
On the Least Cost For Proximity Searching in

Metric Spaces ⋆

Karina Figueroa1,2, Edgar Chávez1, Gonzalo Navarro2, and Rodrigo Paredes2

1 Universidad Michoacana, México.
{karina,elchavez}@fismat.umich.mx

2 Center for Web Research, Dept. of Computer Science, Universidad de Chile.
{gnavarro,raparede}@dcc.uchile.cl

Abstract. Proximity searching consists in retrieving from a database
those elements that are similar to a query. As the distance is usually
expensive to compute, the goal is to use as few distance computations
as possible to satisfy queries. Indexes use precomputed distances among
database elements to speed up queries. As such, a baseline is AESA,
which stores all the distances among database objects, but has been
unbeaten in query performance for 20 years. In this paper we show that
it is possible to improve upon AESA by using a radically different method
to select promising database elements to compare against the query. Our
experiments show improvements of up to 75% in document databases.
We also explore the usage of our method as a probabilistic algorithm
that may lose relevant answers. On a database of faces where any exact
algorithm must examine virtually all elements, our probabilistic version
obtains 85% of the correct answers by scanning only 10% of the database.

1 Introduction

Proximity or similarity searching is nowadays an essential tool in a number of
practical tasks such as vector quantization of signals, pattern recognition, re-
trieval of multimedia information, etc. In these applications there is a database
(for example, a set of documents) and a similarity measure among its objects
(for example, the cosine distance). The similarity is modeled by a distance func-
tion defined by experts in each application domain, which tells how similar two
objects are. The distance function is normally considered quite expensive to
compute, so that even I/O operations or the CPU cost of side computations are
not considered. That is, the search complexity is taken as just the number of
distance evaluations needed to answer a query, and thus the goal is to answer
the queries by performing the minimum number of distance evaluations.

To reduce the query cost, an index is built on the database before search-
ing it. The index is a data structure that stores information on some distances
among database elements. This information is used later to discard some ele-
ments without comparing them directly with the query.

⋆ Supported by CONACyT (Mexico) and Millennium Nucleus Center for Web Re-
search, Grant P04-067-F, Mideplan, (Chile).

Different indexes store different information on the database distances [7].
Some store a subset of the distances, e.g. all the distances between k chosen
pivots and all the rest, or all the distances between an element and its subtree,
in a tree-structured index. Some store just a range of distance values, and so on.
In general, the more information an index stores, the lower query cost it achieves
(although some use memory better than others). In this view, in a database of
n objects the most information an index could store is the n(n− 1)/2 distances
among all element pairs. This is usually avoided because it requires O(n2) space,
but it is applicable in some areas such as pattern recognition, as well as to index
database subsets. In particular, using all the available information establishes a
baseline on how good an index could be. Actually, all the development on metric
space indexing can be regarded as the quest for maintaining good efficiency while
reducing the amount of information stored [7].

The canonical algorithm that uses all the data is AESA [17]. For 20 years
AESA has been the indexing technique requiring, by far, the least number of
distance computations among all other indexes (which require much less space).

In this paper we show, for the first time, that it is possible to establish a
new baseline on the number of distance evaluations for proximity searching.
More specifically, AESA works by choosing a “pivot” from the remaining set
of candidates and using it to prune more candidates. The closer the pivot to
the query, the more effective the pruning is. We introduce a new technique
called iAESA to choose the next pivot, which guesses better a close candidate
and yields reductions in the number of distance evaluations of up to 75% in
document databases.

In very high dimensions, even AESA and iAESA boil down to a sequential
database scan. We explore the usage of iAESA as a probabilistic scheme that
may lose some relevant answers, but could quickly find most of them. We show
that, for example, on a database of face images where no exact algorithm can
obtain any significant savings over a sequential scan, iAESA retrieves 85% of
the correct answers by scanning just 10% of the database. This is 80% less than
what would be needed to obtain the same result with probabilistic AESA.

