
Dual-Sorted Inverted Lists ?

Gonzalo Navarro1 and Simon J. Puglisi2

1 Department of Computer Science, University of Chile, Santiago, Chile.
gnavarro@dcc.uchile.cl

2 School of Comp. Sci. & Inf. Tech., Royal Melbourne Institute of Technology,
Melbourne, Australia. simon.puglisi@rmit.edu.au

Abstract. Several IR tasks rely, to achieve high efficiency, on a single
pervasive data structure called the inverted index. This is a mapping
from the terms in a text collection to the documents where they appear,
plus some supplementary data. Different orderings in the list of docu-
ments associated to a term, and different supplementary data, fit widely
different IR tasks. Index designers have to choose the right order for one
such task, rendering the index difficult to use for others.
In this paper we introduce a general technique, based on wavelet trees,
to maintain a single data structure that offers the combined functional-
ity of two independent orderings for an inverted index, with competitive
efficiency and within the space of one compressed inverted index. We
show in particular that the technique allows combining an ordering by
decreasing term frequency (useful for ranked document retrieval) with an
ordering by increasing document identifier (useful for phrase and Boolean
queries). We show that we can support not only the primitives required
by the different search paradigms (e.g., in order to implement any inter-
section algorithm on top of our data structure), but also that the data
structure offers novel ways of carrying out many operations of interest,
including space-free treatment of stemming and hierarchical documents.

1 Introduction

The last decade has been witness to tremendous progress in the field of compact
data strucutres. These data structures mimic the operations of their classical
counterparts within much less space and sometimes, surprisingly, offer much
wider functionality. Recently, several authors have brought compact data struc-
tures to bear on problems in Information Retrieval (IR), in particular ranked
document retrieval [14, 20]. Although quite different in their details, the common
vision of these works is to use breakthroughs in compressed pattern matching as
an efficient algorithmic base on which the more sophisticated operations required
by IR systems can be built. Our work in this invited paper is complementary to
these efforts, applying compact data structures to gain a new perspective on a
tool already widely adopted in IR: the inverted index.

? Funded in part by Fondecyt Grant 1-080019, Chile (first author) and by the Aus-
tralian Research Council (second author).

Inverted indexes are an old and simple data structure, yet one of the most
successful in IR. They play a central role in any book on the topic [6, 31, 12, 22,
11], and are also at the heart of most modern Web search engines.

Given a text collection regarded as a set of documents, an inverted index is
an array of lists. Each array entry corresponds to a different word or term of
the collection, and its list points to the documents where that word appears in
the text collection. The set of different words is called the vocabulary. Empirical
laws well accepted in IR [19] establish that the vocabulary is much smaller than
the collection size n, more precisely of size O(nβ), for some constant 0 < β < 1
that depends on the text type.

Two main variants of inverted indexes exist [5, 35]. Ranked retrieval is aimed
at retrieving documents which are “relevant” to a query, under some criterion.
Documents are regarded as vectors, where terms are the dimensions, and the
values of the vectors correspond to the relevance of the terms in the documents.
The lists point to the documents where each term appears, storing also the
weight of the term in that document (i.e., the coordinate value). The query
is seen as a set of words, so that retrieval consists of processing the lists of
the query words and finding the documents which, considering the weights the
query terms have in the document, are predicted to be relevant. Query processing
usually involves somehow merging the involved lists, so that documents can be
assigned the combined weights over the different terms. Algorithms and different
data organizations for this type of query have been intensively studied [25, 31,
35, 3, 30]. List entries are usually sorted into order of descending weight of the
term in the documents.

The second variant is the inverted index for so-called full-text retrieval (also
known as boolean retrieval). These simply find all the documents where the query
terms appear. The lists point to the documents where each term appears, usually
in increasing document order. Queries can be single words, in which case the
retrieval consists simply of fetching the list of the word; or disjunctive queries,
where one has to fetch the lists of all the query words and merge the sorted lists;
or conjunctive queries, where one has to intersect the lists. While intersection
can be done also by scanning all the lists in synchronization, it is usually the case
that some lists are much shorter than the others [34], and so faster intersection
algorithms are possible. These algorithms are especially relevant when many
words have to be intersected.

