
A simple grammar-based index for finding
approximately longest common substrings⋆

Travis Gagie1,3[0000−0003−3689−327X], Sana Kashgouli1[0009−0008−1583−2914], and
Gonzalo Navarro2,3[0000−0002−2286−741X]

1 Faculty of Computer Science, Dalhousie University, Halifax, Canada
2 Dept. of Computer Science, University of Chile, Santiago, Chile
3 CeBiB — Center for Biotechnology and Bioengineering, Chile

Abstract. We show how, given positive constants ϵ and δ, and an α-
balanced straight-line program with g rules for a text T [1..n], we can
build an O(g)-space index that, given a pattern P [1..m], in O(m logδ g)
time finds w.h.p. a substring of P that occurs in T and whose length is
at least a (1 − ϵ) fraction of the longest common substring of P and T .
The correctness can be ensured within the same expected query time.

Keywords: Grammar-based indexing · Approximately longest common
substrings · alpha-balanced grammars

1 Introduction

Recent years have witnessed a sustained effort for indexing highly repetitive
text collections within compressed space and supporting exact pattern matching
[10, 11]. Exact pattern matching is however insufficient in some applications.
In Bioinformatics, for example when storing repetitive collections formed by
genomes of the same species, matching strings is rarely useful. Instead, one may
be interested in finding long substrings of a string that appear in the sequence
collections, to find for example conserved regions of a genome in a population.

The research on matching the longest possible substrings using these indices is
scarce, however. A recent result [12] finds all the maximal exact matches (MEMs)
of a pattern P [1..m] in a text T [1..n] that is indexed with a grammar. By building
on an arbitrary (run-length) context-free grammar of size g, the index is of size
O(g) and finds all the MEMs in time O(m2 logδ g), for any constant δ > 0 (see
also [6]). If the grammar is of a kind called locally consistent, the time improves
to O(m logm(logm+ logδ n)). Other results (see [3, 12]) require larger indices.

In this paper we consider the simpler problem of finding one longest common
substring between P and T (i.e., a longest MEM). Further, we are satisfied with
a common substring whose length is at least 1 − ϵ times the longest one, for
some fixed 0 < ϵ < 1. We show that, on α-balanced grammars [4, 14], this can
be solved with high probability in time O(m logδ g) for any fixed constant δ > 0.
The correctness of the answer can be ensured in O(m logδ g) expected time.

⋆ Funded in part by NSERC grant RGPIN-07185-2020; NSF/BIO grant DBI-2029552;
NIH/NHGRI grant R01HG011392; and Basal Funds FB0001, ANID, Chile.

2 T. Gagie et al.

2 Preliminaries

Our index uses grammar-based compression, which compresses a text T [1..n] by
building and storing a context-free grammar that generates only T [9]. We focus
in particular on straight-line programs (SLPs), where each rule is of the form
X → Y Z, where Y and Z are terminals or nonterminals (called symbols). If T
is repetitive, then it can be represented with an SLP of g rules, with g ≪ n.
Grammar-based indices [5] aim to use space linear in the grammar size while
offering indexed searches for patterns P [1..m], that is, enumerating all the posi-
tions in T where P occurs. Following Charikar et al. [4], we write ⟨X⟩ and [X] to
denote the string symbol X expands to and the length of that expansion, respec-
tively. Our work builds on α-balanced SLPs, defined next. There exist practical
constructions of small α-balanced grammars from repetitive texts [14].

Definition 1 ([4]). For a constant 0 < α ≤ 1/2, an SLP is said to be α-
balanced if, for every rule X → Y Z, it holds that

α

1− α
≤ [Y]

[Z]
≤ 1− α

α
.

3 Data structure

Our data structure is built from an α-balanced SLPG. For each nonterminalX in
this SLP, the structure stores a set of prefixes and suffixes of ⟨X⟩, of exponentially
increasing lengths. Those are called prefix and suffix blocks, respectively.

