Rpair: Rescaling RePair with Rsync *

Travis Gagie''2, Tomohiro I?, Giovanni Manzini*, Gonzalo Navarro'?,

Hiroshi Sakamoto®, and Yoshimasa Takabatake3

! CeBiB — Center for Biotechnology and Bioengineering, Chile
2 Faculty of Computer Science, Dalhousie University, Canada
3 Department of Artificial Intelligence,
Kyushu Institute of Technology, Fukuoka, Japan
4 Department of Science and Technological Innovation,
University of Eastern Piedmont, Alessandria, Italy
5 Department of Computer Science, University of Chile, Santiago, Chile

Abstract. Data compression is a powerful tool for managing massive
but repetitive datasets, especially schemes such as grammar-based com-
pression that support computation over the data without decompressing
it. In the best case such a scheme takes a dataset so big that it must
be stored on disk and shrinks it enough that it can be stored and pro-
cessed in internal memory. Even then, however, the scheme is essentially
useless unless it can be built on the original dataset reasonably quickly
while keeping the dataset on disk. In this paper we show how we can
preprocess such datasets with context-triggered piecewise hashing such
that afterwards we can apply RePair and other grammar-based compres-
sors more easily. We first give our algorithm, then show how a variant
of it can be used to approximate the LZ77 parse, then leverage that to
prove theoretical bounds on compression, and finally give experimental
evidence that our approach is competitive in practice.

1 Introduction

Dictionary compression has proved to be an effective tool to exploit the repeti-
tiveness that most of the fastest-growing datasets feature [24]. Lempel-Ziv (LZ77
for short) [23I33] stands out as the most popular and effective compression
method for repetitive texts. Further, it can be run in linear time and even in ex-
ternal memory [I8]. LZ77 has the important drawback, however, that accessing
random positions of the compressed text requires, essentially, to decompress it
from the beginning. Therefore, it is not suitable to be used as a compressed data
structure that represents the text in little space while simulating direct access to
it. Grammar compression [19] is an alternative that offers better guarantees in

* Partially funded with Basal Funds FB0001, Conicyt, Chile. Partially funded by JST
CREST Grant Number JPMJCR1402 (TI, HS, YT), KAKENHI Grant Numbers
19K20213 (TI), 17HO1791 (HS), 18K18111 (YT). Partially funded by PRIN Grant
Number 2017WR7SHH and by the LSBC_19-21 Project from the University of East-
ern Piedmont (GM).

2 Gagie, I, Manzini, Navarro, Sakamoto and Takabatake

this sense. The aim is to build a small context-free grammar (or Straight-Line
Program, SLP) that generates (only) the text. The smallest SLP generating a
text is always larger than its LZ77 parse, but only by a logarithmic factor that
is rarely reached in practice. With an SLP we can access any text substring
with only an additive logarithmic time penalty [3I5], which has led to the de-
velopment of various self-indexes building on SLPs [4[9IT2IT3T5126]. Many other
richer queries on sequences have also been supported by associating summary
information with the nonterminals of the SLP [T2I5I7/TTIT0]. There are appli-
cations in which SLPs are preferable to LZ77 for other reasons, as well; see,
e.g., [22125].

Although finding the smallest SLP for a text is NP-complete [8l28], there are
several grammar construction algorithms that guarantee at most a logarithmic
blowup on the LZ77 parse [SITOIT7I28/29]. In practice, however, they are sharply
outperformed by RePair [21], a heuristic that runs in linear time and obtains
grammars of size very close to that of the LZ77 parse in most cases. This has
made RePair the compressor of choice to build grammar-based compressed data
structures [IJ7ZJT0ITT]. A serious problem with RePair, however, is that, despite
running in linear time and space, in practice the constant of proportinality is
high and it can be built only on inputs that are about one tenth of the available
memory. This significantly hampers its applicability on large datasets.

