
Ranked Document Selection ?

J. Ian Munro

Cheriton School of Computer Science, University of of Waterloo, Canada.
imunro@uwaterloo.ca

Gonzalo Navarro

Center for Biotechnology and Bioengineering (CeBiB) & Millennium Institute for
Foundational Research on Data (IMFD), Dept. of Computer Science, University

of Chile, Chile. gnavarro@dcc.uchile.cl

Rahul Shah

School of Electrical Engineering and Computer Science, Louisiana State
University, USA. rahul@csc.lsu.edu

Sharma V. Thankachan

Department of Computer Science, University of Central Florida, USA.
Sharma.Thankachan@ucf.edu

Abstract

Let D be a collection of string documents of n characters in total. The top-k
document retrieval problem is to preprocess D into a data structure that, given a
query (P, k), can return the k documents of D most relevant to pattern P . The
relevance of a document d for a pattern P is given by a predefined ranking func-
tion w(P, d). Linear space and optimal query time solutions already exist for this
problem. In this paper we consider a novel problem, document selection, in which
a query (P, k) aims to report the kth document most relevant to P (instead of re-
porting all top-k documents). We present a data structure using O(n logε n) space,
for any constant ε > 0, answering selection queries in time O(log k/ log log n), and
a linear-space data structure answering queries in time O(log k), given the locus
node of P in a (generalized) suffix tree of D. We also prove that it is unlikely that
a succinct-space solution for this problem exists with poly-logarithmic query time,
and that O(log k/ log logn) is indeed optimal within O(n polylog n) space for most
text families. Finally, we present some additional space-time trade-offs exploring
the extremes of those lower bounds.
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1 Introduction

Document retrieval is a special branch of pattern matching related to infor-
mation retrieval and web searching. In this problem, the data consists of a
collection of text documents, and the queries refer to documents rather than
text positions [23]. In this paper we focus on arguably the most important of
those problems, called top-k document retrieval : Given D = {d1, d2, d3, ..., dD},
of total length n =

∑D
i=1 |di|, preprocess it into a data structure that, given a

pattern P and a threshold k, retrieves the k documents from D that are most
relevant to P , in decreasing order of relevance. The relevance of a document
d with respect to P is captured using any function w(P, d) of the starting
positions of the occurrences of P in d. A popular example of relevance is the
term frequency metric, that is, the number of occurrences of P in d. This is a
well studied problem, and an existing linear space data structure can answer
queries in optimal time O(k) [32], once the locus node of P in a generalized
suffix tree of D is found. Note that the locus of P can be computed in optimal
O(|P |/ logσ n) time in the RAM model [25], where σ is the alphabet size.

Our Contribution. In this paper we study a new related problem called
document selection, where we must return the kth document of D most rele-
vant to P , that is, the kth element returned by a top-k query (breaking ties
arbitrarily). We present three main results, depending on the amount of space
used: (1) We give a data structure that uses O(n logε n) space, for any constant
ε > 0, and answers queries in time O(log k/ log log n), given the locus of P , (2)
We give a linear-space data structure that answers queries in O(log k) time,
given the locus of P , (3) We prove that it is highly unlikely that the prob-
lem can be solved in less than linear space within poly-logarithmic time, via
a reduction from the position restricted substring searching problem [17,11].
We also prove that the query time O(log k/ log log n) is indeed optimal within
O(|GST| polylog n) space, where GST is the generalized suffix tree of D, via
a reduction from the prefix selection problem [15]. Lastly, we present some
additional space-time trade-offs that explore the limits of these lower bounds.

? Funded in part by NSERC of Canada and the Canada Research Chairs program;
Fondecyt Grant 1-170048, Chile; Basal Funds FB0001, Conicyt, Chile; Millennium
Institute for Foundational Research on Data (IMFD), Chile; and NSF Grants CCF–
1017623, CCF–1218904. An early partial version of this paper appeared in Proc.
SWAT 2014 [20].
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Advanced Queries. The document selection is useful for various advanced
queries. When a user browses ranked results of a (top-k1) query and asks
for the next set of (top-k2) results with k1 < k2, we need to report the top-
k2 documents that are not top-k1. Instead of computing a top-k2 query in
time O(|P |/ logσ n + k2), which may be non-optimal if δ = k2 − k1 = o(k2),
our results allow answering this query in time O(|P |/ logσ n + δ log k2) via δ
selection queries (note that the cost |P |/ logσ n is paid only once). Another
possible query is to count the number K of documents d with w(P, d) ≥ τ ,
given P and τ . This can be answered via doubling search using document
selection queries, in time O(|P |/ logσ n + log2K), assuming w(P, d) can be
computed in constant time given the locus of P . Similarly, we can count or
list the documents d with w(P, d) ∈ [τ1, τ2]. Such queries are important in
bioinformatics, for example for motif mining or for avoiding sequences where
P is “over-expressed”, and for data mining in general, for example to estimate
the distribution of relevance scores of certain patterns.