Definition 2. Let X be a symbol in G and fix a constant 0 < ϵ < 1. Then,
for each 0 ≤ k ≤ log1/(1−ϵ)[X], we call ⟨X⟩[1..⌈1/(1−ϵ)k⌉] a prefix block and

⟨X⟩[[X]−⌈1/(1−ϵ)k⌉+1..[X]] a suffix block.

Precisely, given ϵ, consider the following sets:

X = {⟨X⟩, X is a symbol in G},
Bpref = {B, B is a prefix block of a symbol X in G},
Bsuff = {B, B is a suffix block of a symbol X in G}.

For every prefix block B ∈ Bpref , we compute B’s Karp-Rabin [8] hash h(B)
and the lexicographic range [sB , eB] of the strings in X that are prefixed by B.
We store each pair (h(B), [sB , eB]) in a perfect hash table Hpref , with h(B) as
the key and [sB , eB] as the value. Symmetrically, for each suffix block B ∈ Bsuff ,
we compute B’s Karp-Rabin hash h(B) and the co-lexicographic range [sB , eB]
of the strings in X that are suffixed by B, storing each pair (h(B), [sB , eB])
in a perfect hash table Hsuff with h(B) as the key and [sB , eB] as the value.
The Karp-Rabin hash function h(B) is designed to have no collision between
substrings of T , which can be built in O(n log n) expected time [1]. With low
probability, however, there may be collisions between substrings of a pattern P
and blocks of T .

Finding approximately longest common substrings 3

We now show that |Bpref | and |Bsuff | are O(g), and therefore our hash tables
are of size O(g) as well.

Lemma 1. If X → Y Z is a rule in G, then only O(1) prefix blocks B ∈ Bpref

are prefixes of ⟨X⟩ but not of ⟨Y ⟩, and only O(1) suffix blocks B ∈ Bsuff are
suffixes of ⟨X⟩ but not of ⟨Z⟩.

Proof. By Def. 1, we have

[X] = [Y] + [Z] ≤
(
1 +

1− α

α

)
· [Y] =

[Y]

α
,

so the number of prefix blocks that are prefixes of ⟨X⟩ but not ⟨Y ⟩ is, by Def. 2,

log 1
1−ϵ

[X]−log 1
1−ϵ

[Y]+O(1) = log 1
1−ϵ

[X]

[Y]
+O(1) ≤ log 1

1−ϵ

1

α
+O(1) = O(1) .

Symmetrically, because [X] ≤ [Z]/α, the number of suffix blocks that are suffixes
of ⟨X⟩ but not of ⟨Z⟩ is O(1). ⊓⊔

Corollary 1. The number of prefix and suffix blocks is |Bpref |+ |Bsuff | = O(g).

Proof. By Lemma 1, each symbol X of G, of which there are g, contributes O(1)
prefix blocks to Bpref and O(1) suffix blocks to Bsuff . ⊓⊔

The final component of our data structure is a discrete two-dimensional grid
G, with one row and one column per element of X . Let

– X → Y Z be a rule in G,
– ⟨Y ⟩ have co-lexicographic position i in X , and
– ⟨Z⟩ have lexicographic position j in X ,

then we set a point at position (i, j) in the grid. We label this point with the
position where ⟨Y ⟩ ends inside an occurrence of ⟨X⟩ in T (i.e., if we choose the
occurrence T [a..b] = ⟨X⟩, then the label of the point is a+[Y]−1). The grid has
g points, thus it can be represented in O(g) space and answer range emptiness
queries in O(logδ g) time, for any constant δ > 0 [2].

Our whole data structure then comprisesHpref ,Hsuff , and G, which add up to
O(g) space. We note that the values [sB , eB] stored in Hpref are the lexicographic
ranges of grid columns corresponding to strings in X prefixed with B, and those
stored in Hsuff are the co-lexicographic ranges of grid rows corresponding to
strings in X suffixed with B.

4 Queries

Our searches build on a key result used in all grammar-based indices [5].

