheduler maintains an URLs priority
queue to determine the order in which documents are re-
trieved from the Web. Priority is defined by a composition
of various importance metrics for Web sites.

Current search engines perform centralized crawling using
a number of clusters of computers composed of several thou-
sand processors or processing nodes, all of them organized
to focus on different segments of the Web. These systems
are fully asynchronous and their large sizes are explained by
the huge size and highly dynamic nature of the Web and
the requirement of retrieving web documents in the least
possible time. Retrieving a given document i from a web
site takes a latency time ℓi and a transfer time ti(d) propor-
tional to the document length d where both values ℓi and
ti(d) are comparatively very large with respect to the values
of response times of the cluster processors, inter-processors
communication network, and the bandwidth seen from the
data center to the WWW. That is, connection and docu-
ment retrieval time is affected by the large latencies of the
Internet and therefore the available bandwidth can only be
exploited by increasing the number of concurrent robots.
This in turn is possible by executing a large number of asyn-
chronous threads running on a given set of processors. Thus
at any time these robots are at different stages of execution
and the whole system operates at a certain rate λ of finished
documents per unit time (throughput).

After a document has been downloaded a number of ope-
rations take place on it. The main ones are extraction of
links, text and relevant terms, together with collection of
information for ranking and indexing purposes. The partic-
ular details are out of the scope of this paper as they depend
on the method of crawling and indexing/ranking used by
the search engine. The relevant fact for this paper is that
the fully asynchronous activity of robots generates a con-
stant stream of operations that compete for the use of re-
sources such as processors, inter-processors communication
hardware and disk arrays. The arrival time of these on-line
jobs and the amount of work demanded on the resources are
in general unpredictable.

Current cluster realizations of crawlers are implemented
using the message passing approach to parallel computing.
Robots are implemented using threads and communication
is effected by point-to-point individual messages among pro-
cessors. For example a feasible scheme is to have a pair
(scheduler, set of r robots) in each processor and distribute



links or pointers to document uniformly at random by using
MD5 hashing on their URLs. Or even better is to distribute
Web site domains onto processors rather than individual
URLs. In this case the MD5 function maps a given URL
onto the processor in charge of its particular Web site do-
main. A communication action is triggered by a robot when
it discovers URLs that MD5 maps to other processors. This
reduces communication significantly as most web pages of a
given site are expected to point to pages in the same site.

An excellent discussion on parallel asynchronous crawlers
can be found in [7] and in the references there mentioned.
More recent work can be found in [4, 6, 8, 10].

This paper focuses on an entirely different problem whose
efficient solution (to the best of our knowledge) has not been
investigated so far (or at least no much technical details
have been revealed apart from what one can infer from the
typical, and in our opinion less efficient, standard multi-
heavy-threaded asynchronous message passing methods of
parallelization). We focus on the efficient implementation of
an important component of parallel crawlers devised to run
on cluster of computers. We believe our approach is novel to
the field because of the unique type of hybrid parallelization
method we promote and the data structures and parallel
algorithms that have devised and specially tailored to our
method of parallel computing.

In this paper we are specifically interested in obtaining the
best performance of hardware in charge of processing URLs
in order to efficiently feed up the pairs (scheduler, r-robots)
distributed onto a set of P processors. We show that by
properly decoupling the inherently asynchronous nature of
the work performed by each pair (scheduler, r-robots) from
the computations related to URL administration it is possi-
ble to achieve efficient and scalable performance. In parti-
cular we perform these computations in a bulk-synchronous
manner that allows the following optimizations (which are
the main contributions of the paper).

Inter-nodes parallelism: Overall parallel computations
are performed in blocks of R URLs in each processor (R
being an average value) and messages among them are also
sent in blocks. This prevents concurrency control conflicts
since grouped URLs are processed sequentially at each pro-
cessor which reduces overheads significantly. The value of
R is related to the rate at which Web pages are downloaded
and processed by each pair (scheduler, r-robots). In prac-
tice r ≫ R because of the relative difference in the speed
between both tasks, and in an actual setting the hardware
is scaled down to achieve the proper average R with the less
possible amount of resources.