2 Related Work

2.1 Notation and Basic Concepts

Let (X, d) be a metric space, where X is the universe of objects and d the distance
function among the objects in X. The distance function d : X×X→ R

+ is defined
by experts in the application domain and expresses the dissimilarity between
objects in X. The distance function must satisfy the following properties: strict
positiveness (d(x, y) > 0 ⇐⇒ x 6= y), symmetry (d(x, y) = d(y, x)) and triangle
inequality (d(x, z) ≤ d(x, y) + d(y, z)).

Let U ⊆ X be our database of size n, q ∈ X the query, and r ≥ 0. The
similarity queries can be classified into two basic types:

– Range query, (q, r)d = {u ∈ U | d(u, q) ≤ r}

– k-nearest neighbor query, kNN(q)d = A such that ∀u ∈ A, v ∈ U − A,
d(u, q) ≤ d(v, q), and |A| = k.

The naive approach to these kind of queries is to compare the whole database
against the query. This solution, however, requires n distance computations. An
index is a data structure on U that solves queries of either type trying to use less
than n distance evaluations. As the objects are black-boxes, the search always
proceeds by comparing q against some element of U, discarding candidates using
that distance and the help of the index, and so on until every element is either
discarded or reported.

The performance of the algorithms in metric spaces is affected by the intrin-
sic dimension of data [7]. When the dimension grows, the mean of a random
distance increases and the variance diminishes. In high dimensions, there are no
algorithms that can avoid sequential scan. AESA is also affected by dimension
in spite of being the best proximity search algorithm in metric spaces.

2.2 AESA

The Approximating and Eliminating Search Algorithm (AESA) was introduced
by E. Vidal in 1986 [17]. AESA needs to compute and store a matrix as an index,
recording every distance d(u, v), ∀u, v ∈ U, that is O(n2) distances. During the
search process, an element from the remaining candidates, called a “pivot”, is
chosen and compared against the query. AESA uses the matrix of distances
to discard remaining candidates using the triangle inequality. The algorithm is
described in Section 2.3.

Although O(n2) space can be a large amount of memory, there are applica-
tions with small enough databases (up to few thousand objects) where managing
all the O(n2) distances is possible. For this kind of applications, AESA is still a
practical solution and the one performing least distance computations.

In the case of larger databases, where O(n2) distances cannot be stored, it is
still possible to partition the database with another technique and apply AESA
on each partition [11].

AESA has been for 20 years the algorithm that computes the least number
of distance evaluations to answer proximity queries. There have been some al-
gorithms aimed at reducing its preprocessing time or space used. LAESA [13]
chooses k elements of U as potential pivots, then reducing the space to O(kn).
An improved version of LAESA is Tree LAESA (TLAESA) [12] which achieves
sublinear side computations at query time at the expense of doubling the number
of distance computations on average. Reduced Overhead AESA (ROAESA) [18]
strictly calculates the same distances as AESA but reduces the query process-
ing time. Recently, graph t-spanner indexes [15] were used to simulate AESA,
obtaining almost the same number of distance calculations and using much less
memory. In fact, all the development on indexes for metric spaces can be seen
as attempts to simulate the performance of AESA using less memory [7].

2.3 Searching Using AESA

Like most indexing algorithms, AESA solves nearest neighbor queries by choos-
ing a pivot u ∈ U to compare against q, then filtering out as many candidates
of U as possible, and repeating until all candidates are compared or discarded.
AESA proposes a specific method to select the pivots: The next pivot to compare
against q is chosen as the candidate u minimizing

D(u) =
∑

p∈|P|

|d(u, p)− d(p, q)|, (1)

where P are those pivots already compared against q (thus the d(p, q) distances
are known, whereas the d(u, p) distances are stored in the matrix). The goal of
minimizing D(u) is to find a pivot as close as possible to q. The algorithm to
answer a closest neighbor query 1-NN(q)d is summarized in five steps.

1. Initialization. The sets of pivots P and filtered elements F are empty. Let
D(u) ← 0 for u, Dmaxu

← 0 and r ← ∞. Steps 2-5 are repeated until
U = P ∪ F.

