
1

Toward a Definitive Compressibility Measure
for Repetitive Sequences

Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza

Abstract—While the kth order empirical entropy is an ac-
cepted measure of the compressibility of individual sequences on
classical text collections, it is useful only for small values of k and
thus fails to capture the compressibility of repetitive sequences. In
the absence of an established way of quantifying the latter, ad-hoc
measures like the size z of the Lempel–Ziv parse are frequently
used to estimate repetitiveness. The size b ≤ z of the smallest
bidirectional macro scheme captures better what can be achieved
via copy-paste processes, though it is NP-complete to compute,
and it is not monotone upon appending symbols. Recently, a more
principled measure, the size γ of the smallest string attractor, was
introduced. The measure γ ≤ b lower-bounds all the previous
relevant ones, while length-n strings can be represented and
efficiently indexed within space O(γ log n

γ
), which also upper-

bounds many measures, including z. Although γ is arguably a
better measure of repetitiveness than b, it is also NP-complete
to compute and not monotone, and it is unknown if one can
represent all strings in o(γ logn) space.

In this paper, we study an even smaller measure, δ ≤ γ, which
can be computed in linear time, is monotone, and allows encoding
every string in O(δ log n

δ
) space because z = O(δ log n

δ
).

We argue that δ better captures the compressibility of repetitive
strings. Concretely, we show that (1) δ can be strictly smaller
than γ, by up to a logarithmic factor; (2) there are string
families needing Ω(δ log n

δ
) space to be encoded, so this space

is optimal for every n and δ; (3) one can build run-length
context-free grammars of size O(δ log n

δ
), whereas the smallest

(non-run-length) grammar can be up to Θ(logn/ log logn)
times larger; and (4) within O(δ log n

δ
) space, we can not

only represent a string but also offer logarithmic-time access to
its symbols, computation of substring fingerprints, and efficient
indexed searches for pattern occurrences. We further refine
the above results to account for the alphabet size σ of the
string, showing that Θ(δ log n log σ

δ log n
) space is necessary and

sufficient to represent the string and to efficiently support access,
fingerprinting, and pattern matching queries.

Index Terms—Data compression; Lempel–Ziv parse; Repeti-
tive sequences; String attractors; Substring complexity

I. INTRODUCTION

The recent rise in the amount of data we aim to handle is
driving research into studying compressed data representations
that can be used directly in compressed form [2]. Interestingly,
much of today’s fastest-growing data is highly repetitive:
genome collections, versioned text and software repositories,
periodic sky surveys, and other sources produce data where
each element in the collection is very similar to others.
Since a significant fraction of the data of interest consists of

A previous partial version of this article appeared in Proc. LATIN 2020 [1].
Tomasz Kociumaka is with Max Planck Institute for Informatics, Saarland

Informatics Campus, Saarbrücken, Germany. Gonzalo Navarro is with Center
for Biotechnology and Bioengineering (CeBiB) and Millennium Institute
for Foundational Research on Data (IMFD), Dept. of Computer Science,
University of Chile, Chile. Nicola Prezza is with Ca’ Foscari University of
Venice, Italy.

sequences, compression of highly repetitive text collections is
gaining attention as it enables space reductions of orders of
magnitude [3].

On classical text collections, the kth order empirical en-
tropy is an established measure of compressibility, lower-
bounding the space that any kth order statistical compres-
sor applied on the successive symbols in the sequence can
achieve. Such a measure, however, is useful only for small
values of k [4], which makes it essentially blind to large-
scale repetitiveness [5]. Other kinds of compressors, such
as Lempel–Ziv [6], grammar compression [7], and the run-
length-compressed Burrows–Wheeler transform [8], sharply
outperform kth order statistical compressors on repetitive
text collections. A notion capturing this repetitiveness, that
is, measuring how much compression can be achieved on
repetitive collections, or alternatively, how to measure data
(compressibility by exploiting) repetitiveness, has been elusive.
Beyond Kolmogorov’s complexity [9], which is uncomputable,
repetitiveness is measured in ad-hoc terms, as the result of
what specific compressors achieve. A list of such measures
on a string S[1 . . n] includes:

Lempel–Ziv compression [6] parses S into a sequence of
phrases, each phrase being the longest string that occurs
starting to the left in S. The associated measure is
the number z(S) of phrases produced, which can be
computed in O(n) time [10].

Bidirectional macro schemes [11] extend the Lempel–Ziv
parsing so that the source of each phrase may precede
or follow it as long as no circular dependencies are
introduced. The associated measure b(S) is the number
of phrases of the smallest parsing. It satisfies b ≤ z =
O(b log n

b) [12], but computing b is NP-complete [13].
Grammar-based compression [7] builds a context-free gram-

mar that generates (only) S. The associated measure is
the size g(S) of the smallest grammar (the sum of the
lengths of the right-hand sides of the rules). It satisfies
g = O(n/ logσ n) (where σ is the alphabet size) and
z ≤ g = O(z log n

z). While computing g is NP-hard,
grammars of size O(z log n

z) can be constructed in linear
time [14], [15], [16].

Run-length grammar compression [17] allows in addition
rules A → Bt (t repetitions of B), assumed to be of
constant size. The measure is the size grl(S) of the
smallest run-length grammar, and it satisfies z ≤ grl ≤ g
and grl = O(b log n

b) [12].
Collage systems [18] extend run-length grammars by allowing

truncation: in constant space, we can refer to a prefix or
a suffix of another nonterminal. The associated measure

2

σn / nlogc z g
rl g

γ γlog (n/)v

σn / nlogc z g
rl gδ

δ δ (n/)log

δ (n/)log logδ δ

v

e

z zlog (n/)

γγ

e

z zlog (n/)

b

r

δ δ (n/)log

δ (n/)log logδ δ

b

r

δ

Fig. 1. The relation between compressibility measures before (left) and after (right) our findings in this article. White nodes depict unreachable measures,
light gray nodes depict reachable ones (for hatched nodes, the reachability is not resolved), and dark gray nodes depict measures providing logarithmic-time
access to the string. Arrows mean that the source measure is asymptotically never larger than the target measure, and solid arrows mean that there are string
families where the source is strictly smaller than the target (by a super-constant factor).

c(S) satisfies c ≤ grl, b = O(c), and c = O(z) [12].
Burrows–Wheeler transform (BWT) [19] is a permutation of

S that has long runs of equal letters if S is repetitive.
The number r(S) of maximal equal-letter runs in the
BWT can be found in linear time. It holds that b

2 ≤ r =
O(b log2 n) [12], [20].

CDAWGs [21] are automata that recognize every substring
of S. The associated measure of repetitiveness is e(S),
the size of the smallest such automaton (compressed by
dissolving states of in-degree and out-degree one), which
can be built in linear time [21]. The measure e is always
larger than r, g, and z [22], [23].

Lex parsing [12] is analogous to Lempel–Ziv parsing, but
each phrase must point to a lexicographically smaller
source. The lex parsing is computed in linear time. Its
number of phrases, v(S), satisfies b

2 ≤ v ≤ 2r and
v ≤ grl [12].

For each measure x(S) above (which we write just as x
when S is clear from context), we can represent S[1 . . n]
in space O(x) (meaning O(x log n) bits in this article). As
seen, the measures form a complex hierarchy of dominance
relations [3], where b asymptotically dominates all the others
(see the left part of Fig. 1). A problem with b (and also z,
c, r, and v) is that it is unknown how to access S (i.e.,
extract any character S[i]) efficiently (say, in no(1) time, i.e.,
without decompressing much of S) within space O(b) (or
O(max(z, c, r, v))). This has been achieved in time O(log n),
but only within space O(z log n

z) [15], [14], O(e) [24],
O(r log n

r) [25], O(g) [26], [27], and even O(grl) [28]; the
latter is O(b log n

b) and subsumes all the other aforementioned
results. Providing direct access to the sequences is essential for
manipulating them in compressed form, without ever having
to decompress them.

Just accessing the string is not sufficient, however, for many
applications. One of the most fundamental text processing
tasks is string matching: find all the occurrences in S of
a short string P . This is particularly challenging when the
string S is large and scanning it sequentially is not viable. We
then resort to indexes, which are data structures offering no(1)-
time string matching (and possibly further more sophisticated
functionality) over a collection of strings. Text indexes based
on the kth order empirical entropy are already mature [29]
but, as explained earlier, insensitive to repetitiveness. Various
more recent compressed indexes build on the repetitiveness
measures above; see a thorough review in [30]. The smallest
of those find the occ occurrences of P [1 . .m] in O(grl) space
and O(m log n+occ logϵ n) time, for any constant ϵ > 0 [28],

or O(r) space and O(m log log σ + occ) time [25], [31]. Just
the number of occurrences can be computed in space O(g)
(but not O(grl)) and time O(m log2+ϵ n) [28], or space O(r)
and time O(m log log σ) [25], [31].

A relevant recent development in measuring repetitiveness
is the concept of a string attractor [32]. An attractor Γ is
a set of positions in S such that any substring of S has an
occurrence covering a position in Γ. Since γ = O(b) [32],
the size of the smallest attractor asymptotically lower-bounds
all the repetitiveness measures listed above; however, it is
unknown if one can represent any string in O(γ) space. We
can do so in space O(γ log n

γ), which already allows accessing
any symbol of S in time O(log n

γ) [32], and even indexed text
searching [33] within time as low as O(m+ (occ+1) logϵ n)
for locating all the occurrences and O(m+log2+ϵ n) time for
counting them [28]. It is known that grl = O(γ log n

γ) [28],
though grl can be smaller than γ log n

γ by up to a logarithmic
factor, log n

γ , so the slower index of size O(grl) offers better
space in general.

In terms of measuring repetitiveness, γ and b share some
unsatisfactory aspects. Both are NP-hard to compute [13], [32],
both are non-monotone when S grows by appending characters
at the endpoints of the string [3], [34], and both can grow by
a constant factor upon a single edit in S [35].

A. Our contributions

In this paper, we study a new measure of repetitiveness, δ,
which arguably captures better the concept of compressibility
in repetitive strings and is more convenient to deal with.
Although this measure was already introduced in a stringology
context [37] and used to build indexes of size O(γ log n

γ)
without knowing γ [28], its properties and full potential
have not been explored. It is known that δ ≤ γ holds for
every string, that δ can be computed in O(n) time [28], and
that one can encode any string in O(δ log n

δ) space because
z = O(δ log n

δ) [37]. Other bounds we have given hold more
tightly in terms of δ, like r = O(δ log n

δ log δ) [20]. Further,
δ is insensitive to string reversals and alphabet permutations,
and monotone upon appending symbols, unlike γ, b, or z [3],
[34]. Also, unlike those measures, δ grows by only at most
one unit upon single edits of the string [35]. We prove several
further properties related to δ:

1) In Section III, we show that δ can be strictly smaller
than γ, by up to a logarithmic factor. More precisely,
for any n and δ, there are strings with γ = Ω(δ log n

δ).
We therefore show that the already known upper bounds
γ, b, c, z = O(δ log n

δ) are tight for every n and δ.

3

TABLE I
THE BEST TIME-TIME TRADEOFFS FOR COUNTING, SEARCHING, ACCESSING, AND FINGERPRINTING ON REPETITIVE TEXTS OF LENGTH n. HERE, m IS

THE LENGTH OF THE SEARCH PATTERN, occ IS THE NUMBER OF OCCURRENCES OF THE PATTERN, ℓ IS THE LENGTH OF THE SUBSTRING TO ACCESS, σ IS
THE ALPHABET SIZE, w IS THE NUMBER OF BITS IN THE COMPUTER WORD, AND ϵ > 0 IS ANY POSITIVE CONSTANT.

Counting
Reference Space Time

Ours (Thm. VI.4) O(δ log(n/δ)) O(m log2+ϵ n)

[28, Thm. A.5] O(g) O(m log2+ϵ n)

[28, Thm. 7.5] O(γ log(n/γ)) O(m+ log2+ϵ n)

[28, Thm. 7.6] O(γ log(n/γ) logn) O(m)

[31, Thm. 9] O(r) O(m log logw σ)

[25, Thm. 4.10] O(r log logw n) O(m)

Searching
Reference Space Time

[28, Thm. A.4] O(grl) O(m logn+ occ logϵ n)

Ours (Cor. VI.1) O(δ log(n/δ)) O(m logn+ occ logϵ n)

[28, Thm. 6.8] O(γ log(n/γ)) O(m+ (occ+ 1) logϵ n)

[28, Thm. 6.12] O(γ log(n/γ) logϵ n) O(m+ occ)

[36, Thm. 3 & 4] O(z logn) O(m logm+ occ log logn)

[31, Thm. 9] O(r) O(m log logw σ + occ)

[25, Thm. 4.10] O(r log logw n) O(m+ occ)

[24, Thm. 1] O(e) O(m+ occ)

Accessing
Reference Space Time

[28, Thm. A.1] O(grl) O(ℓ+ logn)

Ours (Thm. VI.7) O(δ log(n/δ)) O(⌈ℓ/ logσ n⌉ log(n/δ))
[27, Thm. 1] O(g) O(ℓ/ logσ n+ logn)

[32, Thm. 5.3] O(γ log(n/γ)) O(ℓ/ logσ n+ log(n/γ))

[32, Thm. 5.3] O(γ log(n/γ) logϵ n) O(ℓ/ logσ n+ log(n/γ)/ log logn)

[25, Thm. 5.1] O(r log(n/r)) O(ℓ log(σ)/w + log(n/r))

Fingerprinting
Reference Space Time

[28, Thm. A.3] O(grl) O(logn)

Ours (Thm. VI.9) O(δ log(n/δ)) O(log(n/δ))

[33, Lem. 1] O(γ log(n/γ)) O(log(n/γ))

2) In Section IV, we show that O(δ log n
δ log n) bits, a

space one can reach by Lempel–Ziv compression due
to z = O(δ log n

δ), is indeed tight: for every n and δ,
there are string families where it is impossible to encode
every string within o(δ log n

δ log n) bits. In contrast,
the upper bound O(γ log n

γ) [32] is not known to be
tight. We summarize these results in a direct-converse
information-theoretic theorem establishing that the mea-
sure δ log n

δ log n bits is asymptotically reachable and
necessary for encoding strings of length n with mea-
sure δ.

3) In Section V, we show that not only the Lempel–Ziv
parsing but also run-length context-free grammars can
always represent a string within O(δ log n

δ) space; thus
also v, grl = O(δ log n

δ). However, this is not true
for standard context-free grammars: for every n and δ,
there are strings satisfying g = Ω(δ log2 n

δ / log log
n
δ).

In particular, if δ = n1−Ω(1), this bound simplifies to
g = Ω(δ log2 n/ log log n), which is almost a logarith-
mic factor away from δ log n

δ = Θ(δ log n).
4) In Section VI, we combine our preceding result with

previous ones on run-length grammars [28] to show that,
within space O(δ log n

δ), we can not only represent a
string but also provide access to any position of it in
time O(log n), compute substring fingerprints in time
O(log n), find the occ occurrences of any pattern string
P [1 . .m] in time O(m log n + occ logϵ n) for any con-
stant ϵ > 0, and count them in time O(m log2+ϵ n). Fur-
thermore, we show that the block tree data structure [38],
which provides access to string symbols and substring
fingerprints in time O(log n

z), is of size O(δ log n
δ),

improving upon our first result and on previous analyses
and variants of block trees [32], [33], [39].

Fig. 1 shows how the relation between compressibility

measures [3] are modified with our findings in (1)–(3). Table I
puts in context the contributions in (4): we obtain improved
space/time tradeoffs for counting, accessing, and fingerprinting
(those are shown in boldface). We have simplified the results
in the discussion above for readability; see the lemmas and
theorems for the precise statements. In particular, our bounds
are also tight with respect to the alphabet size σ: the spaces
we have written as δ log n

δ are actually δ log n log σ
δ logn , and

similarly the terms log n
δ in the time complexities are actually

log n log σ
δ logn .