Related Work. The notion of relevance-based string retrieval was intro-
duced by Muthukrishnan [22], who proposed and solved various problems but
not top-k document retrieval. The first data structure for this problem, under
the term frequency measure and using O(n log n) words of space, was given
by Hon et al. [10]. Later, Hon et al. [12,13] introduced a linear space structure
(O(n) words), that works for general weight functions as described earlier, with
query time O(p+ k log k). This was improved to O(p+ k) [24,25], and finally
to the optimal O(k) [32], all using linear space. Those times are in addition to
the time for finding the locus node of P , locus(P ), in the generalized suffix
tree of D, GST. The problem has also been studied in scenarios where less
than linear space (i.e., o(n log n) bits) can be used. For example, it is possible
to solve the problem efficiently using n log σ + o(n log σ) bits [27,33], where σ
is the alphabet size of the text (thus n log σ bits are needed to represent the
text itself). The results are mostly tailored to the term frequency measure of
relevance, and achieve times of the form O(k polylog n). See [9,12,14,23,28] for
more details. Later, Munro et al. [19,21] showed that an n log σ + o(n log σ)
bits space index can be designed for term-proximity based relevance measures
as well. Also see [1,12] for its extensions to the case where the query consists
of two or more patterns.

2 The top-k Framework

This section briefly describes the linear-space framework of Hon et al. [12]
for top-k queries. The generalized suffix tree (GST) of a document collection
D = {d1, d2, d3, . . . , dD} is the combined compact trie of all the non-empty
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Fig. 1. An illustration of GST and links in the top-k framework [12]

suffixes of all the documents [34]. The total number of leaves in GST is the
same as the total length n of all the documents. For each node j in GST,
prefix(j) is the string obtained by concatenating the edge labels on the path
from the root to node j. The highest node v satisfying that P is a prefix of
prefix(v) is called the locus of P and denoted locus(P ) = v.

Let `i represent the ith leftmost leaf node in GST. We say that a node is marked
with a document d if it is either a leaf node whose corresponding suffix belongs
to d, or it is the lowest common ancestor (LCA) of two such leaves. This implies
that the number of nodes marked with document d is exactly equal to the
number of nodes in the suffix tree of d (at most 2|d|). A node can be marked
with multiple documents. For each node j and each of its marking documents
d, define a link to be a quadruple < doc = d, weight, (origin = j, target) >,
where weight = w(prefix(j)) and target is the lowest proper ancestor of node
j marked with d (a dummy parent of the root node is added, marked with
all the documents). See Figure 1 for an illustration. Since the number of links
with document doc = d is at most 2|d|, the total number of links is at most∑D
i=1 2|di| ≤ 2n. The following is a crucial observation by Hon et al. [12].

Lemma 1. For each document d that contains a pattern P , there is a unique
link with origin in the subtree of locus(P ), a proper ancestor of locus(P ) as
its target, and weight w(P, d).

We say that a link is stabbed by a node j if its origin is in the subtree of j (j
itself included) and its target is a proper ancestor of j. Therefore, the problem
of finding the kth most relevant document for P can be reduced to finding the
kth highest weighted link stabbed by locus(P ).
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3 Super-Linear Space Structure

In this section we start by introducing a basic data structure that usesO(n log n)
words and answers queries in O(log n) time. Then we enhance it to a structure
that uses O(n log1+ε n) words, for any constant ε > 0, and O(log n/ log log n)
time. The basic structure will be used in Section 4 to achieve linear space
within the same time, whereas the enhanced one will be reduced to O(n logε n)
words. In Section 5 we show how the linear-space structure can be improved to
answer queries in timeO(log k) and the enhanced structure in timeO(log k/ log log n),
thus reaching our final results.

3.1 The Basic Structure

We prove the following result:

Lemma 2. Given the GST of a text collection of total length n, we can build an
O(n log n)-word structure that, given locus(P ) and k, answers the document
selection query in time O(log n).

Let N represent the set of nodes in GST and S represent the set of links
< doc, weight, (origin, target) > in GST, as described in Section 2. Next
we construct a balanced binary tree T of |S| leaves, so that the ith high-
est weighted link (ties broken arbitrarily) is associated with the ith leftmost
leaf of T . Notice that n ≤ |S| ≤ 2n. We use S(x) to denote the set of links
associated with the leaves in the subtree of node x ∈ T . The intuition behind
our algorithm is that if we can quickly count the number of links in any S(x)
stabbed by locus(P ), then the kth smallest weighted link among all links in S
stabbed by locus(P ) can be easily computed via a root to leaf traversal of T
using O(log n) number of such counting queries. We now present the details.

Let N(x) denote the set of nodes in GST that are (i) either the origin or the
target of a link in S(x), or (ii) the LCA of two such nodes. Clearly |N(x)| =
Θ(|S(x)|) = Θ(n/2depth(x)), where depth(x) is the number of ancestors of x
(depth of root is 0). With every node x ∈ T , we associate a tree structure
GST(x), which is the subtree of GST obtained by retaining only the nodes in
N(x), so that node v is the parent of node w in GST(x) iff v is the lowest
proper ancestor of w in GST that also belongs to N(x). See Figure 2 for an
illustration. The number of nodes and edges in GST(x) is Θ(n/2depth(x)). Notice
that the same node w ∈ GST may appear in several GST(·)’s. With each node
w ∈ GST(x) we associate the following information:

• stab.countx(w): The number of links in S(x) that are stabbed by node w.
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Fig. 2. An illustration of links arranged in the form of a balanced binary search tree.
Here the ith leftmost leaf is associated with the ith smallest weighted link. Node x
is associated with GST(x), the subtree of GST induced by the links associated with
the leaves under x.

