
Faster Repetition-Aware Compressed Suffix
Trees based on Block Trees?

Manuel Cáceres1 and Gonzalo Navarro1

CeBiB — Center for Biotechnology and Bioengineering, Department of Computer
Science, University of Chile, Chile. {mcaceres, gnavarro}@dcc.uchile.cl

Abstract. Suffix trees are a fundamental data structure in stringol-
ogy, but their space usage, though linear, is an important problem in
applications. We design and implement a new compressed suffix tree tar-
geted to highly repetitive texts, such as large genomic collections of the
same species. Our suffix tree builds on Block Trees, a recent Lempel-Ziv-
bounded data structure that captures the repetitiveness of its input. We
use Block Trees to compress the topology of the suffix tree, and augment
the Block Tree nodes with data that speeds up suffix tree navigation.
Our compressed suffix tree is slightly larger than previous repetition-aware
suffix trees based on grammars, but outperforms them in time, often by
orders of magnitude. The component that represents the tree topology
achieves a speed comparable to that of general-purpose compressed trees,
while using 2–10 times less space, and might be of independent interest.

1 Introduction

Suffix trees [37, 22, 36] are one of the most appreciated data structures in Stringol-
ogy [3] and in application areas like Bioinformatics [13], enabling efficient solutions
to complex problems such as (approximate) pattern matching, pattern discovery,
finding repeated substrings, computing matching statistics, computing maximal
matches, and many others. In other collections, like natural language and soft-
ware repositories, suffix trees are useful for plagiarism detection [23], authorship
attribution [38], document retrieval [14], and others.

While their linear space complexity is regarded as acceptable in classical
terms, their actual space usage brings serious problems in application areas. From
an Information Theory standpoint, on a text of length n over alphabet [1, σ],
classical suffix tree representations use Θ(n lg n) bits, whereas the information
contained in the text is, in the worst case, just n lg σ bits. From a practical point
of view, even carefully engineered implementations [17] require at least 10 bytes
per symbol, which forces many applications to run the suffix tree on (orders of
magnitude slower) secondary memory.

Consider for example Bioinformatics, where various complex analyses require
the use of sophisticated data structures, suffix trees being among the most impor-
tant ones. DNA sequences range over σ = 4 different nucleotides represented with

? Funded by Fondecyt Grant 1-170048 and by Basal Funds FB0001, Conicyt. Chile.

2 Manuel Cáceres and Gonzalo Navarro

lg 4 = 2 bits each, whereas the suffix tree uses at least 10 bytes = 80 bits per base,
that is, 4000% of the text size. A human genome fits in approximately 715 MB,
whereas its suffix tree requires about 30 GB. The space problem becomes daunting
when we consider the DNA analysis of large groups of individuals; consider for
example the 100,000-human-genomes project (www.genomicsengland.co.uk).

One solution to the problem is to build suffix trees on secondary memory [7,
9]. Most suffix tree algorithms, however, require traversing them across arbitrary
access paths, which makes secondary memory solutions many orders of magnitude
slower than in main memory. Another approach replaces the suffix trees with
suffix arrays [21], which decreases space usage to 4 bytes (32 bits) per character
but loses some functionality like the suffix links, which are essential to solve
various complex problems. This functionality can be recovered [2] by raising the
space to about 6 bytes (48 bits) per character.

A promising line of research is the construction of compact representations of
suffix trees, named Compressed Suffix Trees (CSTs), which simulate all the suffix
tree functionality within space bounded not only by O(n lg σ) bits, but by the
information content (or text entropy) of the sequence. An important theoretical
achievement was a CST using O(n) bits on top of the text entropy that supports
all the operations within an O(polylog n) time penalty factor [34]. A recent
implementation [28] uses, on DNA, about 10 bits per base and supports the
operations in a few microseconds. While even smaller CSTs have been proposed,
reaching as little as 5 bits per base [32], their operation times raise to milliseconds,
thus becoming nearly as slow as a secondary-memory deployment.

Still, further space reductions are desirable when facing large genome repos-
itories. Fortunately many of the largest text collections are highly repetitive;
for example DNA sequences of two humans differ by less than 0.5% [35]. This
repetitiveness is not well captured by statistical based compression methods [16],
on which most of the CSTs are based. Lempel-Ziv [19] and grammar [15] based
compression techniques, among others, do better in this scenario [24], but only
recently we have seen CSTs building on them, both in theory [11, 5] and in
practice [1, 26]. The most successful CSTs in practice on repetitive collections
are the grammar-compressed suffix trees (GCSTs), which on DNA use about 2
bits per base and support the operations in tens to hundreds of microseconds.

GCSTs use grammar compression on the parentheses sequence that represents
the suffix tree topology [31], which inherits the repetitiveness of the text collection.
While Lempel-Ziv compression is stronger, it does not support easy access to
the sequence. In this paper we explore an alternative to grammar compression
called Block Trees [6, 29], which offer similar approximation ratios to Lempel-Ziv
compression, but promise faster access.