Associated with each pair (scheduler, r-robots) there is
a queue Q which contains the very next URLs to be down-
loaded and the bulk-synchronous processes feed up the queues
Q in their respective processors at regular intervals. At the
same time the new URLs discovered by the robots are stored
in an input queue associated with each bulk-synchronous
process. These processes pick up these URLs at the instant
in which they store their R-sized packages in the queues Q.
A fraction of these robot’s URLs are sent to other processors
and the remaining ones are stored locally in the processor.
This sets the communication in both directions between the
asynchronous and bulk-synchronous tasks.

Overall we need to ensure (with relatively small varia-
tions) that at any instant the whole set of r · P robots are

downloading the most relevant URLs discovered until that
moment in the Web sample known (stored) up to this point
by the P processors. This defines the problem as a parallel
priority queue one in which we extract the top-(rP ) URLs,
we download them, store the newly discovered URLs in the
queue, then pick-up the next globally top-(rP ) and so on.
Internet and communication hardware latencies make unfea-
sible this ideal scenario. At the inter-nodes level we reduce
this gap by being efficient in communication since the bulk-
synchronism allows us to send messages in blocks among
processors and the retrieval of the top-r in each processor
can also be made in bulk. Our experiments with actual
samples of the Web tell us that error is quite below 1% with
respect to an optimal “communication instantaneous” prior-
ity queue.

We also provide an algorithm to control the amount of er-
ror incurred when processors work independently download-
ing a given amount of web pages without performing com-
munication among them. Sending messages grouped into
single blocks is more efficient than sending individual point
to point messages. This is not only because of the cumu-
lative overheads of individual messages but also because of
the associated of cost of heavy-threads management (e.g.
Possix threads) that it is necessary to perform in order to
handle messages in an asynchronous manner. In our case the
number of these heavy threads can be reduced to just one
and replaced by light threads (as we explain below) admi-
nistered by hardware as understood in multi-core processors
programed with the openMP library.

Intra-node parallelism: In each cycle of the bulk syn-
chronous parallel computations, each processor has to deal
with a set of URLs to be extracted from its local prior-
ity queue and a set of URLs to be inserted in the queue,
and yet another set of URLs to be sent to other processors.
In this paper we propose two highly optimized data struc-
tures and algorithms to perform these tasks. Both strate-
gies are friendly to secondary memory and multi-core par-
allel processing and can be used alternatively. One ensures
logarithmic worst case whereas the another has better aver-
age performance. The key to efficient performance in these
strategies comes from the fact that they work in chunks of R
URLs rather than inserting/removing individual URLs from
the data structure.

In addition, our bulk-synchronous scheme allows each pro-
cessor to work independently from the others during fairly
regular intervals of time. During each of these intervals each
processor essentially executes an insert-many(M) operation
followed by an extract-top(R) operation to store M newly
discovered URLs and get the R ones with the highest pri-
orities from the queue respectively. This bulk-synchronism
enables us to achieve near-optimal inter-node parallelism in
a multi-core processor supporting the efficient use of T light
threads. Namely, the running time costs of the operations
insert-many(M) and extract-top(R) operations can be re-
duced to a fraction very close to 1/T by keeping T indepen-
dent queues and executing in parallel T insert-many(M/T )
operations upon them and T operations extract-top(R/T )
performed also in parallel. When all data fits into main
memory our experiments show that this approach achieves
at least 95% of the 1/T optimal. The same sort of perfor-
mance is expected in processors containing arrays of disks
where each thread can write/read different sections of the



array in parallel.
Our data structures are also efficient in secondary memory

because they work with blocks of URLs. For example, one
of the data structures works with chunks of size R each of
which is stored in contiguous blocks of disk and it ensures at
most a logarithmic number of disk accesses per operation.

2. PARALLEL CRAWLING
We first describe the overall process of performing crawl-

ing in parallel on a cluster of computers. We simplify the dis-
cussion by assuming the use of a standard priority queue per
processor and assuming that the Web graph is distributed
on the processors by websites. We also assume that the
asynchronous and synchronous parts of the parallel crawler
are both hosted by the same set of processors (which may
not be the case in a production system). Each part lives as
an independent set of threads in each processor.

