
MANAGING THE QOS OF E-GOVERNMENT:
METRICS FOR LARGE SCALE SOA

MAURICIO MONSALVE

DEPARTMENT OF COMPUTER SCIENCE,

UNIVERSIDAD DE CHILE

ABSTRACT. This paper present a set metrics for evaluating the operative aspects of the E-Government

SOA systems, based on technical and economical criteria as they are intended to improve manage-

ment of E-Government projects. We show analytically the desirable properties of these metrics and

study them in the concrete case of E-Government in Chile.

Software Metrics, Government Information Systems, Service Oriented Architecture, E-Government

1. INTRODUCTION

Failure is a typical word heard among E-Government project managers. According to Heeks

[1], the rate of failure of E-Government projects range from 60% to 85% among different estima-

tions. This is essentially due to poor management, where the lack of standard metrics to evaluate

the overall output of E-Government projects plays an important role. For example in Chile, the

PRYME, the institution in charge of the modernization of the government, stated in a report [2]

that there is no general model to measure the advancement in E-Government; there are just models to mea-

sure isolated aspects of the E-Government projects. These two facts, failure and lack of metrics, makes

management of these projects a hard problem to deal with. In this paper, we will focus on the

issue of metrics for E-Government.

The problem has no simple solutions. Using economic tools to analyze the advancement of

an E-Government project may not be enough. Economic indicators are not intended to study

low level technical work but are useful to study more general aspects of the projects. When the

development reaches the technical design stage, economic tools cannot handle the project. But,

somehow, it is still necessary to have those, especially when there is a need of economic measures.

On the other hand, software metrics also seem not precise enough for the context of E-Government.

Kaner et al [3] say that software metrics lack precision and objectivity. Moreover, they say that the

problem with software metrics is the formal model behind them. Sometimes it is missing, some-

times it is just a general idea. For example, using Lines Of Code (LOC) as a measure of work: really
1

do lines of code measure the amount of work? Efficient coders work less? This is a classic example

of a vague metric. Another critic is made by Fenton et al [4], whom say that many software metrics

lack the right causality. For example, estimating the size of the project in order to estimate the effort

when the size is caused by the effort. This can also be seen as a problem in the formalization of the

models behind the metrics. But the use of metrics is not avoidable, specially when working with

the public administration.

In the specific case of E-Government context, Moore [5] states the problems of measuring the

progress in E-Government projects. He criticizes many existing E-Government metrics as the

maturity or online sophistication. He says that those metrics are not very meaningful and the citizen

is not considered in these. This leads to another need: taking the citizen into account in the metrics.

In order to incorporate the citizen in the metrics, it is necessary to use social measures.

In summary, management of E-Government projects need particular metrics about the project/system

and many of the existing software metrics lack formalism, there is little link between social eco-

nomic measures and software metrics, and the citizen is not taken into account in existing mea-

sures. Considering this, we propose a formal model and a set of metrics for dealing with large

scale SOA systems, as SOA are of central importance to E-Government projects. Our objective is

to lay a bridge between the languages and objectives from the public administration and those of

the informatics area. Following these ideas, we define a formal model and the metrics are direct

measures of this model, as an isomorphism of a real SOA.

Similar work, in terms of studying SOA systems for E-Government, can be found in [6], [7], [8]

and [9]. The problem with these models and metrics is that require much more complexity and

knowledge about web services and they do not take into account economical criteria, and are not

intended to improve management. (There is little or no risk detection in these works.)

Contributions. In this work we present a model of meauserement of some aspects of E-Government

SOA systems based on Welfare Economics, that is, putting emphasis on the social aspects of the

project.

• We present metrics that follow a formal model based on economic properties of SOA sys-

tems as network having welfare economics as an objective, as opposed to traditional ones

based purely on software engineering or economics of the firm.