In this paper we introduce a scalable SLP compression algorithm that uses
space very close to that of RePair and can be applied on very large inputs. We
prove a constant-approximation factor with respect to any SLP construction
algorithm to which our technique is applied. Our experimental results show that
we can compress a very repetitive 50GB text in less than an hour, using less
than 650MB of RAM and obtaining very competitive compression ratios.

2 Preliminaries

For the sake of brevity, we assume the reader is familiar with SLPs, LZ77, and
the links between the two. To prove theoretical bounds for our approach, we
consider a variant of LZ77 in which if S[i..j] is a phrase then either ¢ = j and
S[i] is the first occurrence of a distinct character, or S[i..j] occurs in S[1..j — 1]
and S[i..j + 1] does not occur in S[1..j]. We refer to this variant as LZSS due to
its similarity to Storer and Szymanski’s version of LZ77 [30], even though they
allow substrings to be stored as raw text and we do not.

The best-known algorithm for building SLPs is probably RePair [21], for
which there are many implementations (see [14] and references therein). It works
by repeatedly finding the most common pair of symbols and replacing them with
a new non-terminal. Although it is not known to have a good worst-case approx-
imation ratio with respect to the size of LZ77 parsing, in practice it outperforms
other constructions. RePair uses linear time and space but the coefficient in the
space bound is quite large and so the standard implementations are practical
only on small inputs. A more recent and more space economical alternative to

RePair is SOLCA [31I] that we will consider in Section

Rpair: Rescaling RePair with Rsync 3

Algorithm 1 Rpair: use Rsync parsing to build an SLP for a given string S
1. build an Rsync dictionary and parse for S;
2. generate SLPs for the distinct blocks as follows:
(a) append a unique separator character to each block in the dictionary and then
concatenate the blocks (in the order of their first appearances in S) into a
string D;
(b) build an SLP for D;
(c) delete from the SLP any non-terminal that occurs only once in the parse tree
(and any rule including it);
(d) delete from the SLP the separator characters (and any rules including them);
(e) list the non-terminals at the roots of the maximal remaining subtrees of the
parse tree;
(f) divide the list into sublists such that the concatenation of the expansions of
the non-terminals in the ith sublist is the i block in D;
(g) create a set of rules generating the ith sublist from a new non-terminal X;;
3. build an SLP for the parse P;
4. replace by X; each occurrence in P of the terminal for the ith block in D;
5. combine the SLP for P with the SLPs for the blocks.

Context-triggered piecewise hashing (CTPH) is a technique for parsing strings
into blocks such that long repeated substrings are parsed the same way (except
possibly at the beginning or end of the substrings). The name CTPH seems to be
due to Kornblum [20] but the ideas go back to Tridgell’s Rsync [32] and Spam-
sum (https://www.samba.org/ftp/unpacked/junkcode/spamsum/README):
“The core of the spamsum algorithm is a rolling hash similar to the rolling hash
used in ‘rsync’. The rolling hash is used to produce a series of 'reset points’ in
the plaintext that depend only on the immediate context (with a default context
width of seven characters) and not on the earlier or later parts of the plaintext.”

Specifically, in this paper we choose a rolling hash function and a threshold p,
run a sliding window of fixed size w over S and end the current block whenever
the window contains a triggering substring, which is a substring of length w
whose hash is congruent to 0 modulo p. When we end a block, we shift the
window ahead w characters so all the blocks are disjoint and form a parse, which
we call the Rsync parse. We call the set of distinct blocks the Rsync dictionary:
if the input text contains many repetitions, we expect the dictionary to be much
smaller than the text.

3 Algorithms

Given a string S, we can use Rsync parsing to help build an SLP for S with
Algorithm [1] (“Rpair”). The final SLP can be viewed as first generating the parse,
then replacing each block ID in the parse by the sublist of non-terminals that
generate each block, and finally replacing the sublists by the blocks themselves.

