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Abstract. The wavelet tree (Grossi et al., SODA 2003) is nowadays a
popular succinct data structure for text indexes, discrete grids, and many
other applications. When it has many nodes, a levelwise representation
proposed by Mäkinen and Navarro (LATIN 2006) is preferable. We pro-
pose a different arrangement of the levelwise data, so that the bitmaps
are shuffled in a different way. The result can no more be called a wavelet
tree, and we dub it wavelet matrix. We demonstrate that the wavelet ma-
trix is simpler to build, simpler to query, and faster in practice than the
levelwise wavelet tree. This has a direct impact on many applications
that use the levelwise wavelet tree for different purposes.

1 Introduction

The wavelet tree [20] is a data structure designed to represent a sequence S[1, n]
over alphabet [0, σ) and answer some queries on it. The following queries are
sufficient to provide efficient data structures for many applications:

– access(S, i) returns S[i].
– ranka(S, i) returns the number of occurrences of symbol a in S[1, i].
– selecta(S, j) returns the position in S of the j-th occurrence of symbol a.

A wavelet tree is a balanced binary tree with σ leaves and σ − 1 inter-
nal nodes, each of which holds a bitmap. In its most basic form, the bitmaps
add up to ndlg σe bits. Those bitmaps are equipped with sublinear-size struc-
tures to carry out binary rank and select operations. Considering carefully
implemented pointers of lg n bits for the tree, the basic wavelet tree requires
n lg σ + o(n lg σ) + O(σ lg n) bits. This is asymptotically equivalent to a plain
representation of S, yet the wavelet tree is able to solve the three operations in
time O(lg σ). However, in applications where the alphabet is large, the O(σ lg n)
term may become dominant (both in theory and in practice). Mäkinen and
Navarro [24, 26] showed that it is possible to concatenate all the bitmaps of each
level and still simulate the tree navigation using rank and select operations on
the concatenated bitmaps. The size was reduced to n lg σ+ o(n lg σ) bits. While
in theory the complexities stayed the same, in practice one needs three times the
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Fig. 1. On the left, the standard wavelet tree over a sequence. The subsequences Sv
are not stored. The bitmaps Bv, in bold, are stored, as well as the tree topology. On
the right, its levelwise version. The divisions into nodes are not stored but computed
on the fly.

number of operations carried out over a standard wavelet tree. This slowdown
has been accepted since then as an unavoidable price to pay for having the tree
structure in implicit form.

In this paper we show that insisting in simulating the original wavelet tree
was not the best idea. We introduce a different levelwise arrangement of the bits
that turns out to simplify all the operations. The result recovers much of the
performance of the original wavelet tree, and offers the same functionality. The
structure cannot properly be called a “tree”; rather, we call it a wavelet matrix.

Our result, which is of practical nature, will have a large impact in a number
of applications where the levelwise wavelet tree was used: compressed full-text in-
dexes [22, 29, 14, 24, 7, 4, 11, 23], inverted indexes [9, 1, 31, 17], document retrieval
[36, 18, 16, 13, 17, 32], graph representations [9, 10], discrete grids [4, 5, 33, 30], bi-
nary relations [2, 3], and general problems on numeric sequences [18, 17, 23]. All
of those will become up to twice as fast by using wavelet matrices.

2 The Wavelet Tree

A wavelet tree [20] for sequence S[1, n] over alphabet [0..σ) is a complete balanced
binary tree, where each node handles a range of symbols. The root handles [0..σ)
and each leaf handles one symbol. Each node v handling the range [αv, ωv)
represents the subsequence Sv[1, nv] of S formed by the symbols in [αv, ωv),
but it does not explicitly store Sv. Rather, it stores a bitmap Bv[1, nv], so that
Bv[i] = 0 if Sv[i] < αv + 2dlg(ωv−αv)e−1 and Bv[i] = 1 otherwise. That is, we
partition the alphabet interval [αv, ωv) into two roughly equal parts: a “left”
one, [αv, αv + 2dlg(ωv−αv)e−1) and a “right” one, [αv + 2dlg(ωv−αv)e−1, ωv). These
are handled by the left and right children of v. Figure 1 (left) gives an example.