II. BASIC CONCEPTS AND THE MEASURE δ

We consider strings S[1 . . n] as sequences of |S| = n
symbols S[1], . . . , S[n], all drawn from an alphabet Σ =
{0, . . . , σ − 1}. We write this as S ∈ [0 . . σ)n in short. For
simplicity, we assume that every symbol of Σ appears in S for
the lower bounds, though our upper bounds hold as long as
σ = nO(1). The concatenation of strings S and S′ is denoted
S · S′; we can also identify individual symbols of Σ with the
corresponding string of length 1. A substring of S is denoted
S[i . . j] = S[i] · · ·S[j] and the empty string is denoted ε.
Prefixes S[1 . . i] and suffixes S[i . . n] of S are also denoted
S[. . i] and S[i . .], respectively.

We assume the transdichotomous RAM model, which is
a word RAM model on a machine word of Θ(log n) bits.
Consequently, when we measure the space in words (the
default), we consider that each word holds Θ(log n) bits.
Therefore, O(x) space is equivalent to O(x log n) bits of
space.

In the rest of this section we describe in more detail the
repetitiveness measures that are most relevant for this article,
with particular emphasis on δ.

4

A. Lempel–Ziv compression and bidirectional macro schemes

There are several flavors of Lempel–Ziv compression [6].
The one we use yields a clean repetitiveness measure.

We traverse the string S left to right, parsing it into a
sequence of phrases. If we have already parsed S[. . i], then
we look for the longest prefix of S[i + 1 . .] that occurs in S
starting at a position in [1 . . i]. Let S[i+1 . . j] be that longest
prefix. Then the next phrase is S[i + 1 . . j] and the parsing
continues from S[j + 1 . .]. In case the length of the phrase
is zero (i.e., S[i + 1] does not occur in S[1 . . i]), we create
instead a single phrase S[i+ 1] and continue from j = i+ 2.

We call z(S) the number of phrases produced by the process
above. The Lempel–Ziv compression essentially encodes S in
O(z(S)) space by writing a sequence of tuples, one per phrase,
indicating where, in the text already seen, can the next phrase
be copied from: it suffices to encode the starting position and
the length of the substring to copy, or the explicit symbol when
it appears for the first time.

For example, the string S = alabaralalabarda$ is parsed
into z(S) = 11 phrases as follows (we use vertical bars to
delimit the phrases): a|l|a|b|a|r|ala|labar|d|a|$.

A bidirectional macro scheme generalizes Lempel–Ziv pars-
ing by allowing the phrases to be obtained from occurrences
that are ahead in the text, too. The only restriction is that, in
the process of decoding a symbol at S[i], we do not return
to the position i again. We call b(S) the minimum number of
phrases in a valid bidirectional macro scheme for string S.

For example, a valid bidirectional macro scheme for S =
alabaralalabarda$ parses it as ala|b|a|r|a|l|alabar|d|a|$, where
the first phrase is obtained from S[7 . . 9] and the seventh from
S[1 . . 6]. To obtain S[9], for example, we are redirected to
S[1] and then to S[7], then obtaining the a from the explicit
phrase. Since this macro scheme has 10 phrases, we know that
b(S) ≤ 10.

B. Grammar compression and run-length grammars

Grammar compression [7] consists in building a context-free
grammar that generates (only) the string S. If S is repetitive,
it will be possible to build a small grammar generating it. The
size of the grammar is defined as the sum of the lengths of all
the right-hand sides of the rules. We call g(S) the size of the
smallest grammar generating S.

For example, a grammar generating S = alabaralalabarda$
is A→ al, B → Aabar, and the initial symbol C → BABda$.
The size of this grammar is 13, so we know that g(S) ≤ 13.

A less classical concept is that of a run-length (context-
free) grammar, which in addition allows rules of the form
A→ Bt. This does not add to the expressive power of context-
free grammars, but it enables smaller grammars to generate a
string S if we assume that the size of the above rule is constant
instead of t.

For example, the smallest grammar generating string S =
an is of size Θ(log n), A → aa, B → AA, C → BB, . . .
Instead, a run-length grammar of constant size, A → an,
generates it.

C. String attractors

An important compressibility measure is given via the
concept of a string attractor, introduced by Kempa and Prezza
[32] as a tool for studying dictionary compressors (including
Lempel–Ziv, the run-length Burrows-Wheeler transform, and
grammar compressors) under a common framework.

Definition II.1 ([32]). An attractor of a string S[1 . . n] is a set
of positions Γ ⊆ [1 . . n] such that every substring S[i . . j] has
an occurrence S[i′ . . j′] = S[i . . j] that covers an attractor
position p ∈ Γ ∩ [i′ . . j′]. We will denote γ(S) the cardinality
of a smallest string attractor for the string S, and will use
just γ when S is clear from the context.

Indeed, it can be shown that, letting α be the output size
of any of those dictionary compressors, one can build a
corresponding string attractor of cardinality O(α). Conversely,
given a string attractor of cardinality γ for a string of length n,
one can build a Lempel–Ziv factorization or a context-free
grammar of size O(γ polylog(n)). The cardinality γ of a
smallest string attractor is then an important measure of string
repetitiveness.

For example, an attractor for S = alabaralalabarda$ is Γ =
{4, 5, 6, 8, 15, 17}, because every substring of S has a copy
(possibly, the substring itself) including some position in Γ.
We know it is of minimal size |Γ| = γ = 6 because the
alphabet size of S is also σ = 6, and it must obviously hold
that γ ≥ σ.

D. The measure δ

The measure δ was recently defined by Christiansen et
al. [28, Sec. 5.1], though it is based on the expression dk(S)/k,
introduced by Raskhodnikova et al. [37] to approximate z. The
set of values dk(S) are known as the substring complexity
of S, so δ is a function of it. In this section, we summarize
what is known about δ.

Definition II.2. Let dk(S) be the number of distinct length-k
substrings in S. Then

δ(S) = max {dk(S)/k : k ∈ [1 . . n]}.

We will also use δ when S is clear from the context.

In our example S = alabaralalabarda$ it holds that δ(S) =
6, because d1(S)/1 = 6/1 = 6, d2(S)/2 = 9/2 = 4.5,
d3(S)/3 = 10/3 ≈ 3.3, etc.

First, we note that measure δ is upper-bounded by γ, which
implies in particular that δ = O(n/ logσ n).

Lemma II.3 ([28, Lemma 5.6]). Every string S satisfies
δ(S) ≤ γ(S).

Proof. Every length-k substring has an occurrence covering an
attractor position, so there can be at most kγ distinct substrings
of length k, that is, dk(S)/k ≤ γ(S) for all k ≤ n.

On the other hand, δ log n
δ is an asymptotically reach-

able compressibility measure, that is, one can encode any
string within O(δ log n

δ) space. This is directly obtained from

5

Raskhodnikova et al. [37, Lemma 3], but we now establish a
more refined result that takes into account the alphabet size.

Lemma II.4. Every string S ∈ [0 . . σ)n with measure δ =
δ(S) satisfies z(S) = O(δ log n log σ

δ logn).

Proof. For each k ∈ Z+, let nk denote the number of length-
k phrases in the Lempel–Ziv factorization of S, excluding
the last phrase. The inequality

∑ℓ
k=1 knk ≤ 2ℓ(δ + 1) holds

for every ℓ ∈ Z+, as shown in [37, Claim 4]. Thus, due
to

∑2ℓ−1
k=ℓ ℓnk ≤

∑2ℓ−1
k=ℓ knk ≤ 4ℓ(δ + 1), it follows that∑2ℓ−1

k=ℓ nk ≤ 1
ℓ · 4ℓ(δ + 1) = O(δ). At the same time,∑∞

k=ℓ nk ≤ n
ℓ (because

∑∞
k=1 knk ≤ n) and

∑ℓ
k=1 nk ≤∑ℓ

k=1 σ
k = O(σℓ) (because phrases are distinct). Combining

these three bounds, in particular applying the first one a
logarithmic number of times to handle the second summation,
we obtain

∞∑
k=1

nk ≤
⌊logσ δ⌋∑
k=1

nk +

⌈n/δ⌉−1∑
k=1+⌊logσ δ⌋

nk +

∞∑
k=⌈n/δ⌉

nk

= O(δ) +O(δ · (log n
δ − log logσ δ)) +O(δ)

= O(δ log n log σ
δ log δ).

Consequently, z(S) ≤ 1 +
∑n

k=1 nk = O(δ log n log σ
δ log δ).

The term log n log σ
δ log δ is O(log n log σ

δ logn): if δ ≥
√
n, then

log δ = Θ(log n); otherwise both log n log σ
δ log δ and log n log σ

δ logn

are Θ(log n).

Since γ, b, and c are O(z), these three measures are all upper
bounded by O(δ log n log σ

δ logn) ⊆ O(δ log n
δ). Additionally, we

conclude that grl ≤ g = O(z log n
z) = O(δ log2 n

δ), though
we obtain a tight result grl = O(δ log n log σ

δ logn) later in this
article.

It is also known that δ can be computed in O(n) time [28,
Lemma 5.7], but we present a simpler and more practical
construction here.

Lemma II.5. The measure δ(S) can be computed in O(n)
time and space from S[1 . . n].

Proof. Let us assume for technical convenience that S ends
with a unique endmarker $ that is smaller than all the other
symbols (otherwise, we add it and correct the result at the
end). Let SA[1 . . n] be the suffix array of S, that is, it holds
that S[SA[i] . .] < S[SA[i + 1] . .] in lexicographic order,
for all 1 ≤ i < n; this is well defined because of the
endmarker. Let lcp(X,Y) be the length of the longest common
prefix between strings X and Y . Let us define the array
LCP [1 . . n] so that LCP [1] = 0 and, for every i > 1,
LCP [i] = lcp(S[SA[i] . .], S[SA[i−1] . .]). The arrays SA and
LCP can be computed in O(n) time [40], [41].

We now note that

dk(S) = |{i ∈ [1 . . n] : LCP [i] < k}| − k + 1.

This is because all the occurrences of each distinct substring
C of length k prefix consecutive suffixes in SA, appearing in
a range SA[i . . j], so LCP [i] < k and LCP [t] ≥ k for all
t ∈ [i + 1 . . j]. The main part of the above formula counts,
precisely, all those positions i, one per distinct substring C of

length k. It also counts, however, all the suffixes S[n − p . .]
for 0 ≤ p ≤ k− 2, which are shorter than k and hence should
not be counted in dk(S). Note that, thanks to the endmarker,
we have counted each such string exactly once, so we remove
them by subtracting k − 1.

The computation then proceeds as follows. We initialize an
array D[k] ← 0 for all k ∈ [0 . . n − 1]. Then, we increment
D[LCP [i]] for all i ∈ [1 . . n], so at the end D[k] = |{i ∈
[1 . . n] : LCP [i] = k}|. We next accumulate D[k] ← D[k] +
D[k− 1]− 1 for k from 1 to n− 1, which can be easily seen
by induction to produce D[k] = dk+1(S) according to our
formula above. Finally, we compute δ ← max{D[k]/(k+1) :
k ∈ [0 . . n − 1]}. If we had to insert the endmarker $, then
every D[k] is counting the spurious suffix S[n − k + 1 . .],
so we compute instead δ ← max{(D[k] − 1)/(k + 1) : k ∈
[0 . . n− 1]}.

Finally, we note some obvious positive properties of δ as
a compressibility measure: it is insensitive to reversing the
string and to alphabet permutations, and it is monotone when
we add/remove prefixes/suffixes to/from S. String reversals
and alphabet permutations clearly preserve the repetitiveness
of the string, thus a good compressibility measure should be
invariant under these operations. Furthermore, monotonicity is
also a desirable property for such a measure: the complexity of
a substring of S should always be smaller than the complexity
of S itself (indeed, it is not hard to see that Kolmogorov
complexity has all these desirable properties). Other measures,
like z, b, or γ, are not monotone, z is sensitive to reversals,
and v and r are also sensitive to alphabet permutations [3],
[34]. Another desirable property of a repetitiveness measure is
that it changes slowly as we edit the text. A recent study [35]
shows that, upon a single symbol edit in S, measure δ grows
at most by 1, whereas γ, b, z, and others grow, in the worst
case, by a constant factor; r may grow by Θ(log n) at least.

III. LOWER BOUNDS ON ATTRACTORS

In this section, we show that there exist string families
where δ = o(γ); in fact, δ can be smaller by up to a
logarithmic factor. More precisely, for any string length n
and value δ = δ(S) ∈ [2 . . n], we build a string satisfying
γ(S) = Ω(δ log n

δ). This shows that the bound γ ≤ b ≤ z =
O(δ log n

δ) is asymptotically tight if we do not consider the
alphabet size; we then refine our result to consider σ.

We build our results on (variants of) the following string
family.

Definition III.1. Consider an infinite string S∞[1 . .], where
S∞[i] = b if i = 2j for some integer j ≥ 0, and S∞[i] = a

otherwise. For n ≥ 1, let Sn = S∞[1 . . n]. We then define
the string family S = {Sn : n ≥ 1} as the set of the prefixes
of S∞.

We first prove that the strings in S satisfy δ = O(1) and
γ = Ω(log n).

Lemma III.2. For every n ≥ 1, the string Sn satisfies
δ(Sn) ≤ 2 and γ(Sn) ≥ 1

2⌊log n⌋.

6

Proof. For each j ≥ 1, every pair of consecutive bs in
S∞[2j−1 + 1 . .] is at distance at least 2j . Therefore, the only
distinct substrings of length k ≤ 2j in S∞[2j−1 + 1 . .] are of
the form ak or aibak−i−1 for i ∈ [0 . . k). Hence, the distinct
length-k substrings of S∞ are those starting up to position
2j−1, S∞[i . . i+ k) for i ∈ [1 . . 2j−1], and the k + 1 already
mentioned strings, for a total of dk(S∞) ≤ 2j−1 + k + 1.
Choosing j = ⌈log k⌉, we get dk(S∞) ≤ 2⌈log k⌉−1+k+1 ≤
2log k + k = 2k, yielding that δ(Sn) ≤ 2 holds for every n.

Next, observe that, for each j ≥ 0, the substring ba2
j−1b

has its unique occurrence in S∞ at S∞[2j . . 2j+1]. The
covered regions are disjoint across even integers j, so each one
requires a distinct attractor position. Consequently, γ(Sn) ≥ k

2
holds for all integers n ≥ 2k and k ≥ 0. Choosing k =
⌊log n⌋, we get γ(Sn) ≥ 1

2⌊log n⌋.

We now generalize the basic result to every integer value
2 ≤ δ = o(n), showing for each such δ there are strings S
satisfying δ(S) = δ and γ(S) = Ω(δ log n

δ), that is, γ can be
asymptotically larger than δ.

Theorem III.3. For every length n and integer value δ ∈
[2 . . n], there is a string S[1 . . n] with γ = Ω(δ log n

δ).

Proof. Let us first fix an integer m ≥ 1 such that n ≥ 4m−1
and decompose n−m+ 1 ≥ 3m into

∑m
i=1 ni = n−m+ 1

roughly equally (so that ni ≥ 3 and ni = Ω(n
m)). We

shall build a string S over an alphabet consisting of 3m − 1
characters: ai and bi for i ∈ [1 . .m] and delimiters $i for
i ∈ [1 . .m). For this, we take S(i) to be the string Sni

of
Definition III.1, with the alphabet {a, b} replaced by {ai, bi},
and we define S = S(1) $1 S

(2) $2 · · · $m−1 S
(m), which is of

length n.
Notice that, for each k ∈ [1 . . n], we have dk(S) ≤

(m − 1)k +
∑m

i=1 dk(S
(i)) because every substring contains

$i or is contained in S(i) for some i. Since dk(S
(i)) ≤ 2k

by Lemma III.2, we have that dk(S) ≤ (3m − 1)k, and
thus δ(S) ≤ 3m − 1. In fact, δ(S) = 3m − 1 because
d1(S) = 3m − 1. Furthermore, γ(S) ≥

∑m
i=1 γ(S

(i)) ≥∑m
i=1

1
2⌊log ni⌋ = Ω(m log n

m) = Ω(δ log n
δ), where the first

inequality holds because the alphabets of S(i) are disjoint and
the second is due to Lemma III.2.