Since each separator character appears only once in D and its parse tree,
any non-terminal whose expansion includes a separator character also appears

https://www.samba.org/ftp/unpacked/junkcode/spamsum/README

4 Gagie, I, Manzini, Navarro, Sakamoto and Takabatake

Algorithm 2 Rparse: use Rsync to build an LZSS-like parse for a string S
1. build an Rsync dictionary and parse for S;
2. append a unique separator character to each block in the dictionary and concate-
nate the blocks (in the order of their first appearances in S) into a string D;
3. compute the LZSS parse of D;
compute the LZSS parse of the parse P, treating each block as a meta-character;
5. map D’s and P’s parses onto S:

(a) discard any separator character D[j] in D;

(b) turn the first occurrence D[j] of any other character in D into the first occur-
rence S[j'] of that character in Sj

(c) turn each phrase D[j..j+£—1] in block B with source D[i..i+£—1] in block B’,
into a phrase S[j’..j + £ — 1] with source S[i’..i’ + £ — 1], where S[j'] and S[i']
have the same respective offsets from the beginnings of the first occurrences of
B and B’ in S, as D[j] and D[i] have from the beginnings of B and B’ in D;

(d) discard the first occurrence P[j] of each block in P;

(e) turn each phrase P[j..7 + ¢ — 1] with source P[i..i + ¢ — 1], into a phrase
S[y'..7" + ¢ — 1] with source S[¢’..t" + ¢’ — 1], where S[j] and S[i'] are the first
characters in the jth and ith blocks, respectively, and ¢ is the total length of
the jth through (j + ¢ — 1)st blocks (and thus also the total length of the ith
through (i + £ — 1)st blocks).

e

only once and is deleted. Since the parse tree of an SLP is binary and each
non-terminal we delete appears only once, the number of distinct non-terminals
we delete is at least the length of the list of non-terminals at the roots of the
maximal remaining subtrees of the parse tree, minus one. Therefore, creating
rules to generate the sublists does not cause the number of distinct non-terminals
to grow to more than the number in the original SLP for D, plus one.

Algorithm [1| works with any algorithm for building SLPs for D and P. In
Section [4 we show that, if we choose an algorithm that builds SLPs for D and
P at most an a-factor larger than their LZ77 parses, then we obtain an SLP
an O(a)-factor larger than the LZ77 parse of S. In the process we will refer to
Algorithm (“Rparse”), which produces an LZSS-like parse of S but is intended
only to simplify our analysis of Algorithm [1| (not to compete with cutting-edge
LZ-based compressors). By “LZSS-like” we mean a parse in which each phrase
is either a single character that has not occurred before, or a copy of an earlier
substring. We note in passing that, if the parse in Step |3|is still too big for a
normal construction, then we can apply Algorithm [I] to it. We will show in the
full version of this paper that, if we recurse only a constant number of times,
then we worsen our compression bounds by only a constant factor.

4 Analysis

The main advantage of using Rsync parsing to preprocess S is that Rsync pars-
ing is quite easy to parallelize, apply over streamed data, or apply in external
memory. The resulting dictionary and parse may be significantly smaller than

Rpair: Rescaling RePair with Rsync 5

S, making it easier to apply grammar-based compression. In the full version of
this paper we will analyze how much time and workspace Algorithms [I] and [2]
use in terms of the total size of the dictionary and parse, but for now we are
mainly concerned with the quality of the compression.

Let b be the number of distinct blocks in the Rsync parse of S, and let z be
the number of phrases in the LZ77 parse of S. The first block is obviously the
first occurrence of that substring and if S[i..j] is the first occurrence of another
block, then S[i —w..j] (i.e., the block extended backward to include the previous
triggering substring) is the first occurrence of that substring. Since the first
occurrence of any non-empty substring overlaps or ends at a phrase boundary
in the LZ77 parse, we can charge SJi..j| to such a boundary in S[i — w..j]. Since
blocks have length at least w and overlap by only w characters when extended
backwards, each boundary has the first occurrences of at most two blocks charged
to it, so b = O(z).