The cluster has P processors where each one maintains a
priority queue storing the URLs of the web-sites assigned to
the respective processor. Each URL is assigned a priority
value which depends of the application (in our experiments
we use OPIC [1]). Each processor maintains a scheduler
and r robots. The asynchronous component of the crawler
is composed of a set of Possix threads. The main one of these
threads in each processor executes the tasks of the scheduler
and there are r additional threads for executing the robots
(one thread per robot).

The overall process of crawling works in cycles composed
of three main steps:

1. Each scheduler performs R ≤ r operations extract-min
on its priority queue to obtain the R URLs with the
highest priority and assigns them to the R ≤ r robots
waiting for work to do.

2. Each robot downloads the document associated with
the URL and may buffer new URLs obtained from the
links in the document.

3. Once a sufficient number of robots have finished their
tasks1, each processor performs an insert operation
onto its priority queue to insert the URLs stored in
the buffer. This for the URLs belonging to the web-
sites assigned to the processor. The URLs that be-
longs to sites assigned to other processors are packed
together into a single message for each processor and
sent to their respective destinations.

The processes executing the synchronous machine are treated
as a bulk-synchronous parallel (BSP) computer [15]. In BSP
the parallel computation is organized as a sequence of su-
persteps. During a superstep, the processors may perform
computations on local data and/or send messages to other
processors. The messages are available for processing at
their destinations by the next superstep, and each superstep
is ended with the barrier synchronization of the processors.
The underlying communication library ensures that all mes-
sages are available at their destinations before starting the
next superstep.

The main BSP thread of the crawler performs an infinite
loop where in each cycle it executes a sequence of operations

1In practice it is not necessary to wait for idle robots since
the connection between the asynchronous and synchronous
processes can be made by the queue Q discussed in Sec. 1.

given by the functions receiveMessages(), run(), sendMes-
sages() and bsp sync() which indicates the synchronization
point and delivery of messages. The function run() is in
charge of processing all messages. In particular messages
sent to the main thread by the robots. Upon reception
of a message of type “URL Retrieval” a new URL is ex-
tracted from the priority queue and the URL is assigned
to an idle robot. Synchronization in this case is made by
POSIX pthread variables and functions. When the run()
function does not find idle robots it places the operation in
a pending jobs queue Q. Robots that finish current jobs get
new ones from this queue Q or if the queue is empty they
sleep themselves on condition variables. Processing a doc-
ument involves mainly (i) performing a parsing to extract
links to other documents (which can produce messages to
other processors), and (ii) extract and store the text and
ranking information for the search engine. Messages are
sent to the main thread of other processors to update their
respective URL priority queues.

The crawler must be able to automatically determine the
maximum number Rx of documents that are allowed to be
downloaded before sending messages containing packages
URLs to other processors. The average value of Rx can
be determined off-line from a previous crawling of the same
Web as follows. The downloaded sample can be represented
as a graph where nodes are web pages and arcs links. For
nodes we determine the pageRank value using the standard
iterative algorithm [5]. A priority queue Qx is created using
the pageRank values of the nodes as priority values. The al-
gorithm that we propose for this task performs the following
steps:

1. Set the superstep counter S= 0, the array of counters
for downloaded nodes C[i]= 0 and buffered messages
M [i]= 0 for each processor i, and the set W to empty.

2. Get the next node n from the priority queue Qx.

3. Set p = processor hosting site of node n and C[p] =
C[p] + 1.

4. For each processor i check if any M [i] > β where β
is a tolerance parameter. If true, then set S = S + 1
and M [j] = 0 for all processors j, calculate error (see
below), and empty W .

5. For all processors i containing a site for one of the links
k of node n, set M [i] = M [i] + 1 and insert k in the
set W .

6. Repeat from step 2 until Qx becomes empty.

The tolerance β indicates the number of messages that are
retained in each processor before sending the URLs to their
respective processors. This parameter can be set by per-
forming a binary search through several executions of the
algorithm with increasing values of β. The binary seach
determines the largest β value that keeps the average error
below a given threshold value. The error in each superstep is
computed as the ratio A/B where A is the number of nodes
that were extracted from Qx and stored in W during the
superstep, and B is the total number of nodes (documents
ids) extracted from Qx during the superstep. Notice that
in the simulated parallel computer the nodes stored in W
are not downloaded in the same superstep and thereby we



signal them as erroneously missed. The value of Rx is cal-
culated as max{C}/S. The cost of this algorithms is similar
to the cost of the pageRank algorithm. Notice that OPIC
can also be used in this case which would speed up notice-
ably the execution of the whole process. A comparison of
the effectiveness of this variant is out of scope in this paper.