This construction proves the theorem for δ = 3m − 1
and n ≥ 4m − 1. If δ < 3

4n and δ mod 3 ̸= 2, we use
m = ⌊ δ+1

3 ⌋ and initially construct a string S of length
n− (δ + 1) mod 3 ≥ 4m−1. Next, we append (δ+1) mod 3
additional delimiters, which results in each of the measures
δ(S), γ(S), and n increased by (δ+1) mod 3. Finally, we note
that if δ ≥ 3

4n = Ω(n), then the claim reduces to γ = Ω(δ)
and therefore follows directly from Lemma II.3.

Note that δ(S) needs not be an integer. Still, by the theorem,
given an arbitrary value of δ, there is a string S with δ(S) =
⌊δ⌋ ≤ δ and γ(S) = Ω(δ log n

δ), which still gives the desired
separation. A more real limitation of the theorem is that the
strings it builds have alphabet size σ = δ. We now obtain a
more general result that holds for smaller alphabet sizes.

Theorem III.4. For every alphabet size σ ≥ 2, length
n ≥ 1, and integer parameter 9σ ≤ ∆ ≤ n log σ

2 logn , there

exists a string S ∈ [0 . . σ)n such that δ(S) ≤ ∆ and
γ(S) = Ω(∆ log n log σ

∆ logn).

Proof. Let d =
⌊
∆
9

⌋
, ℓ = ⌈logσ d⌉, and r : [0 . . d)→ [0 . . σ)ℓ

be an arbitrary injective function. Consider an infinite string

S =

∞⊙
i=0

Si =

∞⊙
i=0

d−1⊙
j=0

Si,j =

∞⊙
i=0

d−1⊙
j=0

r(j) · 1 · 02
i+1ℓ · 1,

where · and
⊙

stand for concatenation.
Let us first argue that δ(S) ≤ ∆. For this, fix a substring

length k ∈ Z+. If k < ℓ, then dk(S) ≤ σk ≤ σℓ−1 ≤
σlogσ d = d < ∆k holds as claimed. Thus, we henceforth
assume k ≥ ℓ and consider the smallest integer τ ∈ Z≥0

such that 2τ+1ℓ ≥ k; observe that 2τ ℓ < k. The num-
ber of length-k substrings starting within S0 · · ·Sτ−1 does
not exceed

∑τ−1
i=0 |Si| =

∑τ−1
i=0 d(1 + ℓ + 2i+1ℓ + 1) ≤∑τ−1

i=0 dℓ(3 + 2i+1) ≤ 5dℓ2τ ≤ 5dk. The remaining length-
k substrings occur within 0k · 1 · r(j) · 1 · 0k−1 for some
j ∈ [0 . . d). The number of such substrings does not exceed
d(k + ℓ + 2) ≤ 4dk. Overall, dk(S) ≤ 9dk ≤ ∆k holds as
claimed.

Next, we shall prove that γ(S[1 . . n]) = Ω(∆ log n log σ
∆ logn)

holds when ∆ ≤ n log σ
2 logn . For this, observe that each sub-

string Si,j has a unique occurrence within S, and all these
occurrences are disjoint. Consequently, if n ≥ 5dℓ2τ ≥∑τ−1

i=0 |Si|, then γ(S[1 . . n]) ≥ τd. Define τ =
⌊
log n

5dℓ

⌋
and

observe that n
5dℓ ≥

n log σ
10d log d ≥

9n log σ
10∆ logn ≥

9
5 implies τ =

Ω(log n log σ
∆ logn). Thus, γ(S[1 . . n]) ≥ τd = Ω(∆ log n log σ

∆ logn)
holds as claimed.

This implies that we can have a separation between δ and
γ as long as δ = o(n/ logσ n). In Theorem III.3 we used
σ = δ, thus the condition boiled down to δ = o(n), but more
generally we can separate δ and γ unless δ = Θ(n/ logσ n).
This is unavoidable because in that case it also holds that
γ = Θ(n/ logσ n), because this is the upper bound of both
measures, holding for incompressible texts. For example, a de
Bruijn sequence of order k has dk(S) = σk and n = σk+k−1,
so δ ≥ σk/k = Θ(n/ logσ n).

IV. LOWER BOUNDS ON TEXT ENTROPY

In this section, we prove that there are string families
where not all members can be encoded in o(δ log n) space:
for every length n and every integer value δ ∈ [2 . . n], there
is a string family where some elements require Ω(δ log n

δ)
space, or Ω(δ log n

δ log n) bits, to be represented. Therefore,
using O(δ log n

δ) space is worst-case optimal for every δ.
Further, when considering the alphabet size, the lower bound
refines to Ω(δ log n log σ

δ logn). This is a reachable bound, because
every string can be represented within O(z) ⊆ O(δ log n log σ

δ logn)
space. In comparison, it is not known if the upper bound
O(γ log n

γ) to encode every string family [32] is also tight.
We build on the convenient concept of worst-case entropy.

Definition IV.1. The worst-case entropy of a set S, log2 |S|, is
the minimum number of bits that any coder needs to represent
any arbitrary element of S. That is, for every coder C : S →
{0, 1}∗, there exists at least one element S ∈ S such that

7

|C(S)| ≥ log2 |S|. Indeed, if all codes were of length at most
ℓ < log2 |S| bits, then there would only be at most 2ℓ < |S|
codes.

We will use this simple concept to prove lower bounds on
the number of bits needed to represent any member of some
string families. Concretely, we will devise families where all
the elements have low δ measure, though the families are large
enough to enforce a sufficiently high worst-case entropy, that
is, to forbid encoders that assign too short codes to all the
strings. To start with the simple version that disregards σ,
we consider a family of variants of the infinite string S∞ of
Definition III.1, where the positions of bs are further apart and
slightly perturbed.

Definition IV.2. The family Sp is formed by all the infinite
strings S over {a, b} where the first b is placed at S[1] and, for
j ≥ 2, the jth b is placed anywhere in S[2 · 4j−2 +1 . . 4j−1].
The family Spn consists of the length-n prefixes of the infinite
strings of the family Sp, that is, Spn = {S[1 . . n] : S ∈ Sp}.

Lemma IV.3. For every integer n ≥ 1, the family Spn has
worst-case entropy Ω(log2 n).

Proof. In our definition of Sp, the location of the jth b can
be chosen among 2 · 4j−2 positions, and each combination of
these choices generates a different string in Spn as long as n ≥
4j−1. Hence, |Spn| =

∏i+1
j=2(2 ·4j−2) = 2Ω(i2) = 2Ω(log2 n) for

i = ⌊log4 n⌋. To distinguish strings in Spn, any encoding needs
log |Spn| = Ω(log2 n) bits, the worst-case entropy of Spn.

We now build on the family Spn, and of Sn of Defini-
tion III.1, to prove two lemmas which, combined, establish the
lower bound of Ω(δ log n

δ log n) bits to encode the elements
of certain string families.

Lemma IV.4. For every length n and integer δ ∈ [2 . . ⌈ 3n4 ⌉),
there exists a family of length-n strings of common measure δ
with worst-case entropy Ω(δ log2 n

δ).

Proof. As in the proof of Lemma III.2, we prove that δ(S)
for any string S ∈ Spn is at most 2. Starting from position
4j−1 + 1, the distance between any two consecutive bs is at
least 4j . Therefore, the distinct substrings of length k ≤ 4j

are those that start at position i ∈ [1 . . 4j−1] and those of the
form ak or aibak−i−1 for i ∈ [0 . . k), which yields a total
of dk(S) ≤ 4j−1 + k + 1. Choosing j = ⌈log4 k⌉, we get
dk(S) ≤ 4⌈log4 k⌉−1 + k+1 ≤ 4log4 k + k = 2k. By definition
of δ, we conclude that δ(S) ≤ 2 for every S ∈ Spn. Thus, by
Lemma IV.3, encoding Spn requires Ω(δ log2 n

δ) bits.
We now generalize the result to larger δ. As in the proof

of Theorem III.3, let m ≥ 1, n ≥ 4m− 1, and n−m+ 1 =∑m
i=1 ni, where ni = Ω(n

m) and ni ≥ 3. Let S(i), of length ni,
be built from some S ∈ Spni , with a replaced by ai and b re-
placed by bi. Finally, let S∗ = S(1) $1 S

(2) $2 · · · $m−1 S
(m).

Since dk(S
(i)) ≤ 2k as per the previous paragraph, it holds,

just as in the proof of Theorem III.3, that δ(S∗) = 3m − 1.
Let S∗n be the set of possible strings S∗ of length n we obtain
by choosing the strings S(i). Even fixing the lengths ni, we
have |S∗n| =

∏m
i=1 2

Ω(log2 ni), and thus the worst-case entropy
of S∗n is log |S∗n| =

∑m
i=1 Ω(log

2 ni) = Ω(m log2 n
m) =

Ω(δ log2 n
δ). The case where δ < 3

4n is not of the form 3m−1
is handled as in the proof of Theorem III.3.

Lemma IV.5. For every length n and integer δ ∈ [2 . . n],
there exists a family of length-n strings of common measure δ
with worst-case entropy Ω(δ log n

δ log δ).

Proof. Recall the string Sn of Definition III.1 and fix an
integer m ≥ 1. Let Srn ⊆ {a, b1, . . . , bm}n be the family
of strings obtained from Sn by replacing every b with br for
some r ∈ [1 . .m]. Since |Srn| = m1+⌊logn⌋, we need at least
log |Srn| = Ω(log n logm) bits to represent a string in Srn.

On the other hand, as in the proof of Lemma III.2, the dis-
tinct substrings of length k ≤ 2j in Sr

n ∈ Srn are those starting
in Sr

n[1 . . 2
j−1] and those of the form ak or aibra

k−i−1 for
i ∈ [0 . . k) and r ∈ [1 . .m]. Thus, dk(Sr

n) ≤ 2j−1 + 1 + km.
Choosing j = ⌈log k⌉, we get dk(S

r
n) ≤ k(m + 1), and

therefore δ(Sr
n) ≤ m+ 1.

Similarly to the proof of Theorem III.3, let n ≥ 4m − 1
and n − 3m + 1 =

∑m
i=1 ni, where ni = Ω(n

m) are
positive integers. Let us choose any S

(i)
ni ∈ Srni

and define
S∗ = S

(1)
n1 $1 S

(2)
n2 $2 · · · $m−1 S

(m)
nm S′, where, in principle,

S′ = a2m. Consider the distinct length-k substrings of S∗

for k ≤ 2j . These include the (at most) k(m − 1) substrings
containing a delimiter $i (with i ∈ [1 . . k)) and the (at most)
2j−1 · m substrings starting within the first 2j−1 position
of some S

(i)
ni (with i ∈ [1 . . k]). As argued in the previous

paragraph, the remaining substrings are of the form ak or
aibra

k−i−1 for r ∈ [1 . .m] and i ∈ [1 . . k); note that this
analysis includes substrings overlapping S

(m)
nm and S′ = a2m

despite the lack of delimiter between them. Consequently, we
get dk(S

∗) ≤ k(m − 1) + 2j−1m + km + 1 ≤ (3m − 1)k,
setting j = ⌈log k⌉. At the same time, m+1 ≤ d1(S

∗) ≤ 2m,
because S∗ contains m− 1 delimiters, a, and between 1 and
m distinct symbols br with r ∈ [1 . .m].

We conclude that m + 1 ≤ δ(S∗) ≤ 3m − 1. We now
modify S′ so that δ(S∗) = 3m − 1. For this, we replace the
subsequent symbols S′[2m], S′[2m−1], . . . by fresh delimiters
$m, $m+1, . . ., stopping as soon as dk(S∗) ≥ (3m−1)k holds
for some k ∈ [1 . . n]. Since each value dk(S

∗) grows by at
most 1 per delimiter added, we have δ(S∗) = 3m − 1 upon
termination of the process. Moreover, d1(S∗) grows by exactly
1 per delimiter added, so the process terminates in at most
3m − 1 − (m + 1) = 2m − 2 steps, which means that S′ is
long enough to fit the delimiters.

We then obtain a family of possible strings S∗[1 . . n] of
common measure δ = 3m − 1. Note that the suffix S′ is
uniquely determined by the prefix containing the strings S

(i)
ni .

Even fixing the lengths ni, the number of possible strings
S∗ we obtain by choosing the strings S

(i)
ni is

∏m
i=1 |Srni

| =∏m
i=1 m

1+⌊logni⌋ >
∏m

i=1 m
logni . The worst-case entropy of

the family is thus
∑m

i=1 log ni logm = Ω(m log n
m logm) =

Ω(δ log n
δ log δ).

The case where δ < 3
4n is not of the form 3m − 1 is

handled as in the proof of Theorem III.3. For δ ≥ 3
4n, on

the other hand, we construct a different family of length-n
strings with common measure δ, with strings of the form
S = $π(1) · · · $π(δ) · $n−δ

π(δ) for a permutation π of [1 . . δ].

8

Each length k ∈ [1 . . n] satisfies dk(S) = min(δ, n− k + 1),
so δ(S) = δ. Since there are δ! possible strings S, we need
log2 δ! = Ω(δ log δ) = Ω(δ log n

δ log δ) bits to represent
family members.

Lemma IV.6. For every length n and integer δ ∈ [2 . . n],
there exists a family of length-n strings of common measure δ
with worst-case entropy Ω(δ log n

δ log n).

Proof. Follows from taking the union of the families built in
Lemmas IV.4 and IV.5, since max(log δ, log n

δ) = Ω(log n)
and log δ = Ω(log n

δ) for δ ≥ ⌈ 3n4 ⌉.

Note that, since δ can be rational in general, we are not
guaranteeing that for every possible value of δ there are large
enough string families; only for integer values. Still, for any
value of δ we can build a family with common measure ⌊δ⌋
and worst-case entropy Ω(δ log n

δ log n), which still serves
the purpose of showing that Ω(δ log n

δ) space is necessary
in general. Once again, a limitation of our result is that the
family of strings it builds has a large alphabet size σ. We now
establish a more refined result that holds for many values of
σ. We now prove a lemma that generalizes Lemmas IV.4 and
IV.5, and then obtain the final direct-converse theorem.

Lemma IV.7. For every alphabet size σ ≥ 2, length n ≥ 1,
and integer parameter 10σ ≤ ∆ ≤ n log σ

2 logn , there is a family
of strings S[1 . . n] over an alphabet of size σ with δ(S) ≤ ∆
and worst-case entropy Ω(∆ log n log σ

∆ logn log n).

Proof. Let d =
⌊
∆
10

⌋
, ℓ = ⌈logσ d⌉, and r : [0 . . d)→ [0 . . σ)ℓ

be an arbitrary injective function. For each integer i ∈ Z≥0,
consider a family of strings Fi := {r(j) · 1 · 0e · 1 : j ∈
[0 . . d) and e ∈ [2i+1ℓ . . 2i+2ℓ)}. Further, let F =

⊙∞
i=0 F

d
i

be a family of infinite strings obtained by concatenating any d
strings from F0, followed by any d strings from F1, and so on.

Let us first argue that δ(S) ≤ ∆ holds for every S ∈ F.
For this, fix a substring length k ∈ Z+. If k < ℓ, then
dk(S) ≤ σk ≤ σℓ−1 ≤ σlogσ d = d < ∆k holds as claimed.
Thus, we henceforth assume k ≥ ℓ and consider the smallest
integer τ ∈ Z≥0 such that 2τ+1ℓ ≥ k; observe that 2τ ℓ < k.
The number of length-k substrings starting within a prefix
S1 · · ·Sτ−1 of S, with Si ∈ Fd

i , does not exceed
∑τ−1

i=0 |Si| ≤∑τ−1
i=0 d(1+ℓ+2i+2ℓ) ≤

∑τ−1
i=0 dℓ(2+2i+2) ≤ 6dℓ2τ ≤ 6dk.