In Step |5| of Algorithm [2 we discard O(b) of the phrases in the LZSS parses
of D and P when mapping to the phrases in the LZSS-like parse of S. Therefore,
by showing that the number of phrases in the LZSS-like parse of S is O(z), we
show that the total number of phrases in the LZSS parses of D and P is also
O(z +b) = O(z), so the total number of phrases in their LZ77 parses is O(z) as
well.

Lemma 1. If the t-th phrase in the LZSS parse of S is S[j..j + € — 1] then the
5t-th phrase resulting from Algorithm@ if it exists, ends at or after S[j+¢—1].

Proof. Our claim is trivially true for ¢t = 1, since the first phrases in both parses
are the single character S[1], so let ¢ be greater than 1 and assume our claim
is true for ¢ — 1, meaning the 5(¢ — 1)st phrase in our parse ends at S[k — 1]
with & > j. If £ > j 4 £ then our claim is also trivially true for ¢, so assume
Jj <k < j+{ We must show that our parse divides S[k..j + ¢ — 1] into at most
five phrases, in order to prove our claim for t.

First suppose that S[k..j + ¢ — 1] does not completely contain a triggering
substring, so it overlaps at most two blocks. (It can overlap two blocks without
containing a triggering substring if and only if a prefix of length less than w lies
in one block and the rest lies in the next block.) Let S[i..i+f—1] be S[j..j+£—1]’s
source and let k¥’ =i+ k — j, so in the LZSS parse S[k..j + £ — 1] is copied from
S[k'..i + £ — 1]. Since S[k’..i + £ — 1] does not completely contain a triggering
substring either, it too overlaps at most two blocks.

Without loss of generality (since the other cases are easier), assume S[k..j +
£ —1] and S[K'..i + £ — 1] each overlap two blocks and they are split differently:
Slk..k + d — 1] lies in one block and S[k 4 d..j + ¢ — 1] lies in the next, and
S[k'..k' +d’ —1] lies in one block and S[k’ +d’..i+ £ — 1] in the next, with d # d'.
Assume also that d < d’, since the other case is symmetric. Since S[k..k +d — 1]
is completely contained in a block and occurs earlier completely contained in a
block, as S[k’..k" + d — 1], our parse does not divide it. Similarly, since S[k +
d.k+d —1] and S[k +d'..j + ¢ — 1] are each completely contained in a block
and occur earlier each completely contained in a block, as S[k’ + d..k' +d' — 1]

6 Gagie, I, Manzini, Navarro, Sakamoto and Takabatake

and S[k’ +d'..i + ¢ — 1], respectively, our parse does not divide them. Therefore,
our parse divides S[k..j + ¢ — 1] into at most three phrases.

Now suppose the first and last triggering substrings completely contained in
S[k..j+¢—1] are S[z..x +w—1] and S[y..y+w—1] (possibly with = y). By the
arguments above, our parse divides S[k..z + w — 1] into at most three phrases.
Since S[z + w..y + w — 1] is a sequence of complete blocks that have occurred
earlier (in S[k'..i + £ — 1]), our parse does not divide it unless S[k..x + w — 1]
is a complete block that has occurred before as a complete block, in which case
it may divide S[k..y + w — 1] once between S[z + w] and Sy + w — 1]. Since
Sly+w..j+£—1] is completely contained in a block and occurs earlier completely
contained in a block (in S[k’..i + £ — 1]), our parse does not divide it. Therefore,
our parse divides S[k..j + ¢ — 1] into at most five phrases. O

We note that we can quite easily can reduce the five in LemmalT] at the cost
of complicating our algorithm slightly. We leave a detailed analysis for the full
version of this paper.

Corollary 1. Algorithm[9 yields an LZSS-like parse of S with at most five times
as many phrases as its LZSS parse.