The tree has height dlg σe, and it has exactly σ leaves and σ − 1 internal
nodes. If we regard it level by level, we can see that it holds, in the Bv bitmaps,
exactly n bits per level (the lowest one may hold fewer bits). Thus it stores at



most ndlg σe bits. Storing the tree pointers, and pointers to the bitmaps, requires
O(σ lg n) further bits, if we use the minimum lg n bits for the pointers.

To extract S[i], we start from the root node ν. If Bν [i] = 0, this means that
S[i] = Sν [i] < 2dlg σe−1 and that the symbol is represented in the subsequence Svl
of the left child vl of the root. Otherwise, Sν [i] ≥ 2dlg σe−1 and it is represented
in the subsequence Svr of the right child vr of the root. In the first case, the
position of Sν [i] in Svl is il = rank0(Bν , i), whereas in the second, the position
in Svr is ir = rank1(Bν , i). We continue recursively, extracting either Svl [il]
from node vl or Svr [ir] from node vr, until we arrive at a leaf representing the
alphabet interval [a, a], where we can finally report S[i] = a.

Therefore, the cost of operation access is that of dlg σe binary rank opera-
tions on bitmaps Bv. Binary rank and select operations can be carried out in
constant time using only o(nv) bits on top of Bv [21, 28, 8].

The process to compute ranka(S, i) is similar. The difference is that we do
not descend according to whether Bv[i] equals 0 or 1, but rather according to the
bits of a: the highest bit of a tells us whether to go left or right, and the lower
bits are used in the next levels. When moving from one level to the other, we
update i to be the number of times the current bit of a appears up to position i
in the node. When we arrive at the leaf handling the range [a, a], the answer to
rank is the value of i at that leaf.

Finally, to compute selecta(S, j) we must proceed upwards. We start at the
leaf u that handles the alphabet range [a, a]. So we want to track the position
of Su[ju], ju = j, towards the root. If u is the left child of its parent v, then
the corresponding position at the parent is Sv[jv], where jv = select0(Bv, ju).
Else, the corresponding position is jv = select1(Bv, ju). When we finally arrive
at the root ν, the answer to the query is jν .

Thus the cost of query ranka(S, i) is dlg σe binary rank operations (just
like access(S, i)), and the cost of query selecta(S, i) is dlg σe binary select

operations. Algorithm 1 gives the pseudocode (the recursive form is cleaner, but
recursion can be easily removed).

3 The Levelwise Wavelet Tree

Since the wavelet tree is a complete balanced binary tree, it is possible to con-
catenate all the bitmaps at each level and still retain the same functionality [24,
26]. Instead of a bitmap per node v, there will be a single bitmap per level `,
B̃`[1, n]. Figure 1 (right) illustrates this arrangement. The main complication is
how to keep track of the range B̃`[sv, ev] corresponding to a node v of depth `.

3.1 The Strict Variant

The strict variant [24, 26] stores no data apart from the dlg σe pointers to the
level bitmaps. Keeping track of the node ranges is not hard if we start at the
root (as in access and rank). Initially, we know that [sν , eν ] = [1, n], that is,
the whole bitmap B̃0 is equal to the bitmap of the root, Bν . Now, imagine



Algorithm 1 Standard wavelet tree algorithms: On the wavelet tree of se-
quence S rooted at ν, acc(ν, i) returns S[i]; rnk(ν, a, i) returns ranka(S, i); and
sel(ν, a, j) returns selecta(S, j). The left/right children of v are called vl/vr.

acc(v, i)
if ωv − αv = 1 then

return αv
end if
if Bv[i] = 0 then
i← rank0(Bv, i)
return acc(vl, i)

else
i← rank1(Bv, i)
return acc(vr, i)

end if

rnk(v, a, i)
if ωv − αv = 1 then

return i
end if
if a < 2dlg(ωv−αv)e−1

then
i← rank0(Bv, i)
return rnk(vl, a, i)

else
i← rank1(Bv, i)
return rnk(vr, a, i)

end if

sel(v, a, j)
if ωv − αv = 1 then

return j
end if
if a < 2dlg(ωv−αv)e−1

then
j ← sel(vl, a, j)
return select0(Bv, j)

else
j ← sel(vr, a, j)
return select1(Bv, j)

end if

that we have navigated towards a node v at depth `, and know [sv, ev]. The
two children of v share the same interval [sv, ev] at B̃`+1. The split point is
m = rank0(B̃`, ev)− rank0(B̃`, sv − 1), the number of 0s in B̃`[sv, ev]. Then, if
we descend to the left child vl, we will have [svl , evl ] = [sv, sv + m − 1]. If we
descend to the right child vr, we will have [svr , evr ] = [sv +m, ev].