2. Approximating. In this step a new pivot p is selected according to Equation
(1). That is p← argminu∈U−F−P

D(u).
3. Distance computation. Element p is compared against the query q by

computing d(p, q). The new p will be added to the set of used pivots P.
4. Updating the NN. If d(q, p) < r, the current nearest neighbor and r are

updated. Every object in U − F − P updates its approximation criterion
according to Equation (1), that is D(u) ← D(u) + |d(u, p) − d(p, q)| and
Dmaxu

← max(Dmaxu
, |d(u, p)− d(p, q)|).

5. Eliminating. Those u ∈ U−F−P such that Dmaxu
> r are discarded using

the triangle inequality. The elements filtered in this step are added to F. The
process continues at step 2.

The nearest neighbor query process of AESA is presented in Fig. 1 (left).
Range query process (q, r)d can be implemented similarly by keeping r fixed and
reporting every p that d(p, q) ≤ r.

These algorithms generalize to k-NN queries, where k > 1, by maintaining a
pool with the k closest elements p∗ found until now, so that r is the distance to
the current k-th nearest neighbor.

2.4 Proximity Preserving Order

We introduce some terminology needed to explain our technique [5].
Let P ⊆ U. Every element u ∈ U defines a preorder ≤u in P given by the

distance to u. It is defined for y, z ∈ P, as y ≤u z ⇔ d(u, y) ≤ d(u, z). The
relation ≤u is a preorder and not an order because some elements can be at the
same distance of u, and then ∃y 6= z such that y ≤u z ∧ z ≤u y.

Every object u can compute its preorder of P and associate it to a permuta-
tion, because the preorder induces a total order in the quotient set. Let us define

AESA

1. Let P← ∅ set of pivots
2. Let F← ∅ set of filtered elements
3. r ←∞
4. For u ∈ U, D(u)← 0, Dmaxu

← 0
5. while U 6= P ∪ F do

6. p← argmin
u∈U−P−F

D(u)
7. P← P ∪ {p}
8. if d(q, p) < r then

9. r ← d(p, q)
10. p∗ ← p

11. for u ∈ U− P− F do

12. Dmaxu
← max (Dmaxu

, |d(q, p)− d(u, p)|)

13. if Dmaxu
> r then

14. F← F ∪ {u}
15. else

16. D(u)← D(u) + |d(q, p) − d(u, p)|

17. return p∗

iAESA

1. Let P← ∅ set of pivots
2. Let F← ∅ set of filtered elements
3. r ←∞, Πq ←<>

4. For u ∈ U, F (u)← 0, Πu ←<>

5. For u ∈ U, Dmaxu
← 0

6. while U 6= P ∪ F do

7. p← argmin
u∈U−P−F

F (u)
8. P← P ∪ {p}
9. insert p in Πq

10. if d(q, p) < r then

11. r ← d(p, q)
12. p∗ ← p

13. for u ∈ U− P− F do

14. Dmaxu
← max (Dmaxu

, |d(q, p)− d(u, p)|)

15. if Dmaxu
> r then

16. F← F ∪ {u}
17. else

18. insert p in Πu

19. F (u)← F (Πq, Πu)
20. return p∗

Fig. 1. AESA and iAESA algorithms to retrieve the nearest neighbor (iAESA is de-
scribed in Section 3).

Πu = p1, p2, . . . , p|P| where pi ≤u pi+1 the permutation of u. The elements at
the same distance take an arbitrary but consistent order. We use Π−1

u (pi) to
identify the position of element pi in the permutation Πu.

It is important to notice that two equal elements must have the same per-
mutation, while two similar objects will hopefully have a similar permutation.
So if Πu is similar to Πq we expect u to be close to q.

Similarity between the permutations of q and u can be measured by Kendall
Tau, Spearman Rho, or Spearman Footrule metric [10], among others. As all
of these have a comparable predictive power [5], we choose Spearman Footrule
because it is not expensive to compute. This measure is defined as follows:

F (u) = F (Πu, Πq) =

|P|∑

i=1

|Π−1
u (pi)−Π−1

q (pi)|, (2)

where P is the current set of pivots. For example, let Πq = p1, p2, p3, p4, p5 be
the permutation of the query, and Πu = p3, p2, p1, p5, p4 the permutation of an

element u ∈ U. According to Equation (2), we have F (Πq, Πu) = |1 − 3|+ |2−
2|+ |3− 1|+ |4− 5|+ |5− 4| = 6.