Intersection queries have become extremely popular as Google-like default
policies to handle multiword queries. Another important query where intersec-
tion is essential is the phrase query, where intersecting the documents where the
words appear is the first step. The amount of recent research on intersection
of inverted lists witnesses the importance of the problem [15, 8, 4, 7, 27, 28, 13,
9]. In particular, in-memory algorithms have received much attention recently,
as large main memories and distributed systems make it feasible to hold the
inverted index entirely in RAM.

Needless to say, space is an issue in inverted indexes, especially when com-
bined with the goal of operating in main memory. Much research has been carried

out on compressing inverted lists [31, 24, 35, 13], and on the interaction of various
compressed representation with different query algorithms, including list inter-
sections. Most of the list compression algorithms for full-text indexes rely on the
fact that the document identifiers are increasing, and that the differences be-
tween consecutive entries are smaller on the longer lists. The differences are thus
represented with encodings that favor small numbers [31, 35]. Random access
is supported by storing sampled absolute values. For lists sorted by decreasing
weights, these techniques can still be adapted, by considering that most docu-
ments in a list have small weight values, and within the same weight one can
still sort the documents by increasing identifier.

A problem with the current state of the art is that a serious IR system
must support both types of retrieval: ranked and full-text. Yet, to maintain
reasonable space efficiency, the list must be ordered either by decreasing weights
or by increasing document number, but not both. Hence one type of search will
be significantly slower than the other, if affordable at all.

In this paper we introduce a data structure that permits, within the same
space required for a single compressed inverted index, retrieving the list of doc-
uments for any term in either decreasing-weight or increasing-identifier order,
thus supporting both types of retrieval. Moreover, we can efficiently support the
operations needed to implement any of the intersection algorithms, namely: re-
trieve the i-th element of a list, retrieve the first element larger than x, retrieve
the next element, and several more complex ones. In addition, our structure
offers novel ways of carrying out several operations of interest. These include,
among others, the support for stemming and for structured document retrieval
without any extra space cost. Indeed, the data structure can be generalized to
support a combination of any two orderings, not only the two most popular ones.

2 Related work

2.1 Intersection algorithms for inverted lists

The intersection of two inverted lists can be done in a merge-wise fashion (which
is the best choice if both lists are of similar length), or using a set-versus-set (svs)
approach where the longer list is searched for each of the elements of the shortest,
to check if they should appear in the result. Either binary or exponential (also
called galloping or doubling) search are typically used for svs. The latter checks
the list at positions i+ 2j for increasing j, to find an element known to be after
position i (but probably close).

Algorithm bys [7] is based on binary searching the longer listN for the median
of the smallest list M . If the median is found, it is added to the result set. Then
the algorithm proceeds recursively on the left and right parts of each list. At each
new step the longest sublist is searched for the median of the shortest sublist.
It has been shown that bys performs about the same number of comparisons as
svs with binary search. As expected, both svs and bys improve upon the merge
algorithm when |N | >> |M | (actually from |N | ≈ 20|M |).

Multiple lists can be intersected using any pairwise svs approach (iteratively
intersecting the two shortest lists, and then intersecting the result against the
next shortest one, and so on). Other algorithms are based on choosing the first
element of the smallest list as an eliminator that is searched for in the other lists
(usually keeping track of the position where the search ended). If the eliminator
is found, it becomes a part of the result. In any case, a new eliminator is chosen.
Barbay et al. [9] compared four multi-set intersection algorithms: i) a pairwise
svs-based algorithm; ii) an eliminator-based algorithm [8] (called sequential) that
chooses the eliminator cyclically among all the lists and exponentially searches
for it; iii) a multi-set version of bys; and iv) a hybrid algorithm (called small-
adaptive) based on svs and on the so-called adaptive algorithm [15], which at each
step recomputes the list ordering according to the elements not yet processed,
chooses the eliminator from the shortest list, and tries the others in order. In
their experimental results [9] the simplest pairwise svs-based approach (coupled
with exponential search) performed best.

2.2 Data structures for inverted lists

The previous algorithms require that lists can be accessed at any given element
(for example those using binary or exponential search) and/or that, given a
value, its smallest successor from a list can be obtained. Those needs interact
with the methods employed for inverted list compression.

The compression of inverted lists usually represents each list 〈p1, p2, p3, . . . , p`〉
as a sequence of d-gaps 〈p1, p2 − p1, p3 − p2, . . . , p` − p`−1〉, and uses a variable-
length encoding for these differences, for example γ-codes, δ-codes or Golomb
codes [31]. More recent proposals use byte-aligned [29, 10, 13] or word-aligned [2,
33] codes, which lose little compression and are faster at decoding.