Things are a little bit harder for select, because we must proceed upwards.
In the strict variant, the way to carry out selecta(S, j) is to first descend to
the leaf corresponding to symbol a, and then track the leaf position j up to the
root as we return from the recursion.

Algorithm 2 gives the pseudocode (we use p = s− 1 instead of s = sv). Note
that, compared to the standard version, the strict variant requires two extra
binary rank operations per original binary rank, on the top-down traversals
(i.e., for queries access and rank). Thus the times are expected to triple for
these queries. For query select, the strict variant requires two extra binary
rank operations per original binary select. Since in practice the binary select

is more expensive than rank, the impact on query select is lower.

3.2 The Extended Variant

The extended variant [9], instead, stores an array C[0, σ − 1] of pointers to the
σ starting positions of the symbols in the (virtual) array of the leaves, or said
another way, C[a] is the number of occurrences of symbols smaller than a in
S. Note this array requires O(σ lg n) bits (or at best O(σ lg(n/σ)) + o(n) if
represented as a compressed bitmap [34]), but the constant is much lower than
on a pointer-based tree (which stores a left child, right child, a parent pointer,
the value nv, the pointer to bitmap Bv, an equivalent to array C, etc.).

With the help of array C, the number of operations equals that of the stan-
dard version, since array C lets us compute the ranges: The range of any node
v is simply [C[αv] + 1, C[ωv]]. In the algorithms for queries access and rank,
where we descend from the root, the values αv and ωv are easily maintained.



Algorithm 2 Levelwise wavelet tree algorithms (strict variant): On the
wavelet tree of sequence S, acc(0, i, 0, n) returns S[i]; rnk(0, a, i, 0, n) returns
ranka(S, i); and sel(0, a, j, 0, n) returns selecta(S, j). For simplicity we have
omitted the computation of [αv, ωv).

acc(`, i, p, e)

if ωv − αv = 1 then
return αv

end if
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
if B̃`[i] = 0 then
z ← rank0(B̃`, p+ i)
return acc(`+1,
z−l, p, p+r−l)

else
z ← rank1(B̃`, p+ i)
return acc(`+1,
z−(p−l), p+r−l, e)

end if

rnk(`, a, i, p, e)

if ωv − αv = 1 then
return i

end if
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
if a < 2dlg(ωv−αv)e−1 then
z ← rank0(B̃`, p+ i)
return rnk(`+1, a,
z−l, p, p+r−l)

else
z ← rank1(B̃`, p+ i)
return rnk(`+1, a,
z−(p−l), p+r−l, e)

end if

sel(`, a, j, p, e)
if ωv − αv = 1 then

return j
end if
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
if a < 2dlg(ωv−αv)e−1 then
j←sel(`+1, a, j, p, p+r−l)
return
select0(B̃`, l + j)−p

else
j←sel(`+1, a, j, p+r−l, e)
return
select1(B̃`, (p−l)+j)−p

end if

This is slightly more complicated when solving query selecta(S, j). We start
at offset C[a] + j and track this position upwards: If the leaf is a left child of
its parent (i.e., if a is even), then the parent’s range (in the deepest bitmap B̃`)
is [C[a] + 1, C[a + 2]]. Instead, if the leaf is a right child of its parent, then the
parent’s range is [C[a − 1] + 1, C[a + 1]]. We use binary select on this range
to map the position j to the parent’s range. Now we proceed similarly at the
parent, from range [C[a′] + 1, C[a′ + 2]] (where a′ = a or a − 1 is even). If
a′ = 0 mod 4, then this node is a left child, otherwise it is a right child. In the
first case, it corresponds to range [C[a′]+1, C[a′+4]] in bitmap B̃`−1, otherwise
it is [C[a′ − 2] + 1, C[a′ + 2]]. We continue until the root, where j is the answer.