Lemma 2. Let string S, of length |S| > 1, appear in T . Then, there is an index
1 ≤ p < |S| and a point (i, j) in G such that

4 T. Gagie et al.

– i is the co-lexicographic range of a string ⟨Y ⟩ ∈ X suffixed by S[1..p] and
– j is the lexicographic range of a string ⟨Z⟩ ∈ X prefixed by S[p+ 1..|S|].

Proof. Note that S appears as a substring of the expansion of the initial symbol
and, possibly, of others. If we order the rules X → Y Z so that Y and Z are
listed before X, then the first time S appears as a substring of ⟨X⟩, it must
appear as the concatenation of a nonempty suffix of ⟨Y ⟩ and a nonempty prefix
of ⟨Z⟩. The lemma then follows from the definition of G. ⊓⊔

Now let L be the longest common substring of P and T and assume |L| > 1.
Per Def. 2, let k = ⌊log1/(1−ϵ) |L|⌋. We note that

(
1

1− ϵ

)k

>

(
1

1− ϵ

)(log 1
1−ϵ

|L|
)
−1

= (1− ϵ) · |L|.

Thus, for our purposes, it suffices to find a substring of length ℓ = (1/(1−ϵ))k of
L. By Lemma 2, there exists an index 1 ≤ p < |L| such that LY = L[1..p] suffixes
some ⟨Y ⟩ ∈ X , LZ = L[p + 1..|L|] prefixes some ⟨Z⟩ ∈ X , and there is a rule
X → Y Z in G. Further, let kY = ⌊log1/(1−ϵ) |LY |⌋ and kZ = ⌊log1/(1−ϵ) |LZ |⌋.
By the same argument above, it follows that(

1

1− ϵ

)kY

> (1− ϵ) · |LY | and
(

1

1− ϵ

)kZ

> (1− ϵ) · |LZ |.

Therefore, it suffices to find a suffix of length ℓY = ⌈(1/(1− ϵ))kY ⌉ of ⟨Y ⟩ and a
prefix of length ℓZ = ⌈(1/(1 − ϵ))kZ ⌉ of ⟨Z⟩ to form a substring of L of length
ℓY + ℓZ > (1− ϵ) · (|LY |+ |LZ |) = (1− ϵ) · |L|, because L = LY · LZ .

Per Def. 2, those suffixes L′
Y = LY [|LY |−ℓY +1..ℓY] are suffix blocks, and

those prefixes L′
Z = LZ [1..ℓZ] are prefix blocks, and therefore they are stored in

our hash tables. Thus, if we search Hsuff for L′
Y and retrieve the associated range

[sY , eY], and search Hpref for L
′
Z and retrieve the associated range [sZ , eZ], we

will find a point in the (row,column) range [sY , eY]× [sZ , eY] of G.
The correctness of Algorithm 1 stems from this discussion. A position of the

common substring found is obtained by noticing that, when we assign ℓ in line
12, the string occurs at P [p− ℓY + 1..p+ ℓZ] and T [t− ℓY + 1..t+ ℓZ], where t
is the label of any point in the grid range.

Since we do not know |L| beforehand, the algorithm tries all the possible
values for kY and kZ , which yields a time complexity dominated by O(m log2 m)
range emptiness queries, that is, O(m log2 m logδ n) [2]. We note that, since the
hashes are of Karp-Rabin type, we can precompute in O(m) time the hash of
every prefix, h(P [1..p]), and then we can compute in constant time the hash of
every substring of P by operating with the modular inverses of the hashes [13].
If there is a collision we may find a false positive.

Note that Algorithm 1 will find only the empty string if |L| = 1, as we
assumed |L| > 1. In case the algorithm returns zero, we must determine if
|L| = 1 by checking if some symbol of P appears as a terminal in G; this is
easily done with additional O(m) time and O(g) space.

Finding approximately longest common substrings 5

Algorithm 1 The simple algorithm returning an approximation to the length
of the longest common substring between T and P [1..m].