Our main contribution is the BT-CT, a Block-Tree-based representation of
tree topologies, which enriches Block Trees to support the required navigation
operations. Although we are unable to prove useful upper bounds on the operation
times, the BT-CT performs very well in practice: while using 0.3–1.5 bits per
node in our repetitive suffix trees, it implements the navigation operations in a
few microseconds, becoming very close to the performance of plain 2.8-bit-per-

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 3

Operation Description

root() The root of the suffix tree
is-leaf(v) True if v is a leaf node
first-child(v) The first child of v in lexicographical order
tree-depth(v) The number of edges from root() to v
next-sibling(v) The next sibling of v in lexicographical order
previous-sibling(v) The previous sibling of v in lexicographical order
parent(v) The parent of v
is-ancestor(v,u) True if v is ancestor of u
level-ancestor(v,d) The ancestor of v at tree depth d
lca(v,u) The lowest common ancestor between v and u
letter(v, i) str(v)[i]
string-depth(v) |str(v)|
suffix-link(v) The node u s.t. str(u) = str(v)[2,string-depth(v)]
string-ancestor(v,d) The highest ancestor u of v s.t. string-depth(u) ≥ d
child(v,c) The child u of v s.t. str(u)[string-depth(v)+1] = c

Table 1: List of typical operations implemented by suffix trees; str(v) represents
the concatenation of the strings in the root-to-v path.

node representations that are blind to repetitiveness [27]. We use the BT-CT to
represent suffix tree topologies in this paper, but it might also be useful in other
scenarios, such as representing the topology of repetitive XML collections [4].

As said, our new suffix tree, BT-CST, uses the BT-CT to represent the suffix
tree topology. Although larger than the GCST, it still requires about 3 bits
per base in highly repetitive DNA collections. In exchange, it is faster than the
GCST, often by an order of magnitude. This owes to the BT-CT directly, but
also indirectly: Its faster navigation enables the binary search for the “child by
letter” operation in suffix trees, which is by far the slowest one. While with the
GCST a linear traversal of the children is advisable [26], a binary search pays off
in the BT-CST, making it faster especially on large alphabets.

2 Preliminaries and Related Work

A text T [1, n] = T [1] . . . T [n] is a sequence of symbols over an alphabet Σ = [1, σ],
terminated by a special symbol $ that is lexicographically smaller than any
symbol of Σ. A substring of T is denoted T [i, j] = T [i] . . . T [j]. A substring T [i, j]
is a prefix if i = 1 and a suffix if j = n.

The suffix tree [37, 22, 36] of a text T is a trie of its suffixes in which unary
paths are collapsed into a single edge. The tree then has less than 2n nodes. The
suffix tree supports a set of operations (see Table 1) that suffices to solve a large
number of problems in Stringology [3] and Bioinformatics [13].

The suffix array [21] A[1, n] of a text T [1, n] is a permutation of [1, n] such
that A[i] is the starting position of the ith suffix in increasing lexicographical
order. The leaves descending from a suffix tree node span a range of suffixes in A.

4 Manuel Cáceres and Gonzalo Navarro

The function lcp(X,Y) is the length of the longest common prefix (lcp) of
strings X and Y . The LCP array [21], LCP [1, n], is defined as LCP [1] = 0 and
LCP [i] = lcp(T [A[i− 1], n], T [A[i], n]) for all i > 1, that is, it stores the lengths
of the lcps between lexicographically consecutive suffixes of T [1, n].

2.1 Succinct tree representations

A balanced parentheses (BP) representation (there are others [31]) of the topology
of an ordinal tree T of t nodes is a binary sequence (or bitvector) P [1, 2t] built as
follows: we traverse T in preorder, writing an opening parenthesis (a bit 1) when
we first arrive at a node, and a closing one (a bit 0) when we leave its subtree.
For example, a leaf looks like “10”. The following primitives can be defined on P :

– access(i) = P [i]
– rank0|1(i) = | {1 ≤ j ≤ i;P [j] = 0|1} |
– excess(i) = rank1(i)− rank0(i)
– select0|1(i) = min({j; rank0|1(j) = i} ∪ {∞})
– leaf-rank(i) = rank10(i) = | {1 ≤ j ≤ i− 1;P [j] = 1 ∧ P [j + 1] = 0} |
– leaf-select(i) = select10(i) = min({j; leaf-rank(j + 1) = i} ∪ {∞})
– fwd-search(i, d) = min({j > i; excess(j) = excess(i) + d)} ∪ {∞})
– bwd-search(i, d) = max({j < i; excess(j) = excess(i) + d)} ∪ {−∞})
– min-excess(i, j) = min({excess(k)− excess(i− 1); i ≤ k ≤ j} ∪ {∞})

These primitives suffice to implement a large number of tree navigation
operations, and can all be supported in constant time using o(t) bits on top
of P [27]. These include the operations needed by suffix trees. For example,
interpreting nodes as the position of their opening parenthesis in P , it holds that
parent(v) = bwd-search(i,−2)+1, next-sibling(v) = fwd-search(v,−1)+1 and the
lowest common ancestor of two nodes v ≤ u is lca(v, u) = parent(fwd-search(v−
1,min-excess(v, u)) + 1).