• We prove analytically that these metrics have desirable properties. Many metrics are sta-

tistical estimators, so these are natural attributes of the system, and other metrics facilitate

the comparison of systems of different size.
2

• We apply these metrics to the case of Chilean E-Government development. In particular,

we study thoroughly the case of the Foreign Trade Agency and show the usefulness of the

proposed metrics.

Organization. This paper is organized as follows. In the section Preliminaries we present the formal

model for the metrics. The link between economics and software, in the context of SOA projects,

is made here. In the section Common Problems we summarize the problems we have found using

the Chilean experience in E-Government development projecs. In the section Metrics we introduce

the metrics considering the formal model and the common problems. As metrics are intended to

help management, their objective is to detect problems and keep a good level of service. In the

section Application we analyze the Chilean foreign trade institution using metrics. Finally, in the

section Conclusions, some final remarks about the research are presented.

2. PRELIMINARIES

2.1. Welfare Economics. 1

Social projects are intended to increase the social welfare of their countries. Therefore, E-Government

projects have the same objective. Like any social project, E-Government projects should be valu-

ated using socio-economic valuation, not just typical NPV (Net Present Value) nor ROI (Return On

Investment) measures. What matters is total amount of social wealth caused by the project, so a

social NPV valuation shall be used.

Social welfare is measured as the total surplus of a given population. In perfect competition,

consumer surplus is the total saving of consumers as they buy products at lower prices than their

willingness to pay:
∫ D−1(P ′)
q=0 (D(Q) − P ′)dq, where P = D(Q) is the function of demand and P ′

is the current price of the products. An analogy can be done to the citizens, and say any saving

increases their surplus.

How do E-Government Services increase the Social Welfare? An E-Government Service, as a

project, consists on serving an existing service but by using Information Technologies. Therefore,

the changes are related to how the service is provided. In a client-server paradigm, this means the

client is serviced without interference like waiting, many trials, etc. For the client, that means less

costs. What we are saying is that better services are cheaper to the client; they give more surplus to

them. So, QoS (Quality of Service) is related to social welfare.

For example, let us recall the income declaration process. Every year, Chileans have to declare

their income to the SII, el Servicio de Impuestos Internos (translated as the Internal Revenue Service),

1More information can be found at [10].
3

FIGURE 1. Surplus in perfect competition.

an institution in charge of everything related to tax collection. In the 90’s, a person had to go to

the closest SII office, fill some forms and wait in an usually long queue. Now, you only have to

log in the SII’s website and fill the forms on-line without waiting. Moreover, even the forms are

self filled! The citizen has saved a lot of money with this. Therefore, his/her surplus has increased

and so the social welfare.

An E-Government Service has two kinds of clients: citizens and public administration. Citizens

benefits are related to time saving, mobilization avoided, etc. Public Administration benefits are

related to process improvement and other management savings. But these savings may be affected

as systems grow. We will focus in problem detection and the QoS measurements of E-Government

SOAs, as systems made by coupling services, particularly to the case of web services (without

much loss of generality). We we will not take into account management problems as lack of

political involvement, budget restrictions and so on. We will just focus on the more operational

and technical part of E-Government SOA projects.

2.2. Network Economics. SOA systems share three important economic properties:

(1) Scale economies: as the system grows, it becomes easier (cheaper) to add new functional-

ities. On the contrary, the system has to be done from scratch in the beginning. SOA is

commonly used because of this property of extensibility. (More formally we can say the

cost of developing a SOA is a sub-additive function on the size of the system; if S1, S2 are
4

sizes, the cost of building a system of size S1 + S2 is C(S1 + S2) ≤ C(S1) + C(S2) because

of the sub-additivity property.)

(2) Barriers to exit: removing a service may be dangerous to the system. Other services may

depend on the service being removed. If one service is removed, a great part of the network

may be disabled. (This might be caused by the discard of the code on the service removed

and some portion of the code of the services that are dependent on the removed one. In

other words, the size of the system may greatly decrease by discarding a part of it.)