Intersection of compressed inverted lists is still possible using a merge-type
algorithm. However, approaches that require direct access are not possible as
sequential decoding of the d-gaps values is mandatory. This problem can be
overcome by sampling the sequence of codes [13, 27]. The result is a two-level
structure composed of a top-level array storing the absolute values of, and point-
ers to, the sampled values in the sequence, and the encoded sequence itself.

Assuming 1 ≤ p1 < p2 < . . . < p` ≤ u, Culpepper and Moffat [13] extract
a sample every k′ = k log ` values3 from the compressed list, where k is a pa-
rameter. Each of those samples and its corresponding offset in the compressed
sequence is stored in the top-level array of pairs 〈value, offset〉 needing dlog ue
and dlog(` log(u/`))e bits, respectively, while retaining random access to the top-
level array. Accessing the v-th value of the compressed structure implies accessing
the sample dv/k′e and decoding at most k′ codes. We call this “(a)-sampling”.
Results [13] show that intersection using svs coupled with exponential search in
the samples performs just slightly worse than svs over uncompressed lists.

Sanders and Transier [27], instead of sampling at regular intervals of the list,
propose sampling regularly at the domain values. We call this a “(b)-sampling”.

3 Our logarithms are in base 2 unless otherwise stated.

The idea is to create buckets of values identified by their most significant bits
and then build a top-level array of pointers to them. Given a parameter B
(typically B = 8), and the value k = dlog(uB/`)e, bucket bi stores the values
xj = pj mod 2k such that (i−1)2k ≤ pj < i 2k. Values xj can also be compressed
(typically using variable-length encoding of d-gaps). Comparing with the previ-
ous approach [13], this structure keeps only pointers in the top-level array, and
avoids the need of searching it (in sequential, binary, or exponential fashion),
as dpj/2ke indicates the bucket where pj appears. In exchange, the blocks are
of varying length and more values might have to be scanned on average for a
given number of samples. The authors also keep track of up to where they have
decompressed a given block in order to avoid repeated decompressions.

2.3 Algorithms for ranked retrieval

Persin et al. [25] proposed heuristics to solve ranked retrieval problems without
scanning all of the lists, and assuming they are sorted by decreasing weight. To
fix ideas we will assume, as in their work, that the weight is simply the term
frequency, that is, the number of times the term appears in the document. This
supports various tf-idf-like formulas, yet other weights that have been proposed
(for example the so-called impacts [3]) can be acommodated as well.

In the tf-idf model, the final weight of a document d for a query q is w(d) =∑
t∈q tft,d × idft summed over all the query terms t. The query retrieves the

documents with highest w(d). The term tft,d is the term frequency of t in d,
whereas idft = log D

dft
, where D is the total number of documents and dft is the

number of those where t appears. While idft (or dft) is stored in the vocabulary,
a term’s tft,d values are stored together with each document d in the inverted
list of each term t, and the documents d are sorted by decreasing tft,d value.

The algorithm retrieves first the shortest list (i.e., with highest idft) and
stores the documents as candidates for the final answer. Now the other lists are
processed in increasing length order. The documents of each list are sought in
the set of candidates, and their weight accumulated if found; otherwise they are
inserted as new candidates. There is a threshold for continuing processing each
list: if the tft,d values fall below it, the list is abandoned (see Ahn et al. [1] and
references therein). There is also a stricter threshold for inserting new elements
as candidates. These heuristic thresholds provide a time/quality tradeoff.

3 Wavelet trees

Let L[1, N] be a sequence of N symbols, where each symbol is in the range [1, D].
The wavelet tree of L is a perfect binary tree withD leaves. The leaves are labeled
left-to-right with the symbols [1, D] in increasing order. For a given internal node
v of the tree, let Sv be the subsequence of L consisting of only the symbols on the
leaves in the subtree rooted at v. We store at v a bitvector Bv of |Sv| bits, setting
Bv[i] = 1 if symbol Sv[i] is appears below the right child of v, and Bv[i] = 0
otherwise. Note that Sv is not actually stored, only Bv. Finally, each bitvector

Bv is preprocessed for O(1) rank and select queries [26]: rankb(Bv, i) returns the
number of occurrences of bit b in Bv[1, i]; and selectb(Bv, i) returns the position
in Bv of the ith occurence of bit b. As we shall see, this preprocessing allows for
efficient navigation of the tree when resolving certain range queries on L.