3 Our Proposal: iAESA

From Section 2.2, we notice that the only way to improve the performance of
AESA seems to be by modifying the approximation criterion, that is, by propos-
ing a different method to select the next pivot.

We propose to select as the new pivot the element whose permutation is the
most similar to the permutation of the query. We describe this process next.

3.1 Searching Using iAESA

The algorithm consists basically in modifying the approximation criterion, which
will be replaced by the similarity between permutations. The permutations will
be formed by the pivots already used.

Instead of D(u), we will use F (u), which is initialized at 0 and updated upon
choosing a new pivot p according to Equation (2). The new pivot will be the one
with smallest F (u). Fig. 1 (right) gives the algorithm.

3.2 Comparing AESA with iAESA

In Fig. 2 we compare iAESA with AESA, using the same example shown in [17].
The example retrieves the nearest neighbor. In the figure (left side) the objects
are p1, . . . , p7 and q is the query; the solid lines are the terms of Equation (1);
the dashed lines indicate the process to select the next pivot (labeled step-1,
step-2 and step-3); the circle and the semicircles are the distances from a pivot
to the query, and the semicircles are labeled by the order of execution, step-1,
step-2 and step-3. They help viewing which elements are to be chosen given the
approximation criterion.

AESA initially selected p1. The next pivot was p2 because it minimizes Equa-
tion (1) (step-1). The next pivot is p3 (step-2) and finally p4 (step-4) according
to the approximation criterion.

On the other hand, in the process of iAESA, p1 and p2 are selected in the
same way as AESA. We have drawn the permutation of the elements at this
point. Note that p4 has the same permutation as Πq = {p2, p1}, therefore p4 is
the next (and last) pivot. In this example iAESA uses the pivots (p1, p2, p4), one
less than AESA.

The CPU time complexity of AESA is O(|P| · n), as |P| is the number of
iterations over the elements not yet discarded and D(u) is updated in constant
time. iAESA complexity is higher because we need O(|P|) time to update Πu

and F (u). This yields a total complexity of O(|P|2 · n).

|d(p6,p2)−d(q,p2)|

6

P7
P1

P2

P4

P5

P3

Step−1

S
te

p−
3

S
te

p−
2

q

Step−2

Step−3

Step−1

d(p2,q)

d(p3,q)

d(p1,q)

P

d(
p2

,q
)

1P2

P1P2

P1P2

P1P2

P2P1

P2P1

P3

P5

P7

P6

P1

P4

P2

Step−1

q

Step−2

Step−2

Step−1

d(p1,q)

P

Fig. 2. On the left, the example shown in [17] to explain AESA. On the right, iAESA
process for the same set of elements. The order of selection is step-1, step-2 and step-3.
Note that iAESA uses one pivot less than AESA in this example.

3.3 Combining AESA and iAESA

AESA and iAESA criteria can be combined into an algorithm that we call
iAESA2. The idea is to modify the approximation criterion of iAESA (i.e., the
similarity between permutations) using AESA approximation criterion D(u) to
break ties in F (u). These ties are common when there are few pivots. The CPU
time complexity of iAESA2 is also O(|P|2 · n).

In other words, iAESA2 uses two approximation criteria: a primary one given
by the least value of Spearman Footrule metric (i.e. the most similar permuta-
tion) and a secondary one given by the smallest D(u).

4 Probabilistic iAESA

A serious problem of all algorithms in metric spaces, even for AESA, is that when
the dimension of the space grows [7], the whole database needs to be reviewed.
In this case a probabilistic algorithm (which can miss some relevant answers) is
a practical tool. Any exact algorithm can be turned into probabilistic, by letting
it work until some predefined work threshold and measuring how many relevant
answers did it find.