(3) Network externalities: if a service slows down, the rest of the system may slow down because

of this. If a service gets faster, also the rest of the SOA. If a service does not work properly,

so does the SOA. Note that this effect is transmitted through the dependent services. (We

are talking about the value of the system as a finished or functional product.)

The last two properties are important because we can identity a dependency relationship among

the services. This relationship explains why there are barriers to exit and externalities. The depen-

dency relationship is the main engine behind the value transmission across the system.

2.3. The Graph Approach. Having stated the relevancy of the dependency relationship, it is nat-

ural to start modeling the system by the use of this relationship.

Let R be the dependency relationship, a binary relationship such that (a, b) ∈ R means “a de-

pends on b”, and a, b ∈W are services (represented by the set W). So, R has the following proper-

ties:

• A call between two services is a dependency: if a calls b then (a, b) ∈ R. Let us call this a direct

dependency.

• Transitivity: if (a, b), (b, c) ∈ R ⇒ (a, c) ∈ R. Let us call this an indirect dependency as it is

explained by the transitivity property.

If we are to use this kind of relationship, we can model it by means of a graph. We will call this

graph G(W,D) where W is the set of services and D is the set of direct dependencies or calls. It is

clear that D ⊆ R ⊆W ×W .

As we are modeling stochastic issues (a call may or may not be realized during the execution of a

service), we will have to rely on some statistical values. In particular, we will need the probability

a service does a call and the expected number of calling made by a service.

Definition 1. Let (v, w) ∈ D be a call and T a time interval. We define the metric Pc(v, w) as the

probability that the service v calls w during an execution, and the metric Nc(v, w) the expected number of

times the service v calls w during an execution.
5

FIGURE 2. Graph approach to modeling SOAs.

In this graph G(W,D), the services are W = {A,B,C,D,E, F,G} and the direct dependencies are

D = {(A,D), (A,E), (B,C), (C,F), (D,F), (E,G)}.

Note that Pc shall be measured as the frequency of times that the service does the specific call.

Nc shall be measured as the average number of times that the service does the certain call during

a service. Both metrics are natural attributes of the system.

Using the graph approach is convenient because it is possible to visualize the graph in a com-

fortable way and it is pretty natural to understand what the different parts of the graph are. But

the best part is the straightforward formalism for the development of metrics, as we show below.

3. COMMON PROBLEMS

We have stated how a SOA is useful in the E-Government context (by explaining the social

value of the system) and how to model it by means of a graph. But our model is not important if

it does not help the development and management of SOA systems.

During our research, we have found the following set of potential problems:

• A bad implementation of one or more web services.

– A suboptimal algorithm was used.

– Bad programming practices. For example, a web service that sends a big response

when the message can be simplified (hundreds of Kilobytes or even Megabytes per

message!).

• Server overload due to a high demand.

– Some services are too demanded.

– There are redundant dependencies.

• There are critical services; if their QoS goes down, also goes down the overall QoS of the

system.
6

• Network latency. For example, the extreme south of Chile has connection problems.

• A server stopped working, so its services.

– External failure (lack of energy, earthquakes, etc.).

– Cracking (black hats). Fortunately, this isn’t a great issue.

• A web service is slow due to its dependencies.

• The technology got obsolete.

– A server has old hardware. This is a rather common problem in small public institu-

tions.

– A web service was built on top of obsolete technology (legacy systems). A conse-

quence of this is the current variety of technologies used by the different institutions.

Some problems are hard to discover with a metric, like cracking. But other problems are related to

response times, demand and the SOA structure. Therefore, we will build metrics using that data

so we can detect some of these problems.

How to deal with potential problems (risks) or active problems? The following set of strategies

may be useful in dealing with the related problems:

(1) Server level

(a) Invest in better/newer hardware.

(b) Update the server software (operating system, server management, etc.)

(2) Service level

(a) Choose a better algorithm.

(b) Use better programming practices.

(3) SOA level

(a) Distribute the load on different servers.

(b) Redesign the dependencies.

These strategies are general guidelines but give a lot of options for dealing with problems in SOA

projects.