2.2 Compressed Suffix Arrays

A milestone in the area was the emergence of Compressed Suffix Arrays (CSAs) [25],
which using space proportional to that of the compressed sequence managed to
answer access queries to the original suffix array and its inverse (i.e., return any
A[i] and A−1[j]), to the indexed sequence (i.e., return any T [i..j]), and access to
a novel array, Ψ [i] = A−1[(A[i] mod n)+1], which lets us move from a text suffix
T [j, n] to the next one, T [j+ 1, n], yet indexing the suffixes by their lexicographic
rank, A−1[j]. This function plays a key role in the design of CSTs, as seen next.

2.3 Compressed Suffix Trees

Sadakane [34] designed the first CST, on top of a CSA, using |CSA|+O(n) bits
and solving all the suffix tree operations in time O(polylog n). He makes up a
CST from three components: a CSA, for which he uses his own proposal [33];

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 5

a BP representation of the suffix tree topology, using at most 4n + o(n) bits;
and a compressed representation of LCP , which is a bitvector H[1, 2n] encoding
the array PLCP [i] = LCP [A−1[i]] (i.e., the LCP array in text order). A recent
implementation [28] of this index requires about 10 bits per character and takes
a few microseconds per operation.

Russo et al. [32] managed to use just o(n) bits on top of the CSA, by storing
only a sample of the suffix tree nodes. An implementation of this index [32] uses
as little as 5 bits per character, but the operations take milliseconds, as slow as
running in secondary storage.

Yet another approach [10] also obtains o(n) on top of a CSA by getting rid of
the tree topology and expressing the tree operations on the corresponding suffix
array intervals. The operations now use primitives on the LCP array: find the
previous/next smaller value (psv/nsv) and find minima in ranges (rmq). They
also noted that bitvector H contains 2r runs, where r is the number of runs of
consecutive increasing values in Ψ , and used this fact to run-length compress H.
Abeliuk et al. [1] designed a practical version of this idea, obtaining about 8 bits
per character and getting a time performance of hundreds of microseconds per
operation, an interesting tradeoff between the other two options.

Engineered adaptations of these three ideas were implemented in the SDSL
library [12], and are named cst sada, cst fully, and cst sct3, respectively.
We will use and adapt them in our experimental comparison.

2.4 Repetition-aware Compressed Suffix Trees

Abeliuk et. al [1] also presented the first CST for repetitive collections. They
built on the third approach above [10], so they do not represent the tree topology.
They use the RLCSA [20], a repetition-aware CSA with size proportional to r,
which is very low on repetitive texts. They use grammar compression on the
differential LCP array, DLCP [i] = LCP [i]−LCP [i−1]. The nodes of the parsing
tree (obtained with Re-Pair [18]) are enriched with further data to support the
operations psv/nsv and rmq. To speed up simple LCP accesses, the bitvector H
is also stored, whose size is also proportional to r. Their index uses 1–2 bits per
character on repetitive collections. It is rather slow, however, operating within
(many) milliseconds.

Navarro and Ordóñez [26] include again the tree topology. Since text repeti-
tiveness induces isomorphic subtrees in the suffix tree, they grammar-compressed
the BP representation. The nonterminals are enriched to support the tree naviga-
tion operations enumerated in Section 2.1. Since they do not need psv/nsv/rmq
operations on LCP, they just use the bitvector H, which has a few runs and thus
is very small. Their index uses slightly more space, closer to 2 bits per character,
but it is up to 3 orders of magnitude faster than that of Abeliuk et al. [1]: their
structure operates in tens to hundreds of microseconds per operation, getting
closer to the times of general-purpose CSTs.

Less related or theoretical work [8, 11, 5] is not discussed for lack of space.

6 Manuel Cáceres and Gonzalo Navarro

3 Block Trees

A Block Tree [6] is a full r-ary tree that represents a (repetitive) sequence P [1, p]
in compressed space while offering access and other operations in logarithmic
time. The nodes at depth d (the root being depth 0) represent blocks of P of
length b = |P |/rd, where we pad P to ensure these numbers are integers. Such a
node v, representing some block v.blk = P [i, i+ b− 1], can be of three types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a leaf of the Block
Tree, and it stores the string v.blk explicitly.

BackBlock: Otherwise, if P [i − b, i + b − 1] and P [i, i + 2b − 1] are not their
leftmost occurrences in P , then the block is replaced by its leftmost occurrence
in P : node v stores a pointer v.ptr = u to the node u such that the first
occurrence of v.blk starts inside u.blk = P [j, j+b−1], more precisely it occurs
in P [j + o, j + o+ b− 1]. This offset inside u.blk is stored at v.off = o. Node
v is not considered at deeper levels.

InternalBlock: Otherwise, the block is split into r equal parts, handled in
the next level by the children of v. The node v then stores a pointer to its
children.

The Block Tree can return any P [i] in logarithmic time, by starting at position
i in the root block. Recursively, the position i is translated in constant time into
an offset inside a child node (for InternalBlocks), or inside a leftward node in
the same level (for BackBlocks, at most once per level). At leaves, the symbol is
stored explicitly.

If we augment the nodes of the Block Tree with rank information for the σ
symbols of the alphabet, the Block Tree answers rank and select queries on P in
logarithmic time as well. Specifically, for every c ∈ [1, σ], we store in every node
v the number v.c of cs in v.blk. Further, every BackBlock node v pointing to u
stores the number of cs in u.blk[1, v.off− 1].