Probabilistic algorithms have been proposed both for vector spaces [1, 19]
and for general metric spaces [9, 8, 6, 4]. In [4] they use a technique to obtain
probabilistic algorithms that is relevant to this work. They use different tech-
niques to sort the database according to some promise value. As they traverse
the database in such order, they obtain more and more relevant answers to the
query. A good database ordering is one that obtains most of the relevant answers
by traversing a small fraction of the database. In other words, given a limited
amount of work, the algorithm finds each correct answer with some probability,

and it can refine the answer incrementally if more work is allowed. Thus, the
problem of finding good probabilistic search algorithms translates into finding a
good ordering of the database given a query q.

Under this model, a probabilistic version of k-NN AESA, iAESA and iAESA2
consists in reviewing objects up to some fraction of the database and reporting
the k closest object found until then. In Fig. 1, we should replace the while

condition (line 5) by while |P| < percentage of database. For range queries we
would simply report any relevant element found until the scanning is stopped.

5 Experimental Results

We conducted experiments on different synthetic and real-life metric databases.
The real-life metric spaces are TREC-3 documents under cosine distance [2], and
a database of feature vectors of face images under Euclidean distance [14]. The
synthetic metric spaces are random vectors in the unitary cube.

5.1 Exact iAESA: Unitary Cube

The performance of the existing algorithms, to answer both range and k-nearest
neighbor queries, worsens as the dimension of the space grows [3]. Therefore, it
is interesting to experiment with spaces with different dimensions.

A way to control the dimension of the space is to generate synthetic sets
uniformly distributed in the unitary cube, and use this set as an abstract metric
space. We experimented with 4 to 14 dimensions, for databases of size from 5,000
to 20,000 elements. The performance of our technique can be seen in Fig. 3.
Notice that, as we increase the dimension of the data, the problem becomes
more difficult. Nevertheless, iAESA retains its (slight) advantage over AESA
when the dimension grows. In the best case, iAESA requires 17% less distance
evaluations than AESA. iAESA2 had the same performance as iAESA, so we
omitted it in this experiment. On the other hand, we note that iAESA loses its
advantage over AESA as the number k of nearest neighbors sought grows. For
example, in dimension 14 AESA takes over for k > 5.

5.2 Exact iAESA: Documents

A set of 1265 English documents obtained from the Wall Street Journal 87-89
collection from TREC-3 was indexed. We compare the documents under the
vector space, using the cosine distance [2].

Fig. 4 shows the results on this space. This time iAESA improves upon AESA
as the number k of nearest neighbors retrieved grows over 8. On the left we show
distance computations. It can be seen that iAESA2 is clearly better than both
AESA and iAESA in all cases, improving upon AESA by up to 75%, when k = 1.
Fig. 4 (right) displays overall CPU time. It can be seen that, even though iAESA
and iAESA2 suffer from a higher number of side CPU computations, they are
still preferable over AESA.

As a sanity check, we compared these results against choosing the next pivot
at random. This turned out to make four times more evaluations than iAESA.

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 4 6 8 10 12 14

D
is

ta
nc

e
ev

al
ua

tio
ns

Dimension

iAESA n=5000
AESA n=5000

iAESA n=10000
AESA n=10000
iAESA n=15000
AESA n=15000
iAESA n=20000
AESA n=20000

 128

 256

 512

 1024

 2 3 4 5 6 7 8

D
is

ta
nc

e
ev

al
ua

tio
ns

k nearest neighbors

iAESA dim 12
AESA dim 12
iAESA dim 14
AESA dim 14

Fig. 3. Performance of our technique against AESA for different dimensions and k =
2 (left side). On the right, we retrieve different numbers k of nearest neighbors, on
dimensions 12 and 14 and n = 5, 000. Note the logscale.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12

D
is

ta
nc

e
ev

al
ua

tio
ns

k Nearest Neighbors

iAESA
AESA

iAESA2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12
T

im
e

(s
ec

on
ds

)

k Nearest Neighbors

iAESA
AESA

iAESA2

Fig. 4. Comparing the performance of our technique against AESA on a document
database (1265 documents).