4. METRICS

This section consists in the definition and discussion of the metrics. The metrics are presented

in three groups: Time Related Metrics, Overload Metrics and Criticity Metrics. Time Related Metrics

are intended to aid in the vigilance of the QoS of the system and in the identification of time con-

suming services, Overload Metrics are intended to identify where the load is placed, and Criticity
7

Metrics are intended to show the sensibility of the system to the dependency of services. Also

there is an Extensions section in where we discuss other applications of our model and metrics.

4.1. Time Related Metrics. Our first concern is time because it has a directly related cost: the

opportunity cost of time. The amount of time the client waits for a service (the service time) has

to remain small enough to guarantee the QoS.

Let us define Level of Service of a service –or simply LoS– as the probability that a client is serviced

under a specific time defined by the management (τ). We propose the following two metrics as

measurements of LoS:

Definition 2. Let w be a service, T be the set of execution times of w and τ the service time parameter. We

define LServicew(T) = |t∈T :t<τ |
|T | , a metric for the LoS given a set of times.

LService is a metric that works given a set of execution times over a period of time. The source

of the data should be the logs of the server.

Definition 3. Let w be a service, t be the time of execution of w, τ the service time parameter, λ the rele-

vancy of the past data parameter and u(x) the step function. We defineLServiceSw(t) = λLServiceSw(t)+

(1− λ)u(τ − t), a recursive metric for the LoS for automatic update.

LServiceS is a metric that should be updated each time a service is executed. It deals with the

problem of defining a time interval for the measurement. λ ∈ [0, 1], the relevancy of the past data, is

a parameter that should be close to 1 (above 0,9). If this is not the case, the last execution time will

have too much effect in the estimator.

Theorem 1. Both LService and LServiceS are estimators of P (t < τ), where t is the time of execution

of a given service.

Proof. It is easy to see that LService is an estimator by the frequency definition of probability. In

the case of LServiceS, let us see E(u(τ − t)). The step function is equal to 1 when τ > t and 0

otherwise. Then, E(u(τ − t)) = 1× P (t < τ). Therefore, E(LServiceS) = λE(LServiceS) + (1−

λ)P (t < τ)⇒ E(LServiceS) = P (t < τ). �

Now we will define rather common metrics for the execution time of a service: average time

and variance.

Definition 4. Letw be a service and T the set of execution times ofw. We defineATimew(T) = 1
|T |

∑
t∈T t

and V Timew(T) = 1
|T |−1

∑
t∈T (t − ATime(T)) as the metrics for the average execution time and the

variance of the execution time, respectively.
8

ATime and VTime are metrics that show how the LoS is achieved. Is the execution times fol-

low a normal distribution, ATime and VTime can be used to estimate the LoS of a given service.

And it is possible to estimate the social cost of a service per client by using the ATime metric: just

compute ATimew × SocialCostOfT ime. The social cost of time may be estimated using the salary

information –valuated under social assumptions– and the cost of accessing the service via web.

We need the following two definitions to proceed:

Definition 5. Let G(W,D) be a graph of services and dependencies, w, v ∈ W be services such that

(w, v) ∈ D holds. We define Pc(w, v) as the probability that w calls v during an execution and Nc(w, v)

as the expected number of times that w calls v during and execution.

Slower services are bottlenecks in a SOA. The previous metrics are not enough to discover

which services are the bottlenecks of the system so we will define a new metric for that purpose:

the self execution time.

Definition 6. Let G(W,D) be a graph of services and dependencies, w ∈ W be a service and T the set

of execution times of w. We define STimew(T) = ATimew(T) −
∑

(w,v)∈D ATimev(T) × Nc(w, v), a

metric that measures the self execution time of a service.

STime measures the self execution time by discounting the time used by the dependencies. If

there are time problems in the SOA (for example, caused by a low LoS), looking for services with

bigger STime could be an intuitive strategy.

4.2. Overload Metrics. Excessive demand may cause the overall performance of the system go

down. Metrics that try to detect where is the overload may be useful in such situations.