• left.ptrx(w): Let xL be the left child of x (in T ). Let wL be the highest node
in the subtree of w (in GST(x)) that appears also in GST(xL) (wL can be w
itself). Then left.ptrx(w) is a pointer from w ∈ GST(x) to wL ∈ GST(xL). If
there exists no such node wL, then left.ptrx(w) is null.
• right.ptrx(w): Analogous to left.ptrx(w), now considering xR, the right child

of x ∈ T , and wR being the highest node in the subtree of w ∈ GST(x) that
appears also in GST(xR).

Note that the space needed for maintaining GST(x) and the associated infor-
mation is O(n/2depth(x)) words. Added over all the nodes x ∈ T , the total space
occupancy of all GST(·)’s is O(n log n) words. Finally, the following result is
crucial for our data structure (the case of wR and xR is analogous).

Lemma 3. Both w and wL stab the same subset of links of S(xL).

Proof. Otherwise, the target of a link in S(xL) stabbing wL but not w would be
higher than wL, below w, and belong to GST(xL), contradicting the definition
of wL. The same happens with the source of a link stabbing w but not wL.

3.2 Query Algorithm for Document Selection

Assume locus(P ) is given. Notice that the tree GST(root) associated with the
root of T is the same GST of the collection. Therefore, stab.countroot(locus(P ))
gives the number of documents containing P . If the count is less than k, there
is no kth document to select. Otherwise, let L∗ be the kth highest weighted
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link stabbed by locus(P ). Our query algorithm traverses T top-down, start-
ing from root and ending at the leaf node associated with link L∗. Then it
reports the document d∗ corresponding to L∗.

In our query algorithm, we use x to denote a node in T , w to denote a node
in GST(x) and K to denote an integer ≤ k. First we initialize x to the root of
T , w to locus(P ) and K to k. This establishes the invariant that we have to
return the Kth highest weighted link in S(x) stabbed by w. Let xL and xR be
the left and right children of x. Then we obtain the nodes wL ∈ GST(xL) and
wR ∈ GST(xR) pointed by left.ptrx(w) and right.ptrx(w), respectively. The
following values are then computed in constant time.

• c = stab.countx(w), the number of links in S(x) stabbed by w.
• cL = stab.countxL(wL), the number of links in S(xL) stabbed by w (or wL).
• cR = stab.countxR(wR), the number of links in S(xR) stabbed by w (or wR).

Notice that c = cL + cR. If cL ≥ K then, by Lemma 3, the Kth link below
S(x) (or S(xL)) stabbed by w ∈ GST(x) is the same as the Kth link below
S(xL) stabbed by wL ∈ GST(xL). Therefore, we maintain the invariant if we
continue the traversal in the subtree of x← xL with GST(xL) node w ← wL.
On the other hand, if cL < K, then by Lemma 3 the Kth link stabbed by
w below S(x) is the same as the (K − cL)th link below S(xR) stabbed by
wR ∈ GST(xR). In this case, we maintain the invariant if we continue the
traversal in the subtree of x ← xR with GST(xR) node w ← wR and with
K ← K − cL. We terminate the algorithm when x is a leaf, thus K = 1 and x
represents L∗. As the height of T is O(log n) and the time spent at each node
is constant, the total query time is O(log n) and Lemma 2 is proved.

3.3 An Enhanced Structure

We now prove the following result, which holds in the RAM model of compu-
tation, with a computer word of w = Ω(log n) bits.

Lemma 4. Given the GST of a text collection of total length n and any con-
stant 0 < ε ≤ 1, we can build an O(n log1+ε n)-word structure that, given
locus(P ) and k, answers the document selection query in time O(log n/ log log n).

In order to speed up the structure of Lemma 2, we will choose a step s =
ε log log n and build the GST(x) structures only for nodes x ∈ T whose depth
is a multiple of s. Each node w ∈ GST(x) for the selected nodes x will store
sufficient information for the query algorithm to jump directly to the corre-
sponding node x′ at depth depth(x′) = depth(x) + s, instead of just to xL or
xR.

7



Given x, x′ ∈ T as above (x′ in the subtree of x) and w ∈ GST(x), we define
wx′ as the highest node in the subtree of w that appears also in GST(x′). Let
us call x1, x2, . . . , x2s the nodes at depth depth(x) + s that descend from x (or
the leaves below x, if they have depth less than depth(x) + s), ordered left to
right in T (i.e., from highest to lowest weights in S(xi)).

Associated to each node w ∈ GST(x), we store 2s pointers ptrx(w)[i] = wxi .
We also store the 2s cumulative values accx(w)[i] =

∑i
j=1 stab.countxj(wxj);

note that accx(w)[2s] = stab.countx(w). We will store those accx(w) values
in a fusion tree [7], which takes O(2s) = O(logε n) words of space and solves
predecessor queries in accx(w) in constant time. The space is the same used by
array ptrx(w), which added over all the GST(·)’s is O(n log1+ε n) words (even
if only one level out of s in T stores GST(·) structures).

Queries now proceed as in Section 3.2, but now we use the fusion tree to
determine, given w ∈ GST(x), which is the node xi ∈ T that contains the
Kth link below S(x) stabbed by w. Therefore we can move directly from x
to xi and from w ∈ GST(x) to wi ∈ GST(xi), where wi = ptrx(w)[i]. We also
update K ← K − accx(w)[i− 1] (assume accx(w)[0] = 0). Thus we complete
the query in O((log n)/s) = O(log n/(ε log log n)) constant-time steps and
Lemma 4 is proved.