The remaining length-k substrings occur within 0k1r(j)10k−1

for some j ∈ [0 . . d). The number of such substrings does not
exceed d(k + ℓ+ 2) ≤ 4dk. Overall, dk(S) ≤ 10dk ≤ ∆k
holds as claimed.

Next, observe that the family of length-n prefixes of strings
in F is of size at least

∏τ−1
i=0 |Fi|d as long as n ≥ 6dℓ2τ .

Consequently, the considered worst-case entropy is at least

τ−1∑
i=0

d log |Fi| ≥ d

τ−1∑
i=0

log(dℓ · 2i+1) = Ω(dτ(log(dℓ) + τ)).

Define τ =
⌊
log n

6dℓ

⌋
and observe that n

6dℓ ≥
n log σ
12d log d ≥

10n log σ
12∆ logn ≥

5
3 implies τ = Ω(log n log σ

∆ logn). Thus, the entropy
is at least Ω(∆ log n log σ

∆ logn · (log
∆ log∆
log σ + log n log σ

∆ logn)) =

Ω(∆ log n log σ
∆ logn log n log∆

logn) = Ω(∆ log n log σ
∆ logn log n).

Considering that we can encode any string in O(z) =
O(δ log n log σ

δ logn) space, and that we have now proved that
this space is necessary for some string families, we have
that Θ(δ log n log σ

δ logn) is a tight bound on the space needed to
represent strings. This can be expressed with the following
direct-converse information-theoretic theorem:

Theorem IV.8. The following statements hold:
1) Let S ∈ Σn be any string of length n over alphabet Σ

of size σ ≤ nO(1) and having measure δ = δ(S). Then,
there exists a coder that compresses S using a number
of bits bounded by α · δ log n log σ

δ logn log n, where α is a
universal constant.

2) There exists a constant β such that, for every length n,
alphabet Σ of size σ, and measure ∆ ∈ [14σ . . n log σ

2 logn],
there exists a family of strings S ∈ Σn, of measure
δ ≤ ∆ where some members need β ·∆ log n log σ

∆ logn log n
bits to be encoded.

Proof. (1) From Lemma II.4, we have that z(S) =
O(δ log n log σ

δ logn). Assuming a polynomial alphabet size σ ≤
nO(1), a naive Lempel–Ziv encoding uses O(log n) bits per
each of the z(S) phrases: O(log n) bits to encode either an
explicit alphabet symbol or the phrase source, and log n bits
to encode the phrase length in the second case. We conclude
that there exists a universal constant α such that this encoding
always uses at most α · δ log n log σ

δ logn log n bits to compress S.
(2) Follows from Lemma IV.7.

V. BOUNDS ON GRAMMAR SIZES

In this section, we study the relation between δ and the
sizes of the smallest context-free grammar and run-length
context-free grammar generating S, denoted by g and grl,
respectively. As observed in Section II, Lemma II.4 implies
grl ≤ g = O(δ log2 n

δ). Our first contribution is a lower bound
construction for g: for every length n and value δ ∈ [2 . . n],
we construct a string S satisfying g = Ω(δ log2 n

δ / log log
n
δ).

Rather surprisingly, the situation for run-length context-free
grammars is very different: we prove that grl = O(δ log n

δ),
which is tight due to Theorem III.3 and grl = Ω(γ). Our ar-
gument is constructive and we derive a randomized algorithm
that, in O(n) expected time, constructs a run-length context-
free grammar of size O(δ log n

δ) generating a given string S.

A. A lower bound on grammar size

For convenience, among all context-free grammars generat-
ing a single string S, we only consider straight-line programs
(SLPs), where the right-hand side of each production is of size
exactly 2. We denote by slp(S) the minimum number of sym-
bols (terminals and non-terminals) in any SLP generating S.
Each context-free grammar generating S can be transformed to
an SLP, and thus slp(S) = Θ(g(S)) holds for every string S.

Our construction relies on the family Spn of Definition IV.2
and the following consequence of Lemma IV.3.

Corollary V.1. For every integer n ≥ 1, there exists a string
Sp
n ∈ Spn satisfying slp(Sp

n) = Ω(log2 n/ log log n).

9

Proof. Recall that each string S ∈ Spn is binary and therefore
can be encoded in O(slp(S) log slp(S)) bits: every symbol is
assigned a ⌈log slp(S)⌉-bit identifier (with 0 and 1 reserved for
a and b, respectively) so that each production is encoded using
O(log slp(S)) bits. At the same time, Lemma IV.3 proves
that every encoding distinguishing members of Spn requires
Ω(log2 n) bits. In particular, our SLP-based encoding uses
Ω(log2 n) bits for some string S

p
n ∈ Spn. This string satisfies

slp(Sp
n) log slp(S

p
n) = Ω(log2 n), and therefore slp(Sp

n) =
Ω(log2 n/ log log n).

Note that the proof of Corollary V.1 does not apply to run-
length context-free grammars because a production of the form
A→ Bt may need Θ(log t) bits to represent the exponent t. In
fact, since δ(Sp

n) = 2 holds for n ≥ 3, the upper bound grl =
O(δ log n

δ) proved in the next section shows that grl(S
p
n) =

O(log n); generalizing Corollary V.1 to run-length context-free
grammars is therefore inherently impossible.

Corollary V.1 shows that g = Ω(δ log2 n
δ / log log

n
δ) is

possible for δ = 2 and any length n ≥ 3. We generalize
this construction to arbitrary δ ∈ [2 . . n] as in the proof of
Lemma IV.4. Our argument requires the following auxiliary
lemma.

Lemma V.2. Consider a string S = L · R. If the alphabets
Σ(L) of L and Σ(R) of R are disjoint, then slp(S) ≥ slp(L)+
slp(R).

Proof. Our goal is to construct SLPs generating L and R with
slp(S) symbols in total. Let us fix an SLP generating S with
slp(S) symbols. To generate L (R), we start from the SLP
of S and remove every terminal not in Σ(L) (Σ(R)). Then,
transitively remove nonterminals with empty right-hand sides
and suppress nonterminals with right-hand sides of length 1.

Now consider a rule A → BC in the SLP of S: either C
disappears in the SLP that generates L, or B disappears in the
SLP that generates R, or both. In all cases, the rule survives
in at most one of the two SLPs; therefore the total number of
symbols in the SLPs we build for L and R is at most slp(S).
Consequently, slp(L) + slp(R) ≤ slp(S).

Theorem V.3. For every length n and integer value
δ ∈ [2 . . n], there is a string S[1 . . n] with g =
Ω(δ log2 n

δ / log log
n
δ).

Proof. As in the proof of Lemma IV.4, let m ≥ 1, n ≥ 4m−1,
and n −m + 1 =

∑m
i=1 ni, where ni = Ω(n

m) and ni ≥ 3.
Moreover, let S = S(1) $1 S

(2) $2 · · · $m−1 S
(m), where S(i)

is obtained from the string Sp
ni ∈ S

p
ni of Corollary V.1

by replacing every a with ai and every b with bi. Note
that S belongs to the family constructed in the proof of
Lemma IV.4, and thus δ(S) = 3m − 1. Furthermore, since
the alphabets of strings S(i) (for i ∈ [1 . .m]) and $i (for
i ∈ [1 . .m)) are pairwise disjoint, Lemma V.2 yields slp(S) ≥∑m

i=1 slp(S
(i)) =

∑m
i=1 slp(S

p
ni) = Ω(m log2 n

m/ log log n
m).

This construction proves the theorem for δ = 3m − 1 and
n ≥ 4m−1. The case where δ < 3

4n is not of the form 3m−1
is handled as in the proof of Theorem III.3. Finally, we note
that if δ ≥ 3

4n = Ω(n), then the claim reduces to g = Ω(δ)
and therefore follows from Lemma II.3 due to γ = O(g).

B. An upper bound on run-length grammar size
In this section, we prove that every string S ∈ Σn can

be generated using a run-length context-free grammar of
size O(δ log n

δ). We obtain our grammar in the process of
building a locally consistent parsing on top of S. Our parsing
is based on the recompression technique by Jeż [16], who
used it to design a simple O(n)-time algorithm constructing
a (standard) context-free grammar of size O(z log n

z). More
specifically, we rely on a very recent restricted recompression
by Kociumaka et al. [42], which delays processing symbols
generating long substrings. Birenzwige et al. [43] applied a
similar idea to transform the locally consistent parsing of
Sahinalp and Vishkin [44].

1) Run-length grammar construction via restricted recom-
pression: Both recompression and restricted recompression,
given a string S ∈ Σ+, construct a sequence of strings (Sk)

∞
k=0

over the alphabet A of symbols defined as the least fixed point
of the following equation:

A = Σ ∪ (A×A) ∪ (A× Z≥2).

Symbols in A \ Σ are non-terminals with productions
(A1, A2)→ A1A2 for (A1, A2) ∈ A×A and (A1,m)→ Am

1

for (A1,m) ∈ A × Z≥2. With any A ∈ A designated as
the start symbol, this yields a run-length straight-line program
(RLSLP). The following expansion function exp : A → Σ+

retrieves the string generated by this RLSLP:

exp(A)=


A if A ∈ Σ,

exp(A1) · exp(A2) if A = (A1, A2) ∈ A2,

exp(A1)
m if A = (A1,m) ∈ A× Z≥2.

Intuitively, A forms a universal RLSLP: for every RLSLP
with symbols S and terminals Σ ⊆ S , there is a unique
homomorphism f : S → A such that f(A) = A if A ∈ Σ,
f(A)→ f(A1)f(A2) if A→ A1A2, and f(A)→ f(A1)

m if
A→ Am

1 . As a result, A provides a convenient formalism to
argue about procedures generating RLSLPs.

The main property of strings (Sk)
∞
k=0 generated using

(restricted) recompression is that exp(Sk) = S holds for
all k ∈ Z≥0, where exp : A → Σ+ is lifted to exp :
A∗ → Σ∗ by setting exp(A1 · · ·Aa) = exp(A1) · · · exp(Aa)
for A1 · · ·Aa ∈ A∗. The subsequent strings Sk, starting
from S0 = S, are obtained by alternate applications of the
following two functions which decompose a string T ∈ A+

into blocks and then collapse blocks into appropriate symbols.
In Definition V.4, all blocks of length at least 2 are maximal
blocks of the same symbol, and they are collapsed to symbols
in A × Z≥2. In Definition V.5, there are no blocks of length
more than 2, and all blocks of length 2 are collapsed to
symbols in A×A.

Definition V.4 (Restricted run-length encoding [42]). Given
T ∈ A+ and B ⊆ A, we define rleB(T) ∈ A+ to be the
string obtained as follows by decomposing T into blocks and
collapsing these blocks:

1) For i ∈ [1 . . |T |), place a block boundary between T [i]
and T [i+ 1] unless T [i] = T [i+ 1] ∈ B.

2) Replace each block T [i . . i+m) = Am of length m ≥ 2
with a symbol (A,m) ∈ A.

10

Definition V.5 (Restricted pair compression [42]). Given T ∈
A+ and disjoint sets L,R ⊆ A, we define pcL,R(T) ∈ A+

to be the string obtained as follows by decomposing T into
blocks and collapsing these blocks:

1) For i ∈ [1 . . |T |), place a block boundary between T [i]
and T [i+ 1] unless T [i] ∈ L and T [i+ 1] ∈ R.

2) Replace each block T [i . . i+1] of length 2 with a symbol
(T [i], T [i+ 1]) ∈ A.

The original recompression uses rleB with B = A and
pcL,R with A = L ∪R. In the restricted version, symbols in
A\B and A\(L∪R), respectively, are forced to form length-
1 blocks. In the kth round of restricted recompression, this
mechanism is applied to symbols A whose expansion exp(A)
is longer than a certain threshold ℓk.

With this intuition, we are now ready to formally define the
sequence (Sk)

∞
k=0 constructed through restricted recompres-

sion.

Construction V.6 (Restricted recompression [42]). Given a
string S ∈ Σ+, the strings Sk for k ∈ Z≥0 are constructed
as follows, based on ℓk := (87)

⌈k/2⌉−1 and Ak := {A ∈ A :
| exp(A)| ≤ ℓk}:

• If k = 0, then Sk = S.
• If k > 0 is odd, then Sk = rleAk

(Sk−1).
• If k > 0 is even, then Sk = pcLk,Rk

(Sk−1), where Ak =
Lk ∪ Rk is a uniformly random partition into disjoint
classes.

It is easy to see that exp(Sk) = S indeed holds for all
k ∈ Z≥0. As we argue below, almost surely (with probabil-
ity 1), there exists h ∈ Z≥0 such that |Sh| = 1. In particular,
an RLSLP generating S can be obtained by setting Sh[1]
as the starting symbol of the RLSLP derived from by A.
While this RLSLP contains infinitely many symbols, it turns
out that we can remove symbols that do not occur in any
string Sk. Formally, for each k ∈ Z≥0, let us define the family
Sk := {Sk[j] : j ∈ [1 . . |Sk|]} ⊆ A of symbols occurring
in Sk. Observe that each symbol in S0 belongs to Σ and, for
k ∈ Z+, each symbol in Sk was either copied from Sk−1

or obtained by collapsing a block in Sk−1. Consequently, the
family S :=

⋃∞
k=0 Sk satisfies S ⊆ Σ∪ (S ×S)∪ (S ×Z≥2).

In other words, for every non-terminal A ∈ S, the symbols on
the right-hand side of the production of A also belong to S.
Hence, the remaining symbols can indeed be removed from
the RLSLP generating S. As the size of resulting run-length
context-free grammar is proportional to |S|, we are left with
the task of bounding E[|S|].

2) Analysis of the grammar size: Our argument relies on
several properties of restricted recompression proved in [42].
Due to the current status of [42] being an unpublished
manuscript, the proofs are provided in Section A for com-
pleteness.

Fact V.7 ([42]). For every k ∈ Z≥0, if exp(x) = exp(x′)
holds for two fragments of Sk, then x = x′.

Corollary V.8 ([42]). For every odd k ∈ Z≥0, there is no
j ∈ [1 . . |Sk|) such that Sk[j] = Sk[j + 1] ∈ Ak+1.

Recall that exp(Sk) = S for every k ∈ Z≥0. Hence, for
every j ∈ [1 . . |Sk|], we can associate Sk[j] with a fragment
S(| exp(Sk[1 . . j))| . . | exp(Sk[1 . . j])|] = exp(Sk[j]); these
fragments are called phrases (of S) induced by Sk. We also
define a set Bk of phrase boundaries induced by Sk:

Bk = {| exp(Sk[1 . . j])| : j ∈ [1 . . |Sk|)}.

Lemma V.9 ([42]). Let α ∈ Z≥1 and let i, i′ ∈ [α . . n − α]
be such that S(i− α . . i+ α] = S(i′ − α . . i′ + α]. For every
k ∈ Z≥0, if α ≥ 16ℓk, then i ∈ Bk ⇐⇒ i′ ∈ Bk.

Lemma V.10 ([42]). For every k ∈ Z≥0, we have E[|Sk|] <
1 + 4n

ℓk+1
.

Lemma V.10 can be used to confirm that almost surely
|Sk| = 1 holds for some k ∈ Z≥0.

Corollary V.11. With probability 1, there exists k ∈ Z≥0 such
that |Sk| = 1.

Proof. For a proof by contradiction, suppose that ε :=
Pr[min∞k=0 |Sk| > 1] > 0. In particular, this yields E[|Sk|] ≥
1 + ε for every k ∈ Z≥0. However, Lemma V.10 implies
limk→∞ |Sk| ≤ 1 + limk→∞

4n
ℓk+1

= 1, a contradiction.