Redundancy of calls may represent a great problem to highly demanded systems. If a service is

called more times than necessary, there is an undesirable overload. But, how to detect redundancy

of calls? Perhaps the review of code is the only exact method. But we can try to detect just a certain

kind of redundancy of calls: when a service calls many times another service.

Definition 7. Let G(W,D) be a graph of services and dependencies, w, v ∈ W be services such that

Pc(w, v) > 0 holds. We define RNc(w, v) = Nc(w,v)
Pc(w,v) − 1, the relative number of calls.

Theorem 2. If Pc(w, v) > 0, RNc(w, v) ≥ 0. Moreover, RNc(w, v) = 0 implies that there is at most

one call per execution.

Proof. Let be fn(w, v) the probability that exactly n calls (w, v) are realized during an execution

of w. Clearly,
∑

n≥0 fn = 1, so Nc(w, v) =
∑

n≥0 nfn ≥
∑

n≥1 fn = Pc(w, v). Then, Nc(w, v) ≥
9

Pc(w, v) ⇒ RNc(w, v) = Nc(w,v)
Pc(w,v) − 1 ≥ 0. Now, RNc(w, v) = 0 ⇒ Nc(w, v) = Pc(w, v), so∑

n≥0 nfn =
∑

n≥1 fn ⇒ f1 +
∑

n≥2 nfn = f1 +
∑

n≥2 fn. As nfn > fn if n ≥ 2 and fn > 0, then

∀n ≥ 2, fn = 0. Therefore, RNc(w, v) = 0 implies that at most v is called once per execution of

w. �

The previous theorem says if RNc is zero, the number of calls. If RNc is greater than 0, there

might be redundancy of calls.

Another important measurement is the amount of overload a given service causes by its execu-

tion. This is a recursive property, as the overload caused by the called services is also caused by

the caller.

Definition 8. Let G(W,D) be a graph of services and dependencies and w ∈ W a service. We define

Load(w) =
∑

(w,v)∈DNc(w, v)× (1+Load(v)), the metric of load caused by the execution of the service

w.

Related to the load caused by the execution of a service, we define the concept of internal demand

of a service as the demand generated by the system and external demand as the demand that comes

from outside the system. The demand of a service is the sum of both quantities. Anyway, the

available data is related to the total demand per service.

FIGURE 3. Load in a graph. If Nc = 1 for all arcs, Load(W) = 7.

Definition 9. Let w be a service, T a time interval and Q the number of executions of w during T. We

define Demand(w) = Q
|T | , the total demand of a service.

Note that a demand is a frequency. It has to be measured in terms of [executions/day], [execu-

tions/week], [executions/month], etc.

Definition 10. Let G(W,D) be a graph of services and dependencies and w ∈ W a service. We de-

fine IntDemand(w) =
∑

(v,w)∈DDemand(v) × Nc(v, w), the internal demand of a service, and

ExtDemand(w) = Demand(w)− IntDemand(w), the external demand of a service.
10

The internal demand is the demand caused by the other services in the SOA. Therefore, it is

possible to control the internal demand by redesigning the dependencies in the system. A good

goal may be minimizing the Load of certain services. Other goal may be distributing the load

through many servers.

The external demand is also a measure of the impact of a failure in a service. Critical services

are those with higher external demand as theirs reliability is essential.

If the external demand are human clients or other institutions, it is possible to measure the social

cost of the system; just compute SocialCost =
∑

w∈W ExtDemand(w)×ATime(w)×SocialCostOfT ime.

As the total demand is an important factor in the LoS (the bigger the demand, the greater the over-

load, thus the lower the LoS), the internal demand should be distributed through many servers.

The external demand is a sunk cost because is independent of the SOA structure (as it comes from

outside the system) and the removal of a service may cause third parties to lose their possibility

to be serviced.

4.3. Criticity Metrics. This set of metrics is intended to measure the sensibility of the SOA to the

removal of one or more services.