Proof. If the LZSS parse has ¢ phrases then the ¢-th phrase ends at S[n] so, by
Lemmal [T} Algorithm [2] yields a parse with at most 5¢ phrases. 0

Theorem 1. Algorithm yields an LZSS-like parse of S with O(z) phrases.

Proof. 1t is well known that the LZSS parse of S has at most twice as many
phrases as the its LZ77 parse (since dividing each LZ77 phrase into a prefix with
an earlier occurrence and a mismatch character yields an LZSS-like parse with
at most twice as many phrases, and the LZSS parse has the fewest phrases of
any LZSS-like parse). Therefore, by Corollary Algorithmyields a parse with
at most O(z) phrases. O

Corollary 2. The LZ77 parses of D and P have O(z) phrases.

Proof. Immediate, from Theorem [I| the fact that the LZ77 parse is no larger
than the LZSS parse, and inspection of Algorithm O

Let A be any algorithm that builds an SLP at most an a-factor larger than
the LZ77 parse of its input. For example, with Rytter’s construction [28] we have
a = O(log(|5]/2)).

By Corollary [2| applying A to D — Step [2b]in Algorithm [I]— yields an SLP
for D with O(az) rules. As explained in Section 3] Steps [2¢] to [2¢] then increase
the number of rules by at most one while modifying the SLP such that, for each
block in the dictionary, there is a non-terminal whose expansion is that block.

Similarly, applying A to P — Step — yields an SLP for P with O(z) rules.
Replacing the terminals in the SLP by the non-terminals generating the blocks
and then combining the two SLPs — Steps [d] and [5] — yields an SLP for S with
O(az) rules. This gives us our main result of this section:

Theorem 2. Using A in Steps [2] and [3 of Algorithm [1] yields an SLP for S
with O(az) rules.

Rpair: Rescaling RePair with Rsync 7

5 Experiments

We use two genome collections in our experiments: c/N consists of N concate-
nated variants of the human chromosome chr19, of about 59MB each; sN consists
of N concatenated variants of salmonella genomes, of widely different sizes.

The chrl9 collection was downloaded from the 1000 Genomes Project. Each
chrl9 sequence was derived by using the bcftools consensus tool to combine the
haplotype-specific (maternal or paternal) variant calls for an individual with
the chrl9 sequence in the GRCH37 human reference. The salmonella genomes
were downloaded from NCBI (BioProject PRJNA183844) and preprocessed by
assembling each individual sample with IDBA-UD [27] setting kMaxShortSe-
quence to 1024 per public advice from the author to accommodate the longer
paired end reads that modern sequencers produce. More details of the collections
are available in previous work [6l Sec. 4].

We compare two grammar compressors: RePair [2I] produces the best known
compression ratios but uses a lot of main memory space, whereas SOLCA [31]
aims at optimizing main memory usage. Their versions combined with paral-
lelized CTPH parsing are BigRepair and BigSOLCA. RePair could be run only on
the smaller collections. Our experiments ran on a Intel(R) 17-4770 @ 3.40 GHz
machine with 32 GB memory using 8 threads; currently only the CTPH parsing
takes advantage of the multiple threads.

For RePair we use Navarro’s implementation for large files, at http://www.
dcc.uchile.cl/gnavarro/software/repair.tgz, letting it use 10GB of main
memory, whereas the implementation of SOLCA is at https://github.com/
tkbtkysms/solca. To measure their compression ratios in a uniform way, we
consider the following encodings of their output: if RePair produces r (binary)
rules and an initial rule of length ¢, we account 2r bits to encode the topology of
the pruned parse tree (where the nonterminal ids become the preorder of their
internal node in this tree) and (r + ¢)[log,] bits to encode the leaves of the
tree and the initial rule. SOLCA is similar, with ¢ = 1. Our code is available at
https://gitlab.com/manzai/bigrepair.