3. PRIORITY QUEUES

3.1 A logarithmic worst case approach
Our first PQ is based on the idea of binary tournaments

upon a Complete Binary Tree (CBT) [11]. Each item stored
in the PQ consists of a priority value and an identifier. We
associate each leaf of the CBT with one item, and use the
internal nodes to maintain a continuous binary tournament
among the items. A match, at internal node i, consists of
determining the item with higher priority between the two
children of i and writing the identifier of the winner in i.
The tournament is made up of a set of matches played in
every internal node located in every path from the leaves to
the root. Every time we change the priority associated with
a leaf k, the tournament is updated by performing matches
along the unique path between k and the root of the tree. We
call this last operation update-cbt. The operations extract-
top, and insert are implemented using update-cbt as the basic
primitive. This structure is different from the standard bi-
nary heap (BH) priority queue and we have shown it is more
efficient than BH in several settings and applications [11].

A PQ with N items is implemented using: (i) an array
CBT[1 ... 2N − 1] of integers to maintain results of matches
among items, (ii) an array Prio[1..N ] of priority values, and
(iii) an array Leaf[1..N ] of integers to map between items
and leaves. A node at position k in the array CBT has
its children at positions 2k and 2k + 1. The parent of a
node at k is at position ⌊k

2
⌋. All internal nodes are stored

between positions 1 and N − 1 of the CBT. The highest
priority in the PQ is given by Prio[CBT[1]], its identifier is
i=CBT[1], and its associated leaf is at position k=Leaf[i] of
the CBT. [Note that it is not necessary to explicitly maintain
the leaves of the tree in the array CBT since by using simple
integer arithmetic on the array Prio we can calculate the
priority associated with a given leaf]. Finally, to enable a
dynamic reusing of item identifiers in the PQ, the array Leaf
is also used to maintain a single linked list of available item
identifiers.

Deletions in the CBT are performed by removing the child
with lower priority between the children of the parent of the
rightmost leaf, and exchanging it with the target leaf to
be deleted. On the other hand, insertions are performed
by appending a new rightmost leaf and updating the CBT.
This is done by expanding in two leaves the first leaf of the
tree. The cost of every step of the extract-top and insert
operations is constant except by the cost of the update-cbt
operation which in the worst case is obviously O(lg N). This
cost can be further reduced using parallel algorithms.

We maintain an independent CBT array for each one
of the T multi-core threads held in each processor. One
can think of it as a single global CBT stored in the pro-
cessor but symmetrically partitioned into T slices. The
insert-many(M) operation, executed as a sequence of insert-
many(R) operations in each processor, distributes uniformly
at random M/T URLs priorities (we call them keys) in each
CBT. The extract-top(R) extracts R/T keys from each CBT

procedure insertion-update-cbt(i, S , k)
h:= ⌊lg k⌋;
for j := 1 to h do Iy[j]:= CBT[k div 2h−j+1];
Build up array Dy from Iy without duplicates;
for j := 1 to |Dy | do

a:= Dy[j];
e:= SELECT(Prio[a] ∪ S , n);
Prio[a]:= { x | x ∈ (Prio[a] ∪ S) and x ≥ e };
S := { x | x ∈ (Prio[a] ∪ S) and x < e };

endfor
Prio[i]:= S ;

end
Figure 1: Insertion update.

procedure extraction-update-cbt(k)
h:= ⌊lg k⌋;
for j := h downto 1 do

a:= 2 (k div 2h−j+1);
b:= a + 1;
x:= MIN(Prio[CBT[a]]);
y:= MIN(Prio[CBT[b]]);
if ( x < y ) then swap(a, b);
CBT[k div 2h−j+1]:= a;
e:= SELECT(Prio[a] ∪ Prio[b], n);
Prio[a]:= { x | x ∈ (Prio[a] ∪ Prio[b]) and x ≥ e };
Prio[b]:= { x | x ∈ (Prio[a] ∪ Prio[b]) and x < e };

endfor
end

Figure 2: Extraction update.

to get the top-R priority keys.
Each node Prio[k] of the global CBT represents a set of

R keys such that the identifier a at any given node Prio[a]
of the global CBT, namely a = CBT[i], which is the winner
against another node Prio[b], holds the invariant that its R
keys are all of better priority than the corresponding R keys
of node b. We use a quick-sort like SELECT operation (see
next subsection) to redistribute the contents of global nodes
Prio[i] associated with every item i located along the path
from a leaf k to the root of the global CBT. The SELECT
operation returns the R-th priority value from a set of 2R
keys stored in two nodes of the global CBT. We also need
to determine the minimum key in any global Prio[k] node.