Our new repetition-aware CST will represent the BP topology with a Block
Tree. The basic structure supports operations access(i), rank0|1(i), excess(i) and
select0|1(i). In the next section we show how to solve the remaining operations.

4 Our Repetition-Aware Compressed Suffix Tree

Following the scheme of Sadakane [34] we propose a three-component structure to
implement a new CST tailored to highly repetitive inputs. We use the RLCSA [20]
as our CSA. For the LCP, we use the compressed version of the bitvector H [10].
For the topology, we use BP and represent the sequence with a Block Tree, adding
new fields to the Block Tree nodes to efficiently answer all the queries we need
(Section 2.1). We call this representation Block Tree CST (BT-CST). Section 4.1
describes BT-CT, our extension to Block Trees, and Section 4.2 our improved
operation child(v, a) for the BT-CST.

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 7

4.1 Block Tree Compressed Topology (BT-CT)

We describe our main data structure, Block Tree Compressed Topology (BT-CT),
which compresses a parentheses sequence and supports navigation on it.

Stored fields We augment the nodes of the Block Tree with the following fields:

– For every node v that represents the block v.blk = P [i, i+ b− 1]:
• rank1, the number of 1s in v.blk, i.e., rank1(i+ b− 1)− rank1(i− 1) in P .
• lrank (leaf rank), the number of 10s (i.e., leaves in BP) that finish inside
v.blk, i.e., leaf-rank(i+ b− 1)− leaf-rank(i− 1) in P .

• lbreaker (leaf breaker), a bit telling whether the first symbol of v.blk is a
0 and the preceding symbol in P is a 1, i.e., whether P [i− 1, i] = 10.

• mexcess, the minimum excess in v.blk, i.e., min-excess(i, i+ b− 1) in P .
– For every BackBlock node v that represents v.blk = P [i, i+ b− 1] and points

to its first occurrence O = P [j + o, j + o+ b− 1] inside u.blk = P [j, j + b− 1]
with offset v.off = o:
• fb-rank1, the number of 1s in the prefix of O contained in u.blk (O∩u.blk,

the 1st block spanned by O), i.e., rank1(j+ b− 1)− rank1(j+ o− 1) in P .
• fb-lrank, the number of 10s that finish in O ∩ u.blk, i.e., leaf-rank(j + b−

1)− leaf-rank(j + o− 1) in P .
• fb-lbreaker, a bit telling whether the first symbol of O is a 0 and the

preceding symbol is a 1, i.e., whether P [j + o− 1, j + o] = 10.
• fb-mexcess, the minimum excess reached in O ∩ u.blk, i.e., min-excess(j +
o, j + b− 1).

• m-fb, a bit telling whether the minimum excess of u.blk is reached in
O∩u.blk, i.e., whether min-excess(i, i+b−1) = min-excess(j+o, j+b−1).

Fields computed on the fly In the description of the operations we will use
other fields that are computed in constant time from those we already store:

– For every node v that represents v.blk = P [i, i+ b− 1]
• rank0, the number of 0s in v.blk, i.e., b− v.rank1.
• excess, the excess of 1s over 0s in v.blk, i.e., v.rank1 − v.rank0 = 2 ·
v.rank1 − b.

– For every BackBlock node v that represents v.blk = P [i, i+ b− 1] and points
to its first occurrence O = P [j + o, j + o+ b− 1] inside u.blk = P [j, j + b− 1]
with offset v.off = o:
• fb-rank0, the number of 0s in O ∩ v.blk, i.e., (b− o)− v.fb-rank1.
• pfb-rank0|1, the number of 0s|1s in the prefix of u.blk that precedes O

(u.blk−O), i.e., u.rank0|1 − v.fb-rank0|1.
• fb-excess, the excess in O ∩ u.blk, i.e., v.fb-rank1 − v.fb-rank0.
• sb-excess, the excess in O−u.blk (2nd block spanned by O), i.e., v.excess−
v.fb-excess.

• pfb-lrank, the number of 10s that finish in u.blk − O, i.e., u.lrank −
v.fb-lrank.

8 Manuel Cáceres and Gonzalo Navarro

• sb-mexcess, the minimum excess in O − u.blk, i.e., min-excess(j + b, j +
b+o−1) in P . We store either v.fb-mexcess or v.sb-mexcess, the one that
differs from v.mexcess. To deduce the non-stored field we use mexcess,
fb-excess and m-fb.

Complex operations Apart from the basic operations solved in the original
Block Tree we need, as described in Section 2.1, more sophisticated ones to
support navigation in the parentheses sequence.

leaf-rank(i) and leaf-select(i). The implementations of these operations are
analogous to those for rankc(i) and selectc(i) respectively, in the base Block Tree.
The only two differences are that in LeafBlocks we consider the lbreaker field to
check whether the block starts with a leaf, and in BackBlocks we consider fields
lbreaker and fb-lbreaker to check whether we have to add or remove one leaf when
moving to a leftward node. Like rankc(i) and selectc(i), our operations work O(1)
per level, and then have their same time complexity, given in Section 3.

fwd-search(i, d) and bwd-search(i, d). We only show how to solve fwd-search(i, d)
with d < 0; the other cases are similar (some combinations not needed for our
CST require further fields). Thus we aim to find the smallest position j > i where
the excess of P [i+ 1..j] is d.