Definition 11. Let G(W,D) be a graph of services and dependencies and w ∈ W a service. We define

Incomers(w) = |(v, w) ∈ D|, the number of services with a dependency on w, and Outgoers(w) =

|(w, v) ∈ D|, the number of dependencies of w.

Incomers(w) counts the number of direct services that may fail if w fails. On the other side,

Outgoers(w) measures the sensibility of w to fail due to the failure of a direct dependency; if any

dependency fails, the dependent service will fail.

Definition 12. Let G(W,D) be a graph of services. We define Density(G) = |D|
|W |(|W |−1) , the density of

the network G.

The density is a typical graph metric. In this case, the density reflects the level of dependency

of the system. It is easy to see that the density equals to 1 in the acyclic clique of G. This metric is

also useful because it is dimensionless, as the result does not depend on |W | nor |D|.

Another concept that might be important is the concept of centrality. In our context, centrality

refers to the situation where many services depend on a single one (the central). We already

defined the Incomers metric as the numbers of services that depend on a service but that value is

not independent of the size of the graph. If we want to compare two graphs, we should try to use

a dimensionless metric. In this spirit we will define the CentralDegree metric.
11

Definition 13. LetG(W,D) be a graph of services. We defineCentralDegree(G) =
√ P

v∈W Incomers2(v)

(2|W |3−3|W |2+|W |)/6 ,

the degree of node concentration of G.

This metric, as it sums Incomers2(w), it is greater when the dependencies are gathered around

specific services. (This is explained by the following property: ∀a, b ≥ 0, a2 + b2 ≤ (a+ b)2.) Thus,

CentralDegreemeasures if the network has many services which gather dependencies from other

services.

Theorem 3. Let G(W,D) be a graph of services. Then CentralDegree(G) grows as the |D| grows. In

other words, the CentralDegree increases as the number of dependencies does so.

Proof. Given a graph G(W,D), add a new direct dependency (a, b) to D. Then Incomers(b) will

grow (by 1), so do CentralDegree(G) as it sums all Incomers. �

Theorem 4. If G(W,D) is an acyclic graph, then CentralDegree(G) ∈ [0, 1].

Proof. It is easy to see that if G(W,D) is such that D = ∅, CentralDegree(G) = 0 as all Incomers

are 0. To prove that CentralDegree(G) ≤ 1, we will find the maximum and show that is 1, for

|W | > 1 (so |D| > 0 is feasible). First, let us state that G(W,D) is a DAG. And as a DAG, it

is possible to find a topological sort of its nodes (W). So we have w0, ..., wn−1 ∈ W , the sorted

nodes such that (wi, wj) ∈ D ⇒ i < j. Adding each possible dependency it is easy to see that

(w0, wk), (w1, wk), ..., (wk−1, wk) can be added to D without violating the topological sort. After

that we will have the acyclic clique, with the property Incomers(wk) = k, k = {0, ..., |W | − 1}.

Therefore,
∑

v∈W Incomers2(v) =
∑|W |−1

k=0 k2 = 2|W |3−3|W |2+|W |
6 . It is easy to see that this leads to

a CentralDegree(G) = 1. �

Theorem 5. Let be Gn(W,D) a graph such that n = |W | and Incomers(w)
|W | f,∀w ∈ W (Incomers

follow a distribution, regardless the size of the graph). Then ∃limn→∞CentralDegree(Gn).

Proof. Let us define Xi f . Now we can write Incomers(wi) = nXi, ∀i = {0, ..., n − 1}. Then,∑
v∈W Incomers2(v) =

∑n−1
i=0 (nXi)2. Taking expected value,E(

∑n−1
i=0 (nXi)2) = n2

∑n−1
i=0 E(X2

i) =

n3E(X2), because all Xi share the same distribution of probability. Then, limn→∞
n3E(X2)

(2n3−3n2+n)/6
=

E(X2)
3 (exists). It is trivial to see that ∃limn→∞CentralDegree(G) (and it is smaller than E(X2)

3 due

to the concavity of the square root). �

Despite its strange form, CentralDegree(G) is a metric that is not too dependent on the size of

the graph. In small graphs, it is natural that CentralDegree cannot assume many different values.
12

In the worst cases, if G(W = {w}, D = ∅) then CentralDegree(G) = 0 and if G(W = ∅, D = ∅),

CentralDegree(G) has no sense at all. But with bigger graphs, it becomes easy to compare two

graphs with this dimensionless metric, as stated in the previous two theorems.