The insertion of a set S of n = R priorities associated
with a new item i is made by transforming into an in-
ternal node with two leaf children the leaf located at po-
sition N = m/n of the global CBT where m is the to-
tal number of keys. During an insert and after setting
CBT[2 N ]=CBT[N ], CBT[2 N + 1]=i, and Leaf[i]=2 N + 1
the operation insertion-update-cbt(i, S ,Leaf[i]) is executed
as shown in Figure 1 (larger numerical values indicate higher
priority values). The construction of arrays Dy and Iy, and
the update of array Prio[k] takes time O(log N).

The extraction of the set S containing the n = R highest
priorities is performed as follows. Let us assume that k is
the position of the leaf that holds the item which contains S
and i is the new item selected to be stored in k. During an
extract-top(n) and after setting Leaf[i]=k and CBT[k]=i, the
extraction-update-cbt(k) operation executes the steps shown
in Figure 2.



IQS (Set A, Index idx, Stack S)
If idx = S.top() Then S.pop()

Return A[idx]
pidx← random[idx, S.top()−1]
pidx← partition(A, A[pidx], idx, S.top()−1)
S.push(pidx)
Return IQS(A, idx, S)

Figure 3: IncrementalQuicksort.

For secondary memory management, the same strategy of
using R-sized nodes can be applied. Here each node is stored
in R/b blocks of contiguous blocks of disk of size b. To reduce
the number of accesses to disk, a RAM cache of blocks of size
R can be maintained using the LRU replacement heuristic.

3.2 An amortized cost approach
Let us now switch to the incremental sorting problem,

which can be stated as follows: Given a set A of m numbers,
output the elements of A from smallest to largest, so that the
process can be stopped after k elements have been output,
for any k that is unknown to the algorithm.

We will explain how to obtain the keys in increasing or-
der. To obtain them in the reverse order it is enough with
multiply each priority value by -1. So, when extracting, we
multiply again by -1 in order to restore the priority (if it is
necessary).

To output the k smallest elements, IQS [14] calls Quick-
select [9] to find the smallest element of arrays A[0, m− 1],
A[1, m− 1], . . ., A[k − 1, m− 1]. This leaves the k small-
est elements sorted in A[0, k − 1]. IQS avoids the O(kn)
complexity by reusing the work across calls to Quickselect.

When we call Quickselect on A[1, m − 1], a decreasing
sequence of pivots has already been used to partially sort A
in the previous call on A[0, m − 1]. Therefore, IQS stores
these pivots within a stack S, as they are relevant for the
next calls to Quickselect. To find the next minimum, we
first check whether p, the top value in S, is the index of the
element sought, in which case we pop it and return A[p].
Otherwise, because of previous partitionings, it holds that
elements in A[1, p − 1] are smaller than all the rest, so we
run Quickselect on that portion of the array, pushing new
pivots into S. Figure 3 shows algorithm IQS, which solves
the incremental solving problem in optimal O(m + k log k)
optimal expected time.

By virtue of IQS invariant, we see the following structure
in the array. If we read it from right to left, we start with a
pivot and at its left side there is a chunk of elements smaller
than it. Next, we have another pivot and another chunk,
and so on, until we reach the last pivot and a last chunk.

This resembles a heap structure, as the elements in the
array are semi-ordered. In the following, we exploit this
property to implement a priority queue over an array pro-
cessed with algorithm IQS. We call this IQS-based priority
queue Quickheap (QH). From now on we briefly explain how
to obtain a min-order quickheap. For further details, please
refer to Paredes’ PhD thesis [13]. To implement a quickheap
we need the following structures:

1. An array heap, which we use to store the elements.

2. A stack S to store the positions of pivots partitioning
heap. Recall that the bottom pivot index indicates the

fictitious pivot ∞, and the top one the smallest pivot.