4 Linear Space Structure

In this section we build on the basic structure of Lemma 2 in order to achieve
linear space and logarithmic query time. At the end, we reduce the space of
the enhanced structure to O(n logε n). The results hold under the RAM model.

Lemma 5. Given the GST of a text collection of total length n, we can build
an O(n)-word structure that, given locus(P ) and k, answers the document
selection query in time O(log n).

To achieve linear space, we replace some of our data structures by succinct
ones. We will measure the space in bits, aiming at using O(n log n) bits overall.
The binary tree T can be maintained in O(n log n) bits, where each internal
node x stores an O(log n)-bit pointer to the corresponding tree GST(x) and
each leaf stores the document identifier corresponding to the associated link.
The global GST can also be maintained inO(n log n) bits. Therefore, the space-
consuming components are the GST(·)’s and their associated information.

Using well-known succinct data structures [26], the GST(x) tree topologies
can be represented in O(1) bits per node (i.e., O(n log n) bits overall) with
constant-time support of all the basic navigational operations required in our
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algorithm. We refer to any node w ∈ GST(x) by its pre-order rank, that
is, node j means the node with pre-order rank j. The pre-order rank of the
root node of any GST(x) is 1. Next we show how to encode the remaining
information associated with each node in GST(x) using O(1) bits per node.

4.1 Encoding stab.countx(j)

We note that stab.countx(j) is exactly equal to the number of links of S(x)
associated with GST(x) that originate in the subtree of j minus the number
of links in S(x) that target any node in the subtree of j (j belongs to its
subtree). We encode this information in two bit vectors: Bx = 10α110α210α3 . . .
and B′x = 10β110β210β3 . . ., where αj (resp., βj) is the number of links of S(x)
originating from (resp., targeting at) node j in GST(x). We augment Bx and
B′x with structures supporting constant-time rank/select queries [18]. Notice
that

∑
αj =

∑
βj = O(|S(x)|) = O(|GST(x)|). Therefore, both Bx and B′x

can be represented in O(1) bits per node.

Now we can compute stab.countx(j) for any j in O(1) time as follows: find the
rightmost leaf node j′ in the subtree of j in O(1) time using the succinct tree
representation of GST(x) [26]. Then the number no of links originating from
the subtree of j is equal to the number of 0-bits between the jth and (j′+1)th
1-bit in Bx (because j and j′ are preorder numbers). Similarly, the number nt
of links targeted at any node in the subtree of j is equal to the number of 0-bits
between the jth and (j′ + 1)th 1-bits in B′x. Using rank/select operations on
Bx and B′x, no and nt are computed in O(1) time and stab.countx(j) is given
by no − nt.

4.2 Encoding left.ptrx(j) and right.ptrx(j)

We show how to encode left.ptrx(·) for all nodes in GST(x); right.ptrx(j) is
symmetric. The idea is to maintain a bit vector LP such that LP [j] = 1
iff there exists a node jL ∈ GST(xL) such that both j ∈ GST(x) and jL ∈
GST(xL) represent the same node in GST. We add constant-time rank/select
data structures [18] on LP . Since the length of LP is equal to the number of
nodes in GST(x), its space occupancy is O(1) bits per node.

Now, for any given node j ∈ GST(x), the node jL ∈ GST(xL) to which
left.ptrx(j) points is the (unique) highest descendant of j that is marked in
LP , thus it can be identified by (1) finding the position j∗ of the leftmost 1-bit
in LP [j . . .]; (2) checking if node j∗ is in the subtree of node j in GST(x); (3)
if so, then jL ∈ GST(xL) is equal to the number of 1’s in LP [1...j∗], otherwise,
jL is null. All these operations require constant time, either using the succinct

9



tree operations or the rank/select data structures. This works because all the
nodes in GST(xL) appear in GST(x), in the same order (pre-order).

In summary, the space requirement of our encoding scheme is O(1) bits per
node in any GST(x), thus adding to O(n log n) bits. The query algorithm,
as well as its time complexity, remain the same. This completes the proof of
Lemma 5.

4.3 Reducing Space of the Enhanced Structure

The space of the enhanced structure of Section 3.3 can be similarly reduced
to O(n logε n) words, obtaining the following result.

Lemma 6. Given the GST of a text collection of total length n and a constant
ε > 0, we can build an O(n logε n)-word structure that, given locus(P ) and k,
answers the document selection query in time O(log n/ log log n).

For this sake, recalling the definition of x1, . . . , x2s of Section 3.3, we will
maintain bit vectors LPi for i = 1 to 2s, so that LPi[j] = 1 iff there exists a
node ji ∈ GST(xi) such that both j ∈ GST(x) and ji ∈ GST(xi) represent the
same node in GST. Then each array entry ptrx(j)[i] is computed using LPi as in
Section 4.2. The total space used by all the LPi bit vectors is O(2s) = O(logε n)
bits per node, adding up to O(n log1+ε n) bits in total.

To compute accx(j)[i], we store bitmaps Bx,1, . . . , Bx,2s and B′x,1, . . . , B
′
x,2s ,

analogous to B and B′ of Section 4.1. In this case, Bx,i = 10α
i
110α

i
210α

i
3 . . ., so

that αij =
∑i
r=1 s(r), where s(r) is the number of links of S(xr) originating from

node ptrx(j)[i] ∈ GST(xr), and B′x,i = 10β
i
110β

i
210β

i
3 . . ., so that βij =

∑i
r=1 t(r),

where t(r) is the number of links of S(xr) targeting at node ptrx(j)[i] ∈
GST(xr). Then, it holds accx(j)[i] = αij − βij, which is computed in constant
time using rank/select operations. Since it holds αij ≤ αj and βij ≤ βj for all

i values, the total space of these 2s = logε n bitmaps adds up to O(n log1+ε n)
bits.