Our main goal is to prove that E[|S|] = O(δ log n log σ
δ logn)

(Corollary V.17). As a stepping stone, we show that E[|Ak+1∩
Sk|] = O(δ) holds for all k ∈ Z≥0 (Lemma V.14). The
restriction to symbols in Ak+1 is not harmful because every
symbol in Sk that does not belong to Ak+1 forms a length-
1 block that gets propagated to Sk+1. The strategy behind
the proof of Lemma V.14 is to consider the phrases induced
by the leftmost occurrences of all symbol in Ak+1 ∩ Sk.
Using Lemma V.9, we construct O(δ) fragments of S of total
length O(ℓkδ) guaranteed to overlap all these phrases, and
we show that these fragments in expectation overlap O(δ)
phrases induced by Sk. The latter claim is a consequence of
the following generalization of Lemma V.10.

Lemma V.12. For every k ∈ Z≥0 and every interval I ⊆
[1 . . n), we have

E[|Bk ∩ I|] < 1 + 4|I|
ℓk+1

.

Proof. We proceed by induction on k. For k = 0, we have
|Bk ∩ I| = |I| < 1 + 4|I| = 1 + 4|I|

ℓ1
. If k is odd, we note

that Bk ⊆ Bk−1 and therefore E[|Bk ∩ I|] ≤ E[|Bk−1 ∩ I|] <
1 + 4|I|

ℓk
= 1+ 4|I|

ℓk+1
. Thus, it remains to consider even values

k > 0.

Claim V.13. If k > 0 is even, then, conditioned on any fixed
Sk−1, we have E

[
|Bk ∩ I|

∣∣ Sk−1

]
< 1

4 +
|I|
2ℓk

+ 3
4 |Bk−1 ∩ I|.

Proof. Let us define

J={j ∈ [1 . . |Sk−1|) :Sk−1[j] /∈ Ak or Sk−1[j + 1] /∈ Ak},
JI ={j ∈ J : | exp(Sk−1[1 . . j])| ∈ I} ⊆ Bk−1 ∩ I.

Since A /∈ Ak yields | exp(A)| > ℓk, we have |JI | < 1+ 2|I|
ℓk

.
Moreover, observe that if j ∈ [1 . . |Sk−1|) \ J , then Sk−1[j]

11

and Sk−1[j+1] are, by Corollary V.8, distinct symbols in Ak.
Consequently,

Pr[Sk−1[j] ∈ Lk and Sk−1[j + 1] ∈ Rk] =
1
4 .

Thus, the probability that pcLk,Rk
(Sk−1) places a block

boundary after position j ∈ [1 . . |Sk−1|) \ J is 3
4 . Therefore,

E
[
|Bk ∩ I|

∣∣ Sk−1

]
= |JI |+ 3

4 (|Bk−1 ∩ I| − |JI |)
= 1

4 |JI |+
3
4 |Bk−1 ∩ I| < 1

4 + |I|
2ℓk

+ 3
4 |Bk−1 ∩ I|.

Since the partition Ak = Lk ∪Rk is independent of Sk−1,
Claim V.13 and the inductive assumption yield

E[|Bk∩I|] < 1
4 +

|I|
2ℓk

+ 3
4E[|Bk−1∩I|] < 1

4 +
|I|
2ℓk

+ 3
4 +

3|I|
ℓk

= 1 + 7|I|
2ℓk

= 1 + 4|I|
ℓk+1

.

Next, we apply Lemmas V.9 and V.12 to bound the expected
size of Sk ∩ Ak+1.

Lemma V.14. For every k ∈ Z≥0 and every string S ∈ Σ+

with measure δ, we have E[|Sk ∩ Ak+1|] = O(δ).

Proof. Let us fix integers α ≥ 16ℓk and m = 2α + ⌊ℓk+1⌋.
Moreover, define

L =

{
i ∈ [0 . . n−m] :

S(i . . i+m] = S(i′ . . i′ +m]
for some i′ ∈ [0 . . i)

}
and

P = {i ∈ [1 . . n] : i− α /∈ L}.

Claim V.15. We have |Sk ∩ Ak+1| ≤ 1 + |Bk ∩ P |.

Proof. Let Sk[j] be the leftmost occurrence in Sk of A ∈
Ak+1 ∩ Sk. Moreover, let p = | exp(Sk[1 . . j))| and q =
| exp(Sk[1 . . j])| so that S(p . . q] = exp(A) is the phrase
induced by Sk corresponding to Sk[j].

We shall prove that j = 1 or p ∈ Bk∩P . This will complete
the proof of the claim because distinct symbols A yield distinct
positions j and p.

For a proof by contradiction, suppose that j ∈ (1 . . |Sk|)
yet p /∈ Bk ∩ P . Since p ∈ Bk holds due to j > 1, we
derive p /∈ P , which implies p − α ∈ L. Consequently, there
is a position p′ ∈ [α . . p) such that S(p − α . . p − α +m] =
S(p′ − α . . p′ − α + m]. In particular, S(p − α . . p + α] =
S(p′ − α . . p′ + α], so Lemma V.9 yields p′ ∈ Bk. Similarly,
due to q − p = | exp(A)| ≤ ⌊ℓk+1⌋ = m − 2α, we have
S(q−α . . q+α] = S(q′−α . . q′+α] for q′ := p′+ | exp(A)|,
and therefore q′ ∈ Bk holds due to q ∈ Bk. Lemma V.9 further
implies Bk ∩ (p′ . . q′) = ∅ = Bk ∩ (p . . q). Consequently,
S(p′ . . q′] is a phrase induced by Sk, and, since p′ < p, it
corresponds to Sk[j

′] for some j′ < j. By Fact V.7, we have
Sk[j

′] = Sk[j] = A, which contradicts the choice of Sk[j] as
the leftmost occurrence of A in Sk.

Consequently, it remains to prove that E[|Bk ∩P |] = O(δ).
For this, we characterize P as follows.

Claim V.16. The set P can be covered by O(δ) intervals of
total length O(mδ).

Proof. Note that P ′ =
⋃

i∈P (i−α . . i+m−α] is a superset
of P . Moreover, each position j ∈ P ′ ∩ [m. . n − m] is

contained in the leftmost occurrence of a length-m substring
of S and then S(j−m. . j+m] is the leftmost occurrence of a
length-2m substring of S. Consequently, |P ′∩ [m. . n−m]| ≤
2mδ. Since P ′ \ [m. . n − m] = (1 − α . .m) ∪ (n − m. .
n+m−α] is of size O(m), we conclude that |P ′| = O(mδ).
Next, recall that P ′ is a union of length-m integer intervals.
Merging overlapping intervals, we get a decomposition into
disjoint intervals of length at least m. The number of intervals
does not exceed 1

m |P
′| = O(δ).

Now, let I be the family of intervals covering P obtained
using Claim V.16. For each I ∈ I, Lemma V.12 implies
E[|Bk ∩ I|] ≤ 1 + 4|I|

ℓk+1
. By linearity of expectation and the

bounds in Claim V.16, this yields the claimed result:

E[|Bk ∩ P |] ≤ |I|+ 4
ℓk+1

∑
I∈I
|I| = O(δ + 4δm

ℓk+1
) = O(δ).

The proof of our main bound E[|S|] = O(δ log n log σ
δ logn)

combines Lemmas V.10 and V.14.

Corollary V.17. For every string S ∈ [0 . . σ)n of measure δ,
we have E[|S|] = O(δ log n log σ

δ logn).

Proof. Note that |S| ≤ 1 +
∑∞

k=0 |Sk \ Sk+1|. We combine
three upper bounds on E[|Sk \ Sk+1|]: a naive one as well as
two bounds following from Lemmas V.10 and V.14, respec-
tively.

First, we note that |Sk \ Sk+1| ≤ |[0 . . σ)≤ℓk] = O(σℓk).
Next, we observe that Construction V.6 guarantees Sk\Sk+1 ⊆
Sk ∩ Ak+1 and thus E[|Sk \ Sk+1|] ≤ E[|Sk ∩ Ak+1|] =
O(δ) holds due to Lemma V.14. Furthermore, we note that
|Sk \Sk+1| = 0 if |Sk| = 1 and |Sk \Sk+1| ≤ |Sk| otherwise.
Consequently, Markov inequality and Lemma V.10 yield

E[|Sk \ Sk+1|] ≤ E[|Sk|]− P[|Sk| = 1]

= E[|Sk|]− 1 + P[|Sk| ≥ 2]

= E[|Sk|]− 1 + P[|Sk| − 1 ≥ 1]

≤ E[|Sk|]− 1 + E[|Sk| − 1]

= 2E[|Sk|]− 2

≤ 8n
ℓk+1

.

Thus, E[|Sk \ Sk+1|] = O((78)
k/2n).

We apply the first bound if k ≤ 2 log8/7 logσ δ and the third
bound if k ≥ 2 log8/7

n
δ . In the intermediate cases, we use the

second bound. This yields

∞∑
k=0

E[|Sk \ Sk+1|] =
⌊2 log8/7 logσ δ⌋∑

k=0

O(σℓk)

+ (2 log8/7
n
δ − 2 log8/7 logσ δ) ·O(δ)

+

∞∑
k=⌈2 log8/7

n
δ ⌉

O
(
(78)

k/2δ
)

=

⌊logσ δ⌋∑
i=0

O(σi) +O(δ log n log σ
δ log δ) +

∞∑
i=0

O
(
(78)

i/2δ
)

= O(δ) +O(δ log n log σ
δ log δ) +O(δ)

= O(δ log n log σ
δ log δ).

12

Consequently, E[|S|] = 1+O(δ log n log σ
δ log δ) = O(δ log n log σ

δ logn)
holds as claimed.

Finally, we note that Corollaries V.11 and V.17 allow bound-
ing the size of the smallest run-length grammar generating S.

Theorem V.18. Every string S ∈ [0 . . σ)n satisfies grl(S) =
O(δ log n log σ

δ logn).

Proof. We apply Construction V.6 on top of the given string S.
By Corollaries V.11 and V.17, the random choices within
Construction V.6 can be fixed so that |S| = O(δ log n log σ

δ logn)
and |Sk| = 1 holds for sufficiently large k. We build a run-
length grammar with symbols S. Each symbol A ∈ Σ is a
terminal symbol, each symbol A = (A1, A2) ∈ A × A is
associated with a production A → A1A2, and each symbol
A = (A1,m) ∈ A × Z≥2 is associated with a production
A → Am

1 . It easy to see that the auxiliary symbols A1, A2

belong to S and that the expansion of each symbol A (within
the grammar) is exp(A). In particular, if we set the only
symbol of Sk for sufficiently large k as the starting symbol,
then the grammar generates S.

C. Efficient construction of a small run-length grammar

In this section, we convert the proof of Theorem V.18
to a fast algorithm generating a run-length grammar of size
O(δ log n log σ

δ logn).

Proposition V.19. There exists a randomized algorithm that,
given a string S ∈ [0 . . σ)n of measure δ = δ(S), in O(n)
expected time constructs a run-length grammar of expected
size O(δ log n log σ

δ logn) generating S.

Proof. The algorithm simulates Construction V.6 construct-
ing S, which can be interpreted as a grammar generating S
(see the proof of Theorem V.18). Each symbol A ∈ Σ is stored
explicitly, each symbol A = (A1, A2) ∈ A×A keeps pointers
to A1 and A2, and each symbol A = (A1,m) ∈ A × Z≥2

keeps m and a pointer to A1. Additionally, each symbol A is
augmented with | exp(A)| and an identifier idk(A) for every k
such that A ∈ Sk, where idk : Sk → [1 . . |Sk|] is a bijection.
The inverse mappings id−1

k are implemented as arrays.
The string S0 = S is given as input. In order to construct
S0 and id0, we sort the characters of S and assign them
consecutive positive integer identifiers. This step takes O(n)
time due to the assumption σ = nO(1).

In order to construct Sk, Sk, and idk, we process Sk−1

depending on the parity of k. If k is odd, we scan Sk−1 from
left to right outputting subsequent symbols of Sk. Initially,
each symbol A ∈ Sk is represented as (idk−1(A1),m) (if A =
(A1,m) ∈ Sk \ Sk−1) or as idk−1(A) (otherwise). Suppose
that Sk−1[j . .] is yet to be processed. If | exp(Sk−1[j])| > ℓk
or Sk−1[j] ̸= Sk−1[j + 1], we output idk−1(Sk−1[j]) as the
next symbol of Sk and continue processing Sk−1[j + 1 . .].
Otherwise, we determine the maximum integer m ≥ 2 such
that Sk−1[j

′] = Sk−1[j] for j′ ∈ [j . . j + m), output
(idk−1(Sk−1[j]),m) as the next symbol of Sk, and continue
processing Sk−1[j+m. .]. (By Fact V.7, (Sk−1[j],m) /∈ Sk−1

in this case.) Note that the symbols in Sk are initially rep-
resented as elements of [1 . . |Sk−1|] ∪ [1 . . |Sk−1|]2. Sorting

these values allows constructing symbols in Sk \Sk−1 and the
identifier function idk in O(|Sk−1|) time.

If k is even, we first randomly partition Ak into Lk

and Rk. Technically, this step consists in iterating over sym-
bols A ∈ Sk−1 and appropriately marking A if | exp(A)| ≤ ℓk.
Next, we scan Sk−1 from left to right outputting subsequent
symbols of Sk. Initially, each symbol A in Sk is represented
as (idk−1(A1), idk−1(A2)) (if A = (A1, A2) /∈ Sk−1) or
as idk−1(A) (otherwise). Suppose that Sk−1[j . .] is yet to
be processed. If Sk−1[j] /∈ Lk or Sk−1[j + 1] /∈ Rk,
we output idk−1(Sk−1[j]) as the next symbol of Sk and
continue processing Sk−1[j + 1 . .]. Otherwise, we output
(idk−1(Sk−1[j]), idk−1(Sk−1[j + 1])) as the next symbol of
Sk and continue processing Sk−1[j + 2 . .]. (By Fact V.7,
(Sk−1[j], Sk−1[j + 1]) /∈ Sk−1 in this case.) Note that
|Sk| ≤ |Sk−1| and that the characters of Sk are initially
represented as elements of [1 . . |Sk−1|]∪[1 . . |Sk−1|]2. Sorting
these values allows constructing symbols in Sk \Sk−1 and the
identifier function idk in O(|Sk−1|) time.

The algorithm terminates when it encounters a string Sh

with |Sh| = 1, marking the only symbol of Sh as the
starting symbol of the grammar. The overall running time
is O(

∑h
k=0 |Sk|), which is O(

∑h
k=0

n
ℓk+1

) = O(n) in ex-
pectation by Lemma V.12. The expected grammar size is
O(δ log n log σ

δ logn) by Corollary V.17.

Finally, we adapt the algorithm to output a small grammar
in the worst case.

Theorem V.20. There exists a randomized algorithm that,
given a string S ∈ [0 . . σ)n with δ(S) = δ, constructs a
run-length grammar of size O(δ log n log σ

δ logn) generating S. The
running time is O(n) in expectation and O(n log n) w.h.p.

Proof. We compute δ using Lemma II.5 and determine an
upper bound on the expected size of the grammar produced
using Proposition V.19, as well as an upper bound on the
expected running time of the algorithm of Proposition V.19.

Then, we repeatedly call the algorithm of Proposition V.19
with a time limit of 4 times the expected running time. If
the call does not finish within the limit, we interrupt the
execution and proceed to the next call. Similarly, we proceed
to the next call if the size of the produced grammar exceeds
4 times the expected size. Otherwise, the grammar is of size
O(δ log n log σ

δ logn), so return it to the output.
By Markov’s inequality, a call does not terminate within

four times the expected running time with probability at most
1/4. Similarly, each call produces a grammar of size more
than four times the expected size with probability at most
1/4. By the union bound, an attempt fails with probability
at most 1/2. Consequently, the number of calls is constant
in expectation. The probability that i independent calls fail
(i.e., do not terminate within four times the expected running
time and produce a grammar of size more than four times
the expected size) is at most 2−i. We conclude that c log n
calls are sufficient to guarantee success probability 1 − n−c

for any constant c. Since each call has a time limit of O(n), the
algorithm terminates in O(n log n) time with high probability.