Table [1| shows the results in terms of compression ratio, time, and space
in RAM. On the more repetitive chr19 genomes, BigRePair is clearly the best
choice for large files. It loses to RePair in compression ratio, but RePair takes 11
hours just to process 5.5GB, so it is not a choice for larger files. Instead, BigRepair
processes 55GB in about 20 minutes and 6.5GB. Similarly, SOLCA obtains better
compression but more compression time than BigSOLCA, though the latter uses
more space. The comparison between the two compressors shows that BigRepair
performs better than both SOLCA and BigSOLCA in both compression ratio
(reaching nearly half the compressed size of SOLCA on the largest files) and time
(half the time of BigSOLCA). Still SOLCA uses much less space: it compresses
55GB in 3.6 hours, but using less than 750MB.

The results start similarly on the less compressible salmonella collection,
but, as the size of the input grows, there are significant differences. The time of
BigRePair on chr19 was stable around 2GBs per minute, but on salmonella it is
not: When moving from 10GB to 20GB of input data, the time per processed

8 Gagie, I, Manzini, Navarro, Sakamoto and Takabatake

File |Size RePair BigRePair SOLCA BigSOLCA
Ratio|Time| Spc | Ratio|Time| Spc || Ratio|Time| Spc | Ratio|Time| Spc
c50 2.75(|10.80%| 1832(3842(0.91%|29.30|454.7|(1.35%|244.1|107.4|1.54%66.47|183.4
cl00 [5.51[0.30%]| 7311|3155|0.48%]25.05|246.4(|0.77%236.4|53.67|0.86%|56.96|130.4
c250 |13.8 0.23%122.10{119.8|0.40%239.0{29.78]0.44%|48.55|95.00
cb00 |27.5 0.14%122.31|118.0{|0.28%237.4|17.05]0.30%|47.46|84.72
c1000 [55.1 0.10%(22.61|117.3(|0.22%|237.3|13.56|0.23%|47.79|78.82
s815 [3.75(|1.72%| 8478(3726(1.93%|51.70| 2254|(3.01%|317.7|161.0|3.50%(104.1{291.4
s2073 [9.72 2.01%155.48| 1055(|3.01%370.9(153.1|3.53%|116.9|285.9
s4570 |22.0 2.61%(201.1|534.2(|3.57%480.6|154.4[4.24%|142.8(335.1
s11264|53.1 1.51%| 2560(294.2|(2.20%1620.2|92.60(2.61%|113.1|206.7

Table 1. Performance of the compressors. File sizes are expressed in GB, compression
ratios in percentage of compressed file over uncompressed file, compression times in
seconds per input GB, and compression main memory usage in MBs per input GB.

GB of BigRePair jumps by a factor of 3.6, and when moving from 20GB to 50GB
it jumps by more than 10. To process the largest 53GB file, BigRePair requires
more than 37 hours and over 15 GB of RAM. SOLCA, instead, handles this file
in nearly 9 hours and less than 5 GB, and BigSOLCA in less than 2 hours and 11
GB, being the fastest. What happens is that, being less compressible, the output
of the CTPH parse is still too large for RePair, and thus it slows down drastically
as soon as it cannot fit its structures in main memory. The much lower memory
footprint of SOLCA, instead, pays off on these large and less compressible files,
though its compression ratio is worse than that of BigRePair. In the full version
of this paper we will investigate applying BigRePair and BigSOLCA recursively,
following the strategy mentioned at the end of Section [3

References

1. A. Abeliuk, R. Cénovas, and G. Navarro. Practical compressed suffix trees. Algo-
rithms, 6(2):319-351, 2013.

2. H. Bannai, T. Gagie, and T. I. Online LZ77 parsing and matching statistics with
RLBWTs. In CPM, pages 7:1-7:12, 2018.

3. D. Belazzougui, P. H. Cording, S. J. Puglisi, and Y. Tabei. Access, rank, and select
in grammar-compressed strings. In ESA, pages 142-154, 2015.