To carry out predecessor searches on the virtual vector accx(j), we use succinct
SB-trees [8, Lemma 3.3]. Given constant-time access to any accx(j)[i], this
structure provides predecessor searches in O(1+log(2s)/ log log n) = O(1) time
and use O(2s log log n) = O(logε n) bits per node (by adjusting ε). Thus the
total space is O(n log1+ε n) bits as well. This concludes the proof of Lemma 6.
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5 Achieving O(log k) Query Time and Better

In this section we first build on the linear-space data structure of Lemma 5
in order to improve its query time to O(log k). At the end, we show that the
result extends to our superlinear-space data structure of Lemma 6, improving
its query time to O(log k/ log log n). Thus we start by proving the following
theorem.

Theorem 1. A collection D of documents can be preprocessed into a linear-
space data structure that can answer any document selection query (P, k) in
time O(log k), given the locus of pattern P in the generalized suffix tree of D.

Notice that the query time O(log n) in Lemma 5 can be written as O(log k) for
k >
√
n. Therefore, we turn our attention to the case where k ≤

√
n. First, we

derive a space-efficient structure DS(δ), which can answer document selection
queries faster, but only for values of k below a predefined parameter δ ≤

√
n.

More precisely, structure DS(δ) will satisfy the following properties:

Lemma 7. The structure DS(δ) uses O(n(log δ + log log n)) bits of space
and can answer document selection queries in time O(log δ + log log n), for
k ≤ δ ≤

√
n.

To obtain the result in Theorem 1, we maintain structures DS(δi) with δi =
dn1/2ie for i = 1, 2, 3, . . . , r, where δr+1 ≤

√
log n < δr (therefore r < log log n).

The total space needed is O(n
∑r
i=1(log δi+log log n)) = O(n log n) bits (O(n)

words). When k comes as a query, if k > δr+1, we first find h, where δh+1 <
k ≤ δh and obtain the answer using DS(δh). The resulting time is O(log δh +
log log n) = O(log k). The case where k < δr+1 is handled separately using
other structures in O(1) time (Section 5.2). We now describe the details of
DS(δ).

5.1 Structure DS(δ)

The first step is to identify certain nodes in GST as marked nodes and prime
nodes, based on a parameter g = dδ log ne called the grouping factor. Every gth
leftmost leaf is marked, and the LCA of every two consecutive marked leaves
is also marked. Therefore, the number of marked nodes is Θ(n/g). Nodes with
their parent marked are prime. A prime node with at least one marked node in
its subtree is a type-1 prime node, otherwise it is a type-2 prime node. Notice
that the highest marked node in the subtree of any node is unique, if it exists.
Therefore, except the root node, every marked node j∗ can be associated with
a unique type-1 prime node j′, which is the first prime node on the path from
j∗ to the root. Notice that a node can be both prime and marked.
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Let j′ be a prime node and j∗ be the highest marked node in its subtree (j∗

exists only if j′ is of type-1, and it can be that j′ = j∗). We use G(j′\j∗) to
represent the subtree of GST rooted at j′ after removing the subtree of j∗ (j∗

is not removed). With a slight abuse of notation, we use G(j′\j∗) to represent
the set of nodes within G(j′\j∗) as well. A crucial result [32] is that, for any
prime node j′, the number of nodes in G(j′\j∗) is O(g).

We define prime.parent(j) of any node j in GST as the first prime node j′ on
the path from j to the root. Note that j ∈ G(j′\j∗), otherwise j would be a
(strict) descendant of j∗ and its corresponding j′ would be below j∗.

It is not hard to determine j′ = prime.parent(j) in constant time and O(n)
bits, by sampling the prime nodes in a succinct tree representation and looking
for the lowest sampled ancestor of j [31, Lemma 4.4].

The structure DS(δ) is a collection of substructures STR(j′) associated with
every prime node j′ in GST. If the input node locus(P ) ∈ G(j′\j∗) and k ≤ δ,
we obtain the answer using STR(j′) in O(log g) = O(log δ + log log n) time.
Based on the type of j′, we have two cases; we describe the simpler one first.

5.1.1 STR(j′) associated with a type-2 prime node j′

The structure can be constructed as follows: take G(j′), the subtree rooted at
node j′, and replace the pre-order rank of each node j by (j − j′ + 1). Also
associate a dummy parent node to the root. Then, among the links defined
over GST (Section 2), choose those that originate from the subtree of j′ and:
(1) Assign a new value to its origin and target, which is its original value minus
j′ plus 1. The target of some links can be negative; replace those by 0. (2)
Replace the weight by a rank-space reduced value in [1, O|G(j′)|]. Notice that
the number of links chosen is O(|G(j′)|). (3) Let d be its document identifier.
Instead of writing d explicitly in dlogDe bits, use a pointer to one leaf node
in G(j′), using dlog |G(j′)|e bits, where the suffix corresponding to that leaf
belongs to document d.