The wavelet tree was originally designed [17] to allow accessing any S[i], as
well as computing queries rankd(L, i) and selectd(L, i) on L for any value d, all
in O(logD) time.

4 Our data representation

Let D be the total number of documents in the collection and V the number
of different terms. Let Lt[1, dft] be the list of document identifiers in which
term t appears, in decreasing tf order. Let N =

∑
t dft be the total number of

occurrences of distinct terms in the documents4, and n =
∑
t,d tft,d be the total

length, in words, of the collection. (Thus D ≤ N ≤ min(DV, n).) Finally, let |q|
be the number of terms in query q.

We propose to concatenate all the lists Lt into a unique list L[1, N], and
store for each term t the starting position st of list Lt within L. The sequence
L of document identifiers is then represented with a wavelet tree.

The tf values themselves are stored in differential and run-length compressed
form in a separate sequence. More precisely, we mark the vt different tft,d val-
ues of each list in a bitmap Tt[1,mt], where mt = maxd tft,d, and the points
in Lt[1, dft] where value tfd,t changes, in a bitmap Rt[1, dft]. With Tt and Rt
preprocessed for rank and select queries we can obtain tft,Lt[i] = select1(Tt, vt−
rank1(Rt, i) + 1).

Finally, the st sequence is represented using a bitmap S[1, N], also prepro-
cessed for rank and select queries. Thus st = select1(S, t), and also rank1(S, i)
tells the list L[i] belongs to.

The analysis of wavelet trees [17, 23] shows that the space occupied by that
of L is NH0(L) + o(N logD) bits. Here NH0(L) =

∑
d dtd log N

dtd
≤ N logD,

where dtd is the number of distinct terms in document d. The classical dif-
ferential encoding of inverted files produces a set of N numbers. If they are
sorted by increasing document identifier, these numbers can be represented using∑
t dft log N

dft
≤ N log V bits plus lower-order terms, by using Elias δ-encoding.

If, however, they are sorted by decreasing tf, the analysis is not so clean.
In general the measures are not comparable, yet we remind that our wavelet

tree representation will offer the combined functionality of both inverted indexes,
and more.

The other structures are the tf and the st values. The former is encoded
with Tt and Rt, which are compressible as they have only vt bits set. We use a
bitmap representation [18, BSGAP, Section 4.3] supporting rank and select in
time O(log vt) and requiring vt log mt

vt
+O(vt log log mt

vt
) bits for Tt and vt log dft

vt
+

4 N =
∑

t
dft counts each distinct term once for each document it appears in. This is

also the total length of the inverted lists.

O(dft log log dft
vt

) for Rt. This is asymptotically similar to the space needed to
represent, in a traditional tf-sorted index, each new tft,d value and the number of
entries that share it. The st values are represented so that they support constant-
time rank and select [26], requiring V log N

V + O(V) + o(N) bits, which is less
than the usual pointers from the vocabulary to the list of each term. In the
worst case the bitmaps add up to O(N log N

V) bits and the time to compute tf
is O(logD).

Before considering the classical and extended operations that can be carried
out with our data structure, let us raise a couple of issues:

1. Stemming is a useful tool to enhance recall [21, 32]. A way to provide it is by
stemming the terms directly during the parsing, yet in this case the index
is unable to provide at the same time non-stemmed searching. One can of
course index the stemmed and non-stemmed occurrence of each term, thus
increasing the space. We will be able to provide stemmed retrieval without
any extra space. All we require is that all the variants of the same stemmed
word be contiguous in the vocabulary (this is in many cases automatic as
stemmed terms share the same root, or prefix).

2. Most IR systems support a flat set of documents, while in XML or file sys-
tems, for example, one has a hierarchy of documents and would like to choose,
at query time, which level of the hierarchy to use (e.g., to retrieve relevant
sections, or relevant chapters, or relevant books), or to carry out ranked IR
on a certain subtree. In a temporal (e.g., news archives) or versioned (e.g.,
Wikipedia) text collection, one might want to search only a range of doc-
uments. Our data structure has also support for some queries of this kind
without using any extra space.