3. An integer idx to indicate the first cell of the quick-
heap. Note that it is not necessary to maintain a vari-
able to indicate the last cell of the quickheap (the po-
sition of the fictitious pivot ∞), as we have this infor-
mation in S[0].

4. An integer capacity to indicate the size of heap. We
can store up to capacity−1 elements in the quickheap
(as we need a cell for the fictitious pivot ∞). Note
that if we use heap as a circular array, we can handle
arbitrarily long sequences of insertions and deletions as
long as we maintain no more than capacity−1 elements
simultaneously in the quickheap.

In the case of circular arrays, we have to take into account
that an object whose position is pos is actually located in
the cell pos mod capacity of the circular array heap.

We add elements at the tail of the quickheap (the cell
heap[S[0] mod capacity]), and perform min-extractions from
the head of the quickheap (the cell heap[idx mod capacity]).
So, the quickheap slides from left to right over the circular
array heap as the operation progresses.

To construct a quickheap, we create the array heap of size
capacity with no elements, and initialize both S = {0} and
idx = 0. The value of capacity must be sufficient to store
simultaneously all the elements we need in the array.

We note that idx indicates the first cell used by the quick-
heap allocated over the array heap, and the pivots stored in
S delimit chunks of semi-ordered elements. Thus, to find
the minimum of the heap, it is enough to focus on the first
chunk, that is, the chunk delimited by the cells idx and
S.top() − 1. For this sake, we just call IQS(heap, idx, S)
and then return the element heap[idx]. However, in this
case IQS does not pop the pivot on top of S. (Remem-
ber that an element whose position is pos is located at cell
pos mod capacity, thus we have to slightly change algorithm
IQS to manage the positions in the circular array.)

To extract the minimum, we first make sure that it is
located in the cell heap[idx]. (Once again, in this case IQS
does not pop the pivot on top of S.) Next, we increase idx
and pop S. Finally, we return the element heap[idx− 1].

To insert a new element x into the quickheap we need
to find the chunk where we can insert x in fulfillment of
the pivot invariant. Thus, we need to create an empty cell
within this chunk in the array heap. To do that, it is enough
to move some pivots and elements to create an empty cell
in the appropriate chunk. We first move the fictitious pivot,
updating its position in S, without comparing it with the
new element x, so we have a free cell in the last chunk.
Next, we compare x with the pivot at cell S[1]. If the pivot
is smaller than or equal to x we place x in the free place
left by pivot S[0]. Otherwise, we move the first element at
the right of pivot S[1] to the free place left by pivot S[0],
and move the pivot S[1] one place to the right, updating its
position in S. We repeat the process with the pivot at S[2],
and so on until we find the place where x has to be inserted,
or we reach the first chunk. Figure 4 shows the algorithm.

In order to cope with the crawling application, we mod-
ified the extract-min operation to support efficiently our
extract-top(R). Insertions can be made key by key and the
effect is by design the same than inserting a set of n in bulk.

Since idx signals the first cell of the quickheap allocated
on the array heap and pivots stored in S delimit chunks of



insert(Elem x)
pidx← 0 // moving pivots, starting from pivot S[pidx]
While true Do

heap[(S[pidx] + 1) mod capacity]←
heap[S[pidx] mod capacity]

S[pidx]← S[pidx] + 1
If (|S| = pidx + 1) or

(heap[S[pidx + 1] mod capacity] ≤ x) Then
heap[(S[pidx]− 1) mod capacity]← x
Return // we found the chunk

Else
heap[(S[pidx]− 1) mod capacity]←

heap[(S[pidx + 1] + 1) mod capacity]
pidx← pidx + 1 // go to next chunk

Figure 4: Insertions on the quickheap.

extractR(int R)
finalPos← idx + R− 1, top← S.top()
While finalPos ≥ top Do

While idx ≤ top Do Report heap[idx], idx← idx + 1
S.pop(), top← S.top() // we consumed this chunk