5.3 Probabilistic iAESA: Unitary Cube

We experimented with 3,000 synthetic random vectors in the unitary cube of
128 dimensions. Any exact algorithm is forced to compare every element in such
a high-dimensional space. Fig. 5 (left) shows the percentage of successful queries
when the number of objects compared against the query is limited. That is, we
plot the percentage of queries that retrieved all their correct k nearest neighbors
after scanning a fraction of the database. We can see that iAESA finds the k
nearest neighbors faster than AESA, and that iAESA2 is the fastest for large
k. AESA, on the other hand, needs to compare almost 80% of the database in
order to retrieve 95% of the answer.

On the right we show the ratio among the distance to the k-th NN found by
the algorithm versus the distance to the true k-th NN. In this computation we
exclude the queries where the algorithm finds all the k correct neighbors, that
is, on queries considered unsuccessful on the left plot.

Note that we have defined a query as unsuccessful even if it finds k−1 out of
the k correct elements. Fig. 6 plots the fraction of the correct nearest neighbors
found as we scan the database. For example, for with iAESA2 we need to scan
about 7% of the database to find 90% of the answers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8 9 10

%
 q

ue
rie

s
th

at
 r

et
rie

ve
d

its
 k

 n
ea

re
st

 n
ei

gh
bo

rs
Percentage of database reviewed

iAESA k=1
AESA k=1

iAESA2 k=1
iAESA k=2
AESA k=2

iAESA2 k=2
 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
er

ro
r

Percentage of database reviewed

iAESA k=1
AESA k=1

iAESA2 k=1
iAESA k=2
AESA k=2

iAESA2 k=2

Fig. 5. Searching for k nearest neighbors on 3,000 random vectors in 128 dimensions.
On the left, fraction of correct queries. On the right, distance approximation ratio for
the unsuccessful queries.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

of
 k

N
N

 r
et

rie
ve

d

Percentage of database reviewed

iAESA k=2
AESA k=2

iAESA2 k=2
iAESA k=5
AESA k=5

iAESA2 k=5

Fig. 6. Fraction of the answer retrieved as the scanning progresses. Random vectors
on dimension 128 and n = 3000.

5.4 Probabilistic iAESA: Face Images

Many real databases are composed of few objects, each of very high intrinsic
dimension. This is the case the FERET database of face images [16]. We use a
target set with 762 images of 254 different classes (3 similar images per class),
and a query set of 254 images (1 image per class). The intrinsic dimension of the
database is around 40, which is considered intractable: exact AESA and iAESA
must scan 90% of the database in order to answer k-NN queries on this space.

The performance of the probabilistic algorithms is compared in Fig. 7. It
can be seen that larger fractions of the database must be scanned in order to
satisfactorily solve queries with larger k. Again, iAESA2 is faster than the others.

6 Conclusions and Future Work

Proximity searching in metric spaces consists in retrieving the elements from the
database that are relevant to a given query. The similarity between objects is
measured by a distance function that is usually expensive to compute. AESA [17]
has been without question, for 20 years, the most successful algorithm to solve
similarity queries, because it computes the least number of distance evaluations
to answer them. We present a new technique, called iAESA, able to improve
upon AESA by up to 75% over different metric databases.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 3 4 5 6 7 8 9 10

%
 q

ue
rie

s
th

at
 r

et
rie

ve
d

its
 k

 n
ea

re
st

 n
ei

gh
bo

r

Percentage of database reviewed

iAESA k=1
AESA k=1

iAESA2 k=1
iAESA k=5
AESA k=5

iAESA2 k=5
 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
er

ro
r

Percentage of database reviewed

iAESA k=1
AESA k=1

iAESA2 k=1
iAESA k=5
AESA k=5

iAESA2 k=5

Fig. 7. Searching for the k nearest neighbors in a real-life image database of 762 faces.
On the left, fraction of correct queries. On the right, ratio of distances to the k-th NN
found versus the real k-th NN.