4.1 Full-text retrieval

The full-text index, rather than Lt, requires a list Ft, where the same terms
are sorted by increasing document identifier. Different kinds of access operations
need to be carried out on Ft. We show now how all these can be carried in
O(logD) time.

Direct retrieval. First, with our wavelet tree representation of L we can
find any value Ft[i]. This is equivalent to finding the i-th smallest value in
L[stt, stt+1 − 1]. The algorithm, for a general range L[l, r], is as follows [16].
Let v be the root of the wavelet tree and Bv its bitmap. We count with n1 =
rank1(Bv, r) − rank1(Bv, l − 1) the number of 1s in Bv[l, r], and with n0 =
(r−l+1)−n1 the number of 0s. If i ≤ n0, then there are at least i values d in L[l, r]
belonging to the smaller half of the document identifiers, thus we continue recur-
sively on the left child of v, with l = rank0(Bv, l− 1) + 1 and r = rank0(Bv, r).
Otherwise, we continue on the right child, with l = rank1(Bv, l − 1) + 1, r =
rank1(Bv, r), and i = i− n0. The symbol corresponding to the leaf arrived at is
the answer.

We can also extract any segment Ft[i, i′], in order, in time O((i′ − i+ 1)(1 +
log D

i′−i+1)). The algorithm is as above, going just by one branch when both i
and i′ choose the same, and splitting the interval into two separate searches when
they do not. At worst we arrive at i′ − i+ 1 leaves of the wavelet tree, but part
of the paths to these leaves must be shared. At worst, their paths become all
distinct at depth log(i′− i+1), up to which point we work on all the O(i′− i+1)
different wavelet tree nodes, and after then we work on a different path, of length
logD − log(i′ − i+ 1), for each value.

Another useful operation is to find Ft[j] after having visited Ft[i], for some
j > i. We show this can be done in amortized time proportional to log(j− i+1).
We need to store logD numbers m`, d`, and b`, where m0 =∞ and d1 = 0, and
the others are computed as follows when we obtain Ft[i]: If, at wavelet tree depth
` (the root being depth 1), we must go left, then m` = min(m`−1, d` + n0 − i)
and d`+1 = d`, else m` = m`−1 and d`+1 = d` + n0. Here n0 is the value local
to the node. Therefore d` counts the values skipped to the left, and m` is the
maximum j − i value such that the downward paths to compute Ft[i] and Ft[j]
coincide up to depth `. We also set b` = i. Now, to compute Ft[j], we consider
all the ` values, from largest to smallest, until finding the first one such that
j − b` ≤ m`. From there on we recompute the downward path, resetting d` and
m` accordingly and setting b` = j.

Overall, if we carry out this operation k times, across a range [i, i′], the cost
is O(logD + k(1 + log i′−i+1

k)), as there can be only O(1) different paths longer
than O(log(i′ − i+ 1)) arriving at i′ − i+ 1 consecutive leaves, and considering
the argument above to analyze the retrieval of Ft[i, i′].

Boolean operations. The most important operation for intersecting lists is to
be able to find the first j such that Ft[j] ≥ d, given d. This is usually solved with
a combination of sampling and linear, exponential, or binary search. We show
now that our representation supports this operation in O(logD) time.

The operation is as follows. We start at the root v, with bitmap Bv, and the
interval L[l, r] with l = stt and r = stt+1 − 1. If number d belongs to the first
half of the wavelet tree, we descend left, otherwise right. In both cases we update
l and r as in the algorithm to retrieve Ft[i]. If, at some point, the interval [l, r]
becomes empty, then there is no value d in the subtree and we return without
a value. If, instead, we arrive at a leaf with a nonempty [l, r] (indeed, it must
hold l = r in this case), then the leaf arrived at is d and we return this value.
If the recursive step returns no result, then we must look for the first result to
the right: If the recursion was to the right child, or it was to the left but there
is not any 1 in Bv[l, r], we in turn return with no result. Otherwise we enter
the right child looking for the smallest value. From there, we enter recursively
the left child only if there is some 0 in Bv[l, r], otherwise we go right. Thus in
at most two root-to-leaf traversals we find out the first d′ ≥ d value in Ft. To
obtain j, the position of d′ in list Ft, we must add up the n0 values at all the
nodes in the path to d′ where we have gone to the right. Note O(logD) is not
far from the time required by a binary search on Ft.