If idx = finalPos + 1 Then Return // we are done
// else, we have to find finalPos. We use quickselect and
first← idx, last← top− 1 // push on S pivot positions
While true Do // greater than or equal to finalPos

pidx← random[first, last]
pidx← partition(heap, heap[pidx], first, last)
If pidx < finalPos Then first← pidx + 1
Else

S.push(pidx)
If pidx = finalPos Then top = pidx, Break
Else last← pidx− 1

While idx ≤ top Do Report heap[idx], idx← idx + 1
S.pop() // we have consumed this chunk

Figure 5: Extraction of R minima.

semi-ordered elements, we can perform a multi extraction of
R minima following this algorithm, depicted in Figure 5. We
compute the position finalPos← idx + R− 1, which is the
R-th cell of the current extraction of R-elements. Next, we
traverse the stack S. All the pivots placed before finalPos
belong to the R-element set of minima we have to answer, so
we simply report all of them and their respective chunks of
elements (at their left), and update idx accordingly. If idx
reaches cell finalPos+1 we are done. Otherwise, using the
classic quickselect algorithm [9] we look for the finalPos-th
element in the chunk delimited by idx and S.top()− 1. All
the pivots in positions greater than or equal to finalPos
are pushed in stack S. Finally, as the pivot on top of S is
finalPos we report all the elements from idx to finalPos
and extract the pivot on top of S.

Notice that Quickheaps exhibit a local access pattern,
which makes them excellent candidates to reside on sec-
ondary memory. First, the stack S is small and accessed
sequentially. Second, each pivot in S points to a position
in the array heap. Array heap is only modified at those
positions, and the positions themselves increase at most by
one at each insertion. Third, IQS sequentially accesses the

elements of the first chunk. Thus we can consider that our
page replacement strategy keeps in main memory: (i) the
stack S and integers idx and capacity; (ii) for each pivot
in S, the disk block containing its current position in heap;
and (iii) the longest possible prefix of heap[idx, N ].

4. EXPERIMENTAL RESULTS
We worked with two datasets that correspond to pages un-

der the .cl (Chile) and .gr (Greek) top-level domains. We
downloaded pages using the WIRE crawler [2, 3] in breadth-
first mode, including both static and dynamic pages. While
following links, we stopped at depth 5 for dynamic pages and
15 for static pages, and we downloaded up to 25,000 pages
from each Web site. We use two samples of each domain
taken during different months. Both datasets are compara-
ble in terms of the number of Web pages, but there are wide
differences in terms of geography, language, demographics,
culture, etc..

The efficiency goal of the crawler is to retrieve the doc-
uments with the highest pageRank first [5]. However, the
pageRank value of a document is unknown during the crawl-
ing as it has to be calculated considering the whole collection
of documents. Instead crawlers can use heuristics to increase
the probability of retrieving the best documents in terms of
pageRank. A well-known heuristic is the so-called OPIC
(On-line Page Importance Computation) [1]. In OPIC, the
documents are given priority values as follows. The OPIC
value of a given document i is given by

opic(i) =
X

k

opic(k) / outDegree(k)

where k are the documents that points to document i and
outDegree(k) is the number of documents pointed to by doc-
ument k. Initially the home pages are given OPIC values
1.0, and these values are spread out to all descendant doc-
uments. A given document can receive OPIC contributions
from several pages which can belong to many other sites
located in different processors.

4.1 Previous experiments
In [12] we have verified that the site distribution approach

is very effective in reducing the total amount of communi-
cation among processors. In particular we have found that
even in small Web samples as the ones we use in this paper
the amount of available parallelism for robots can be huge
which ensures a constant stream of R documents per unit
time onto the bulk-synchronous crawler.

Figure 6 shows for each superstep the total number of
“failures” that occurred by adding over all processors and
taking average every 10 supersteps with R= 12,000 and P=
4, 8, 16 and 32 processors. We define “failures” as the num-
ber of times in which a processor receives a message ask-
ing to update an URL priority value for a document and
the document has already been retrieved by the respective
robot. Such a message can only increase the priority of the
document and thereby this does not necessarily implies an
error in the sequence of retrieved documents with respect
to a sequential crawler. However, the timely arrival of such
message could have put the document above other docu-
ments that were retrieved before it. The results show that
the number of failures is larger for larger P values at ear-
lier supersteps. This is because for smaller P values the
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Figure 6: The effect of late arrival of messages for
R= 12,000 and P= 4, 8, 16 and 32 processors.
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Figure 7: Predicting the number of crawled docu-
ments per processor per superstep for an error be-
low 5% using 4 processors on a 2 millions pages sam-
ple of the CL web.

processors keep a larger number of sites. Nevertheless re-
sults obtained with an equivalent sequential crawler shows
that failures are much more frequent in sequential crawling.
Failures caused for messages from other processors are be-
low 10% of the failures caused by URL updates belonging
to co-resident sites. Thus this effect is negligible.