In summary, we have a tree of (|G(j′)| + 1) nodes and O(|G(j′)|) links asso-
ciated with it. The information (origin, target, document, weight) associated
with each link is encoded in O(log |G(j′)|) bits. Then STR(j′) is the struc-
ture described in Lemma 5 over these nodes and links. The space required is
O(|G(j′)| log |G(j′)|) = O(|G(j′)| log g) bits. We maintain structures STR(j′)
for all type-2 prime nodes j′ in total O(n log g) bits, since a node can be in
the subtree of at most one type-2 prime node.
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Fig. 3. Categorization of Links [32]

5.1.2 STR(j′) associated with a type-1 prime node j′

We first identify the candidate set C(j′) of O(g) links, such that for any k ≤ δ,
the kth link stabbed by any node j ∈ G(j′\j∗) belongs to C(j′). Clearly we can
ignore the links that do not originate from the subtree of j′. The links that do
can be categorized into the following types [32]: near-links are stabbed by j∗,
but not by j′; far-links are stabbed by both j∗ and j′; small-links are targeted
at a node in the subtree of j∗; and fringe-links are the others (See Figure 1).

We include all near-links and fringe-links into C(j′), which are O(g) in num-
ber [32, Lemma 8]. All small-links can be ignored as none of them is stabbed
by any node in G(j′\j∗). Notice that if any node in G(j′\j∗) stabs a far-link, it
indeed stabs all far-links. Therefore, it is sufficient to insert the top-δ far-links
into C(j′). Thus, we have O(g) links in C(j′) overall.

Now we perform a rank-space reduction of pre-order rank of nodes in G(j′\j∗)
as well as of the information associated with the links in C(j′), as follows:

• The target of those links targeting at any proper ancestor of j′ is changed to
a dummy parent node of j′. Similarly, the origin of all those links originating
in the subtree of j∗ is changed to node j∗.
• The pre-order rank of all those nodes in G(j′\j∗), and the corresponding

origin and target values of links in C(j′), are changed to a rank-space reduced
value in [0, |G(j′\j∗)|]. Notice that the new pre-order rank of j′ is 1 and
that of its dummy parent node is 0. We remark that this mapping (and
remapping) can be stored separately in O(|G(j′\j∗)| log |G(j′\j∗)|) bits.
• The weights of the links are also replaced by rank-space reduced values.
• Let L be a near- or fringe-link in C(j′) with d its corresponding document.

Then there must be at least one leaf ` in G(j′\j∗) where the suffix corre-
sponding to ` belongs to d. Therefore, instead of representing d, we maintain
a pointer to `, which takes only O(log g) bits. This trick will not work for

13



far-links, as the existence of such a leaf node is not guaranteed. Therefore,
we spend logD bits for each far-link, which is still affordable because there
are only O(δ) = O(g/ log n) far-links.

In summary, we have a tree of (|G(j′\j∗)|+ 1) = O(g) nodes with O(g) links
associated with it. Then STR(j′) is the structure described in Lemma 5 over
these nodes and links. The space required is O(g log g) bits. As the number
of type-1 prime nodes is O(n/g), the total space to maintain STR(j′) for all
type-2 primes nodes j′ is O(n log g) bits.

5.1.3 Query answering

Given node j = locus(P ), we find j′ = prime.parent(j). Then we map node
j to the corresponding node in STR(j′) and obtain the answer by querying
STR(j′), in O(log g) = O(log δ+ log log n) time. The answer may come in the
form of a node in STR(j′), which is mapped back to GST in order to obtain
the associated document. This completes the proof of Lemma 7.

5.2 Structure for k ≤ δr+1

First, identify the marked and prime nodes in GST with g = δr+1 log n. At
every prime node j′, we explicitly maintain the candidate set C(j′). This takes
O(n)-word space. Then for any k ≤ δr+1, the kth link stabbed by node j can
be encoded as a pointer to the corresponding entry in C(prime.parent(j′))
using dlog |C(prime.parent(j′))|e = O(log g) = O(log log n) bits. Therefore,
the answers for all k ∈ [1, δr+1] for all nodes in GST can be maintained in
additional O(n · δr+1 log log n) = o(n log n) bits of space. Now the kth link
(and its document) stabbed by any query node locus(P ) can be obtained
from C(prime.parent(locus(P ))) in O(1) time.

5.3 Speeding Up the Enhanced Structure

The same construction used above can be used to speed up our superlinear-
space structure of Lemma 6, simply by using it instead of the linear-space
one of Lemma 5 to implement the structures STR(j′). The space O(n logε n)
words, or O(n log1+ε n) bits, will become O(g log g logε n) inside the structures
STR(j′), because we will maintain the sampling step s = ε log log n depend-
ing on n, not on g, and use the succinct SB-trees with parameter n, not g.
As a result, the total space per value of δ will be O(n log g logε n) bits, and
added over all the values of δ we will have O(n logε n

∑r
i=1(log δi+log log n)) =

O(n log1+ε n) bits, or O(n logε n) words. The time, on the other hand, will be
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O(1 + log δ/(ε log log n)) on DS(δ), which becomes O(1 + log k/(ε log log n))
in terms of k. We have proved our final result for the superlinear structure.

Theorem 2. A collection D of documents of total length n can be prepro-
cessed into a data structure using O(n logε n) words of space, for any con-
stant ε > 0, which can answer document selection queries (P, k) in time
O(1 + log k/ log log n), given the locus of pattern P in the generalized suffix
tree of D.