4 The Wavelet Matrix

The idea of the wavelet matrix is to break the assumption that the children of
a node v, at interval B̃`[sv, ev], must be aligned to it and occupy the interval
B̃`+1[sv, ev]. Freeing the structure from this unnecessary assumption allows us
to design a much simpler mapping mechanism from one level to the next: all
the zeros of the level go left, and all the ones go right. For each level, we will
store a single integer z` that tells the number of 0s in level `. This requires just
O(lg n lg σ) bits, which is insignificant, and allows us to implement the strict
levelwise mechanisms in a simpler and faster way.

More precisely, if B̃`[i] = 0, then the corresponding position at level `+1 will
be rank0(B̃`, i). If B̃`[i] = 1, the position at level `+ 1 will be z` + rank1(B̃`, i).
Note that we can map the position without knowledge of the boundaries of the
node the position belongs. Still, every node v at level ` occupies a contiguous
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Fig. 2. On the left, the levelwise wavelet tree of the previous example (Figure 1).
On the right, the wavelet matrix over the same sequence. One vertical line per level
represents the position stored in the z` values.

range in B̃`. This is obviously true for the root ν. Now, assuming it is true for
v, with interval B̃`[sv, ev], all the positions with B̃`[i] = 0 for sv ≤ i ≤ ev will be
mapped to consecutive positions B̃`+1[rank0(B̃`, i)], and similarly with positions
B̃`[i] = 1. Figure 2 (left) illustrates the wavelet matrix, where it can be seen that
the blocks of the wavelet tree are maintained, albeit in different order.

We describe now how to carry out access(S, i). If B̃0[i] = 0, we set i to
rank0(B̃0, i). Else we set i to z0 + rank1(B̃0, i). Now we descend to level 1, and
continue until reaching a leaf. The sequence of bits B̃`[i] read along the way form
the value S[i] (or, said another way, we maintain the interval [αv, ωv) and upon
reaching the leaf it holds S[i] = αv). Note that we have carried out only one
binary rank operation per level, just as the standard wavelet tree.

Consider now the computation of ranka(S, i). This time we need to keep
track of the position i, and also of the position preceding the range, initially
p = 0. At each node v of depth `, if a < 2dlg(ωv−αv)e−1, then we go “left” by
mapping p to rank0(B̃`, p) and i to rank0(B̃`, i). Otherwise, we go “right” by
mapping p to z` + rank1(B̃`, p) and i to z` + rank1(B̃`, i). When we arrive at
the leaf level, the answer is i − p. Note that we have needed one extra binary
rank operation per original rank operation of the standard wavelet tree, instead
of the two extra operations required by the (strict) levelwise variant.

Finally, consider operation selecta(S, j). We first descend towards the leaf
of a just as done for ranka(S, i), keeping track only of p. When we arrive at
the last level, p precedes the range corresponding to the leaf of a, and thus we
wish to track upwards position p+ j. The upward tracking of a position B̃`+1[i]
is simple: If we went left from level `, then this position was mapped from a
0 in B̃`, and therefore it came from B̃`[select0(B̃`, i)]. Otherwise, position i
was mapped from a 1, and thus it came from B̃`[select1(B̃`, i− z`)]. When we
arrive at the root bitmap, i is the answer. Note that we have needed one extra
binary rank per original binary select required by the standard wavelet tree.
We remind that in practice rank is much less demanding, so the overhead is low.

Algorithm 3 gives the pseudocode.

Construction. Construction of the wavelet matrix is even simpler than that of
the levelwise wavelet tree, because we do not need to care for node boundaries.
At the first level we keep in bitmap B̃0 the highest bits of the symbols in S, and



Algorithm 3 Wavelet matrix algorithms: On the wavelet matrix of sequence S,
acc(0, i) returns S[i]; rnk(0, a, i, 0) returns ranka(S, i); and sel(0, a, j, 0) returns
selecta(S, j). For simplicity we have omitted the computation of [αv, ωv).

acc(`, i)
if ωv − αv = 1 then

return αv
end if
if B̃`[i] = 0 then
i← rank0(B̃`, i)

else
i← rank1(B̃`, i)

end if
return acc(`+1, i)

rnk(`, a, i, p)
if ωv − αv = 1 then

return i− p
end if
if a < 2dlg(ωv−αv)e−1 then
p← rank0(B̃`, p)
i← rank0(B̃`, i)

else
p← z` + rank1(B̃`, p)
i← z` + rank1(B̃`, i)

end if
return rnk(`+1, a, i, p)

sel(`, a, j, p)
if ωv − αv = 1 then

return p+ j
end if
if a < 2dlg(ωv−αv)e−1 then
p← rank0(B̃`, p)
j ← sel(`+1, a, j, p)
return select0(B̃`, j)

else
p← z` + rank1(B̃`, p)
j ← sel(`+1, a, j, p)
return select1(B̃`, j−z`)

end if

then stably sort S by those highest bits. Now we keep in bitmap B̃1 the next-to-
highest bits, and stably sort S by those next-to-highest bits. We continue until
considering the lowest bit. This takes O(n lg σ) time.