We describe our solution as a recursive procedure fwd-search(i, j) with two
global variables: d from the input, and e. Variables i and j are the limits of the
search for the currently processed node, and e is the accumulated excess of the
part of the range that has already been processed. The procedure is initially
called at the Block Tree root with fwd-search(i, n) and with e = 0. If at some
point e reaches d, we have found the answer to the search. The general idea is to
traverse the range of the current node v left to right, using the fields v.mexcess,
v.fb-mexcess and v.sb-mexcess to speed up the procedure:

– If the search range spans the entire block v.blk (i.e., j− i = b) and the answer
is not reached inside v (i.e., e+v.mexcess > d), then we increase e by v.excess
and return ∞.

– If v is a LeafBlock we scan v.blk bitwise, increasing/decreasing e for each 1/0.
If e reaches d at some index k, we return k; otherwise we return ∞.

– If v is an InternalBlock, we identify the k-th child of v, which contains
position i + 1, and the m-th, which contains position j (it could be that
k = m). We then call fwd-search recursively on the k-th to the m-th children,
intersecting the query range with the extent of each child (the search range
will completely cover the children after the k-th and before the m-th). As
soon as any of these calls returns a non-∞ value, we adjust (i.e., shift) and
return it. If all of them return ∞, we also return ∞.

– If v is a BackBlock we must translate the query to the original block O,
which starts at offset v.off in u.blk, where u = v.ptr. We first check whether
the query covers the prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 0
and j ≥ b− v.off). If so, we check whether we can skip O ∩ u.blk, namely if

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 9

e + v.fb-mexcess > d. If we can skip it, we just update e to e + v.fb-excess,
otherwise we call fwd-search recursively on the intersection of u.blk and the
translated query range. If the answer is not ∞, we adjust and return it.
Otherwise, we turn our attention to the node u′ next to u. Again, we check
whether the query covers the suffix of v.blk contained in u′.blk, O−u.blk (i.e.,
j = b and i ≤ b−v.off). If so, we check whether we can skip O−u.blk, namely
if e+ v.sb-mexcess > d. If we can skip it, we just update e to e+ v.sb-excess,
otherwise we call fwd-search recursively on the intersection of u′.blk and the
translated query range. If the answer is not ∞, we adjust and return it.
Otherwise, we return ∞.

min-excess(i, j). We will also start at the root with the global variable e set
to zero. A local variable m will keep track of the minimum excess seen in the
current node, and will be initialized at m = 1 in each recursive call. The idea
is the same as for fwd-search: traverse the node left to right and use the fields
v.mexcess, v.fb-mexcess and v.sb-mexcess to speed up the traversal.

– If the query covers the entire block v.blk (i.e., j − i+ 1 = b), we increase e by
v.excess and return v.mexcess.

– If v is a LeafBlock we record the initial excess in e′ = e and scan v.blk bitwise,
updating e for each bit read as in operation fwd-search. Every time we have
e− e′ < m, we update m = e− e′. At the end of the scan we return m.

– If v is an InternalBlock, we identify the k-th child of v, which contains position
i, and the m-th, which contains position j (it could be that k = m). We then
call min-excess recursively on the k-th to the m-th children, intersecting the
query range with the extent of each child (the search range will completely
cover the children after the k-th and before the m-th, so these will take
constant time). We return the minimum between all their answers (composed
with their correspondent prefix excesses).

– If v is a BackBlock we translate the query to the original block O, which
starts at offset v.off in u.blk, where u = v.ptr. We first check whether the
query covers the prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 1 and
j ≥ b − v.off − 1). If so, we simply set m = v.fb-mexcess and update e to
e+ v.fb-excess. Otherwise we call min-excess recursively on the intersection
of u.blk and the translated query range, and record its answer in m. We
now consider the block u′ next to u and again check whether the query
covers the suffix of v.blk contained in u′.blk, O − u.blk (i.e., if j = b and
i ≤ b−v.off+1). If so, we just set m = min(m, v.fb-excess+v.sb-mexcess) and
update e to e+ v.sb-excess. Otherwise, we call min-excess on the intersection
of u′.blk and the translated query range, record its answer in m′, and set
m = min(m, v.fb-excess +m′). Finally, we return m.

Note that, although we look for various opportunities to use the precomputed
data to skip parts of the query range, the operations fwd-search, bwd-search,
and min-excess are not guaranteed to work proportionally to the height of the
Block Tree. The instances we built that break this time complexity, however, are

10 Manuel Cáceres and Gonzalo Navarro

unlikely to occur. Our experiments will show that the algorithms perform well in
practice.

4.2 Operation child

The fast operations enabled by our BT-CT structure give space for an improved
algorithm to solve operation child(v, a). Most previous CSTs first compute d =
string-depth(v) and then linearly traverse the children of v from u = first-child(v)
with operation next-sibling, checking for each child u whether letter(u, d+ 1) = a,
and stopping as soon as we find or exceed a. Since computing letter is significantly
more expensive than our next-sibling, we consider the variant of first identifying
all the children u of v, and then binary searching them for a, using letter. We
then perform O(σ) next-sibling operations, but only O(lg σ) letter operations.