4. P. Bille, M. B. Ettienne, I. L. Ggrtz, and H. W. Vildhgj. Time-space trade-offs for
Lempel-Ziv compressed indexing. In CPM, pages 16:1-16:17, 2017.

5. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. S. Rao, and O. Weimann.
Random access to grammar-compressed strings and trees. SIAM J. Comput.,
44(3):513-539, 2015.

6. C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini. Prefix-free parsing for building
big BWTs. In WABI, pages 2:1-2:16, 2018.

7. N. Brisaboa, A. Gémez-Brandén, G. Navarro, and J. Parama. Gract: A grammar-
based compressed index for trajectory data. Inf. Sci., 483:106-135, 2019.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Rpair: Rescaling RePair with Rsync 9

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554—
2576, 2005.

A. R. Christiansen and M. B. Ettienne. Compressed indexing with signature gram-
mars. In LATIN, pages 331-345, 2018.

F. Claude, A. Farina, M. Martinez-Prieto, and G. Navarro. Universal indexes for
highly repetitive document collections. Inf. Sys., 61:1-23, 2016.

F. Claude and J. I. Munro. Document listing on versioned documents. In SPIRE,
pages 72-83, 2013.

F. Claude and G. Navarro. Self-indexed grammar-based compression. Fund. Inf.,
111(3):313-337, 2010.

F. Claude and G. Navarro. Improved grammar-based compressed indexes. In
SPIRE, pages 180-192, 2012.

I. Furuya, T. Takagi, Y. Nakashima, S. Inenaga, H. Bannai, and T. Kida. MR-
RePair: Grammar compression based on maximal repeats. In DCC, pages 508-517,
2019.

T. Gagie, P Gawrychowski, J. Karkkainen, Y. Nekrich, and S. J. Puglisi. LZ77-
based self-indexing with faster pattern matching. In LATIN, pages 731-742, 2014.
A. Jez. Approximation of grammar-based compression via recompression. Theor.
Comp. Sci., 592:115-134, 2015.

A. Jez. A really simple approximation of smallest grammar. Theor. Comp. Sci.,
616:141-150, 2016.

J. Karkkéinen, D. Kempa, and S. J. Puglisi. Lempel-Ziv parsing in external mem-
ory. In DCC, pages 153162, 2014.

J. C. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal
lossless source codes. IEEE Trans. Inf. Theory, 46(3):737-754, 2000.

J. D. Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Digital Investigation, 3(Supplement-1):91-97, 2006.

J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of
the IEEE, 88(11):1722-1732, 2000.

R. Lasch, I. Oukid, R. Dementiev, N. May, S. S. Demirsoy, and K.-U. Sattler. Fast
& strong: The case of compressed string dictionaries on modern CPUs. In DaMoN,
pages 4:1-4:10, 2019.

A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inf.
Theory, 22(1):75-81, 1976.

G. Navarro. Indexing highly repetitive collections. In IWOCA, pages 274-279,
2012.

C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure in se-
quences: A linear-time algorithm. J. Artif. Intell. Res., 7:67-82, 1997.

T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index, LZ
factorization, and LCE queries in compressed space. CoRR, abs/1504.06954, 2015.
Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. IDBA-UD: a de novo
assembler for single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics, 28(11):1420-1428, 2012.

W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comp. Sci., 302(1-3):211-222, 2003.

H. Sakamoto. A fully linear-time approximation algorithm for grammar-based
compression. J. Discr. Alg., 3(24):416-430, 2005.

J. A. Storer and T. G. Szymanski. Data compression via textual substitution. J.
ACM, 29(4):928-951, 1982.

10

31

32

33

Gagie, I, Manzini, Navarro, Sakamoto and Takabatake

. Y. Takabatake, T. I, and H. Sakamoto. A space-optimal grammar compression. In
ESA, pages 67:1-67:15, 2017.

. A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, The
Australian National University, 1999.

. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. on Inf. Theory, 1T-23(3):337-349, 1977.

	Rpair: Rescaling RePair with Rsync