13

VI. ACCESSING AND INDEXING IN δ-BOUNDED SPACE

Christiansen et al. [28, Appendix A] showed how, given
a run-length context-free grammar of size grl generating a
string S, we can build a data structure of size O(grl) that
supports access and indexed searches on S. Both structures are
extensions of their corresponding versions for basic context-
free grammars: For accessing, one decomposes the parse tree
of S into heavy paths and creates structures that allow one
navigating directly to the last heavy path node towards the
desired leaf; only O(log n) heavy path switches are needed
to reach the leaf. For indexing, one defines the grammar tree
as the pruning of the parse tree that converts every second
occurrence of a nonterminal into a leaf. One then cuts S into
phrases according to the leaves of the grammar tree. Every
occurrence of a pattern is called primary if it spans more than
one phrase and secondary if not. The primary occurrences
are found with a geometric structure that relates reversed
prefixes with the corresponding suffixes meeting at each phrase
border, and the secondary occurrences are tracked from the
primary ones by following the grammar tree. See Christiansen
et al. [28] for more details and to see how the techniques are
generalized to permit run-length rules.

A direct corollary of their results and Theorem V.20 is
that we can not only represent a string within O(δ log n log σ

δ logn)
space, but also support fast access and indexed searches within
that space. We can also support the computation of Karp–
Rabin signatures [45] on arbitrary substrings of S.

Corollary VI.1. Given a string S ∈ [0 . . σ)n with measure δ,
there exists a data structure of size O(δ log n log σ

δ logn) that can
be built in O(n log n) expected time and (1) can retrieve any
substring S[i . . i+ℓ] in time O(ℓ+log n), (2) can compute the
Karp–Rabin fingerprint of any substring of S in time O(log n),
and (3) can report the occ occurrences of any pattern P [1 . .m]
in S in time O(m log n+ occ logϵ n), for any constant ϵ > 0
fixed at construction time.

Proof. Points (1), (2), and (3) follow from Theorem V.20
combined with Theorems A.1, A.3, and A.4 of Christiansen et
al. [28], respectively. Those structures are built in O(n log n)
expected time, which dominates the O(n) expected time
needed to build the run-length grammar.

On the other hand, no known O(grl)-space index can
efficiently count the number of times P [1 . .m] occurs in S.
Christiansen et al. [28, Appendix A] instead show an index of
size O(g) that can count in time O(m log2+ϵ n) for any fixed
constant ϵ > 0. We now show that the same can be obtained
within space O(δ log n

δ). Though this space is always Ω(grl)
(Theorem V.18), it can be o(g) (Theorem V.3).

Later, we show how the results of Corollary VI.1 can be
improved in some cases by using block trees [38] instead of
grammars. The block tree is a data structure designed to repre-
sent repetitive strings S[1 . . n] in O(z log n log σ

z logn) space while
accessing individual symbols of S and computing fingerprints
in time O(log n log σ

z logn), that is, faster than in Corollary VI.1
when z is not too small. We show that the block tree is
easily tuned to use the worst-case-optimal O(δ log n log σ

δ logn)
space while retaining its access time.

A. Counting

As explained, it is possible to count how many times
P [1 . .m] occurs in S in space proportional to any context-
free grammar generating S. The idea, however, has not been
extended to handle run-length rules of the form A → Bt.
Christiansen et al. [28, Section 7] accomplished this only
for their particular run-length context-free grammar, of size
O(γ log n

γ). We now show that their result can be carried over
to our run-length grammar of Section V.

We start proving a technical point about our grammar, which
we will need to establish the result.

Definition VI.2 ([46]). A period of a string S[1 . . n] is a
positive integer p such that S[p + 1 . . n] = S[1 . . n − p]. We
denote the smallest period of S with per(S).

Lemma VI.3 (cf. [20, Lemma 6.17]). For every rule of the
form A → Bt in our run-length grammar, per(exp(A)) =
| exp(B)|.

Proof. Observe that | exp(B)| is a period of exp(A) because
exp(A) = exp(B)t. Thus, by the Periodicity Lemma [47],
per(exp(A)) = per(exp(B)) = 1

s | exp(B)| holds for some
integer s ≥ 1. For a proof by contradiction, suppose that s > 1.

Let ℓ be the minimum level such that A occurs in Sℓ,
and let us fix an occurrence of A in Sℓ. In each string Sk

with k ∈ [0 . . ℓ], this occurrence corresponds to a fragment
xk satisfying exp(xk) = exp(A). Note that xℓ = A and
xℓ−1 = Bt. Consequently, for each k ∈ [0 . . ℓ), we have
xk = Y t

k for some string Yk ∈ A+; in particular, Y0 = exp(B)
and Yℓ−1 = B.

Let us fix the largest k ∈ [0 . . ℓ) such that Yk = Zs
k for

some string Zk ∈ A+; note that k is well-defined due to
per(Y0) =

1
s |Y0| and k < ℓ−1 due to per(Yℓ−1) = |Yℓ−1| = 1.

Let us decompose xk into st equal-length fragments xk =
zk,1 · · · zk,st, and note that zk,i = Zk for i ∈ [1 . . st]. Consider
the partition of Sk into blocks that are then collapsed to
form Sk+1. Since xk gets collapsed to xk+1, block boundaries
are placed before zk,1 and after zk,st. Since zk,1 · · · zk,s = Yk

gets collapsed to a fragment matching Yk+1, a block boundary
is also placed between zk,s and zk,s+1. However, according
to Definitions V.4 and V.5, block boundaries are placed solely
based on the two adjacent symbols, and therefore a block
boundary is placed between every Zk[|Zk|] and Zk[1] and,
in particular, between zk,i and zk,i+1 for all i ∈ [1 . . st).
Consequently, each fragment zk,i is collapsed to a fragment
of Sk+1, which we denote zk+1,i. Since exp(zk+1,i) =
exp(zk,i) = exp(Zk) holds for all i ∈ [1 . . st], Fact V.7
yields a string Zk+1 ∈ A+ satisfying zk+1,i = Zk+1 for all
i ∈ [1 . . st]. This implies Yk+1 = Zs

k+1, contradicting the
choice of k. Hence, s = 1.

We are now ready to establish the main result.

Theorem VI.4. Given a string S[1 . . n] with measure δ, there
exists a data structure of size O(δ log n

δ) that can be built in
O(n log n) expected time and can count the number of times
any pattern P [1 . .m] occurs in S in time O(m log2+ϵ n), for
any constant ϵ > 0 fixed at construction time.

14

Proof. We use the technique that Christiansen et al. [28,
Section 7] developed for their particular run-length grammar.
The only point where their structure requires some specific
property of their grammar is their Lemma 7.2, which we have
reproved for our grammar as Lemma VI.3.

The total space is proportional to the size of the grammar,
which in our case is O(δ log n

δ). Their expected construction
time is O(n log n), which dominates the time to build our run-
length grammar. From the time analysis in [28], it follows that
the query time is O(m log2+ϵ n) because we split P in m− 1
places, not just in O(logm) places as their special grammar
allows.

B. Block trees

Given integer parameters τ and s, the root of the block tree
divides S into s equal-sized (that is, with the same number of
characters) blocks (assume for simplicity that n = s · τ t for
some integer t).1 Blocks are then classified into marked and
unmarked. If two adjacent blocks B′, B′′ form the leftmost
occurrence of the underlying substring B′ · B′′, then both
B′ and B′′ are marked. Blocks B that remain unmarked are
replaced by a pointer to the pair of adjacent blocks B′, B′′

that contains the leftmost occurrence of B, and the offset
ϵ ≥ 0 where B starts inside B′. Marked blocks are divided
into τ equal-sized sub-blocks, which form the children of
the current block tree’s level, and processed recursively in
the same way. Let σ be the alphabet size. The level where
the blocks’ lengths fall below logσ n contains the leaves of
the block tree, whose blocks store their plain string content
using O(log n) bits. The height of the block tree is then
h = O(logτ

n/s
logσ n) = O(logτ

n log σ
s logn) ⊆ O(log n

s).
The block tree construction guarantees that the blocks B′

and B′′ to which any unmarked block points exist and are
marked. Therefore, any access to a position S[i] can be carried
out in O(h) time, by descending from the root to a leaf
and spending O(1) time in each level: To obtain B[i] from
a marked block B, we simply compute to which sub-block
B[i] belongs among the children of B. To obtain B[i] from
an unmarked block B pointing to B′, B′′ with offset ϵ, we
switch either to B′[ϵ + i] or to B′′[ϵ + i − |B′|], which are
marked blocks. When reaching a leaf, we extract the symbol
directly from the string stored explicitly in the leaf.

By storing further data associated with marked and un-
marked blocks, the block tree offers the following functional-
ity [38]:

access:any substring S[i . . i + ℓ − 1] is extracted in time
O(h⌈ℓ/ logσ n⌉);

rank: the number of times symbol a occurs in S[1 . . i],
denoted ranka(S, i), is computed in time O(h) by
multiplying the space by O(σ);

select: the position of the jth occurrence of symbol a
in S, denoted selecta(S, j), is computed in time
O(pred(s, n) + h pred(τ, n)) by multiplying the
space by O(σ), where pred(x, n) is the time of a

1Otherwise, we simply pad S with spurious symbols at the end; whole
spurious blocks are not represented. The extra space incurred is only O(τh)
for a tree of height h.

predecessor query (read below for a more formal
definition of predecessor queries) on a set of x
elements from the universe [1 . . n].

A predecessor data structure pre-processes a set X ⊆ [1 . . n]
so that, later, predecessor queries are answered quickly: the
predecessor of y ∈ [1 . . n] in X is max{z ∈ X : z ≤ y}.
For example, simply sorting X allows finding predecessors
with binary search in pred(|X|, n) = O(log |X|) time. More
advanced (linear-space) data structures drastically reduce this
running time [48].

It is shown that there are only O(zτ) blocks (either marked
or unmarked) in each level of the block tree (except the first,
which has s blocks); therefore, the size of the block tree is
O(s+ zτ logτ

n log σ
s logn).

1) Bounding the space in terms of δ: We now prove that
there are only O(δτ) blocks in each level of the block tree
except the root level, and therefore, choosing s = δ yields a
structure of size O(δτ logτ

n log σ
δ logn) with height O(logτ

n log σ
δ logn).

For τ = O(1), the space is O(δ log n log σ
δ logn) ⊆ O(δ log n

δ) and
the height is O(log n log σ

δ logn) ⊆ O(log n
δ).

Let us call level k of the block tree the one where blocks are
of length τk (recall that we assume n = s·τ t). In level k, then,
S is covered regularly with blocks B = S[τk(i−1)+1 . . τki]
of length τk (though not all of them are present in the block
tree). Note that k reaches its maximum in the root (where we
have the largest blocks) and the minimum in the leaves of the
block tree.

Lemma VI.5. The number of marked blocks of length τk in
the block tree is O(δ).

Proof. Any marked block B must belong to a sequence of
three blocks, B− ·B ·B+, such that B is inside the leftmost
occurrence of B− ·B or B ·B+, or both (B− and B+ do not
exist for the first and last block, respectively).

For the sake of computing our bound, let # be a symbol
not appearing in S and let us add 2 · τk characters equal to
at the beginning of S and 2τk characters equal to # at the
end of S. We index the added prefix in negative positions (up
to index 0), so that S[−2 · τk +1 . . 0] = #2·τk

. Now consider
all the τk text positions p belonging to a marked block B. The
long substring E = S[p−2 · τk . . p+2 · τk−1] centered at p,
of length 4τk, contains B− ·B ·B+, and thus E contains the
leftmost occurrence L of B− · B or B · B+. All those long
substrings E must then be distinct: if two long substrings E
and E′ are equal, and E′ appears after E in S, then E′ does
not contain the leftmost occurrence of any substring L.

Since we added a prefix of length 2·τk and a suffix of length
2τk consisting of character # to S, the number of distinct
substrings of length 4τk is at most d4τk(S)+4τk. Therefore,
there can be at most d4τk(S) + 4τk long substrings E as
well, because they must all be distinct. Since each position
p inside a block B induces a distinct long substring E, and
each marked block B contributes τk distinct positions p, there
are at most (d4τk(S) + 4τk)/τk marked blocks B of length
τk. The total number of marked blocks of length τk is thus at
most (d4τk(S) + 4τk)/τk = 4 · d4τk(S)/(4τk) + 4τk/τk ≤
4δ + 4.

15

Since the block tree has at most O(δ) marked blocks per
level, it has O(δτ) blocks across all the levels except the root
level, because each marked block has τ children blocks in the
next level. This observation yields the following result.

Theorem VI.6. Let S[1 . . n], over alphabet [1 . . σ], have
measure δ. Then the block tree of S, with parameters τ
and s, is of size O(s + δτ logτ

n log σ
s logn) words and height

h = O(logτ
n log σ
s logn).

2) Operations on block trees: By properly parameterizing
the block tree, we obtain a structure that uses the same
asymptotic space and, in some cases, extracts substrings faster
than the result of Corollary VI.1.

Corollary VI.7. Let S ∈ [0 . . σ)n have measure δ =
δ(S). Then a block tree of S can use O(δ log n log σ

δ logn)
space and extract a substring of length ℓ from S in time
O(⌈ℓ/ logσ n⌉ log

n log σ
δ logn).

Proof. We obtain the desired space O(δ log n log σ
δ logn) ⊆

O(δ log n
δ) by using Theorem VI.6 with s = δ and τ = O(1).

The height is O(log n log σ
δ logn), and thus the substring extraction

costs O(⌈ℓ/ logσ n⌉ log
n log σ
δ logn).

Navarro and Prezza [33] show how the Karp–Rabin sig-
nature of any S[i . . j] can be computed in time O(log n

γ)
on their Γ-tree variant of the block tree, which is of size
O(γ log n

γ). We now extend their result so as to compute the
fingerprint ϕ(S[i . . j]) = ϕ(S[i]) ◦ϕ(S[i+1])◦· · ·◦ϕ(S[j]) for
any group operator ◦ within O(δ log n log σ

δ logn) space and using
O(log n log σ

δ logn) group operations, by enhancing the original
block trees. This includes computing the Karp–Rabin signature
of S[i . . j] in time O(log n log σ

δ logn), because all the required
group operations can be supported in constant time on those
signatures [33].

Definition VI.8. Let Σ be an alphabet and (G, ◦,−1 , 0) a
group. A function ϕ : Σ∗ → G is a fingerprint on Σ∗ if ϕ(ε) =
0 and ϕ(S · a) = ϕ(S) ◦ ϕ(a) for every S ∈ Σ∗ and a ∈ Σ.

Theorem VI.9. Let S ∈ Σn, (G, ◦,−1 , 0) be a group where
log |G| = O(log n), and ϕ : Σ∗ → G a fingerprint on Σ∗.
Then there is a data structure of size O(δ log n log σ

δ logn) that can
compute any ϕ(S[i . . j]) in time O(log n log σ

δ logn).

Proof. We use a block tree for S with arity τ = O(1)
and where the leaves correspond to strings of length ℓ =
⌊ 12 logσ δ⌋, not logσ n as before. The height of this block
tree then grows to h = O(log n/δ

1
2 logσ δ

) = O(log n log σ
δ log δ) =

O(log n log σ
δ logn).

In addition, we augment the internal blocks as follows.
Together with every marked block B = S[τk(i−1)+1 . . τki]
at every level k, we store its fingerprint ϕ(B) (using constant
space). Furthermore, at the top level, say level k = κ, we
store the fingerprint ϕ(S[1 . . τκ(i−1)]) at the block-tree node
corresponding to the block B = S[τκ(i − 1) + 1 . . τκi]. In
addition, let B1, . . . , Bτ be the children at level k − 1 of a
marked block B of level k. We store, at each such child Bj ,
the fingerprint ϕ(B1 · · ·Bj−1). Finally, for unmarked blocks

B[1 . . τk] = B′[i . . τk] · B′′[1 . . i − 1], we store at B the
fingerprint ϕ(B′[i . . τk]). See Fig. 2 for an example. We also
store a table with σℓ ≤

√
δ rows, one representing each

possible string of length ℓ. The row representing string L[1 . . ℓ]
stores ϕ(L[1 . . i]) for 1 ≤ i ≤ ℓ, that is, for all prefixes of L.
The space for this table is just o(δ). Each block tree leaf points
to the corresponding row of this table, using O(log δ) bits.