5 Experiments and Results

We measured the time/space performance of our new BT-CST and compared it
with the state of the art. Our code and testbed is available at
https://github.com/elarielcl/BT-CST.

5.1 Experimental setup

Compared CSTs. We compare the following CST implementations.

BT-CST. Our new Compressed Suffix Tree with the described components. For
the BT-CT component we vary r ∈ {2, 4, 8} andmll ∈ {4, 8, 16, 32, 64, 128, 256}.

GCST. The Grammar-based Compressed Suffix Tree [26]. We vary parameters
rule-sampling and C-sampling as they suggest.

CST SADA ,CST SCT3, CST FULLY. Adaptation and improvements from
the SDSL library1 on the indexes of Sadakane [34], Fischer et al. [10] and
Russo et al. [32], respectively. CST SADA maximizes speed using Sadakane’s
CSA [33] and a non-compressed version of bitvector H. CST SCT3 uses
instead a Huffman-shaped wavelet tree of the BWT as the suffix array, and
a compressed representation [30] for bitvector H and those of the wavelet
tree. This bitvector representation exploits the runs and makes the space
sensitive to repetitiveness, but it is slower. CST FULLY uses the same BWT
representation. For all these suffix arrays we set sa-sampling = 32 and
isa-sampling = 64.

CST SADA RLCSA, CST SCT3 RLCSA. Same as the preceding imple-
mentations but (further) adapted to repetitive collections: We replace the
suffix array by the RLCSA [20] and use a run-length-compressed representa-
tion of bitvector H [10].

1 Succinct data structures library (SDSL), https://github.com/simongog/sdsl-lite

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 11

For the CSTs using the RLCSA, we fix their parameters to 32 for the sampling
of Ψ and 128 for the text sampling. We only show the Pareto-optimal results of
each structure. Note that we do not include the CST of Abeliuk et al. [1] in the
comparison because it was already outperformed by several orders of magnitude
by GCST [26].

Text collection and queries. Our input sequences come from the Repetitive
Corpus of Pizza&Chili (http://pizzachili.dcc.uchile.cl/repcorpus). We selected
einstein, containing all the versions (up to January 12, 2010) of the German
Wikipedia Article of Albert Einstein (89MB, compressible by p7zip to 0.11%);
influenza, a collection of 78,041 H. influenzae genomes (148MB, compressible
by p7zip to 1.69%); and kernel, a set of 36 versions of the Linux Kernel (247MB,
compressible by p7zip to 2.56%).
Data points are the average of 100,000 random queries, similar to the scheme

used in previous work on Compressed Suffix Trees [1, 26] to choose the nodes on
which the operations are called: For next-sibling and parent we collect the nodes
in leaf-to-root paths starting from random leaves. For lca we choose random leaf
pairs. For suffix-link we collect the nodes on traversals starting from random
leaves, and taking suffix-links until reaching the root. For child we choose random
leaves and collect the nodes in the traversals to the root, discarding the nodes
with less than 3 children, and we choose the initial letter of a random child of
the node.

Computer. The experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407
@ 2.40GHz with 256GB of RAM and 10MB of L3 cache. The operating system
is GNU/Linux, Debian 2, with kernel 4.9.0-8-amd64. The implementations use a
single thread and all of them are coded in C++. The compiler is gcc version 4.6.3,
with -O9 optimization flag set (except CST SADA, CST SCT3 and CST FULLY,
which use their own set of optimization flags).

Operations. We implemented all the suffix tree operations of Table 1. From those,
for lack of space, we present the performance comparison with other CSTs on
five important operations: next-sibling, parent, child, suffix-link, and lca. To test
our suffix tree in more complex scenarios we implemented the suffix-tree-based
algorithm to solve the “maximal substrings” problem [26] on all of the above
implementations except for CST FULLY (because of its poor time performance).
We use their same setup [26], that is, influenza from Pizza&Chili as our larger
sequence and a substring of size m (m = 3000 and m = 2MB) of another
influenza sequence taken from https://ftp.ncbi.nih.gov/genomes/INFLUENZA.
BT-CST uses r = 2 and mll = 128 and GCST uses rule-sampling = 1 and
C-sampling = 210. The tradeoffs refer to sa-sampling ∈ {64, 128, 256} for the
RLCSAs.

5.2 Results and discussion

Figures 1 to 3 show the space and time for all the indexes and all the operations.
The smallest structure is GCST, which takes as little as 0.5–2 bits per symbol

12 Manuel Cáceres and Gonzalo Navarro

(bps). The next smallest indexes are BT-CST, using 1–3 bps, and CST FULLY,
using 2.0–2.5 bps. The compressed indexes not designed for repetitive collections
use 4–7 bps if combined with a RLCSA, and 6–10.5 bps in their original versions
(though we also adapted the bitvectors of CST SCT3).

From the BT-CST space, component H takes just 2%–9%, the RLCSA takes
23%–47%, and the rest is the BT-CT (using a sweetpoint configuration). This
component takes 0.30 bits per node (bpn) on einstein, 1.06 bpn on influenza,
and 1.50 bpn on kernel. The grammar-compressed topology of GCST takes,
respectively, 0.05, 0.81, and 0.39 bpn.