In very high dimensions there are no exact algorithms able to avoid sequential
scan. We propose a new probabilistic algorithm based on iAESA, which is able
to solve a large fraction of queries by scanning a small fraction of the database.
For example, on a faces image database, iAESA solves 85% of the queries by
checking just 10% of the database.

The only weak point of our approach is the extra CPU time required to reduce
the distance computations. This can be significant if the distances are not very
expensive to compute. We plan to address this issue in two ways. One is to avoid,
upon the insertion of a new pivot, the full recomputation of the permutation of
each element as well as its distance to the query permutation. We are exploring
a scheme that reduces this work by about 50%, and further reductions could
be possible by using smarter data structures. Another idea is based on the fact
that the distances to the query permutation can only grow as more pivots are
inserted. Thus we can delay the updating of the permutation of every element
until it would become the next pivot. At this point the pivot insertions delayed
are carried out on the candidate’s permutation and its distance to the query
permutation is updated. This may push the candidate behind on the priority
queue and forces us to choose the next best candidate, until we get an up-to-
date next candidate. Thus many elements could be removed from the candidate
set without ever having updated their permutations, thus saving CPU time.

References

1. S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimension. In Proc. 5th ACM-
SIAM Symposium on Discrete Algorithms (SODA’94), pages 573–583, 1994.

2. R. Baeza-Yates and B. Ribeiro. Modern Information Retrieval. Addison-Wesley,
1999.

3. C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces-
index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3):322–373, 2001.

4. B. Bustos and G. Navarro. Probabilistic proximity search algorithms based on
compact partitions. Journal of Discrete Algorithms (JDA), 2(1):115–134, 2003.

5. E. Chávez, K. Figueroa, and G. Navarro. Proximity searching in high dimensional
spaces with a proximity preserving order. In MICAI 2005: Advances in Artificial
Intelligence, volume 3789 of LNCS, pages 405–414, 2005.

6. E. Chávez and G. Navarro. Probabilistic proximity search: Fighting the curse of
dimensionality in metric spaces. Information Processing Letters, 85(1):39–46, 2003.

7. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın. Proximity searching
in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

8. P. Ciaccia and M. Patella. Searching in metric spaces with user-defined and ap-
proximate distances. ACM Trans. on Database Systems, 27(4):398–437, 2002.

9. K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Computational
Geometry, 22(1):63–93, 1999.

10. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J. Discrete
Math, 17(1):134–160, 2003.

11. K. Fredriksson. Parallel and memory adaptive metric indexes. Pattern Recognition
Letters, to appear.

12. L. Micó, J. Oncina, and R. Carrasco. A fast branch and bound nearest neighbour
classifier in metric spaces. Pattern Recognition Letters, 17:731–739, 1996.

13. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approxi-
mating and eliminating search (AESA) with linear preprocessing-time and memory
requirements. Pattern Recognition Letters, 15:9–17, 1994.

14. P. Navarrete and J. Ruiz-Del-Solar. Analysis and comparison of eigenspace-based
face recognition approaches. Int. Journal of Pattern Recognition and Artificial
Intelligence, 16(7):817–830, 2002.

15. G. Navarro, R. Paredes, and E. Chávez. t-spanners as a data structure for metric
space searching. In SPIRE 2002: 9th International Symposium on String Processing
and Information Retrieval, LNCS 2476, pages 298–309, 2002.

16. P. Phillips, H. Wechsler, J. Huang, and P. Rauss. The FERET database and
evaluation procedure for face recognition algorithms. Image and Vision Computing
Journal, 16(5):295–306, 1998.

17. E. Vidal. An algorithm for finding nearest neighbors in (approximately) constant
average time. Pattern Recognition Letters, 4:145–157, 1986.

18. J. Vilar. Reducing the overhead of the AESA metric-space nearest neighbor search-
ing algorithm. Information Processing Letters, 56:256–271, 1995.

19. D. White and R. Jain. Algorithms and strategies for similarity retrieval. Technical
Report VCL-96-101, Visual Computing Laboratory, U. of California, 1996.