6 Lower Bounds

In this section we prove two lower bounds. The first shows that it is highly
unlikely that an efficient succinct-space solution for range selection exists. The
second shows, under a somewhat weak model, that O(1 + log k/ log log n) is
the best possible time under O(n polylog n) space.

6.1 Hardness of an Efficient Succinct Solution

One could expect to obtain an index using O(n log σ) bits of space, pro-
portional to the n log σ bits needed to store D, as achieved for the top-k
document retrieval problem. We show, however, that this is very unlikely
unless a significant breakthrough in the current state of the art of com-
putational geometry is obtained, specifically on the three-dimensional or-
thogonal range reporting problem. The best known space time trade-offs are
O(n log1+ε n) space with O(log log n+output) time, and O(n log n) space with
O((1+output) logε n) time [4]. Within linear space, the best known time com-
plexities are O(n2/3 + output) [16] and O((n1/3 + output) log n) [30].

Theorem 3. If there exists a data structure using O(n log σ+D polylog n) bits
with query time O(|P | polylog n) for document selection (σ being the alphabet
size), then there exists a linear-space data structure that can answer three-
dimensional range reporting queries in poly-logarithmic time per query plus
per reported point.

Proof. We reduce from the position restricted substring searching (PRSS)
problem, which is defined as follows: Index a given a text T [1, n] over an
alphabet set [1, σ], such that whenever a pattern P (of length p) and a range
[x, y] comes as a query, all those occx,y occurrences of P in T [x . . . y] can
be reported efficiently. Many indexes offering different space and query time
trade-offs exist [2,17,29].
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Hon et al. [11] proved that answering PRSS queries in polylog time and suc-
cinct space is at least as hard as performing 3-dimensional orthogonal range
reporting in polylog time and linear space. They also showed that if the query
pattern is longer than α = dlog2+ε ne for some predefined constant ε > 0,
an efficient succinct space index can be designed. Therefore, the harder case
arises when p < α. We now show how to answer PRSS queries with p < α
via document selection queries on the following set: D = {d1, d2, d3, ..., ddn/αe},
where di = T [1+(i−1)α...(i+1)α] and |di| = 2α, except possibly for ddn/αe−1
and ddn/αe. The score function w(P, di) is i if P appears at least once in di
and 0 otherwise. Notice that an occurrence of any pattern of length at most
α overlaps with at least one and at most two documents in D. Therefore, the
previously defined PRSS query on T can be answered via multiple document
selection queries on D as follows: first report all those documents di with
w(P, di) ∈ [dx/αe, by/α + 2c]. Then, within all those reported documents,
look for other occurrences of P via an exhaustive scanning. If the time for
document selection queries is polylog in the total length of all documents in
D (which is at most 2n), then the time for PRSS query is also bounded by
O((p + occx,y)polylog n). Therefore, answering document selection queries in
polylog time and succinct space is at least as hard as answering PRSS queries
in polylog time and succinct space.

6.2 A Weak Lower Bound for Range Selection Time

In this section we show that O(1 + log k/ log log n) is the best possible time
unless we use more than O(n′ polylog n) space, where n′ is the number of in-
ternal nodes in GST. In most text families, n′ will be Θ(n), but there are cases,
for example on very repetitive text collections, where it may very well be that
n′ = o(n).

Theorem 4. Any data structure using O(n′ polylog n) words of space to solve
the document selection problem must have query time Ω(1 + log k/ log log n),
where n is the collection size and n′ is the number of internal nodes in its
GST.

Proof. We reduce from the prefix selection problem [15], which has this lower-
bound complexity within O(n polylog n) space. In this problem we have an
array A[1, n] and queries ask for the kth largest element in some prefix A[1, i],
for any k and i. The query time of O(1 + log k/ log log n) is achievable using
linear space [5].

Now consider the document set formed by D = n documents where document
di = an−ib. The pattern Pi = an−ib appears in documents d1 to di. We will use
O(n) space to precompute the locus nodes of all patterns Pi in GST. Finally,
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we assign weight A[i] to the document di.

Then, A[j] is the kth largest element in A[1, i] iff dj is the kth heaviest doc-
ument among d1, . . . , di, that is, among the documents where pattern Pi ap-
pears. The document selection query gives the answer to the range selection
query.

Note that the total length of the documents is Θ(n2), thus the n values are
different in both problems. However, the GST of this particular collection has
n′ = Θ(n) internal nodes. Note log |GST| = Θ(log n).

Thus, if we could solve document selection queries in time o(log k/ log log n)
within O(n′ polylog n) words of space in any text collection, we would have a
tool to solve any arbitrary prefix selection query in A[1, n] in o(log k/ log log n)
time and within O(n polylog n) words of space, a contradiction.

7 Further Space-Time Tradeoffs

In this section, we present some additional results that complement the lower
bounds of the previous sections. As for the space lower bound, we show that
O(n) bits of space are sufficient if we accept a small error in the ranking. As
for the time, we show that constant-time is possible if we spend space O(n1+ε)
for any constant ε > 0.

7.1 Efficient Approximate Term-Frequency based Retrieval

In this section, we show how to obtain efficient data structures, both in terms
of space as well as the query time, for the case where the ranking function
w(P, d) = TF∗(P, d), where TF∗(P, d) is an approximation of term-frequency
TF(P, d) (the number of occurrences of P in document d). Specifically,

0 ≤ TF∗(P, d)− TF(P, d) ≤ 2ε log n, for any constant ε > 0

Our main result is summarized below.