In operations next-sibling and parent, which rely most heavily on the suffix
tree topology, our BT-CT component building on Block Trees makes BT-CST
excel in time: The operations take nearly one microsecond (µsec), at least 10
times less than the grammar-based topology representation of GCST. CST FULLY
is three orders of magnitude slower on this operation, taking over a millisecond
(msec). Interestingly, the larger representations, including those where the tree
topology is represented using 2.79 bits per node (CST SADA[RLCSA]), are only
marginally faster than BT-CST, whereas the indexes CST SCT3[RLCSA] are a
bit slower than CST SADA[RLCSA] because they do not store an explicit tree
topology. Note that these operations, in BT-CT, make use of the operations
fwd-search and bwd-search, thereby showing that they are fast although we cannot
prove worst-case upper bounds on their time.

Operation lca, which on BT-CST involves essentially the primitive min-excess,
is costlier, taking around 10 µsec in almost all the indexes, including ours. This
includes again those where the tree topology is represented using 2.79 bits per
node (CST SADA[RLCSA]). Thus, although we cannot prove upper bounds on
the time of min-excess, it is in practice as fast as on perfectly balanced structures,
where it can be proved to be logarithmic-time. The variants CST SCT3[RLCSA]
also require an operation very similar to min-excess, so they perform almost like
CST SADA[RLCSA]. For this operation, CST FULLY is equally fast, owing to the
fact that operation lca is a basic primitive in this representation. Only GCST is
several times slower than BT-CST, taking several tens of µsec.

Operation suffix-link involves min-excess and several other operations on
the topology, but also the operation Ψ on the corresponding CSA. Since the
latter is relatively fast, BT-CST also takes nearly 10 µsec, whereas the additional
operations on the topology drive GCST over 100 µsec, and CST FULLY over the
msec. This time the topology representations that are blind to repetitivess are
several times faster than BT-CST, taking a few µsec, possibly because they take
more advantage of the smaller ranges for min-excess involved when choosing
random nodes (most nodes have small ranges). The CST SCT3[RLCSA] variants
also solve this operation with a fast and simple formula.

Finally, operation child is the most expensive one, requiring one application of
string-depth and several of next-sibling and letter, thereby heavily relying on the
CSA. BT-CST-bin and CST SCT3[RLCSA] binary search the children; the others
scan them linearly. The indexes using a CSA that adapts to repetitiveness require
nearly 1 msec on large alphabets, whereas those using a larger and faster CSA are

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 13

Fig. 1: Performance of CSTs for operations next-sibling and parent. The y-axis is
in log-scale.

14 Manuel Cáceres and Gonzalo Navarro

Fig. 2: Performance of CSTs for operations lca and suffix-link. The y-axis is in
log-scale.

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 15

Fig. 3: Performance of CSTs for operation child. The y-axis is in log-scale. BT-
CST-bin is BT-CST with binary search for child.

up to 10 (CST SCT3) and 100 (CST SADA) times faster. Our BT-CST-bin variant
is faster than the base BT-CST by 15% on einstein and 18% on kernel, and
outperforms the RLCSA-based indexes. On DNA, instead, most of the indexes
take nearly 100 µsec, except for CST SADA, which is several times faster; GCSA,
which is a few times slower; and CST FULLY, which stays in the msec.

Figure 4 shows the results for the maximal substrings problem. BT-CST
sharply dominates an important part of the Pareto-curve, including the sweet
point at 3.5 bps and 200-300 µsec per symbol. The other structures for repetitive
collections take either much more time and slightly less space (GCSA, 1.5–2.5
times slower), or significantly more space and slightly less time (CST SCT3, 45%
more space and around 200 µsec). CST SADA is around 10 times faster, the same
as its CSA when solving the dominant operation, child.

6 Conclusions and Future Work

We have introduced the Block-Tree Compressed Suffix Tree (BT-CST), a new
compressed suffix tree aimed at indexing highly repetitive text collections. Its

16 Manuel Cáceres and Gonzalo Navarro

Fig. 4: Performance of CSTs when solving the maximal substrings problem. The
y-axis is time in microseconds per base in the smaller sequence (of length m).

main feature is the BT-CT component, which uses Block Trees to represent the
parentheses-based topology of the suffix tree and exploit the repetitiveness it
inherits from the text collection. Block Trees [6] represent a sequence in space
close to its Lempel-Ziv complexity (with a logarithmic-factor penalty), in a way
that logarithmic-time access to any element is supported. The BT-CT enhances
Block Trees with the more complex operations needed to simulate tree navigation
on the parentheses sequence, as needed by the suffix tree operations.

Our experimental results show that the BT-CST requires 1–3 bits per symbol
in highly repetitive text collections, which is slightly larger than the best previous
alternatives [26], but also significantly faster (often by an order of magnitude). In
particular, the BT-CT component uses 0.3–1.5 bits per node on these suffix trees
and it takes a few microseconds to simulate the tree navigation operations, which
is close to the time obtained by the classical 2.8-bit-per-node representation that
is blind to repetitiveness [27]. This structure may be interesting to represent
other repetitive trees beyond compressed suffix tree topologies, for example those
arising in XML datasets, JSON repositories, and many others.