We will retrieve any fingerprint ϕ(S[i . . j]) as
ϕ(S[1 . . i− 1])−1 ◦ ϕ(S[1 . . j]); therefore we focus on
computing only fingerprints of the form ϕ(S[1 . . i]) for
arbitrary i. At the top level κ, the prefix S[1 . . i] spans a
sequence B1 · · ·Bt of blocks followed by a (possibly empty)
prefix C of block Bt+1. Since ϕ(B1 · · ·Bt) is explicitly
stored at block Bt+1, the problem reduces to computing
ϕ(C) and then returning ϕ(B1 · · ·Bt) ◦ ϕ(C). The following
is needed only if C ̸= ε.

To compute the fingerprint of a prefix B[1 . . l] of a block
B at level k ≤ κ (so 1 ≤ l ≤ τk), we distinguish two cases.

1) B is a marked block, with children B1, . . . , Bτ at
level k − 1, so that B[l] belongs to the child Bj

(i.e., j = ⌈l/τk−1⌉). We then return ϕ(B1 · · ·Bj−1) ◦
ϕ(Bj [1 . . l mod τk−1]), where the first term is stored at
Bj and the second is computed from the next level (only
necessary if l mod τk−1 ̸= 0).

2) B is an unmarked block, pointing to a previous occur-
rence inside B′ · B′′ at the same level k, with both
B′ and B′′ marked. If the occurrence of B spans only
one marked block, B′, then we replace B by B′ in
our query, and we are back in case (1). Otherwise, let
B[1 . . τk] = B′[i . . τk] ·B′′[1 . . i− 1]. We consider two
subcases.

a) If l ≥ τk − i + 1, then B[1 . . l] = B′[i . . τk] ·
B′′[1 . . l − (τk − i + 1)]. We then return
ϕ(B′[i . . τk]) ◦ ϕ(B′′[1 . . l− (τk − i+1)]), where
the first term is stored at B and the second is a
new problem on level k, now in case (1).

b) If l < τk− i+1, then B[1 . . l] = B′[i . . i+ l − 1].
Although this is neither a prefix nor a suffix of
a block, note that B[1 . . l] · B′[i + l . . τk] =
B′[i . . i + l − 1] · B′[i + l . . τk] = B′[i . . τk].
We then return ϕ(B′[i . . τk])◦ϕ(B′[i+ l . . τk])−1.
The first fingerprint is stored at B, whereas the
second is the fingerprint of the suffix of the marked
block B′. We compute it as ϕ(B′[i + l . . τk]) =
ϕ(B′[1 . . i+l−1])−1◦ϕ(B′), where ϕ(B′) is stored
at B′ and the first term is again the fingerprint of
a prefix at the same level, yet now in case (1).

To sum up, computing a prefix of an explicit block at level
k reduces to the problem of computing a prefix of an explicit
block at level k−1 plus a constant amount of group operations
to combine values. In the worst case, we navigate down to
the leaves, where fingerprints of any leaf prefix are found in
constant time by following the stored pointers to the table.
Since the height of this block tree is O(log n log σ

δ logn), this is
also the cost to compute the whole fingerprint, counting group
operations and other costs.

We note that it is unknown if a result like Theorem VI.9 can

16

Fig. 2. A block tree with s = 5, τ = 3, and height 2. Marked blocks are shown as solid rectangles, with their τ children, whereas unmarked blocks are
shown as dashed rectangles, with a curved arrow pointing to their source in the same level, where the same block is shown in shadowed form. The thick lines
correspond to all the segments of S whose fingerprints are stored in our data structure: the s− 1 increasing prefixes on top, the τ − 1 increasing prefixes of
marked blocks, the marked blocks, and the suffix of the left block pointed by unmarked blocks.

be obtained on a semigroup. For example, it is not known how
to compute the smallest symbol contained in any substring in
polylogarithmic time on block trees [49], [38].

Let us simplify our time to O(log n
δ) for the final discussion

of this section. Though our time for accessing and fingerprint-
ing seems to be larger than those obtained on other block
tree variants, which are of height O(log n

z) [38] or O(log n
γ)

[33], we next show that log n
δ is asymptotically equal to

log n
g , which also encompasses all the intermediate measures,

δ ≤ γ ≤ b ≤ c ≤ z ≤ grl ≤ g.

Lemma VI.10. Let x = O(δ logc n
δ) for some constant c > 0.

Then log n
δ = O(log n

x). As a consequence, log n
δ = Θ(log n

g).

Proof. From the hypohesis it follows that n
δ = O(nx logc n

δ).
Since logc n

δ = O(
√

n
δ), it holds that

√
n
δ = O(nx), and thus

log n
δ = O(log n

x). The final consequence follows from δ ≤
g = O(z log n

z) = O(δ log n
δ log n

z) = O(δ log2 n
δ) [14], [15],

[37].

Hence, the times we obtain using O(δ log n
δ) space, not only

for access but also for rank and select, and for computing
fingerprints, are asymptotically the same as those obtained
in O(γ log n

γ) space [33], [39] or in O(z log n
z) space [38].

Concretely, we can write our access and fingerprinting time
as O(log n log σ

g logn).
Finally, it is also possible to obtain the same result as point

(3) of Corollary VI.1 using block trees; see the conference
version of this article [1].

VII. CONCLUSIONS

We have made a step towards establishing the right measure
of repetitiveness for a string S[1 . . n]. Compared with the most
principled prior measure, the size γ of the smallest attractor,
the proposed measure δ has several important advantages:

1) It can be computed in linear time, while finding γ is
NP-hard. It is also insensitive to simple string transfor-
mations (reversals, alphabet permutations) and, unlike γ,
monotone with respect to appending symbols and chang-
ing by only 1 unit upon single-symbol edits.

2) It lower bounds the previous measure, δ ≤ γ, with
up to a logarithmic-factor separation: For every string
length n, alphabet size σ, and value 10σ ≤ ∆ ≤ n log σ

2 logn ,

there are string families in [0 . . σ)n where δ ≤ ∆ and
γ = Ω(∆ log n log σ

∆ logn).
3) We can always encode S in O(δ log n log σ

δ logn) space, and
this is worst-case optimal in terms of δ: For any string
length n, alphabet size σ, and value 14σ ≤ ∆ ≤ n log σ

2 logn ,
there are string families in [0 . . σ)n with δ ≤ ∆ and
needing Ω(∆ log n log σ

∆ logn) space to be represented. Thus,
o(δ log n) space is unreachable in general. Instead, no
string family is known to require ω(γ) space, nor it is
known if o(γ log n) space can always be reached.

4) We can build a run-length context-free grammar of size
O(δ log n log σ

δ logn), which then upper bounds the size grl of
the smallest such grammar, and transitively the measures
γ, b, c, v, and z. At the same time, there are string
families where the smallest context-free grammar is of
size g = Ω(δ log2 n

δ / log log
n
δ). No such separation is

known for γ.
5) There are encodings using O(δ log n log σ

δ logn) space and
supporting direct access, fingerprinting, and indexed
searches, with the same complexities obtained within
the larger attractor-bounded space O(γ log n

γ) [33]. An
exception is a very recent faster index [28].

An ideal compressibility measure capturing repetitiveness
should be reachable, monotone, resistant to simple string
transformations, efficient to compute, and optimal within
a hopefully refined partition of the strings. The measure
δ log n log σ

δ logn ⊆ δ log n
δ is reachable, monotone, resistant, fast

to compute, and optimal within the class of strings with the
same n, σ, and δ values.

In comparison, measure b (the size of the smallest bidi-
rectional macro scheme) is reachable and invariant, but it is
non-monotone and NP-hard to compute. On the other hand, it
is optimal within a more refined partition, since it is always
O(δ log n log σ

δ logn). The size γ ≤ b of the smallest attractor is
unknown to be reachable, and it is non-monotone and NP-
hard to compute, yet invariant. If it turns out that one can
always encode a string within O(γ) space, then γ would be a
reachable measure even more refined than b.

The measure δ log n log σ
δ logn , or its simpler version δ log n

δ , is
then a good candidate in the fascinating quest for an ideal
measure of repetitiveness. Its main weakness is that it is

17

optimal within a partition of the strings that, though reasonably
refined, is improved by other measures (which have other
weaknesses).

On the more algorithmic side, it would be useful to com-
pute δ within little space. The O(n)-time computation we
provided in Lemma II.5, even if much lighter than the previous
one based on suffix trees [28], still requires O(n) space,
which can be unaffordable for very large text collections.
Bernardini et al. [50], for example, show how to compute
it in time O(n3/s2) and O(s) space. It would also be
worth obtaining faster indexes of size O(δ log n

δ). Our index
requires O(m log n + occ logϵ n) search and O(m log2+ϵ n)
count time, while in O(γ log n

γ) space it is possible to search
in O(m + (occ + 1) logϵ n) and count in O(m + log2+ϵ n)
time [28].

APPENDIX A
PROOF FROM [42]

In this Appendix, we reproduce proofs from an unpublished
manuscript [42].

Fact V.7 ([42]). For every k ∈ Z≥0, if exp(x) = exp(x′)
holds for two fragments of Sk, then x = x′.

Proof. We proceed by induction on k. Let x, x′ be fragments
of Sk satisfying exp(x) = exp(x′). If k = 0, then x = x′

holds due to exp(x) = x and exp(x′) = x′. Otherwise, let x̄
and x̄′ be the fragments of Sk−1 obtained from x and x′, re-
spectively, by expanding collapsed blocks. Note that exp(x̄) =
exp(x) = exp(x′) = exp(x̄′), so the inductive assumption
guarantees x̄ = x̄′. Inspecting Definitions V.4 and V.5, observe
that if Sk−1[i] = Sk−1[i

′] and Sk−1[i + 1] = Sk−1[i
′ + 1],

then block boundaries after positions i, i′ ∈ [1 . . |Sk−1|) are
placed consistently: either after both of them or after neither
of them. Consequently, block boundaries within x̄ and x̄′ are
placed consistently. Moreover, both x̄ and x̄′ consist of full
blocks (since they are collapsed to x and x′, respectively).
Thus, x̄ and x̄′ are consistently partitioned into full blocks.
Matching blocks get collapsed to matching symbols both in
Definitions V.4 and V.5, so we derive x = x′.

Corollary V.8 ([42]). For every odd k ∈ Z≥0, there is no
j ∈ [1 . . |Sk|) such that Sk[j] = Sk[j + 1] ∈ Ak+1.

Proof. For a proof by contradiction, suppose that Sk[j] =
Sk[j + 1] ∈ Ak+1 holds for some j ∈ [1 . . |Sk|). Let
x = Sk−1(i − ℓ . . i] and x′ = Sk−1(i . . i + ℓ′] be blocks
of Sk−1 collapsed to Sk[j] and Sk[j+1], respectively. Due to
exp(x) = exp(Sk[j]) = exp(Sk[j + 1]) = exp(x′), Fact V.7
guarantees x = x′ and, in particular, ℓ = ℓ′. If ℓ = 1,
then Sk−1[i] = Sk[j] = Sk[j + 1] = Sk−1[i + 1] ∈ Ak+1.
Otherwise, x = x′ = Aℓ for some symbol A ∈ Ak,
which means that Sk−1[i] = Sk−1[i + 1] = A. In either
case, Sk−1[i] = Sk−1[i] ∈ Ak = Ak+1, which means that
rleAk

(Sk−1) does not place a block boundary after position
i in Sk−1. This contradicts the choice of i as the boundary
between blocks x and x′.

Lemma V.9 ([42]). Let α ∈ Z≥1 and let i, i′ ∈ [α . . n − α]
be such that S(i− α . . i+ α] = S(i′ − α . . i′ + α]. For every
k ∈ Z≥0, if α ≥ 16ℓk, then i ∈ Bk ⇐⇒ i′ ∈ Bk.

Proof. We proceed by induction on k, with a weaker as-
sumption α ≥ 15ℓk for odd k. In the base case of k = 0,
the claim is trivial due to Bk = [1 . . n). Next, we shall
prove that the claim holds for integers k > 0 and α > ℓk
assuming that it holds for k − 1 and α − ⌊ℓk⌋. This is
sufficient for the inductive step: If α ≥ 16ℓk for even k, then
α− ⌊ℓk⌋ ≥ 15ℓk = 15ℓk−1. Similarly, if α ≥ 15ℓk for odd k,
then α− ⌊ℓk⌋ ≥ 14ℓk = 16ℓk−1.

For a proof by contradiction, suppose that S(i − α . .
i+ α] = S(i′ − α . . i′ + α] yet i ∈ Bk and i′ /∈ Bk

for some i, i′ ∈ [α . . n − α]. By the inductive assump-
tion (applied to positions i, i′), i ∈ Bk ⊆ Bk−1 implies
i′ ∈ Bk−1. Let us set j, j′ so that i = | exp(Sk−1[1 . . j])|
and i′ = | exp(Sk−1[1 . . j

′])|. Since a block boundary was
not placed between Sk−1[j

′] and Sk−1[j
′ + 1], we have

Sk−1[j
′], Sk−1[j

′ + 1] ∈ Ak (see Definitions V.4 and V.5).
Consequently, the phrases S(i′ − ℓ . . i′] = exp(Sk−1[j

′]) and
S(i′ . . i′ + r] = exp(Sk−1[j

′ + 1]) around position i′ are of
length at most ⌊ℓk⌋. By the inductive assumption (applied to
positions i + δ, i′ + δ for δ ∈ [−ℓ . . r] ⊆ [−⌊ℓk⌋ . . ⌊ℓk⌋]),
there are matching phrases S(i−ℓ . . i] and S(i . . i+r] around
position i. Due to Fact V.7, this yields Sk−1[j] = Sk−1[j

′] and
Sk−1[j + 1] = Sk−1[j

′ + 1]. Consequently, a block boundary
was not placed between Sk−1[j] and Sk−1[j + 1], which
contradicts i ∈ Bk.

Lemma V.10 ([42]). For every k ∈ Z≥0, we have E[|Sk|] <
1 + 4n

ℓk+1
.

Proof. We proceed by induction on k. For k = 0, we have
|S0| = n < 1 + 4n = 1 + 4n

ℓ1
. If k is odd, we note that

|Sk| ≤ |Sk−1| and therefore E[|Sk|] ≤ E[|Sk−1|] < 1 + 4n
ℓk

=

1 + 4n
ℓk+1

. Thus, it remains to consider even integers k > 0.

Claim A.1. For every even k > 0, conditioned on any fixed
Sk−1, we have E

[
|Sk|

∣∣ Sk−1

]
< 1

4 + n
2ℓk

+ 3
4 |Sk−1|.

Proof. Let us define J = {j ∈ [1 . . |Sk−1|] : j =
|Sk−1| or Sk−1[j] /∈ Ak or Sk−1[j+1] /∈ Ak}. Since A /∈ Ak

yields | exp(A)| > ℓk, we have |J | < 1 + 2n
ℓk

. Moreover, ob-
serve that if j ∈ [1 . . |Sk−1|]\J , then Sk−1[j] and Sk−1[j+1]
are, by Corollary V.8, distinct symbols in Ak. Consequently,
Pr[Sk−1[j] ∈ Lk and Sk−1[j + 1] ∈ Rk] = 1

4 . Thus, the
probability that pcLk,Rk

(Sk−1) places a block boundary after
position j ∈ [1 . . |Sk−1|] \ J is 3

4 . Therefore,

E
[
|Sk|

∣∣ Sk−1

]
= |J |+ 3

4 (|Sk−1| − |J |)
= 1

4 |J |+
3
4 |Sk−1| < 1

4 + n
2ℓk

+ 3
4 |Sk−1|.