As before, if we know Ft[j] = d and seek for the first value Ft[j′] ≥ d′, where
d′ ≥ d, we can do it in amortized time proportional to log(d′−d+1). The reason
is that, once again, we can redo the work for d′ from the corresponding position
of the path used for d (this position is now easier to calculate: it is the first bit
at which d and d′ differ). For the same reason as before, k searches covering a
range [d, d′] will cost at most O(logD + k log d′−d+1

k) time. This is indeed the
time required by k successive searches using exponential search.

Finally, our data structure allows us to carry out a particular intersection
algorithm. Consider intersecting two lists Ft and Ft′ . This is equivalent to finding
the common document numbers in L[l, r] and L[l′, r′]. We proceed as follows.
Let v be the wavelet tree root and Bv its bitmap. We descend to the left with
l = rank0(Bv, l − 1) + 1, r = rank0(Bv, r), l′ = rank0(Bv, l′ − 1) + 1, and r′ =
rank0(Bv, r′). We also descend to the right using the same formulas replacing
rank0 with rank1. If at any point range [l, r] or range [l′, r′] is empty, we abort
that branch. If we arrive at a leaf d with l = r and l′ = r′, then we report d as an
element in the intersection. This algorithm is indeed a materialization of bys [7],
where the binary searches have been replaced by constant-time rank operations,
hence it is an O(logD) factor faster!

Furthermore, this can be extended to intersecting k terms simultaneously,
by maintaining k ranges instead of two, with an O(k) time penalty factor. As
soon as one such range disappears, the tree branch is abandoned. This can offer
much better performance than the successive pairwise intersections that are
currently the best choice in practice. Perhaps more importantly, this scheme can
be relaxed to report any document where at least k′ out of the k words appear, by
abandoning the branches when there are less than k′ nonempty intervals. Again,
it is not easy to implement this type of search by, say, successive intersections.

We can proceed similarly in case of unions. We start with the k intervals
and proceed recursively as long as one of the intervals is nonempty. The cost
is O(M(1 + log D

m)), where m is the size of the output and M is the sum, over
the returned documents, of the number of intervals where they appeared. The
reason is that each interval must be projected to all of its leaves, but again, we
arrive at m different leaves overall, but the m paths of length logD cannot be
all different. The classical algorithm is O(M log k) time, which can be slightly
better or worse.

Other operations of interest. If the range of terms [t, t′] represent the deriva-
tives of a single stemmed root, we might wish to act as if we had a single list Ft,t′
containing all the documents where they occur. Indeed, if we apply our previous
algorithm to obtain Ft[i] from L[stt, stt+1−1], on the range L[stt, stt′+1−1], we
obtain precisely Ft,t′ [i], if we understand that a document d may repeat several
times in the list if different terms in [t, t′] appear in d.

More than that, the algorithms to find the first j such that Ft[j] ≥ d can
be applied verbatim to obtain the same result for Ft,t′ [j] ≥ d (except that
l = r may not hold at the leaves, but rather r− l+ 1 is the number of times the
resulting document appears in Ft,t′). All the variants of these queries are directly

supported as well. Finally, the bys-like search can also be applied verbatim in
order to intersect stemmed terms (again, at the leaves it may hold that l ≤ r
and l′ ≤ r′, not necessarily the equality).

Note we can obtain the list of unique documents d for a range of terms [t, t′]
by using the method that finds the first j and d such that Ft[j] = d ≥ 1, then
Ft[j′] = d′ ≥ d+ 1, and so on.

Note also that we have a kind of summarization information available. In
particular, we can obtain the local vocabulary of a document d, that is, the set
of different terms that appear in d. By descending to a leaf d, and then locating
back all of its occurrences L[i] (via select as we move upwards in the wavelet
tree), we can find all the i such that L[i] = d, and then rank1(S, i) gives the
terms, all in time O(logD) per term. Moreover, as the occurrences of d within
its leaf are a stable sort of the original order in L, we can retrieve the local
vocabulary in lexicographic order. This allows, for example, merging in linear
time the vocabularies of different documents, or binary searching for a particular
term in a particular document (yet, the latter is easier via two rank operations
on L: rankd(L, st+1− 1)− rankd(L, st− 1); then the corresponding position can
be obtained by selectd(L, 1 + rankd(L, st − 1))).