Indeed, we can build the wavelet matrix almost in place, by removing the
highest bits after using them and packing the symbols of S. This frees n bits,
where we can store the bitmap B̃0 we have just generated, and keep doing the
same for the next levels. We generate the o(n lg σ)-space indexes at the end.
Thus the construction space is ndlg σe+ max(n, o(n lg σ)) bits.

Compression. As in previous work, we can replace the plain representations of
bitmaps B̃` by compressed ones [34], so that the total space is nH0(S)+o(n lg σ)
bits[20]. The concatenation of the bitmaps adds an extra space (positive or
negative) that can be upper bounded by O(σ lg n), but is negligible in practice.

Practical considerations A problem that arises when combining the wavelet ma-
trix with the C[] array of the extended version is that the leaves are not in order.
While this is easily fixed by reversing the bits of the symbols, this creates holes
in C if σ is not a power of 2, even if the alphabet was originally contiguous
(e.g., consider alphabet 0, 1, 2, 3, 4 = 000..100; after reversing the bits we obtain
positions 0, 1, 2, 3, 6, so we need to allocate 7 cells instead of 5). This can make
the size of C to double in the worst case.

5 Experimental Results

Our practical implementation is included in Libcds, a library implementing
several space-efficient data structures, http://libcds.recoded.cl, version 1.0.12.
For each wavelet tree/matrix variant we present two versions, RG and RRR. The
first one corresponds to the implementation [19] of the proposals by Jacob-
son [21], and Clark [8] and Munro [28]. The second version, RRR, corresponds to
the implementation [9] of the proposal of Raman, Raman and Rao [34].



The variants measured are WT: standard pointer-based wavelet tree; WTNP:
the extended levelwise wavelet tree (i.e., No Pointers); and WM: the (extended)
wavelet matrix (array C is used to perform select in a single upward traversal).

These names are composed with the bitmap implementations by append-
ing the bitmap representation name. For example, we call WTRRR the standard
pointer-based wavelet tree with all bitmaps represented with Raman, Raman
and Rao’s compressed bitmaps. For readability, we show only the extended ver-
sions. In general, they achieve space very close to the strict versions and yield
better time performance.

Datasets We use four different datasets, left at http://indexing.recoded.cl:

– ESWiki: Sequence of word identifiers generated by stemming the Spanish
Wikipedia (http://es.wikipedia.org dated 03/02/2010) with the Snowball
algorithm. The sequence has length n = 511,173,618 and alphabet size σ =
3,210,671. This allows, say, simulating a positional inverted index [9, 1].

– BWT: The Burrows-Wheeler transform (BWT) [6] of ESWiki. The length and
size of the alphabet match those of ESWiki. This is useful to implement many
full-text compressed self-indexes [14, 15],

– Indochina: The concatenation of all adjacency lists of Web graph Indochina-

2004, available at http://law.dsi.unimi.it. The length of the sequence is
n = 194,109,311 and the alphabet size is σ = 7,414,866. This supports for-
ward and backward traversals on the graph [9, 10].

– INV: Concatenation of inverted lists for a random sample of 2,961,510 docu-
ments from the English Wikipedia (http://en.wikipedia.org). This sequence
has length n = 338,027,430 and its alphabet size is σ = 2,961,510. This is
useful to simulate document inverted indexes [31, 17].

Measurements To measure performance we generated 100,000 inputs for each
query and averaged their execution time. The access queries were generated
by picking positions in the text uniformly at random. The rank queries were
generated the same way as for access, associating to each position one symbol
uniformly at random. Each select query was generated by first picking a symbol
s uniformly at random, and then picking the positional argument for select

uniformly at random from the range [1, ranks(S, n− 1)].
The machine used is an Intel(R) Xeon(R) E5620 running at 2.40GHz with

96GB of RAM memory. The operating system is GNU/Linux, Ubuntu 10.04,
with kernel 2.6.32-33-server.x86 64. All our implementations use a single thread
and are coded in C++. The compiler is gcc version 4.4.3, with -O9 optimization.