Other important concept is the descentrality. Descentrality happens when a service depends on

many other services. This is originally measured by the Outgoers metric, but this metric is not

dimensionless and it is useless when comparing graphs of different sizes. So, we will define the

metric DescentralDegree by analogy to CentralDegree but using Outgoers instead of Incomers.

Definition 14. LetG(W,D) be a graph of services. We defineDescentralDegree(G) =
√ P

v∈W Outgoers2(v)

(2|W |3−3|W |2+|W |)/6 ,

the degree of node concentration of G.

It is easy to see that DescentralDegree share the same properties of CentralDegree, making it an

useful metric for comparing two systems with different sizes.

FIGURE 4. Centrality and Descentrality in a graph.

In the central network, C may fail if A, B, D or E fail. In the descentral network, if C fails, A, B, D

and E may fail.

Both CentralDegree and DescentralDegree measure risks and both should remain in a controlled

level. If a risk materializes, its impact will be bigger as CentralDegree or DescentralDegree are

greater. So, their level should remain pretty low. If this is not the case, the system should be

redesigned at SOA level.

4.4. Extensions. As we are modelling large scale SOA systems, it is possible to apply the same

metrics to any other SOA. There is no real restriction to web services or the private sector. (In

the latter, new economical costs shall be estimated. For example, the social cost of time shall be

replaced by the opportunity cost of time of the firm.) This set of metrics is intended to analyze

a network (graph) in order to provide a certain level of QoS. Of course, the relation between the

metrics and the social welfare is meaningless outside de public administration context.
13

The previous model and metrics can be reused in other contexts similars to the SOA. For exam-

ple, by modelling public institutions as nodes and information exchange as arcs, it is possible to

use the previous metrics as an analysis tool of the interoperability between institutions but with-

out the possibility of redesigning the graph, at least not directly. Also, if the nodes of the graph are

SOA systems themselves, it is also possible to use the metrics to study the interoperation between

networks. Note that the metrics lose a lot of meaning in this context.

5. APPLICATION

Now we will present a few experiences from El Servicio Nacional de Aduanas. We will contrast

the use of the model and the metrics with their decisions.

El Servicio Nacional de Aduanas or simply Aduana, is an institution in charge of foreign trade and

border crossing. Technically, Aduana faces great operative requirements due to the nature of its

work. For example, more than ten thousands of vehicles cross the border each weekend to and

form Argentina. Each vehicle shall be identified, thus demanding a lot of resources to the services

developed by Aduana.

Historically, Aduana lacked efficiency and had many other issues. But after it started its mod-

ernization process, the institution became pretty innovative and efficient. Aduanas has many

years of experience with E-Government systems. Moreover, one of its objectives is to improve

the management by the use of Information Technology. Actually, it has successfully worked with

SOAs since the beginning of its modernization process and is connected to many other institu-

tions.

Aduana has a few years working in the interconnection with other institutions. (Currently, there

is a need of interoperability between institutions at system level.) Successful connection has been

made with many big Chilean institutions, a few small institutions and the border with Argentina.

We will review some of these experiences.

First, we will review the connection with a small institution: Sernapesca. Sernapesca, the Na-

tional Service of Fishing, is in charge of the negotiation with local fishers, large companies, water

rights and fishing rights. This service had no experience in software development, so the con-

nection with Aduanas was difficult. After the service in Sernapesca was set up, the problem was

the time used by services (in terms of metrics, ATime(WAduana) was too large). From the point of

view of Aduana, the time used by the service in Sernapesca was too much (STime(WAduana) �

STime(WSernapesca)). In order to improve the service time used by the service of Sernapesca, the
14

server update strategy was used (both hardware and software were replaced). But also the service

were redesign using better programming practices. This solved the problem.