The way to support hierarchical documents by mapping them to ranges
[dl, dr] of documents is relatively obvious. It is sufficient to restrict all our wavelet
tree traversals to the nodes that contain leaves in this range, disregarding others.

4.2 Ranked retrieval

We focus now on the operations of interest for ranked retrieval, which are also
simulated essentially in O(logD) time.

Direct access and Persin’s algorithm. The Lt lists used for ranked retrieval
are directly concatenated in L, so Lt[i] is obtained by extracting symbol L[st +
i−1] using the wavelet tree. Recall that the term frequencies tf are also available
in time O(logD). Again, a range Lt[i, i′] is obtained in O((i′ − i+ 1) log D

i′−i+1)
time, as follows. Start at the root v with bitmap Bv and let the range to extract
be [l, r]. Compute the corresponding ranges [l0, r0] and [l1, r1] for the left and
right child, as usual, and descend recursively to both. Stop the recursion when
the range is empty. Upon arriving at a leaf d, report d. One can, for example,
find with select1(Rt, vt−rank1(Tt, p)+1)−1 the length of the prefix of Lt where
the tf values are > p, which is useful for Persin’s algorithm [25].

This algorithm is correct but it has the problem of retrieving the documents
in document order, not in tf order as they are in Lt. To recover the correct
ordering, we must merge the results at each internal wavelet tree node during
the recursion, as they arrive. At node v with results returned by its left and right
child, we use select0 and select1, respectively, in Bv to map their positions in
the bitmap of v. We advance in both lists so as to build their union in the correct
order in Bv prior to sending them upwards. Note that, due to this merging effort,
the complexity is again O((i′− i+ 1) logD), but in practice the method is faster
than extracting each L[i] one by one.

Note, nevertheless, that retrieving the highest-tf documents in document
order is indeed beneficial for Persin’s algorithm, where a difficulty is how to
accumulate results across unordered document sets. One could use the thresh-
old p of the algorithm to retrieve the relevant documents from the next list to
consider, and gracefully merge the result with the current candidates, as all are
automatically in increasing document order.

Other operations of interest. Any candidate document d in Persin’s algo-
rithm can be directly evaluated, obtaining its weight w(d), by finding it within
Lt for each t ∈ q (with rankd and selectd on L, as explained), and its tf obtained,
all in O(|q| logD) time.

If we wish to use stemming, we might want to retrieve prefixes of several lists
Lt to Lt′ . We may carry out the previous algorithm to deliver all the distinct
documents in these prefixes, now carrying on the t′−t+1 intervals as we descend
in the wavelet tree. When we arrive at the relevant leaves d, the corresponding
positions will be contiguous, thus we can naturally return just one occurrence
of each d in the union. This is a simplification of the method sketched earlier
to obtain the unique documents in Ft,t′ . If we wish to obtain the sum of the tf
values for all the stemmed terms in d, we can traverse the wavelet tree upwards
for each interval element at leaf d, and obtain its tf upon finding its position i
in L. Alternatively, we could store the tf values aligned to the leaves and mark
their cumulative values on a compressed bitmap, so as to obtain the sum as the
difference of two select1 queries on that bitmap. The space for tf becomes now
O(N log n

N) bits. In any case, this delivers the results in document order.
There is also some basic support for hierarchical documents: If we wish to

know the total tf of t in a range [d, d′] of documents, this range is exactly covered
by O(logD) wavelet tree nodes. We can descend, projecting the range of Lt in
L, until those nodes, and then move upwards again to find their positions and
individual tf values, to add them all.

More interesting is the fact that we can carry out ranked retrieval restricted
to any range of documents [d, d′] (e.g., within a particular XML subtree or
filesystem directory or range of document versions). Once again, it is sufficient
to restrict any of the operations described above so that they do not descend
to a node whose range does not intersect [d, d′]. This automatically yields, for
example, Persin’s algorithm over a range of documents.

5 Conclusions and future work

In this paper we have shown how wavelet trees can be used to achieve dual-
ordered inverted lists, that is, lists that are simultaneously sorted by document id
(useful for intersections and document retrieval) and by term impact or frequency
(useful for ranked retrieval). We are in the process of translating these data
structures into practice and verifying them experimentally.