Although we have shown that in practice they perform as well as their
classical counterpart [27], an interesting open problem is whether the operations
fwd-search, bwd-search, and min-excess can be supported in polylogarithmic time
on Block Trees. This was possible on perfectly balanced trees [27] and even
on balanced-grammar parse trees [26], but the ability of Block Trees to refer
to a prefix or a suffix of a block makes this more challenging. We note that
the algorithm described by Belazzougui et al. [6] claiming logarithmic time for
min-excess does not work (as checked with coauthor T. Gagie).

Faster Repetition-Aware Compressed Suffix Trees based on Block Trees 17

References

1. Andrés Abeliuk, Rodrigo Cánovas, and Gonzalo Navarro. Practical compressed
suffix trees. Algorithms, 6(2):319–351, 2013.

2. Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86,
2004.

3. Alberto Apostolico. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words, pages 85–96. Springer, 1985.

4. Diego Arroyuelo, Francisco Claude, Sebastian Maneth, Veli Mäkinen, Gonzalo
Navarro, Kim Nguy˜̂en, Jouni Sirén, and Niko Välimäki. Fast in-memory xpath
search using compressed indexes. Software Practice and Experience, 45(3):399–434,
2015.

5. Djamal Belazzougui and Fabio Cunial. Representing the suffix tree with the
CDAWG. In Proc. 28th Annual Symposium on Combinatorial Pattern Matching
(CPM), pages 7:1–7:13, 2017.

6. Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto
Ordónez, Simon J. Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings.
In Proc. Data Compression Conference (DCC), pages 83–92, 2015.

7. David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. In
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
383–391, 1996.

8. Andrea Farruggia, Travis Gagie, Gonzalo Navarro, Simon J Puglisi, and Jouni Sirén.
Relative suffix trees. The Computer Journal, 61(5):773–788, 2018.

9. Paolo Ferragina and Roberto Grossi. The string B-tree: A new data structure
for string search in external memory and its applications. Journal of the ACM,
46(2):236–280, 1999.

10. Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded
compressed suffix trees. Theoretical Computer Science, 410(51):5354–5364, 2009.

11. Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text in-
dexing in BWT-runs bounded space. CoRR, 1705.10382, 2017. URL:
arxiv.org/abs/1705.10382.

12. Simon Gog. Compressed Suffix Trees: Design, Construction, and Applications. PhD
thesis, University of Ulm, Germany, 2011.

13. Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

14. Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-
efficient frameworks for top-k string retrieval. Journal of the ACM, 61(2):9:1–9:36,
2014.

15. John C. Kieffer and En-Hui Yang. Grammar-based codes: a new class of universal
lossless source codes. IEEE Transactions on Information Theory, 46(3):737–754,
2000.

16. Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive
sequences. Theoretical Computer Science, 483:115–133, 2013.

17. Stefan Kurtz. Reducing the space requirement of suffix trees. Software Practice
and Experience, 29(13):1149–1171, 1999.

18. Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Pro-
ceedings of the IEEE, 88(11):1722–1732, 2000.

19. Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE
Transactions on information theory, 22(1):75–81, 1976.

18 Manuel Cáceres and Gonzalo Navarro

20. Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and
retrieval of highly repetitive sequence collections. Journal of Computational Biology,
17(3):281–308, 2010.

21. Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

22. Edward M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 23(2):262–272, 1976.

23. Maxim Mozgovoy, Kimmo Fredriksson, Daniel White, Mike Joy, and Erkki Sutinen.
Fast plagiarism detection system. In Proc. 12th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 267–270, 2005.

24. Gonzalo Navarro. Indexing highly repetitive collections. In Proc. 23rd International
Workshop on Combinatorial Algorithms (IWOCA), pages 274–279, 2012.

25. Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), 2007.

26. Gonzalo Navarro and Alberto Ordóñez. Faster compressed suffix trees for repetitive
collections. Journal of Experimental Algorithmics, 21(1):1–8, 2016.

27. Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic
succinct trees. ACM Transactions on Algorithms, 10(3):16, 2014.

28. Enno Ohlebusch, Johannes Fischer, and Simon Gog. CST++. In Proc. 17th
International Conference on String Processing and Information Retrieval (SPIRE),
pages 322–333, 2010.

29. Alberto Ordóñez. Statistical and repetition-based compressed data structures. PhD
thesis, Universidade da Coruña, 2016.

30. Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets.
ACM Transactions on Algorithms, 3(4):43, 2007.

31. Rajeev Raman and S. Srinivasa Rao. Succinct representations of ordinal trees. In
Space-Efficient Data Structures, Streams, and Algorithms, pages 319–332. Springer,
2013.

32. Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed
suffix trees. ACM Transactions on Algorithms, 7(4):53:1–53:34, 2011.

33. Kunihiko Sadakane. New text indexing functionalities of the compressed suffix
arrays. Journal of Algorithms, 48(2):294–313, 2003.

34. Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of
Computing Systems, 41(4):589–607, 2007.

35. Sarah A. Tishkoff and Kenneth K. Kidd. Implications of biogeography of human
populations for ‘race’ and medicine. Nature Genetics, 36:S21–S27, 2004.

36. Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

37. Peter Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium
on Switching and Automata Theory (FOCS), pages 1–11, 1973.

38. Dell Zhang and Wee Sun Lee. Extracting key-substring-group features for text clas-
sification. In Proc. 12th Annual International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pages 474–483, 2006.