Results Figure 3 shows some of the results obtained for our four datasets (the
rest are similar). As expected, the wavelet matrix improves upon the levelwise
wavelet tree considerably, doubling (or more) the speed for access and improv-
ing (albeit less) on rank and select.

We also note that this new implementation of wavelet trees is competitive
with the pointer-based wavelet trees for access and rank operations, which use
much more space. For select, the pointer-based wavelet tree is faster. This is
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Fig. 3. Running time per query for rank, select and access over four datasets.



because the pointer-based wavelet tree performs select queries over smaller
bitmaps, which in practice take time logarithmic on the bitmap length. This can
be overcome by implementing a position-restricted version of binary select.

As for space, it can be seen that the wavelet matrix achieves virtually the
same space as the levelwise wavelet tree, as expected. Pointer-based versions,
instead, pose a noticeable overhead related to the alphabet size.

It is tempting to consider an alternative wavelet matrix, which emulates a
radix sort of the sequence (i.e., it stably sorts first by the least significant bit and
ends with the most significant bit). While this seems to be an innocent change
with the advantage of leaving the leaves in sorted order, it does not preserve the
wavelet tree blocks (even in scrambled form). Our experiments with this variant
showed a behavior very similar to the original in ESWiki, despite not preserving
blocks. Even in the case of BWT, which has long runs of the same symbol, those
runs are preserved even if the blocks are destroyed. Hence RRR compression is
not affected. The case of Indochina and INV, however, was different. These
are formed by long substrings of increasing values with small differences, which
induce long runs in the bitmaps in a decomposition by highest-bit-first. However,
such runs do not appear in a lowest-bit-first decomposition. As a result, the space
with RRR compression was much worse than on our original variant.

6 Conclusions

The (strict) levelwise wavelet tree [24, 26], designed to avoid the O(σ lg n) space
overhead of standard wavelet trees [20], was unnecessarily slow in practice. We
have redesigned this data structure so that its time overhead over standard
wavelet trees is significantly lower. The result, dubbed wavelet matrix, enjoys all
the good properties of strict levelwise wavelet trees. It requires n lg σ+ o(n lg σ)
bits of space, it can be built in O(n lg σ) time and almost in-place.

There are many more sophisticated aspects of wavelet trees, which we have
ignored in this paper for simplicity. We briefly sketch them here:

Range searches: Levelwise wavelet trees are particularly useful for represent-
ing discrete n× n grids, where σ = n. They use algorithms that are slightly
more complex than our access/rank/select, for example they track ranges
downwards, usually to the left and to the right of the current node. All those
algorithms can perfectly be executed over the wavelet matrix. The fact that
the nodes at each level are scrambled is immaterial to the algorithms.

Dynamization: Inserting and deleting symbols of S can be carried out without
any complication, by tracking the position to insert (just like rank) and to
delete (just like access), and therefore all the results on dynamic wavelet
trees [27] translate directly to wavelet matrices.

Construction: We have built the wavelet matrix within n bits of extra space.
There are even more space-efficient constructions for wavelet trees [12, 35].
It would be interesting to find out whether they apply to wavelet matrices.

Multiary: Multiary wavelet trees [15] can also be adapted to wavelet matrices.
The only difference is that, instead of a single accumulator z` per level, we



have an array of ρ− 1 accumulators in a ρ-ary wavelet matrix. As the useful
values for ρ are O(lg n), the overall space is still negligible, O(lg2 n lg σ).

Implicit compression boosting: Mäkinen and Navarro [25, 27] proved that
the wavelet tree of the BWT [6] of a text T , if its bitmaps are compressed
to zero-order entropy (e.g., using Raman et al. [34]), would achieve high-
order entropy compression of T . This was essential to simplify compressed
text indexing and to enable dynamic variants. Their results apply to wavelet
matrices as well, because all that is required is that the nodes are contiguous
in the levelwise bitmaps B`, being irrelevant which is the relative order of
the nodes. This effect can already be noticed in our experiments; compare
the spaces on EsWiki with its BWT version BWT.

Acknowledgement. Thanks to Daisuke Okanohara for useful comments.
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