From a Web sample crawled just before the current crawl-
ing it is possible to predict the size R of the batch of docu-
ments that can be downloaded asynchronously. In Figure 7
we show results for the prediction algorithm proposed in
section 2 for tolerances of 1,000 to 10,000 messages per pro-
cessor for P= 4. These results were obtained for an error
below %5 and show predictions fairly similar to R values set
manually to reduce the error. In particular, the average val-
ues for tolerance of 1,000 (which leads to errors quite below
%1) are similar to the values R/P used in those experiments.

4.2 Sequential experiments
To show the advantage of working with chunks of URLs in

each priority queue rather than individual URLs, we present
experiments that compare our queues with the standard
binary heap (BH) approach. Figure 8 shows results that
compare BH with our quickheap approach (QH). The per-
formance metric in this case is the number of comparisons
among keys. These results show that the QH outperforms

BH for a wide range as R scales up. The same trend is ob-
served in the I/O disk operations performed by the QH as
R grows. See Figure 9. In this case the BH strategy cannot
compete since performs too many random accesses to disk.
The same trend is observed for the different Web samples we
used in our experiments. We obtained similar performance
with the CBT based queue though it is less efficient than the
QH strategy with respect to disk access operations (about
20% on the average).
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4.3 Multi-threading experiments
We made experiments using openMP as implemented in

g++}version 4.1.2 and using T openMP threads on an In-
tel’s Quad-Xeon multi-core processor with 8 CPUs. We run
a benchmark program that repeatedly executed an extract-
top(R/T ) operation immediately followed by a correspond-
ing insert-many(R/T ) operation on the CBT queue. First
we initialize each CBT with A/T keys where A is 80 millions.

In Figure 10 we report speed-ups results defined as the ra-
tio running-time(T = 1)/running-time(T ), namely the time
with 1 thread to the time obtained with T threads. These
results show that it is feasible to achieve near optimal per-
formance for 8 threads which matches the number of CPUs.
This is because the CBT queue is able to achieve very good
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Figure 10: Speedups for T= 1, 2, 4, 8, 16, 32 and 64
light threads.

T R/T Extract Insert
1 8,000 1.00 1.00
2 4,000 0.99 0.98
4 2,000 0.98 0.97
8 1,000 0.95 0.93

Table 1: Efficiencies of extract and insert operations.

load balance, namely on the average all the computations
executed in each CBT by each thread are fairly similar. In
table 1 we show a validation of this claim. In this table we
show the efficiency defined as X/Y where X is the average
amount of computations performed in each CBT and Y is
the average maximum performed in any CBT. Optimal bal-
ance is achieved when efficiency is equal to 1, and the results
of the table show values very close to 1 for both operations.

We could not achieve similar performance with the quick-
heap strategy since it presented high imbalance in the extract-
top(R/T ) operation due to the its amortized cost strategy.
We plan in the near future to explore a different way to use
the T threads on this data structure. Clearly the approach
of using T independent quickheaps does not work properly
in this case.

5. CONCLUSIONS
We have presented two alternative priority queues for han-

dling the priorities of URLs in large scale parallel crawlers.
The first one is based on a Complete Binary Tree in which
nodes are associated with chunks of R priority values. This
strategy achieves near optimal performance in multi-core
processors since it presents an almost perfect load balance
when inserting and extracting URLs. We believe this is the
perfect choice when most of the queue can be kept in main
memory. For instance in cases in which the total number
of processors P is very large and the target section of the
WWW to be crawled can be evenly distributed on the P pro-
cessors. On the other hand, the second queue we propose
in this paper is more suitable for cases in which secondary
memory efficiency is of paramount importance. In any case,
it is clear that using standard heaps to organize URLs can
be very detrimental to performance.
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