1: ℓ← 0
2: for p← 1 to m do
3: for kY ← 0 to ⌊log1/(1−ϵ) p⌋ do
4: ℓY ← ⌈(1/(1− ϵ))kY ⌉
5: [sY , eY]← search Hsuff for P [p−ℓY +1..p]
6: if [sY , eY] was found then
7: for kZ ← 0 to ⌊log1/(1−ϵ)(m− p)⌋ do
8: ℓZ ← ⌈(1/(1− ϵ))kZ ⌉
9: [sZ , eZ]← search Hpref for P [p+ 1..p+ ℓZ]
10: if [sZ , eZ] was found then
11: if G has a point in [sY , eY]× [sZ , eZ] then
12: ℓ← max(ℓ, ℓY + ℓZ)

13: return ℓ

5 Faster queries

We can reduce the time complexity of Algorithm 1 by decreasing the number of
combinations (kY , kZ) we explore. The algorithm may try out Θ(log2 m) com-
binations per value of p, but several of those are redundant. For example, if the
range [sY , eY]× [sZ , eZ] corresponding to the pair (kY , kZ) is empty, then so is
the range [s′Y , e

′
Y]× [sZ , eZ] corresponding to (kY + 1, kZ), as well as the range

[sY , eY]× [s′Z , e
′
Z] corresponding to (kY , kZ +1). It then suffices to explore max-

imal combinations (kY , kZ). Further redundant work is done among values of p:
we may be working on maximal combinations (kY , kZ) that nevertheless yield
shorter strings than one we had already obtained with a previous value of p.

To avoid redundant work, we will visit only the combinations (kY , kZ) for
which ℓY + ℓZ > ℓ; recall that ℓ is the maximum length ℓY + ℓZ obtained so far.
Therefore, every time we find a nonempty range in G, the value of ℓ increases.
We say those combinations are useful. The other combinations, where either the
searches in Hpref or in Hsuff fail, or they succeed but the resulting range in G is
empty, are useless. We will count useful and useless combinations separately.

Since there are only O(log2 m) combinations (kY , kZ), there exist O(log2 m)
different values ℓY + ℓZ . Since the value of ℓ never decreases along the process,
there are only O(log2 m) situations in which a new value of ℓY +ℓZ can increase ℓ.
This implies that the total number of useful combinations we visit is O(log2 m).

To keep the number of useless combinations low, we will visit the space
(kY , kZ) in some suitable order. We first consider all the combinations where
kY ≥ kZ , and then where kZ > kY . We analyze the former case; the other is
symmetric. We visit the values of kY in increasing order, and the values of kZ in
increasing order for each value of kY . Each new visited value kY is first combined
with the smallest kZ for which ℓY + ℓZ > ℓ. If this leads to a nonempty range
in G, then this is a useful combination, for which we have already accounted.
The successive values of kZ we try out from there are all useful, until we finally

6 T. Gagie et al.

fail to find a nonempty range—and this then a useless combination— or until
kZ > kY . We do not consider further values kZ ≤ kY in the first case because
they will also fail to produce a nonempty range in G.

Thus, each value of kY we visit leads to zero or more useful combinations
possibly followed by a single useless one. We say that kY succeeds if it produces
at least one useful combination; otherwise it fails. If kY succeeds, then the cost of
its last useless combination, if any, can be charged to the useful ones it produced.
Therefore we only need to count the number of values kY that fail. We will now
show that a sequence of consecutive values of kY that fail has O(1) combinations
(all of them useless), and therefore their cost can also be charged to the preceding
or following value of kY that succeeds. Only a sequence of all-failing values of
kY cannot be accounted for in that way, but this can only be one sequence per
value of p, adding up to O(m) cost for the useless combinations.

The value of ℓ does not change across a sequence of failing values of kY . We
never visit values ℓY ≤ ℓ/2: since ℓZ ≤ ℓY , they could not increase ℓ. A failing
sequence of visited values kY then starts with some ℓY > ℓ/2 and increments kY
successively, combining it with nonincreasing values of kZ . In this sequence, the
first combination (kY , kZ) we try for each kY , with the smallest kZ that yields
ℓY + ℓZ > ℓ, is useless, so we visit only that smallest value of kZ per value of kY .
We proceed increasing kY , always failing, until ℓY exceeds ℓ, at which point the
smallest value of kZ that makes ℓY + ℓZ > ℓ is 0. If such combination also fails,
there is no point in continuing with larger values of ℓY , because even combined
with kZ = 0 will not yield a useful combination. Since ℓY is exponential in kY ,
there are only O(1) values of kY that yield values ℓ/2 < ℓY ≤ ℓ. Only O(1)
combinations are then tried along a sequence of failing values of kY .