Since the partition Ak = Lk ∪Rk is independent of Sk−1,
Claim V.13 and the inductive assumption yield

E[|Sk|] < 1
4 + n

2ℓk
+ 3

4E[|Sk−1|] < 1
4 + n

2ℓk
+ 3

4 + 3n
ℓk

= 1 + 7n
2ℓk

= 1 + 4n
ℓk+1

.

18

ACKNOWLEDGEMENTS

Part of this work was carried out during the Dagstuhl Sem-
inar 19241, “25 Years of the Burrows–Wheeler Transform”.
We also thank Travis Gagie for pointing us the early reference
related to δ [37].

TK carried out this work while at the Bar-Ilan University,
Israel, supported by ISF grants no. 1278/16, 824/17, and
1926/19, a BSF grant no. 2018364, and an ERC grant MPM
(no. 683064) under the EU’s Horizon 2020 Research and
Innovation Programme, and while at University of California,
Berkeley, supported in part by NSF 1652303, 1909046, and
HDR TRIPODS 1934846 grants, and an Alfred P. Sloan
Fellowship. GN was supported by Basal Funds FB0001, ANID
– Millennium Science Initiative Program – Code ICN17 002,
and Fondecyt Grant 1-200038, Chile. NP was supported by
ERC grant no. 101039208 (REGINDEX) under the European
Union’s Horizon Europe Research and Innovation Programme.

REFERENCES

[1] T. Kociumaka, G. Navarro, and N. Prezza, “Towards a definitive measure
of repetitiveness,” in Proc. 14th Latin American Symposium on Theoret-
ical Informatics (LATIN), ser. LNCS, vol. 12118. Springer, 2020. doi:
10.1007/978-3-030-61792-9 17 pp. 207–219.

[2] G. Navarro, Compact Data Structures – A practical approach. Cam-
bridge University Press, 2016. ISBN 978-1-10-715238-0

[3] ——, “Indexing highly repetitive string collections, part I: Repet-
itiveness measures,” ACM Computing Surveys, vol. 54, no. 2, p.
article 29, 2022. doi: 10.1145/3434399 Most recent version at
https://arxiv.org/abs/2004.02781.

[4] T. Gagie, “Large alphabets and incompressibility,” Information
Processing Letters, vol. 99, no. 6, pp. 246–251, 2006. doi:
10.1016/j.ipl.2006.04.008

[5] S. Kreft and G. Navarro, “On compressing and indexing repetitive
sequences,” Theoretical Computer Science, vol. 483, pp. 115–133, 2013.
doi: 10.1016/ j.tcs.2012.02.006

[6] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Transactions on Information Theory, vol. 22, no. 1, pp. 75–81, 1976.
doi: 10.1109/ TIT.1976.1055501

[7] J. C. Kieffer and E. Yang, “Grammar-based codes: A new class of
universal lossless source codes,” IEEE Transactions on Information
Theory, vol. 46, no. 3, pp. 737–754, 2000. doi: 10.1109/18.841160

[8] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage
and retrieval of highly repetitive sequence collections,” Journal of
Computational Biology, vol. 17, no. 3, pp. 281–308, 2010. doi:
10.1089/cmb.2009.0169

[9] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” International Journal of Computer Mathematics, vol. 2,
no. 1-4, pp. 157–168, 1968. doi: 10.1080/00207166808803030

[10] M. Rodeh, V. R. Pratt, and S. Even, “Linear algorithm for data
compression via string matching,” Journal of the ACM, vol. 28, no. 1,
pp. 16–24, 1981. doi: 10.1145/322234.322237

[11] J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,” Journal of the ACM, vol. 29, no. 4, pp. 928–951, 1982.
doi: 10.1145/ 322344.322346

[12] G. Navarro, C. Ochoa, and N. Prezza, “On the approximation ratio of
ordered parsings,” IEEE Transactions on Information Theory, vol. 67,
no. 2, pp. 1008–1026, 2021. doi: 10.1109/TIT.2020.3042746

[13] J. K. Gallant, “String compression algorithms,” Ph.D. dis-
sertation, Princeton University. ISBN 979-8-204-67683-1 1982.
[Online]. Available: https://www.proquest.com/dissertations-theses/
string-compression-algorithms/docview/303254400/se-2

[14] W. Rytter, “Application of Lempel-Ziv factorization to the approximation
of grammar-based compression,” Theoretical Computer Science, vol.
302, no. 1-3, pp. 211–222, 2003. doi: 10.1016/S0304-3975(02)00777-6

[15] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sa-
hai, and A. Shelat, “The smallest grammar problem,” IEEE Transactions
on Information Theory, vol. 51, no. 7, pp. 2554–2576, 2005. doi:
10.1109/TIT.2005.850116

[16] A. Jeż, “A really simple approximation of smallest grammar,”
Theoretical Computer Science, vol. 616, pp. 141–150, 2016. doi:
10.1016/j.tcs.2015.12.032

[17] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda, “Fully
dynamic data structure for LCE queries in compressed space,” in
Proc. 41st International Symposium on Mathematical Foundations of
Computer Science (MFCS), 2016. doi: 10.4230/LIPIcs.MFCS.2016.72
pp. 72:1–72:15.

[18] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and
S. Arikawa, “Collage system: A unifying framework for compressed
pattern matching,” Theoretical Computer Science, vol. 298, no. 1, pp.
253–272, 2003. doi: 10.1016/S0304-3975(02)00426-7

[19] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital Equipment Corporation, Tech. Rep.
124, 1994. [Online]. Available: https://www.hpl.hp.com/techreports/
Compaq-DEC/SRC-RR-124.pdf

[20] D. Kempa and T. Kociumaka, “Resolution of the Burrows-Wheeler
transform conjecture,” in Proc. 61st IEEE Symposium on Foundations
of Computer Science (FOCS), 2020. doi: 10.1109/focs46700.2020.00097
pp. 1002–1013.

[21] A. Blumer, J. Blumer, D. Haussler, R. M. McConnell, and A. Ehren-
feucht, “Complete inverted files for efficient text retrieval and anal-
ysis,” Journal of the ACM, vol. 34, no. 3, pp. 578–595, 1987. doi:
10.1145/28869.28873

[22] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot,
“Composite repetition-aware data structures,” in Proc. 26th Annual
Symposium on Combinatorial Pattern Matching (CPM). Springer, 2015.
doi: 10.1007/978-3-319-19929-0 3 pp. 26–39.

[23] D. Belazzougui and F. Cunial, “Representing the suffix tree with the
CDAWG,” in Proc. 28th Annual Symposium on Combinatorial Pattern
Matching (CPM), 2017. doi: 10.4230/LIPIcs.CPM.2017.7 pp. 7:1–7:13.

[24] ——, “Fast label extraction in the CDAWG,” in Proc. 24th International
Symposium on String Processing and Information Retrieval (SPIRE),
2017. doi: 10.1007/978-3-319-67428-5 14 pp. 161–175.

[25] T. Gagie, G. Navarro, and N. Prezza, “Fully-functional suffix trees and
optimal text searching in BWT-runs bounded space,” Journal of the
ACM, vol. 67, no. 1, pp. 1–54, 2020. doi: 10.1145/3375890

[26] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and
O. Weimann, “Random access to grammar-compressed strings and
trees,” SIAM Journal on Computing, vol. 44, no. 3, pp. 513–539, 2015.
doi: 10.1137/130936889

[27] D. Belazzougui, P. H. Cording, S. J. Puglisi, and Y. Tabei, “Access,
rank, and select in grammar-compressed strings,” in Proc. 23rd Annual
European Symposium on Algorithms (ESA), 2015. doi: 10.1007/978-3-
662-48350-3 13 pp. 142–154.

[28] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro,
and N. Prezza, “Optimal-time dictionary-compressed indexes,” ACM
Transactions on Algorithms, vol. 17, no. 1, pp. 8:1–8:39, 2021. doi:
10.1145/3426473

[29] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM
Computing Surveys, vol. 39, no. 1, 2007. doi: 10.1145/1216370.1216372

[30] G. Navarro, “Indexing highly repetitive string collections, part II:
Compressed indexes,” ACM Computing Surveys, vol. 54, no. 2,
p. article 26, 2022. doi: 10.1145/3432999 Most recent version at
https://arxiv.org/abs/2004.02781.

[31] T. Nishimoto and Y. Tabei, “Optimal-time queries on BWT-
runs compressed indexes,” in Proc. 48th International Colloquium
on Automata, Languages, and Programming (ICALP), vol. 198.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ICALP.2021.101 pp. 101:1–101:15.

[32] D. Kempa and N. Prezza, “At the roots of dictionary compression: String
attractors,” in Proc. 50th Annual ACM Symposium on the Theory of
Computing (STOC), 2018. doi: 10.1145/3188745.3188814 pp. 827–840.

[33] G. Navarro and N. Prezza, “Universal compressed text indexing,”
Theoretical Computer Science, vol. 762, pp. 41–50, 2019. doi:
10.1016/j.tcs.2018.09.007

[34] S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino, “A
combinatorial view on string attractors,” Theoretical Computer Science,
vol. 850, pp. 236–248, 2021. doi: 10.1016/j.tcs.2020.11.006

[35] T. Akagi, M. Funakoshi, and S. Inenaga, “Sensitivity of string
compressors and repetitiveness measures,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.08615

[36] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi,
“LZ77-based self-indexing with faster pattern matching,” in Proc.
11th Latin American Symposium on Theoretical Informatics (LATIN).
Springer, 2014. doi: 10.1007/978-3-642-54423-1 63 pp. 731–742.

https://www.proquest.com/dissertations-theses/string-compression-algorithms/docview/303254400/se-2
https://www.proquest.com/dissertations-theses/string-compression-algorithms/docview/303254400/se-2
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://arxiv.org/abs/2107.08615

19

[37] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. D. Smith, “Sublin-
ear algorithms for approximating string compressibility,” Algorithmica,
vol. 65, no. 3, pp. 685–709, 2013. doi: 10.1007/s00453-012-9618-6

[38] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen,
G. Navarro, A. O. Pereira, S. J. Puglisi, and Y. Tabei, “Block trees,”
Journal of Computer and System Sciences, vol. 117, pp. 1–22, 2021.
doi: 10.1016/j.jcss.2020.11.002

[39] N. Prezza, “Optimal rank and select queries on dictionary-compressed
text,” in Proc. 30th Annual Symposium on Combinatorial Pattern Match-
ing (CPM), 2019. doi: 10.4230/LIPIcs.CPM.2019.4 pp. 4:1–4:12.

[40] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array
construction,” Journal of the ACM, vol. 53, no. 6, pp. 918–936, 2006.
doi: 10.1145/1217856.1217858

[41] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-
time longest-common-prefix computation in suffix arrays and its ap-
plications,” in Proc. 12th Annual Symposium on Combinatorial Pattern
Matching (CPM), ser. LNCS, A. Amir and G. M. Landau, Eds., vol.
2089. Springer, 2001. doi: 10.1007/3-540-48194-x 17 pp. 181–192.

[42] T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń, “Internal
pattern matching queries in a text and applications,” 2021, unpublished
manuscript.

[43] O. Birenzwige, S. Golan, and E. Porat, “Locally consistent parsing for
text indexing in small space,” in Proc. 31st ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2020. doi: 10.1137/1.9781611975994.37
pp. 607–626.

[44] S. C. Sahinalp and U. Vishkin, “On a parallel-algorithms method
for string matching problems,” in Proc. 2nd Italian Conference on
Algorithms and Complexity (CIAC), ser. LNCS, vol. 778, 1994. doi:
10.1007/3-540-57811-0 3 pp. 22–32.

[45] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249–260, 1987. doi: 10.1147/rd.312.0249

[46] M. Crochemore and W. Rytter, Jewels of Stringology. World Scientific,
2002.

[47] N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic functions,”
Proceedings of the American Mathematical Society, vol. 16, no. 1, pp.
109–114, 1965. doi: 10.1090/S0002-9939-1965-0174934-9

[48] G. Navarro and J. Rojas-Ledesma, “Predecessor search,” ACM Comput-
ing Surveys, vol. 53, no. 5, p. article 105, 2020. doi: 10.1145/3409371

[49] M. Cáceres and G. Navarro, “Faster repetition-aware compressed suffix
trees based on block trees,” Information and Computation, vol. 285, Part
B, p. 104749, 2022. doi: 10.1016/j.ic.2021.104749

[50] G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis,
“Substring complexity in sublinear space,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.08357

Tomasz Kociumaka received the B.Sc., M.Sc., and Ph.D. degrees in computer
science from the University of Warsaw, Poland. He has been a post-doctoral
researcher at the Bar-Ilan University (Israel), the University of California,
Berkeley, and the Max Planck Institute for Informatics (Saarbrücken, Ger-
many). His research focuses on designing efficient algorithms for processing
strings with a particular focus on sequence similarity measures, approximate
pattern matching, lossless data compression, and data structures. He studies
string problems from multiple perspectives, including combinatorics on words,
dynamic algorithms, fine-grained complexity, streaming and sketching, and
sublinear algorithms. He is a co-author of over 100 conference and journal
papers and has served as a program committee member for 10 international
conferences. Dr. Kociumaka was the recipient of the Cor Baayen Young
Researcher Award in 2021 and the Witold Lipski Prize in 2018.

Gonzalo Navarro completed his PhD in Computer Science in 1998 at the
University of Chile, where he is currently full professor. His areas of interest
include algorithms and data structures, compression, graph databases, and
text searching. He has directed the Millennium Nucleus Center for Web
Research and projects funded by Yahoo! Research and Google. He currently
participates in the Center for Biotecnology and Bioengineering (CeBiB) and
the Millennium Institute for Foundational Research on Data (IMFD). He has
been PC (co-)chair of over ten international conferences and guest editor of
several special issues in relevant journals. He is the Editor in Chief of the
ACM Journal of Experimental Algorithmics and a member of the Editorial
Board of the ACM Transactions on Algorithms and Information Systems. He
has coauthored two books published by Cambridge University Press, about
25 book chapters, 200 papers in international journals, and around 275 in
international conferences. He is one of the most prolific and highly cited
authors in Latin America. He has received 7 Best Paper Awards in conferences,
4 Google Research awards, a Highest Cited Paper Award from Elsevier, and
a Scopus Chile Award. He is an ACM Distinguished Member.

Nicola Prezza received the B.Sc., M.Sc., and Ph.D. degrees in computer
science from the University of Udine, Italy. He spent research periods (as a
postdoc) at the universities of Pisa (Italy) and DTU (Copenhagen, Denmark),
and later has been Assistant professor at LUISS (Rome, Italy). He is now
associate professor at Ca’ Foscari University, Venice, Italy. His research
focuses on the interplay between data structures, data compression, and regular
language theory by studying compressed data structures for supporting fast
pattern matching queries on regular languages. He is a co-author of 50
conference and journal papers, has served as a program committee member for
11 international conferences, and has been invited speaker in 4 international
conferences. In 2018 he received the ”best Italian young researcher in
Theoretical Computer Science” award from the Italian chapter of the European
Association for Theoretical Computer Science (IC-EATCS). In 2021 he was
awarded an ERC starting grant on the topic of compressed indexing for labeled
graphs and regular languages.

https://arxiv.org/abs/2007.08357

	Introduction
	Our contributions

	Basic concepts and the measure
	Lempel–Ziv compression and bidirectional macro schemes
	Grammar compression and run-length grammars
	String attractors
	The measure

	Lower bounds on attractors
	Lower bounds on text entropy
	Bounds on grammar sizes
	A lower bound on grammar size
	An upper bound on run-length grammar size
	Run-length grammar construction via restricted recompression
	Analysis of the grammar size

	Efficient construction of a small run-length grammar

	Accessing and indexing in -bounded space
	Counting
	Block trees
	Bounding the space in terms of
	Operations on block trees

	Conclusions
	Appendix A: Proof from IPM
	References
	Biographies
	Tomasz Kociumaka
	Gonzalo Navarro
	Nicola Prezza