Theorem 5. A collection D of documents of total length n can be preprocessed
into a data structure using O(n) bits of space, which can answer the kth most
relevant document for any pattern P w.r.t. the ranking function TF∗(P, ·) in
time (log k), given the suffix range of pattern P in a generalized suffix tree of
D.
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Proof. Our idea is to first construct a sampled generalized suffix tree of D (de-
noted by GSTs) as follows: GSTs is a combined compact trie of every (ε log n)th
lexicographically smallest suffixes of all the documents in D. Therefore GSTs

will be a trie of (n/ log n) nodes. We then apply our linear space framework
over GSTs and obtain an O(n/ log n) words (i.e., O(n) bits) index. We also
maintain a bitmap B[1...n] such that B[i] = 1 iff the ith lexicographically
smallest suffix in GST belongs to GSTs. Structures supporting rank/select
queries over B in constant time is also maintained, in additional o(n) bits.

To find the kth link stabbed by locus(P ), we first identify the suffix range
[sp, ep] of P . Then identify sp′ and ep′, where sp′ is 1 plus the number of 1’s
in B[1...sp − 1] and ep′ is the number of 1’s in B[1...ep]. This step requires
only constant time. Now, the kth index stabbed by the LCA of sp′th and
ep′th leaves in GSTs is our answer and can be computed in O(log k) time
using our O(n) bit index. This works because the number of suffixes of any
document d in GSTs prefixed by P is at most TF(P, d)/(ε log n) and at least
TF(P, d)/(ε log n)− 2.

The following result can be obtained by applying the framework by Shah et
al. [32] over GSTs.

Theorem 6. A collection D of documents of total length n can be prepro-
cessed into a data structure using O(n) bits of space, which can retrieve the
top- k most relevant documents for any pattern P w.r.t. the ranking function
TF∗(P, ·) in time O(k), given the suffix range of pattern P in a generalized
suffix tree of D.

7.2 A Constant-Query-Time Index

We present the following result in this section.

Theorem 7. A collection D of documents of total length n can be preprocessed
into a data structure using O(n1+ε) words of space, for any constant ε > 0,
which can answer document selection queries (P, k) in constant time, given
the locus of pattern P in the generalized suffix tree of D.

Proof. The result can be obtained by several simple modifications of our super-
linear space structure described in Section 3. First, increase the fan out of the
basic tree structure to Θ(nε) instead of limiting by 2. Thus the tree height
becomes a constant and the overall space for the associated information will
be linear. Before introducing an additional data structure, we briefly describe
how the query algorithm changes. It is again a root to leaf traversal of T . Let
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x be a node in T and w be a node in GST(x). Then to find the Kth link
stabbed by w, we do the following. For i = 1, 2, 3, ..., degree(x), find

• xi, the ith leftmost child of x
• wi, the node in GST(xi) corresponding to w in GST(x)
• stab.countxi(wi)

Next we compute the smallest c such that
∑c
i=1stab.countxi(wi) ≥ K. Then,

instead of asking for the Kth link stabbed by w, it is equivalent to ask for the
(
∑c
i=1stab.countxi(wi) − K)th link stabbed by wc. However, the above steps

require O(degree(x)) = O(nε) time, and so does the total query time.

We now show how to achieve constant query time by associating the fol-
lowing information with every node w (as described above). Store an array
Aw[1...nε], such that Aw[i] =stab.countx(w). Also maintain another array A′w,
where A′w[i] =

∑i
j=1Aw[j]. We then maintain a predecessor search structure

over A′w with constant query time. Notice that there exists such a structure,
requiring quadratic space [6]. Therefore by associating an O(n2ε) space struc-
ture with w, the step where we identify wc can be performed in constant time
via a single predecessor search query on A′w. In other-words, by associating an
O(n2ε) space structure with every node in every GST(·), document selection
queries can be answered in constant time time. By replacing 2ε by ε, we obtain
Theorem 7.

8 Concluding Remarks

We have addressed for the first time the problem of finding the kth document
most relevant for a pattern query P in a collection D of string documents.
Given the locus node of P in the generalized suffix tree of D, we show how
to solve the problem in O(log k) time using a linear-space data structure. By
using slightly super-linear space, O(n logε n) for any constant ε > 0, the time
decreases to O(1 + log k/ log log n). We remark that our structures can be
constructed in O(n polylog n) time. 1 We also prove that it is highly unlikely
that a structure using o(n) words with query time O(polylog n) exists for this
problem, and that selection time O(1+log k/ log log n) is optimal within space
O(|GST| polylog n). The ideas behind our data structure are novel and might
find other applications.

A remaining open issue is whether the query time O(log k/ log log n) is optimal
in the broader scenario where we can use O(n polylog n) space. While for most

1 Here we assume that w(P, d) can be computed in time O(tpolylog t) time, where
t is the number of occurrences of P in Td.
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practical text collections the lower bound is useful as is (since |GST| = Θ(n)
in most text families), we believe that it might be significantly harder to
obtain the stronger lower bound. It is not even clear if it actually holds, as for
example in the case of top-k most frequent elements in a range, the problem
on lexicographical intervals in a suffix array (which form a hierarchy) can be
solved efficiently [32], whereas the problem on arbitrary arrays is most likely
harder [3].
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