Finally, we emphasize that our approach can be applied to any ordering on
the documents. A very different and interesting ordering from the one considered

here is that induced by the suffix array (the D array of Culpepper et al. [14]).
Applying our data structure and bys-like intersection algorithm over this or-
dering immediately yields efficient “bag-of-strings” queries from suffix arrays,
further bridging the gap between IR problems and optimal pattern matching
data structures.

References

1. V. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early
termination. In Proc. 24th SIGIR, pages 35–42, 2001.

2. V. Anh and A. Moffat. Inverted index compression using word-aligned binary
codes. Inf. Retr., 8(1):151–166, 2005.

3. V. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts. In
Proc. 29th SIGIR, pages 372–379, 2006.

4. R. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Proc.
15th CPM, LNCS 3109, pages 400–408, 2004.

5. R. Baeza-Yates, A. Moffat, and G. Navarro. Searching Large Text Collections,
pages 195–244. Kluwer Academic, 2002.

6. R. Baeza-Yates and B. Ribeiro. Modern Information Retrieval. Addison-Wesley,
1999.

7. R. Baeza-Yates and A. Salinger. Experimental analysis of a fast intersection al-
gorithm for sorted sequences. In Proc. 12th SPIRE, LNCS 3772, pages 13–24,
2005.

8. J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In
Proc. 13th SODA, pages 390–399, 2002.

9. J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An experimental investigation
of set intersection algorithms for text searching. ACM J. Exp. Alg., 14:article 7,
2009.

10. N. Brisaboa, A. Fariña, G. Navarro, and M. Esteller. S,C-dense coding: an opti-
mized compression code for natural language text databases. In Proc. 10th SPIRE,
LNCS 2857, pages 122–136, 2003.

11. S. Buettcher, C. Clarke, and G. V. Cormack. Information Retrieval: Implementing
and Evaluating Search Engines. MIT Press, Cambridge, MA, 2010.

12. B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in
Practice. Pearson Education, 2009.

13. J. S. Culpepper and A. Moffat. Compact set representation for information re-
trieval. In Proc. 14th SPIRE, LNCS 4726, pages 137–148, 2007.

14. J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin. Top-k ranked document
search in general text databases. In Proc. 18th ESA, 2010. To appear.

15. E. Demaine and I. Munro. Adaptive set intersections, unions, and differences. In
Proc. 11th SODA, pages 743–752, 2000.

16. T. Gagie, S. Puglisi, and A. Turpin. Range quantile queries: Another virtue of
wavelet trees. In Proc. 16th SPIRE, LNCS 5721, pages 1–6, 2009.

17. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th SODA, pages 841–850, 2003.

18. A. Gupta. Succinct Data Structures. PhD thesis, Duke University, USA, 2007.

19. H. Heaps. Information Retrieval - Computational and Theoretical Aspects. Aca-
demic Press, 1978.

20. W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string
retrieval problems. In Proc. 50th IEEE FOCS, pages 713–722, 2009.

21. D. A. Hull. Stemming algorithms: A case study for detailed evaluation. J. Amer.
Soc. Inf. Sci., 47(1):70–84, 1996.

22. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

23. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv.,
39(1):art. 2, 2007.

24. G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding com-
pression to block addressing inverted indexes. Inf. Retr., 3(1):49–77, 2000.

25. M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with
frequency-sorted indexes. J. Amer. Soc. Inf. Sci., 47(10):749–764, 1996.

26. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In Proc. 13th SODA, pages 233–242,
2002.

27. P. Sanders and F. Transier. Intersection in integer inverted indices. In Proc. 9th
ALENEX, 2007.

28. P. Sanders and F. Transier. Compressed inverted indexes for in-memory search
engines. In Proc. 10th ALENEX, pages 3–12, 2008.

29. F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes
for fast query evaluation. In Proc. 25th SIGIR, pages 222–229, 2002.

30. T. Strohman and B. Croft. Efficient document retrieval in main memory. In Proc.
30th SIGIR, pages 175–182, 2007.

31. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann, 2nd
edition, 1999.

32. J. Xu and W. B. Croft. Corpus-based stemming using cooccurrence of word vari-
ants. ACM Trans. Inf. Sys., 16(1):61–81, 1998.

33. H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing
with optimized document ordering. In Proc. 18th WWW, pages 401–410, 2009.

34. G. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,
1949.

35. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comp. Surv.,
38(2):article 6, 2006.