Other interesting situation happened in the interconnection with Argentina. This required co-

operation across the border. As Aduana had more experience in the development of web services,

the Argentinean border web service was built by Aduana and the result was successful. However,

problems arise when the Registro Civil, institution in charge of the identification, updates or alters

its systems (typically on weekends). When this happens, the services in the border are rendered

useless, as any other service dependent on personal identification. The impact of disabling this

service can be seen as the external demand of those services (ExtDemand) as it does not belong

to the same system as the services of the border. As we said previously, ExtDemand > 1000[1
day]

and on weekends can reach 10000[1
day] in the border. Clearly, the impact of disabling a service is

pretty high and it will become higher as systems grow. A solution for this may be the use of mirror

services. (As Aduana has no power over Registro Civil, there was no solution for this issue.)

Now let us study the Proyecto Ventanilla nica de Comercio Exterior (a programme to simplify bu-

reaucratic procedures in foreign trade), where Aduana tries to connect to many other institutions

using web services. This means the interoperability of many particular systems from different

institutions. This is a large system, and the upper management should use the metrics to evaluate

the progress. Forecasting the value of the metrics, Load and demand metrics may grow a lot due

to the requeriments of many new clients and new functionalities. CentralDegree and DescentralDe-

gree may go down as the network becomes sparse. And time metrics will increase as the level of

service will go down because of this. Redesigning parts of the network may be a necessity as the

system grows in size.

6. CONCLUSIONS

The metrics used can help management in the development of large SOA systems. The metrics

presented have many useful properties that can help in the comparisson between different graphs

and in the detection of problems. By using the presented strategies, solving the problems should

be a simpler issue.

In order to make the metrics more useful, more experience is required. As comparissons be-

tween systems are made, such knowledge will appear and should be shared so the metrics can

become more practical. Also, upper level management should use watch the overall system built.

If it is solely built by parts, its quality of service will go out of control.
15

FIGURE 5. Proyecto Ventanilla Única de Comercio Exterior. Simple model.

REFERENCES

R. Heeks. Implementing and Managing eGovernment: An International Text. SAGE Publications, Athenaeum Press, United

Kingdom. 1st edition, 2006.

Gobierno Electrnico en Chile 2000-2006: Estado del Arte 2. PRYME, Gobierno de Chile, Jan 2006.

C. Kaner, W. Bond. Software Engineering Metrics: What Do They Measure and How Do We Know?. 10th International

Software Metrics Symposium METRICS 2004, Chicago, IL, Sep 2004.

N. Fenton, M. Neil. Software Metrics: Roadmap. Procs ICSE, May 2000.

D. Moore. The problems of measuring eGovernment progress (online). IQ Content website, Aug 2005.

http://www.iqcontent.com/publications/features/article 58/

C. Kubicek, M. Fisher, P. McKee, R. Smith. An Architecture for QoS Enabled Dynamic Web Service Deployment. 4th All

Hands Meeting, United Kingdom, Sep 2005.

F. Corradoni, Ch. Ercoli, A. Polzonetti, O. Riganelli. An Automata based approach to e-Government cooperation. eGov-

INTEROP’ 06 Conference, Cit Mondiale, 18 Parvis des Chartrons, Bordeaux (France), Mar 2006.

J. Cardoso, J. Miller, A. Sheth, J. Arnold. Modeling Quality of Service for Workflows and Web Service Processes. Technical

report UGACS -TR-02-002, LSDIS Lab, Computer Science Department, University of Georgia, May 2002.

Research report on interoperability and co-ordination of Web Services. QUALEG, 2005.

P. Samuelson. Foundations of Economic Analysis. Harvard University Press, Cambridge, MA, 1983.

16