Overall, we have O(log2 m) steps charged to useful combinations and O(m)
to useless ones. Multiplied by the range emptiness time complexity, this yields
O(m logδ g) total time. Note that we obtain a correct result only with high
probability, because we check only that h(LY) and h(LZ) match the hash values
of the corresponding block prefixes and suffixes. To ensure correctness, we can
store the nonterminal X → Y Z associated with the point connecting ⟨Y ⟩ and
⟨Z⟩ in G, so as to verify the correctness our answer in O(m) time by extracting
a suffix of ⟨Y ⟩ and a prefix of ⟨Z⟩ in optimal time [7]. If our answer turns out to
be incorrect (which happens with low probability) we can re-run the algorithm,
this time verifying every potentially useful combination, in total time O(m2). We
can thus ensure correct results by making our time O(m logδ n+m+n−cm2) =
O(m logδ n) in expectation (for any constant c > 2).

The construction time of our structure is dominated by the construction of
the Karp-Rabin hash function with no collisions between blocks of T [13, Sec. 4].

Theorem 1. Given positive constants ϵ and δ, and an α-balanced straight-line
program with g rules for a text T [1..n], we can build in O(n log n) expected time
an O(g)-space index with which, given a pattern P [1..m], in O(m logδ g) time we
can find with high probability a substring of P that occurs in T and whose length
is at least a (1 − ϵ) fraction of the longest common substring of P and T . The
correctness can be guaranteed with time still O(m logδ g), yet in expectation.

Finding approximately longest common substrings 7

References

1. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time–space trade-offs for longest
common extensions. Journal of Discrete Algorithms 25, 42–50 (2014)

2. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. 27th ACM Symposium on Computational Geometry (SoCG).
pp. 1–10 (2011)

3. Charalampopoulos, P., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Faster Algo-
rithms for Longest Common Substring. In: Proc. 29th Annual European Sympo-
sium on Algorithms (ESA). pp. 30:1–30:17 (2021)

4. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

5. Claude, F., Navarro, G., Pacheco, A.: Grammar-compressed indexes with logarith-
mic search time. Journal of Computer and System Sciences 118, 53–74 (2021)

6. Gao, Y.: Computing matching statistics on repetitive texts. In: Proc. 32nd Data
Compression Conference (DCC). pp. 73–82 (2022)

7. Gasieniec, L., Kolpakov, R., Potapov, I., Sant, P.: Real-time traversal in grammar-
based compressed files. In: Proc. 15th Data Compression Conference (DCC). p. 458
(2005)

8. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 2, 249–260 (1987)

9. Kieffer, J.C., Yang, E.H.: Grammar-based codes: A new class of universal lossless
source codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)

10. Navarro, G.: Indexing highly repetitive string collections, part I: Repetitiveness
measures. ACM Computing Surveys 54(2), article 29 (2021)

11. Navarro, G.: Indexing highly repetitive string collections, part II: Compressed in-
dexes. ACM Computing Surveys 54(2), article 26 (2021)

12. Navarro, G.: Computing MEMs on repetitive text collections. In: Proc. 34th Annual
Symposium on Combinatorial Pattern Matching (CPM). p. article 22 (2023)

13. Navarro, G., Prezza, N.: Universal compressed text indexing. Theoretical Computer
Science 762, 41–50 (2019)

14. Ohno, T., Goto, K., Takabatake, Y., I, T., Sakamoto, H.: LZ-ABT: A practical algo-
rithm for α-balanced grammar compression. In: Proc. 29th International Workshop
on Combinatorial Algorithms (IWOCA). pp. 323–335 (2018)

